
Cool MPSoC Programming

Rainer Leupers
RWTH Aachen University, leupers@iss.rwth-aachen.de

Xiaoning Nie
Infineon Technologies, xiaoning.nie@infineon.com

Matthias Weiss
Blue Wonder Communications, matthias.weiss@bluwo.com

Lothar Thiele
ETH Zurich, thiele@ethz.ch

Bart Kienhuis
Compaan Design, kienhuis@compaandesign.com

Tsuyoshi Isshiki
Tokyo Institute of Technology, isshiki@vlsi.ss.titech.ac.jp

Abstract—This paper summarizes a special session on multi-
core/multi-processor system-on-chip (MPSoC) programming
challenges. Wireless multimedia terminals are among the key
drivers for MPSoC platform evolution. Heterogeneous multi-
processor architectures achieve high performance and can lead to
a significant reduction in energy consumption for this class of
applications. However, just designing energy efficient hardware
is not enough. Programming models and tools for efficient
MPSoC programming are equally important to ensure optimum
platform utilization. Unfortunately, this discipline is still in its
infancy, which endangers the return on investment for MPSoC
architecture designs. On one hand there is a need for maintaining
and gradually porting a large amount of legacy code to MPSoCs.
On the other hand, special C language extensions for parallel
programming as well as adapted process network programming
models provide a great opportunity to completely rethink the
traditional sequential programming paradigm for sake of higher
efficiency and productivity. MPSoC programming is more than
just code parallelisation, though. Besides energy efficiency,
limited and specialized processing resources, and real-time
constraints also growing software complexity and mapping of
simultaneous applications need to be taken into account. We
analyze the programming methodology requirements for
heterogeneous MPSoC platforms and outline new approaches.

I. INTRODUCTION

The best way of programming embedded MPSoC
platforms, in terms of productivity and quality of results, is
currently a topic for intensive discussion. This paper intends to
contribute to this discussion by looking at various problem
aspects, including general MPSoC architectural choices and
their impact on programmability, the requirements of particular
application domains, as well as programming models and
corresponding tools support. Section II presents arguments for
heterogeneous instead of homogeneous MPSoC platforms and
derives design tool requirements. Section III suggests a
concrete MPSoC architecture and programming model for
future LTE platforms. In section IV, we outline the MAPS
framework for mapping simultaneous embedded applications
onto heterogeneous MPSoC. Section V discusses a combined

MPSoC SW synthesis and simulation flow with application to
streaming data processing. The tool presented in section VI is
also targeted to streaming applications and provides a solution
to auto-parallelization of certain sequential input programs into
a Kahn Process Network (KPN) representation. Finally, the
TCT programming model and tools framework presented in
section VII exemplifies how a parallelizing compiler can
support fine-grained MPSoC architecture exploration. From
these case studies we can derive that the key to really “cool”
MPSoC programming lies in creating tool workbenches that
exploit knowledge about application and platform
characteristics, rather than aiming for a push-button, “one-size-
fits-all” MPSoC compiler approach.

II. MPSOC PROGRAMMING FOR ENERGY EFFICIENCY

Consider the energy equation

 E = Σ[N(P0,1)+N(P0,2)+…+N(P0,k)]*C(P0)*V²

for a homogeneous multi-core cluster P0[1..k] where the same
k cores P0 are used in the cluster, given the number of the
clock cycles N on each core and given a design with effective
capacitance C and operating voltage V. We can lower energy
consumption by dynamic voltage scaling (DVS) as E is
proportional to V². In fact, it is possible to schedule tasks in a
way such that the consumed energy is minimized to meet
deadlines [4][5].

