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Abstract—This paper summarizes a special session on multi-
core/multi-processor system-on-chip (MPSoC) programming 
challenges. Wireless multimedia terminals are among the key 
drivers for MPSoC platform evolution. Heterogeneous multi-
processor architectures achieve high performance and can lead to 
a significant reduction in energy consumption for this class of 
applications. However, just designing energy efficient hardware 
is not enough. Programming models and tools for efficient 
MPSoC programming are equally important to ensure optimum 
platform utilization. Unfortunately, this discipline is still in its 
infancy, which endangers the return on investment for MPSoC 
architecture designs. On one hand there is a need for maintaining 
and gradually porting a large amount of legacy code to MPSoCs. 
On the other hand, special C language extensions for parallel 
programming as well as adapted process network programming 
models provide a great opportunity to completely rethink the 
traditional sequential programming paradigm for sake of higher 
efficiency and productivity. MPSoC programming is more than 
just code parallelisation, though. Besides energy efficiency, 
limited and specialized processing resources, and real-time 
constraints also growing software complexity and mapping of 
simultaneous applications need to be taken into account. We 
analyze the programming methodology requirements for 
heterogeneous MPSoC platforms and outline new approaches. 

I.  INTRODUCTION 

The best way of programming embedded MPSoC 
platforms, in terms of productivity and quality of results, is 
currently a topic for intensive discussion. This paper intends to 
contribute to this discussion by looking at various problem 
aspects, including general MPSoC architectural choices and 
their impact on programmability, the requirements of particular 
application domains, as well as programming models and 
corresponding tools support. Section II presents arguments for 
heterogeneous instead of homogeneous MPSoC platforms and 
derives design tool requirements. Section III suggests a 
concrete MPSoC architecture and programming model for 
future LTE platforms. In section IV, we outline the MAPS 
framework for mapping simultaneous embedded applications 
onto heterogeneous MPSoC. Section V discusses a combined 

MPSoC SW synthesis and simulation flow with application to 
streaming data processing. The tool presented in section VI is 
also targeted to streaming applications and provides a solution 
to auto-parallelization of certain sequential input programs into 
a Kahn Process Network (KPN) representation. Finally, the 
TCT programming model and tools framework presented in 
section VII exemplifies how a parallelizing compiler can 
support fine-grained MPSoC architecture exploration. From 
these case studies we can derive that the key to really “cool” 
MPSoC programming lies in creating tool workbenches that 
exploit knowledge about application and platform 
characteristics, rather than aiming for a push-button, “one-size-
fits-all” MPSoC compiler approach. 

II. MPSOC PROGRAMMING FOR ENERGY EFFICIENCY 

Consider the energy equation 

    E = Σ[ N(P0,1)+N(P0,2)+…+N(P0,k)]*C(P0)*V² 

for a homogeneous multi-core cluster P0[1..k] where the same 
k cores P0 are used in the cluster, given the number of the 
clock cycles N on each core and given a design with effective 
capacitance C and operating voltage V. We can lower energy 
consumption by dynamic voltage scaling (DVS) as E is 
proportional to V². In fact, it is possible to schedule tasks in a 
way such that the consumed energy is minimized to meet 
deadlines [4][5]. 

To achieve further energy reduction we focus on MPSoC for 
a specific application domain such as mobile baseband 
processing.  We take the MPSoC as a system consisting of 
software and multi-core hardware to perform a set of specific 
functions within a defined deadline, with certain N(P0,i) and 
certain C(P0) associated with the core P0[i] for i=1..k. Now we 
profile the task on a particular P0[i] further and design another 
specific instruction set processor core P1,  such that we obtain 
N(P1,i) and C(P1) with N(P1,i) < N(P0,i) and C(P1) < C(P0). 
By replacing P0 with P1, we expect to achieve significantly 
higher energy efficiency for the application (class). This 
approach results in a heterogeneous MPSoC platform, actually 
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with not only better energy efficiency but also with higher 
silicon cost efficiency [6][7].  

However, the more efficient architecture does not come for 
free. In fact we need to consider another system parameter, 
namely the overall system reliability, which must be 
maintained at least as high as it is with a single core 
implementation. A particular challenge is to design software 
for a given reliability at reasonable design time and effort. In 
other words, the speed of the progress regarding productivity of 
software programming will largely determine the degree of  
parallelizing (heterogeneous) hardware platforms. 

