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Abstract. Air quality monitoring is extremely important as air pollution has a
direct impact on human health. Low-cost gas sensors are used to effectively per-
ceive the environment by mounting them on top of mobile vehicles, for example,
using a public transport network. Thus, these sensors are part of a mobile network
and perform from time to time measurements in each others vicinity. In this pa-
per, we study three calibration algorithms that exploit co-located sensor measure-
ments to enhance sensor calibration and consequently the quality of the pollution
measurements on-the-fly. Forward calibration, based on a traditional approach
widely used in the literature, is used as performance benchmark for two novel al-
gorithms: backward and instant calibration. We validate all three algorithms with
real ozone pollution measurements carried out in an urban setting by comparing
gas sensor output to high-quality measurements from analytical instruments. We
find that both backward and instant calibration reduce the average measurement
error by a factor of two compared to forward calibration. Furthermore, we un-
veil the arising difficulties if sensor calibration is not based on reliable reference
measurements but on sensor readings of low-cost gas sensors which is inevitable
in a mobile scenario with only a few reliable sensors. We propose a solution and
evaluate its effect on the measurement accuracy in experiments and simulation.

1 Introduction

Urban air pollution is a major concern in modern cities and developing countries. Atmo-
spheric pollutants considerably affect human health; they are responsible for a variety of
respiratory illnesses (e.g., asthma) and are known to cause cancer if humans are exposed
to them for extended periods of time [18]. Additionally, air pollution is responsible for
environmental problems, such as acid rain and the depletion of the ozone layer. Hence,
air pollution monitoring is of utmost importance.

Nowadays, air pollution is monitored by networks of static measurement stations
operated by official authorities (subsequently called fixed stations). Fixed stations used
today are highly reliable and able to accurately measure a wide range of air pollu-
tants using traditional analytical instruments, such as mass spectrometers and gas chro-
matographs. The drawbacks of these complex measurement systems are their large size,
high price, and laborious maintenance. The extensive cost of acquiring and operating
these stations severely limits the number of installations [11,27]. For example, the Swiss
National Air Pollution Monitoring Network (NABEL) operates 16 measurement sta-
tions, distributed over an area of 41,285 km2; the distance between two stations often
exceeds 20 km, resulting in a limited spatial resolution of the published pollution maps,
bearing in mind that NABEL’s measurement density is still fairly high compared to



other international monitoring networks [23]. To assure high precision, the instruments
are manually calibrated (adjusted in the parts-per-thousand range) every 14 days [4].
During calibration, a sensor is exposed to certain gas concentrations, and the sensor’s
calibration parameters are adjusted such that the difference between applied gas con-
centration and sensor output is minimized.

The concentration of air pollutants is highly location-dependent. Traffic junctions,
urban canyons, industrial installations, and topological structure all have considerable
impact on the local air pollution [26]. In recent years, several research groups started
measuring the chemical pollutants in the atmosphere with low-cost solid-state gas sen-
sors. Most of these sensors show an electrochemical reaction when exposed to a specific
gas. The gas concentration is determined by measuring either the sensor’s output cur-
rent or the resistance of the sensor’s tin dioxide layer. These solid-state gas sensors are
inexpensive, small, and suitable for mobile measurements. Hence, researchers started
to integrate them in mobile sensor nodes [12,15], for example, using public transport
vehicles such as trams [3] and buses [7]. The nodes’ mobility allows to obtain a higher
spatial measurement resolution and to increase the covered area without the need of
hundreds or thousands of sensors.

Challenges. The main drawbacks of low-cost gas sensors are their limited accuracy
and resolution, low stability, and poor selectivity. Low-cost gas sensors are usually in-
stalled in industrial production factories to measure high-level concentrations (e.g., in
the automotive industry [24]). However, environmental gas monitoring requires to mea-
sure very low gas concentrations. Additionally, low-cost gas sensors are unstable [16].
Due to sensor aging [16] they must be re-calibrated every month [13,25] or even every
week [17]. Another great challenge is the sensors’ poor selectivity. The sensors’ output
is sensitive to ambient humidity and responsive to influence of interfering gases [17].
Hence, frequent sensor calibrations are required to improve or at least preserve the de-
sired measurement accuracy. Manual sensor calibration, however, is an elaborate and
time-consuming task.