To achieve further energy reduction we focus on MPSoC for
a specific application domain such as mobile baseband
processing. We take the MPSoC as a system consisting of
software and multi-core hardware to perform a set of specific
functions within a defined deadline, with certain N(P0,i) and
certain C(P0) associated with the core P0[i] for i=1..k. Now we
profile the task on a particular P0[i] further and design another
specific instruction set processor core P1, such that we obtain
N(P1,i) and C(P1) with N(P1,i) < N(P0,i) and C(P1) < C(P0).
By replacing P0 with P1, we expect to achieve significantly
higher energy efficiency for the application (class). This
approach results in a heterogeneous MPSoC platform, actually

978-3-9810801-6-2/DATE10 © 2010 EDAA

with not only better energy efficiency but also with higher
silicon cost efficiency [6][7].

However, the more efficient architecture does not come for
free. In fact we need to consider another system parameter,
namely the overall system reliability, which must be
maintained at least as high as it is with a single core
implementation. A particular challenge is to design software
for a given reliability at reasonable design time and effort. In
other words, the speed of the progress regarding productivity of
software programming will largely determine the degree of
parallelizing (heterogeneous) hardware platforms.

Today we have certain support e.g. from fast virtual
prototyping techniques, application specific processor design as
well as code generation tools for architecture exploration and
software programming. This enables a gradual introduction of
reliable heterogeneous MPSoC platforms. However there is
still a great need for more effective methodologies, description
languages, and tools. They are required especially for

 optimal task partitioning onto heterogeneous
clusters of multi-core with respect to meeting
deadlines and minimizing energy consumption.

 effective and correct-by-construction code
generation tools not only for iterative architecture
exploration, but also for software production and
software maintenance.

 seamless integrated simulation and debugging
environment, allowing e.g. virtual prototyping for
software production, software debugging and
hardware-software co-verification.

III. OPTIMIZING AND PROGRAMMING MPSOC

ARCHITECTURES FOR SECOND GENERATION LTE BASEBAND

DESIGNS

First generation LTE baseband implementations were
mainly targeted to cope with changing standards and early field
tests. This was accomplished by either employing powerful
FPGA platforms [8] or heavy Software Defined Radio (SDR)
architectures [9]. Now, for the second generation architectures
emphasis has to be put on lowest power consumption and
smallest die size. The straightforward approach would be a
fully hardwired implementation. However, significant
flexibility is still required, e.g. for optimizations in the field.
Hence, MPSoC architectures need to be employed for second
generation LTE baseband system, too. In addition, new
programming paradigms need to be introduced to allow for cost
and power optimized implementations while still providing
sufficient flexibility.

For second generation implementations significant parts of
the standard are fixed and can be safely put into hardware. The
main requirement for software programmability comes from
the need to allow for adoptions in the field and – often more
importantly – to optimize the system towards lowest power
consumption. The BWC200 LTE architecture depicted in Fig.
1 addresses these needs by splitting the system into several
independent units which are independently controlled by RISC

processors and, where needed, supplemented by DSP
processors.

Fig. 1: The BWC200 MPSoC data stream architecture

These RISC and DSP processors are implemented based on
Tensilica’s Xtensa technology forming an MPSoC architecture.
Its heterogeneous nature - due to the usage of different core
configurations - demand for new principles in the MPSoC
programming model, which are based on the following pre-
requisites:

 Usage of processor cores of the same base
architecture to allow the application of a unified
control scheme.

 Employment of a data-streaming architecture to
avoid heavy multi-layer bus systems.

 The usage of message based software programming
models to abstract the details of the architecture
from the programmer.

 The programming model for this architecture makes use of
the distributed nature of processing nodes. The programmer
issues messages that can be interpreted by each core and hence
the specific nature of each core configuration can be abstracted.

 Triggered by a message a unit can receive a burst of data
and conducts the processing either via hardware accelerators or
in case of DSPs via firmware. Once this processing is complete
it indicates to the succeeding unit via interrupts the availability
of data. This receiving unit calls the data burst once it finalized
its active task. By employing this data streaming
communication the continuous processing of data can be
achieved and blockings avoided.

This MPSoC programming model also allows for an energy
efficient implementation by providing independent islands that
can be target to local power optimizations and still fulfilling
LTE’s stringent real time constrains. Last, this approach
provides the basis for multi-application programming or
retargetable MPSoC software design flows as described in the
sequel.