Today we have certain support e.g. from fast virtual 
prototyping techniques, application specific processor design as 
well as code generation tools for architecture exploration and 
software programming. This enables a gradual introduction of 
reliable heterogeneous MPSoC platforms. However there is 
still a great need for more effective methodologies, description 
languages, and tools. They are required especially for 

 optimal task partitioning onto heterogeneous 
clusters of multi-core with respect to meeting 
deadlines and minimizing energy consumption. 

 effective and correct-by-construction code 
generation tools not only for iterative architecture 
exploration, but also for software production and 
software maintenance.  

 seamless integrated simulation and debugging 
environment, allowing e.g. virtual prototyping for 
software production, software debugging and 
hardware-software co-verification. 

III. OPTIMIZING AND PROGRAMMING MPSOC 

ARCHITECTURES FOR SECOND GENERATION LTE BASEBAND 

DESIGNS 

First generation LTE baseband implementations were 
mainly targeted to cope with changing standards and early field 
tests. This was accomplished by either employing powerful 
FPGA platforms [8] or heavy Software Defined Radio (SDR) 
architectures [9]. Now, for the second generation architectures 
emphasis has to be put on lowest power consumption and 
smallest die size. The straightforward approach would be a 
fully hardwired implementation. However, significant 
flexibility is still required, e.g. for optimizations in the field. 
Hence, MPSoC architectures need to be employed for second 
generation LTE baseband system, too. In addition, new 
programming paradigms need to be introduced to allow for cost 
and power optimized implementations while still providing 
sufficient flexibility. 

For second generation implementations significant parts of 
the standard are fixed and can be safely put into hardware. The 
main requirement for software programmability comes from 
the need to allow for adoptions in the field and – often more 
importantly – to optimize the system towards lowest power 
consumption. The BWC200 LTE architecture depicted in Fig. 
1 addresses these needs by splitting the system into several 
independent units which are independently controlled by RISC 

processors and, where needed, supplemented by DSP 
processors.  

 
 

Fig. 1: The BWC200 MPSoC data stream architecture 
 

These RISC and DSP processors are implemented based on 
Tensilica’s Xtensa technology forming an MPSoC architecture. 
Its heterogeneous nature - due to the usage of different core 
configurations - demand for new principles in the MPSoC 
programming model, which are based on the following pre-
requisites: 

 Usage of processor cores of the same base 
architecture to allow the application of a unified 
control scheme. 

 Employment of a data-streaming architecture to 
avoid heavy multi-layer bus systems. 

 The usage of message based software programming 
models to abstract the details of the architecture 
from the programmer. 

     The programming model for this architecture makes use of 
the distributed nature of processing nodes. The programmer 
issues messages that can be interpreted by each core and hence 
the specific nature of each core configuration can be abstracted. 

     Triggered by a message a unit can receive a burst of data 
and conducts the processing either via hardware accelerators or 
in case of DSPs via firmware. Once this processing is complete 
it indicates to the succeeding unit via interrupts the availability 
of data. This receiving unit calls the data burst once it finalized 
its active task. By employing this data streaming 
communication the continuous processing of data can be 
achieved and blockings avoided.  

This MPSoC programming model also allows for an energy 
efficient implementation by providing independent islands that 
can be target to local power optimizations and still fulfilling 
LTE’s stringent real time constrains. Last, this approach 
provides the basis for multi-application programming or 
retargetable MPSoC software design flows as described in the 
sequel. 



IV. TOWARDS MPSOC MULTI-APPLICATION 

PROGRAMMING 

The transition from classical compilers for single-processor 
platforms to highly parallel MPSoCs poses several key 
challenges: 

 Multi-application compilation: The functionality of 
wireless terminals more and more resembles that of 
traditional PCs. Multiple applications are activated 
dynamically and possibly simultaneously. This concerns 
application layer processing such as multimedia codecs as 
well as PHY layers of various radio standards. In most of 
today´s platforms both layers are separated and the PHY 
scheduling is rather static. However, this may change in 
the future for sake of better resource utilization and due to 
SDR and cognitive radio being on the roadmaps for future 
terminals. Due to real-time constraints for some 
applications, it is no longer sufficient to compile different 
applications separately. The compiler has to take various 
time-critical multi-application scenarios into account, in 
order to ensure that enough processing bandwidth is 
available even in worst case workload situations.    

 

 

Fig. 2: Workflow in the MAPS compiler 

 

 Real-time constraints: Traditional compilers are timing 
agnostic. However, embedded MPSoC applications fall 
into three major real-time classes: hard real-time (HRT, 
e.g. for digital receivers), soft real-time (SRT, e.g. video 
decoders), and non real-time (NRT, e.g. JPEG 
compression). Both the compiler for single applications as 

well as the global MPSoC scheduler have to be aware of 
these constraints for an optimal quality of service. 