Contribution and road-map. In this paper, we propose automatic calibration algo-
rithms to improve the measurement accuracy of mobile low-cost gas sensors mounted
on top of public transport vehicles. Throughout this paper we assume that sensors are
mobile and equipped with GPS modules to determine their positions. Each gas sensor
encounters fixed stations and other low-cost gas sensors. We let sensors exploit these
rendezvous by making use of each others sensor readings to improve their calibration
and thus to increase their measurement accuracy “on-the-fly.” In Sec. 2 we introduce a
calibration model that is used in Sec. 3 to describe our calibration algorithms. Forward
calibration is based on a traditional approach that uses recent sensor readings to cal-
culate new calibration parameters. We use forward calibration as a performance bench-
mark for our novel algorithms. Backward calibration re-evaluates measured ozone con-
centrations by integrating most up-to-date sensor readings into the calculation of the
calibration parameters. However, these re-evaluated concentration measurements are
not immediately available, introducing a significant information delay. Instant calibra-
tion is able to achieve almost the accuracy of backward calibration without any delay
by constantly adjusting the calibration parameters.
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Fig. 1. Calibration pipeline. Sensor readings are filtered based on their measurement time and
location. Tuples are generated from the filtered data and used to calculate calibration parameters.

In our scenario, sensor calibration is either based on reliable measurements from a
fixed station (single-hop) or on unreliable sensor readings from low-cost sensors (multi-
hop). We discuss the resulting difficulties if the calibration is based on inaccurate pol-
lution concentration measurements and describe our solution approach in Sec. 4. We
set up a six-week measurement campaign to analyze in Sec. 5 the accuracy of the de-
scribed calibration algorithms using real pollution measurements. In order to know the
ground truth pollution at all times, we use a static setting. The ground truth is deliv-
ered from a fixed station next to our installation. We simulate the mobility patterns of
public transport vehicles in order to mimic that sensors are only from time to time in
the vicinity of a fixed station. We show that instant calibration is able to calibrate the
gas sensors such that they deliver measurements difference as low as ±2 ppb from the
ground truth of the fixed station, both when the calibration is based on reliable and un-
reliable sensor readings. This error is a factor of two smaller than achieved with forward
calibration. Furthermore, we simulate sensor readings to investigate the measurement
accuracy of up to 20 gas sensors that leverage each others measurements to improve
their calibration. We find a linear dependency of the calibration accuracy on the number
of calibration hops. We survey related work in Sec. 6, and conclude the paper in Sec. 7.

2 Calibration System and Model

In this section, we describe our calibration system and introduce the model that is used
to describe our calibration algorithms. For the sake of convenience, we only introduce
those parts of our calibration model required to calibrate a low-cost sensor based on
reference measurements from a perfect sensor, i.e., single-hop calibration. In Sec. 4 we
discuss the necessary model extensions to support multi-hop calibration, where sensor
calibrations are based on unreliable sensor readings.
Calibration System. We start by giving a high-level overview of the calibration sys-
tem as illustrated in Fig. 1. We use data streams from different sensors containing raw
data, measurement time, and measurement location to improve sensor calibration. Two
sensors are exposed to very similar gas concentrations if they appear to be at similar
locations at similar times. Hence, potentially the sensors can use each others sensor
readings to improve their calibration quality, i.e., reduce the difference between the cal-
ibrated measurement and the actual phenomenon. We stream all measurements through
a data filter in order to select those sensor readings that were taken by two spatially
and temporally close sensors. Whether two sensors are considered to be in each others
vicinity, depends on the type of gas sensor used and the chemical properties of the mon-
itored pollutant. We use the measurements that passed the filter to construct calibration
tuples containing the measurements of two close-by sensors. The calibration algorithm
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Fig. 2. Calibration model. A sensor takes measurements with a constant sampling interval v.
Calibration parameters evaluated at time Tm are denoted with γ(Tm).

calculates new calibration parameters as soon as either a certain number of calibration
tuples is collected or if a predefined period of time has elapsed since the most recent
calibration. The accumulated calibration tuples and possibly data from the calibration
memory with older tuples used in previous calibrations serve as input to the calibration
algorithms.
Model. We continue with the underlying calibration model. Let a phenomenon of in-
terest H exhibit a continuous measurable signal h : T → D with time T ⊆ R+ and
domain of measured values D ⊆ R. A sensor z takes measurements of H with a con-
stant sampling interval v ∈ R+. This leads to a sequence of discrete measurements
{p(ti)} at times ti ∈ T , i ∈ N \ {0} with ti+1 − ti = v as shown in Fig. 2. We
consider a measurement as point measurement, that is, it has no duration. If sensor z is
perfect at any point in time then p(ti) = h(ti), where h(ti) is the actual phenomenon.
However, low-cost gas sensors typically suffer from the effects of aging [16,19] and
are also highly sensitive to ambient humidity and interfering gases [17]. Both have a
significant influence on the sensor measurements and result in a deviation of p(ti) from
h(ti). Sensors try to minimize this deviation by adjusting their calibration curve. Let
c : Rk+1 ×D → D denote the sensor’s calibration curve abstracted with a polynomial
of order k with a vector of calibration parameters a = (a0, a1, . . . , ak) ∈ Rk+1. Thus,

c(a, x) =

k∑
n=0

an · xn (1)

where x is a raw sensor reading. Let γ : T → Rk+1 be a function that returns the
calibration parameters of the most recent sensor calibration, i.e., a = γ(ti) (see Fig. 2).
The calibrated measurement p̃(ti) of sensor z at time ti is then:

p̃(ti) = c(γ(ti), p(ti)) (2)