IV. TOWARDS MPSOC MULTI-APPLICATION

PROGRAMMING

The transition from classical compilers for single-processor
platforms to highly parallel MPSoCs poses several key
challenges:

 Multi-application compilation: The functionality of
wireless terminals more and more resembles that of
traditional PCs. Multiple applications are activated
dynamically and possibly simultaneously. This concerns
application layer processing such as multimedia codecs as
well as PHY layers of various radio standards. In most of
today´s platforms both layers are separated and the PHY
scheduling is rather static. However, this may change in
the future for sake of better resource utilization and due to
SDR and cognitive radio being on the roadmaps for future
terminals. Due to real-time constraints for some
applications, it is no longer sufficient to compile different
applications separately. The compiler has to take various
time-critical multi-application scenarios into account, in
order to ensure that enough processing bandwidth is
available even in worst case workload situations.

Fig. 2: Workflow in the MAPS compiler

 Real-time constraints: Traditional compilers are timing
agnostic. However, embedded MPSoC applications fall
into three major real-time classes: hard real-time (HRT,
e.g. for digital receivers), soft real-time (SRT, e.g. video
decoders), and non real-time (NRT, e.g. JPEG
compression). Both the compiler for single applications as

well as the global MPSoC scheduler have to be aware of
these constraints for an optimal quality of service.

 Code partitioning: Due to the legacy code problem there
cannot be a sudden dramatic change in programming
principles and languages. We can rather expect a gradual
change towards truly parallel programming, which will
take significant time. Therefore, MPSoC compilers should
be equipped with –at least semi-automatic- code
partitioning functionality, capable of distributing
applications given as sequential legacy code among the
MPSoC processing elements.

 Heterogeneity: Due to energy efficiency and performance
reasons, the processing elements in embedded MPSoCs
are quite heterogeneous. Moreover, there are HW
accelerators for certain functionalities, e.g. dedicated
graphics engines. Programming formalisms for such
platforms must expose this heterogeneity to a certain
extent to the programmer and must be able to make
corresponding optimized choices concerning task-to-
processor assignment, code partitioning, and on-demand
task migration.

 The MAPS compiler project (fig. 2) at RWTH Aachen (as
part of the UMIC Excellence Cluster) aims at tackling some of
these challenges. MAPS accepts as input a set of (optionally)
time-constrained applications. These can be given as either
annotated sequential code or in a KPN notation based on
extensions of C. Possible dynamic workload scenarios for
HRT and SRT applications are captured in a concurrency
graph, which allows to make static scheduling decisions. NRT
applications are scheduled only dynamically in best-effort
manner. A stand-alone high-level virtual platform (HVP)
allows for a fast early SW performance estimation and
workload distribution. In the core MAPS compiler, sequential
code applications can then be semi-automatically split into
tasks, which are translated together with KPN applications
into a unified intermediate representation (IR). Next, spatial
and temporal mapping of tasks to heterogeneous processing
elements takes place, using profiling based performance
estimation. Finally, a retargetable code generation phase maps
the scheduled IR tasks into platform specific source codes and
task communication primitives. Besides various virtual
platforms, MAPS currently targets TCT (see section VII) and
TI´s OMAP platform.

Further details on MAPS can be found in [1,2,3]. Another
important future item in the MPSoC tool R&D roadmap is
multiprocessor SW debugging. The classical SW debugging
approach does not scale well for manycore architectures. We
believe that new, abstract SW process oriented (rather than HW
processor oriented) debugging methodologies and tooling are
required to manage future SW complexity levels.