 Code partitioning: Due to the legacy code problem there 
cannot be a sudden dramatic change in programming 
principles and languages. We can rather expect a gradual 
change towards truly parallel programming, which will 
take significant time. Therefore, MPSoC compilers should 
be equipped with –at least semi-automatic- code 
partitioning functionality, capable of distributing 
applications given as sequential legacy code among the 
MPSoC processing elements. 

 Heterogeneity: Due to energy efficiency and performance 
reasons, the processing elements in embedded MPSoCs 
are quite heterogeneous. Moreover, there are HW 
accelerators for certain functionalities, e.g. dedicated 
graphics engines. Programming formalisms for such 
platforms must expose this heterogeneity to a certain 
extent to the programmer and must be able to make 
corresponding optimized choices concerning task-to-
processor assignment, code partitioning, and on-demand 
task migration. 

 

     The MAPS compiler project (fig. 2) at RWTH Aachen (as 
part of the UMIC Excellence Cluster) aims at tackling some of 
these challenges. MAPS accepts as input a set of (optionally) 
time-constrained applications. These can be given as either 
annotated sequential code or in a KPN notation based on 
extensions of C. Possible dynamic workload scenarios for 
HRT and SRT applications are captured in a concurrency 
graph, which allows to make static scheduling decisions. NRT 
applications are scheduled only dynamically in best-effort 
manner. A stand-alone high-level virtual platform (HVP) 
allows for a fast early SW performance estimation and 
workload distribution. In the core MAPS compiler, sequential 
code applications can then be semi-automatically split into 
tasks, which are translated together with KPN applications 
into a unified intermediate representation (IR). Next, spatial 
and temporal mapping of tasks to heterogeneous processing 
elements takes place, using profiling based performance 
estimation. Finally, a retargetable code generation phase maps 
the scheduled IR tasks into platform specific source codes and 
task communication primitives. Besides various virtual 
platforms, MAPS currently targets TCT (see section VII) and 
TI´s OMAP platform. 

Further details on MAPS can be found in [1,2,3]. Another 
important future item in the MPSoC tool R&D roadmap is 
multiprocessor SW debugging. The classical SW debugging 
approach does not scale well for manycore architectures. We 
believe that new, abstract SW process oriented (rather than HW 
processor oriented) debugging methodologies and tooling are 
required to manage future SW complexity levels. 



V. A RETARGETABLE MPSOC SOFTWARE DESIGN FLOW 

FOR STREAMING APPLICATIONS 

A. High Level Compilation 

     In the following, we will discuss mainly application 
domains in which the MPSoC has to process a set of streaming 
applications, i.e. applications that can be partitioned into 
components that communicate with each other via data 
streams, see e.g. [14]. Increasingly, we are faced with sets of 
streaming applications that appear and disappear dynamically. 
As a result, even simple static stream-oriented applications 
will suffer from sporadic timing failures or may be subject to 
dynamic remapping because of overload or overheating 
situations. 
     Fig. 3 shows a possible software design process, see e.g. 
[11]. It is characterized by a relatively slow exploration cycle 
shown at the bottom of the chart: Starting from an architecture 
and application specification as well as from a mapping of 
software components  to platform elements, at first optimized 
hardware-dependent software (HdS) components and 
operating system links are generated. They replace the 
conventional middleware approach by a more efficient 
compile-time generation which considers the application 
mapping. The compiled software will then be simulated on a 
virtual platform in order to validate functional correctness and 
non-functional properties. The results can be used to change 
the application and/or the mapping. In case of dynamic 
applications, some of these changes may involve adapting the 
online resource (re-)allocation strategy.  
     The growing complexity of applications and size of 
MPSoC platforms make it necessary to add a second loop 
shown at the top of fig. 3. The whole process of HdS 
generation, low-level compilation and simulation is replaced 
by analytic performance estimations that scale to large and 
complex applications. Advance methods based on component-
based concepts for the real-time analysis of distributed 
embedded systems have successfully be applied in this context 
and embedded into a complete design flow, see e.g. [12], [13].  
 

 
 

Figure 3: MPSoC high level compilation flow. 
 