A perfect sensor has γ(·) = (0, 1, 0, 0, . . . , 0) ∈ Rk+1, i.e., p̃(ti) = p(ti) = h(ti).
Consider two sensors z1 and z2 taking measurement sequences {p(ti)} and {q(tj)}

with constant sampling intervals.We assume that z2 is a perfect sensor providing ac-
curate measurements. Sensor z1 improves its calibration parameters by comparing its
measurements to those from z2. In this case sensor z2 is the calibration parent of z1.
Additionally, sensor z1 can be mobile (e.g., placed on top of a public transport vehicle)
and thus, in general, only from time to time be located in the vicinity of z2. We use a fil-
ter to consider only sensor readings of z1 and z2 as useful calibration input if they were
measured in each others temporal and spatial vicinity. Consider that set C contains the
sensor readings that passed the filter. These are combined into tuples

(p(ti), q̃(tj), tl) (3)



with sensed raw data p(ti) from z1, calibrated reference measurement q̃(tj) from z2,
and the joint measurement time of this tuple tl = (ti + tj)/2.

Due to aging, correlation of raw data and reference measurement of a tuple loose
significance as time advances. Tm denotes the point in time when a calibration was
performed, where T0 indicates the initial sensor calibration (see Fig. 2). We evaluate the
remaining expressiveness of a data tuple by means of a function w : T → [0, 1], i.e., at
time of calibration Tm the remaining expressiveness of a tuple with joint measurement
time tl is w(Tm − tl). Because of aging, w monotonically decreases with increasing
time difference Tm− tl, Tm ≥ tl since only past tuples are used to calculate calibration
parameters. Note that if no sensor aging is considered then w(t) ≡ 1 for any t ∈ T .
Assume that at time Tm sensor z1 is calibrated using sensor z2 as reference. Then the
new calibration parameters γ1(Tm) are chosen such that the sum of differences between
p̃(ti) = c(γ1(Tm), p(ti)) and q̃(tj) = c(γ2(Tm), q(tj)) weighted with w(Tm − tl)
are minimized. We apply linear regression by using the method of least squares [6] to
calculate the calibration parameters γ1(Tm). The age-dependent weight determines the
influence of each tuple on the final calibration curve. Thus up-to-date tuples have higher
impact than outdated measurements. All tuples in C and possibly former tuples from
the calibration memory contribute to the above sum.

3 Calibration Algorithms

Low-cost gas sensors are either delivered uncalibrated or the factory calibration is not
intended for low concentration measurements as found when monitoring urban air pol-
lutants. Additionally, factory calibration parameters are often only based on measure-
ments of two to three different gas concentrations under one specific temperature and
humidity setting. Possibly, the chosen setting is not suitable for the intended measure-
ment campaign. Hence, it is essential for the customers to adjust the calibration param-
eters of these low-cost gas sensors to their needs.

There are two common approaches for the calibration of gas sensors that are used
to monitor urban air pollutants. The calibration can take place either in the laboratory
using artificial gas mixtures [12] or in the field with real pollution measurements by
placing the sensor close to a fixed station providing reliable measurements [7,10,17].
The disadvantage of calibrating the sensors with real pollution measurements is the de-
pendency on the weather conditions and the local pollution dispersion that both cannot
be controlled. For a precise calibration, reference measurements under a wide range of
environmental conditions are desirable, e.g., low, middle, and high concentrations of
the target pollutant under distinct humidity and temperature settings [25]. Nevertheless,
we calibrate our gas sensors in the field, since for us the advantages prevail: (i) the
sensor is calibrated under very similar conditions as in the later deployment (e.g., same
hardware and software components, same water and dust cover), (ii) reliable measure-
ments from fixed stations are freely available, and (iii) with a large number of reference
measurements it is possible to calculate precise calibration parameters.