V. A RETARGETABLE MPSOC SOFTWARE DESIGN FLOW

FOR STREAMING APPLICATIONS

A. High Level Compilation

 In the following, we will discuss mainly application
domains in which the MPSoC has to process a set of streaming
applications, i.e. applications that can be partitioned into
components that communicate with each other via data
streams, see e.g. [14]. Increasingly, we are faced with sets of
streaming applications that appear and disappear dynamically.
As a result, even simple static stream-oriented applications
will suffer from sporadic timing failures or may be subject to
dynamic remapping because of overload or overheating
situations.
 Fig. 3 shows a possible software design process, see e.g.
[11]. It is characterized by a relatively slow exploration cycle
shown at the bottom of the chart: Starting from an architecture
and application specification as well as from a mapping of
software components to platform elements, at first optimized
hardware-dependent software (HdS) components and
operating system links are generated. They replace the
conventional middleware approach by a more efficient
compile-time generation which considers the application
mapping. The compiled software will then be simulated on a
virtual platform in order to validate functional correctness and
non-functional properties. The results can be used to change
the application and/or the mapping. In case of dynamic
applications, some of these changes may involve adapting the
online resource (re-)allocation strategy.
 The growing complexity of applications and size of
MPSoC platforms make it necessary to add a second loop
shown at the top of fig. 3. The whole process of HdS
generation, low-level compilation and simulation is replaced
by analytic performance estimations that scale to large and
complex applications. Advance methods based on component-
based concepts for the real-time analysis of distributed
embedded systems have successfully be applied in this context
and embedded into a complete design flow, see e.g. [12], [13].

Figure 3: MPSoC high level compilation flow.

B. Components and Sensitivity

 The core of analytic performance analysis is composability
with respect to adding application components, adding
resources as well as resource sharing strategies. This way, a
fixed set calibrated local platform and application parameters
can be used to estimate the global end-to-end system
properties for a large set of possible application mappings.
 Unfortunately, this concept of a small set of fixed local
properties (determined via calibration [12]) that can be used to
compute global system-wide characteristics is in danger in
case of increased system complexity related to size and
dynamic behavior. For example, a fixed WCET (worst case
execution time) of a software process may not be an
appropriate abstraction of the accumulated run-time of a
process, if we are faced with caches, dynamic pipelines and
interference on communication paths to memory. Timing
estimations based on simple interference models may yield a
vast loss in accuracy in case of high interference from other
running applications. On the other hand, a more detailed
analysis or even simulation will suffer from non-acceptable
run-time. The above mentioned cross-interference between
dynamic applications will lead to an increased non-
determinism in the timing behavior, see also [15].
 Possible new concepts and design guidelines to avoid this
threat in terms of loss in accuracy in performance estimation
and system predictability can be summarized as follows:

 Reduce the self-interference between several
components of one single application and cross-
interference between applications on common
resource. This may be achieved through proper
platform design or the use of resource servers that
partition the available resources.

 Convince platform designers to select micro-
architecture components whose behavior in terms of
resource interaction can be modeled accurately on a
high level of abstraction.

 Increase the robustness and sensitivity of
hardware/software components such that non-
deterministic input behavior is not amplified but
possibly reduced, for appropriate definitions see e.g.
[16]. Examples are the use of traffic shapers or
scheduling servers.

 This way, interactions on shared resources are reduced as
well as more predictable such that relatively simple,
component-based estimation methods can be applied
effectively. This is a prerequisite for both, dynamic on-line
resource management approaches with performance
guarantees and future software design processes applicable to
large-scale MPSoCs.

VI. FROM SINGLE THREADED C-CODE TO MULTI THREADED

MPSOC CODE FOR HIGH PERFORMANCE STREAMING

APPLICATIONS

 A big problem with the arrival of multicore platforms is
that most software is still written in a sequential style,
typically in C code in the embedded space, focusing on a
single processor with large global memory. Multicore