B. Components and Sensitivity 

     The core of analytic performance analysis is composability 
with respect to adding application components, adding 
resources as well as resource sharing strategies. This way, a 
fixed set calibrated local platform and application parameters 
can be used to estimate the global end-to-end system 
properties for a large set of possible application mappings.  
     Unfortunately, this concept of a small set of fixed local 
properties (determined via calibration [12]) that can be used to 
compute global system-wide characteristics is in danger in 
case of increased system complexity related to size and 
dynamic behavior. For example, a fixed WCET (worst case 
execution time) of a software process may not be an 
appropriate abstraction of the accumulated run-time of a 
process, if we are faced with caches, dynamic pipelines and 
interference on communication paths to memory. Timing 
estimations based on simple interference models may yield a 
vast loss in accuracy in case of high interference from other 
running applications. On the other hand, a more detailed 
analysis or even simulation will suffer from non-acceptable 
run-time. The above mentioned cross-interference between 
dynamic applications will lead to an increased non-
determinism in the timing behavior, see also [15]. 
     Possible new concepts and design guidelines to avoid this 
threat in terms of loss in accuracy in performance estimation 
and system predictability can be summarized as follows: 

 Reduce the self-interference between several 
components of one single application and cross-
interference between applications on common 
resource. This may be achieved through proper 
platform design or the use of resource servers that 
partition the available resources. 

 Convince platform designers to select micro-
architecture components whose behavior in terms of 
resource interaction can be modeled accurately on a 
high level of abstraction. 

 Increase the robustness and sensitivity of 
hardware/software components such that non-
deterministic input behavior is not amplified but 
possibly reduced, for appropriate definitions see e.g. 
[16]. Examples are the use of traffic shapers or 
scheduling servers.  

     This way, interactions on shared resources are reduced as 
well as more predictable such that relatively simple, 
component-based estimation methods can be applied 
effectively. This is a prerequisite for both, dynamic on-line 
resource management approaches with performance 
guarantees and future software design processes applicable to 
large-scale MPSoCs. 

VI. FROM SINGLE THREADED C-CODE TO MULTI THREADED 

MPSOC CODE FOR HIGH PERFORMANCE STREAMING 

APPLICATIONS 

     A big problem with the arrival of multicore platforms is 
that most software is still written in a sequential style, 
typically in C code in the embedded space, focusing on a 
single processor with large global memory. Multicore 



platforms on the other hand have multiple processors and 
typically a distributed, hierarchically organized memory. 
Therefore, the most used programming style conflicts in two 
dimensions; single thread program versus multiple thread 
programs and shared memory versus distributed memory.  
Nevertheless, designers need a trajectory to get them quickly 
from the current programming model to the programming 
model that fits with multicore design. This trajectory should 
happen as smoothly as possible as designers have to work with 
legacy code of possibly thousand lines of code. Having to 
validate the correctness of the new multithreaded program is 
not an option.  
     Compaan Design realizes this trajectory by the flow shown 
in fig. 4, which is based on the technology described in [17]. 
This flow helps a designer in two steps towards a 
multithreaded design while maintaining a correct working 
application consisting of possibly many thousand lines of 
code. In the original C code, a designer indicates with the 
Compaan On/Off pragma one or more regions. On each region 
a special auto-parallelization step is done (step 1) based on 
exact dataflow analysis. The result of this step is expressed as 
a KPN, i.e., a network of processes exchanging data using 
FIFOs (First In First Out buffers). Once a designer has such a 
KPN, the mapping (step 2) onto an MPSoC is relatively 
straightforward; a process becomes either a software thread on 
a microprocessor or a hardware accelerator. A FIFO 
connection could be map to native FIFO support but also to 
shared memory, a bus structure, or on a Network on a Chip 
(NoC) infrastructure.  

Process is either 
SW or HW

Kahn Process 
Network (KPN)

Step 1

Compaan

KpnMapper

C-Code
int main( void ) {
…
#pragma compaan on
for (j = 1; j < N; j++) {
x(j) = read_stream( ); 

}
for (i = 1; i<K; i++) {

y(i) = read_stream( ); 
}
for (j = 1; j < N; j++) {
for (i = 1; i< K; i++ ) {
z(i) = combine( y(i), x(j) );

}
}
for (i = 1; i<K; i++) {
out(i) = write_stream( z( i ) ); 

}
#pragma compaan off
…
}
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Figure 4: The MPSoC programming flow of Compaan 

Design 
     C-code is translated into an equivalent KPN representation 
using mathematical techniques based on the polytope model. 
This model is a geometric representation of the original 
computation expressed in C-code. For the polytope model 
very powerful mathematical manipulation techniques exist that 
are exploited to do the translation. Since the translation is 
mathematical without the use of heuristics, there is always a 
one-to-one relation between the C-code and the resulting 
KPN; as a result no validation is further needed. The use of the 
polytope model does limit the translation to a specific class of 
programs called Parametric Nested Loop Programs. However, 
any Matrix-Matrix or Matrix-Vector program can be 

expressed in this way and most signal processing applications 
typically consist of these kinds of operations. Allowing 
dynamic C-code constructs is subject to further research.  