platforms on the other hand have multiple processors and
typically a distributed, hierarchically organized memory.
Therefore, the most used programming style conflicts in two
dimensions; single thread program versus multiple thread
programs and shared memory versus distributed memory.
Nevertheless, designers need a trajectory to get them quickly
from the current programming model to the programming
model that fits with multicore design. This trajectory should
happen as smoothly as possible as designers have to work with
legacy code of possibly thousand lines of code. Having to
validate the correctness of the new multithreaded program is
not an option.
 Compaan Design realizes this trajectory by the flow shown
in fig. 4, which is based on the technology described in [17].
This flow helps a designer in two steps towards a
multithreaded design while maintaining a correct working
application consisting of possibly many thousand lines of
code. In the original C code, a designer indicates with the
Compaan On/Off pragma one or more regions. On each region
a special auto-parallelization step is done (step 1) based on
exact dataflow analysis. The result of this step is expressed as
a KPN, i.e., a network of processes exchanging data using
FIFOs (First In First Out buffers). Once a designer has such a
KPN, the mapping (step 2) onto an MPSoC is relatively
straightforward; a process becomes either a software thread on
a microprocessor or a hardware accelerator. A FIFO
connection could be map to native FIFO support but also to
shared memory, a bus structure, or on a Network on a Chip
(NoC) infrastructure.

Process is either
SW or HW

Kahn Process
Network (KPN)

Step 1

Compaan

KpnMapper

C-Code
int main(void) {
…
#pragma compaan on
for (j = 1; j < N; j++) {
x(j) = read_stream();

}
for (i = 1; i<K; i++) {

y(i) = read_stream();
}
for (j = 1; j < N; j++) {
for (i = 1; i< K; i++) {
z(i) = combine(y(i), x(j));

}
}
for (i = 1; i<K; i++) {
out(i) = write_stream(z(i));

}
#pragma compaan off
…
}

Parameterized Nested
Loop Programs

Distributed memory
and control

Sink

F3

F1

F4

F2

S2

S1

bus

IP

NoC µP

bus

Memory

IP µP

bus

Memory

NoC

…

MPSoC

Figure 4: The MPSoC programming flow of Compaan

Design
 C-code is translated into an equivalent KPN representation
using mathematical techniques based on the polytope model.
This model is a geometric representation of the original
computation expressed in C-code. For the polytope model
very powerful mathematical manipulation techniques exist that
are exploited to do the translation. Since the translation is
mathematical without the use of heuristics, there is always a
one-to-one relation between the C-code and the resulting
KPN; as a result no validation is further needed. The use of the
polytope model does limit the translation to a specific class of
programs called Parametric Nested Loop Programs. However,
any Matrix-Matrix or Matrix-Vector program can be

expressed in this way and most signal processing applications
typically consist of these kinds of operations. Allowing
dynamic C-code constructs is subject to further research.

Compaan can also generate an indefinite number of
different KPNs, all with the same input-output behavior. Each
KPN has different characteristics, i.e., numbers of channels
and processes. This can be viewed as expressing the C code at
different degrees of parallelism. Using a special merging
technique, Compaan can reduce the number of processes and
thereby reducing the level of parallelism. Compaan can also
do the reverse, by splitting a process in new processes, thereby
increasing parallelism. By repeating this process in both
directions, one can obtain many different partitions, covering
the full range from no parallelism to full parallelism, all for a
single piece of C-code.

VII. THE TIGHTLY COUPLED THREAD MODEL: EFFICIENTLY

EXPLORING THE MPSOC DESIGN SPACE

 Developing highly optimized MPSoC application programs
requires enormous efforts that need to be finely tuned at the
algorithm level, system partitioning, and mapping on the target
MPSoC architecture. Maintaining the correctness of the
parallelized code during these software refinements itself is
difficult if the programmers are held responsible for
preventing deadlocks and race conditions, and ensuring the
correct execution order. The Tightly-Coupled Thread (TCT)
Model developed at Tokyo Institute of Technology addresses
this issue of MPSoC programming by providing a simple
programming model on top of the sequential C code where the

programmers insert “thread scopes” in the code to describe the
slicing structure of the application [18]. Our TCT compiler
equipped with powerful interprocedural dependence flow

void JPEGtop(){
 THREAD(BLKcore){ // block-level
 for(j = 0; j < imageSizeX; j += 16){
 THREAD(Y0){ // process Y0
 BLK8x8(&Y0[j],0,&DCy,&state,0);
 BLK8x8(&Y0[j+8],0,&DCy,&state,nC);
 }

 }

void BLK8x8(…){
 dct(…);
 THREAD(Q){…}
 THREAD(E){
 THREAD(W){…}

TCT programming model

Instrumentation

Program Threading
(TCT Model)

Trace
Decomposition

sequential trace

Application
trace
generation

Trace-Driven MPSoC Workload Simulator

Application
Partitioning

Sequential program

Input Data

MPSoC
Arch. Model

40

45

50

55

1 2 3 4 5 6 7
buffer depth

M
ill

io
n

 C
yc

le
s

19-PE, full-crossbar, 4B/cycle
19-PE, full-crossbar, 2B/cycle
19-PE, single-bus, 4B/cycle
15-PE, full-crossbar, 4B/cycle
15-PE, full-crossbar, 2B/cycle
15-PE, single-bus, 4B/cycle

Parallel execution profile
(incl. communications)

Architecture/performance
tradeoff analysis

Figure 5: MPSoC programming and performance
estimation framework on the TCT Model

MAPS Framework
(RWTH Aachen)

Native Execution

Processor
Models

analysis is able to extract all dependences between these
threads (which may reside in different functions) and
automatically insert communication and synchronization
instructions on the partitioned parallel codes. Thus the
programmers are freed from maintaining the correctness of the
parallelized code especially on the communication details and
are allowed to directly focus on algorithm refinement and code
restructuring for revealing more parallelism on the target
MPSoC architecture. The MAPS framework from RWTH
Aachen [1] includes powerful dataflow analysis and code
partitioning engines that can emit thread-annotated code from
sequential C code to be fed to our TCT compiler.
 The underlying communication model in the TCT Model is
that of the message-passing protocol for distributed memory
systems where each data dependence between thread pairs is
converted into a DT (data transfer) instruction at the source
thread and a DS (data synchronization) instruction at the
destination thread. In addition to these DT/DS instructions, CT
(control token) instructions are added for activating the inner
control-dependent threads. These three primitive
communication instructions with several additional
instructions for maintaining the communication buffers are
automatically generated by the TCT compiler, resulting in a
behavior that is both data-driven (by DT/DS) and control-
driven (by CT) to ensure a correct execution order of
parallelized codes. An efficient instruction-driven message-
passing scheme has been developed during the design of our
TCT-MPSoC prototype chip [19] which requires very short
setup time of 2 to 6 cycles and high bandwidth data transfer of
4 bytes/cycle assisted by the communication model embedded
in the processor element. Our TCT-MPSoC implementation
has also been ported to commercial ESL tool environments to
realize the TCT-MPSoC virtual platform composed of
processor models and crossbar-based interconnect models.
 For early stage MPSoC architecture exploration and
application tuning, we have also developed a new MPSoC
performance estimation framework based on trace-driven
workload models [20]. This framework, illustrated in fig. 5,
includes an automatic fine-grain workload model generation
of SW components (coded on TCT Model), application trace
generation through automatic source-level instrumentation
using a new program trace encoding technique, and a MPSoC
workload simulator kernel which, in addition to generating the
accurate timing behavior of processor elements, reproduces
the inter-processor communication traffic on a parameterized
MPSoC interconnect model. Our trace-driven MPSoC
workload simulator is capable of quickly estimating the
performance of a wide range of architectural parameters of
MPSoC such as the number of processors, interconnect
topology, communication bandwidth and buffer size.

VIII. REFERENCES

[1] J. Ceng, J. Castrillon, W. Sheng, H. Scharwaechter, R. Leupers, G.