Compaan can also generate an indefinite number of 
different KPNs, all with the same input-output behavior. Each 
KPN has different characteristics, i.e., numbers of channels 
and processes. This can be viewed as expressing the C code at 
different degrees of parallelism. Using a special merging 
technique, Compaan can reduce the number of processes and 
thereby reducing the level of parallelism. Compaan can also 
do the reverse, by splitting a process in new processes, thereby 
increasing parallelism. By repeating this process in both 
directions, one can obtain many different partitions, covering 
the full range from no parallelism to full parallelism, all for a 
single piece of C-code. 

VII. THE TIGHTLY COUPLED THREAD MODEL: EFFICIENTLY 

EXPLORING THE MPSOC DESIGN SPACE 

     Developing highly optimized MPSoC application programs 
requires enormous efforts that need to be finely tuned at the 
algorithm level, system partitioning, and mapping on the target 
MPSoC architecture. Maintaining the correctness of the 
parallelized code during these software refinements itself is 
difficult if the programmers are held responsible for 
preventing deadlocks and race conditions, and ensuring the 
correct execution order. The Tightly-Coupled Thread (TCT) 
Model developed at Tokyo Institute of Technology addresses 
this issue of MPSoC programming by providing a simple 
programming model on top of the sequential C code where the 

programmers insert “thread scopes” in the code to describe the 
slicing structure of the application [18]. Our TCT compiler 
equipped with powerful interprocedural dependence flow 

void JPEGtop(){
  THREAD(BLKcore){ // block-level 
    for(j = 0; j < imageSizeX; j += 16){ 
      THREAD(Y0){ // process Y0   
       BLK8x8(&Y0[j],0,&DCy,&state,0); 
       BLK8x8(&Y0[j+8],0,&DCy,&state,nC); 
      } 

    } 

void BLK8x8(…){
  dct(…); 
  THREAD(Q){…} 
  THREAD(E){ 
  THREAD(W){…}
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analysis is able to extract all dependences between these 
threads (which may reside in different functions) and 
automatically insert communication and synchronization 
instructions on the partitioned parallel codes. Thus the 
programmers are freed from maintaining the correctness of the 
parallelized code especially on the communication details and 
are allowed to directly focus on algorithm refinement and code 
restructuring for revealing more parallelism on the target 
MPSoC architecture. The MAPS framework from RWTH 
Aachen [1] includes powerful dataflow analysis and code 
partitioning engines that can emit thread-annotated code from 
sequential C code to be fed to our TCT compiler.  
     The underlying communication model in the TCT Model is 
that of the message-passing protocol for distributed memory 
systems where each data dependence between thread pairs is 
converted into a DT (data transfer) instruction at the source 
thread and a DS (data synchronization) instruction at the 
destination thread. In addition to these DT/DS instructions, CT 
(control token) instructions are added for activating the inner 
control-dependent threads. These three primitive 
communication instructions with several additional 
instructions for maintaining the communication buffers are 
automatically generated by the TCT compiler, resulting in a 
behavior that is both data-driven (by DT/DS) and control-
driven (by CT) to ensure a correct execution order of 
parallelized codes. An efficient instruction-driven message-
passing scheme has been developed during the design of our 
TCT-MPSoC prototype chip [19] which requires very short 
setup time of 2 to 6 cycles and high bandwidth data transfer of 
4 bytes/cycle assisted by the communication model embedded 
in the processor element. Our TCT-MPSoC implementation 
has also been ported to commercial ESL tool environments to 
realize the TCT-MPSoC virtual platform composed of 
processor models and crossbar-based interconnect models.  
     For early stage MPSoC architecture exploration and 
application tuning, we have also developed a new MPSoC 
performance estimation framework based on trace-driven 
workload models [20]. This framework, illustrated in fig. 5, 
includes an automatic fine-grain workload model generation 
of SW components (coded on TCT Model), application trace 
generation through automatic source-level instrumentation 
using a new program trace encoding technique, and a MPSoC 
workload simulator kernel which, in addition to generating the 
accurate timing behavior of processor elements, reproduces 
the inter-processor communication traffic on a parameterized 
MPSoC interconnect model. Our trace-driven MPSoC 
workload simulator is capable of quickly estimating the 
performance of a wide range of architectural parameters of 
MPSoC such as the number of processors, interconnect 
topology, communication bandwidth and buffer size. 
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