Ascheid, H. Meyr, T. Isshiki, H. Kunieda: MAPS: An Integrated
Framework for MPSoC Application Parallelization, 45th Design
Automation Conference (DAC), Jun 2008

[2] R. Leupers, J. Castrillon: MPSoC Programming using the MAPS
Compiler, 15th Asia and South Pacific Design Automation Conference
(ASPDAC), Jan 2010

[3] J. Castrillon, R. Velasquez, A. Stulova et al.: Trace based Composability
Analysis for Mapping Simultaneous Applications to MPSoC Platforms,
Design, Automation, and Test in Europe (DATE), Mar 2010

[4] Wanghong Yuan, Klara Nahrstedt, Energy-Efficient Soft Real-Time
CPU Scheduling for Mobile Multimedia Systems. SOSP’03, October
19–22, 2003, Bolton Landing, New York, USA.

[5] F. Gruian. Hard real-time scheduling for low energy using stochastic
data and DVS processors. Intl. Symp. on Low-Power Electronics and
Design, Aug. 2001.

[6] X. Nie, U. Nordqvist, L. Gazsi, D. Liu : Network processors for access
network (NP4AN): trends and challenges. IEEE International SOC
Conference, Spet. 2004.

[7] Intel® Technology Journal: Tera-scale Computing . Volume 11, Issue 03
,http://www.intel.com/technology/itj/2007/v11i3/4-environment/2-
intro.htm

[8] Chanbok Jeong et all: An efficient UE modem platform architecture for
3GPP LTE , Proceeding of the SDR 06 Technical Conference, 2006

[9] K. Moermann: Embedded Vector Processors Hold Key to Software-
defined Radio, Wireless Design&Development, ASIA, Sep 2008

[10] Fanny Mlinarsky: Multimode wireless devices: It's the software, stupid!,
Mobile Handset design Online, Nov 2009

[11] W. Haid, K. Huang, I. Bacivarov, and L. Thiele: Multiprocessor SoC
Software Design Flows. IEEE Signal Processing Magazine, vol. 26, no.
6, pp. 64—71, Nov. 2009.

[12] W. Haid, M. Keller, K. Huang, I. Bacivarov, and L. Thiele: Generation
and Calibration of Compositional Performance Analysis Models for
Multi-Processor Systems. In Proc. Int'l Conf. on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS), pages
92—99, Samos, Greece, July 2009.

[13] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse: System
architecture evaluation using modular performance analysis: A case
study. Int. J. Softw. Tools Technol. Transfer, vol. 8, no. 6, pp. 649–667,
Nov. 2006.

[14] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli:
Design of embedded systems: Formal models, validation, and synthesis.
Proc. IEEE, vol. 85, no. 3, pp. 366–390, Mar. 1997.

[15] Lothar Thiele, Reinhard Wilhelm: Design for Timing Predictability.
Real-Time Systems, Vol. 28, No. 2, pages 157-177, 2004.

[16] R. Racu, M. Jersak, R. Ernst: Applying sensitivity analysis in real-time
distributed systems. Real Time and Embedded Technology and
Applications Symposium (RTAS) 2005, pages 160- 169, March 2005.

[17] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere "Compaan:
Deriving Process Networks from Matlab for Embedded Signal
Processing Architectures.", 8th International Workshop on
Hardware/Software Codesign (CODES'2000)

[18] M. Z. Urfianto, T. Isshiki, A. U. Khan, D. Li, H. Kunieda,
Decomposition of Task-Level Concurrency on C Programs Applied to
the Design of Multiprocessor SoC, IEICE Trans. 91-A(7), pp.1748-1756,
2008

[19] M. Z. Urfianto, T. Isshiki, A. U. Khan, D. Li, H. Kunieda, A
Multiprocessor SoC Architecture with Efficient Communication
Infrastructure and Advanced Compiler Support for Easy Application
Development, IEICE Trans. 91-A(4), pp.1185-1196, 2008

[20] T. Isshiki, D. Li, H. Kunieda, T. Isomura, and K. Satou, Trace-Driven
Workload Simulation Method for Multiprocessor System-On-Chips, In
Proc. DAC 2009

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