In this paper, we introduce three calibration algorithms: forward calibration, back-
ward calibration and instant calibration. We begin with forward calibration, which
is based on a traditional approach to calibrate gas sensors widely used in the litera-
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Fig. 3. Backward calibration. Calibration parameters γ(Tm) are used to get temporary measure-
ments for sensor readings in [Tm, Tm+1) and to re-evaluate sensor readings in [Tm−1, Tm).

ture [10,12,17]. We use it in our evaluation as performance benchmark for two novel
calibration algorithms, backward and instant calibration, which show different trade-
offs between measurement accuracy and calibration delay.
Forward calibration. As done by many traditional approaches, forward calibration
calculates new calibration parameters based on recent sensor readings. Calibration pa-
rameters can be calculated in regular time intervals or as soon as certain number of
calibration tuples is available in C. At time Tm the calibration parameters γ(Tm) are
chosen to minimize the weighted sum of squared differences between c(γ(Tm), p(ti))
and q̃(tj), ∀ (p(ti), q̃(tj), tl) ∈ C:

arg min
γ(Tm)

∑
(p(ti),q̃(tj),tl)∈C

w(Tm − tl) ·
(
c(γ(Tm), p(ti))− q̃(tj)

)2
(4)

Note that all calibration tuples in C have a joint measurement time tl in the inter-
val [Tm−1, Tm). Only these tuples are considered by most traditional calibration ap-
proaches in order to accurately capture the momentary sensor characteristics. Forward
calibration uses the calibration parameters γ(Tm) for all p(ti) where ti ∈ [Tm, Tm+1).

The main drawback of using forward calibration is that the data used to determine
the calibration parameters are always based on slightly outdated sensor readings. The
currentness of the calibration parameters depends on the time passed between two cali-
bration instances, which can be arbitrarily long.
Backward calibration. In contrast to forward calibration, backward calibration addi-
tionally re-evaluates already calibrated sensor readings offline. At calibration time Tm
new calibration parameters are calculated as defined in (4). The calibration parameters
γ(Tm) are used to (i) calibrate future sensor readings p(ti) where ti ∈ [Tm, Tm+1) and
(ii) to recalculate former sensor readings p(ti) where ti ∈ [Tm−1, Tm), as depicted in
Fig. 3. The recalculation improves the measurement accuracy if the sensor characteris-
tics significantly differ during time periods [Tm−2, Tm−1) and [Tm−1, Tm).

The main disadvantage of backward calibration is that the recalculated sensor mea-
surements are only available after a delay, which depends on the time passed between
two calibration instances, that is Tm − Tm−1. Additionally, the sensor readings p(ti)
have to be recorded in order to enable the recalculation of these measurements with
new calibration parameters. We continue with instant calibration that trades off these
disadvantages with a slight loss of calibration accuracy.
Instant calibration. In contrast to forward and backward calibration, instant calibration
does not only use calibration tuples in C to calculate new calibration parameters, but
also former calibration tuples from the calibration memory. Therefore, instant calibra-
tion can calculate new calibration parameters more frequently; new calibration param-
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eters are calculated each time a new tuple is available in C. The sensor’s measurement
range is partitioned into several bins in order to increase the significance of the new
calibration tuple. For that reason, all calibration tuples of the calibration memory that
belong to the same bin, are age-based weighted and represented by one averaged tuple
per bin, as detailed below.

Fig. 4 shows an example with calibrated pollution measurements in the range from
20 ppm to 100 ppm which are portioned into equally sized bins of size d = 20 ppm. Each
bin f is represented by a single bin tuple (bf , b̃f , tf ) denoting the age-based weighted
moving average of the sensor readings from sensor z1, the calibrated measurements
from sensor z2, and the time of the most recent bin adjustment tf , respectively. The
calibration process starts by selecting an appropriate bin f = bp(ti)/dc based on the
calibration tuple (p(ti), q̃(tj), tl) ∈ C. Then, the bin tuple (bf , b̃f , tf ) is at calibration
time Tm adjusted as follows:

b
(m)
f =

∑
s<m w(Tm − t

(s)
f ) · b(s)f + w(0) · p(ti)∑

s<m w(Tm − t
(s)
f ) + w(0)

(5)

b̃
(m)
f =

∑
s<m w(Tm − t

(s)
f ) · b̃(s)f + w(0) · q̃(tj)∑

s<m w(Tm − t
(s)
f ) + w(0)

(6)

t
(m)
f = tl (7)

Previously calculated bin tuples only contribute to the above sums ifw(Tm − t(s)f ) > 0.
The adjusted bin tuple is used to calculate the calibration parameters γ(Tm) that min-
imize the weighted sum of squared differences between c(γ(Tm), bf ) and b̃f for all
bins:

arg min
γ(Tm)

∑
∀(bf ,b̃f ,tf )

w(Tm − tf ) · (c(γ(Tm), bf )− b̃f )2 (8)

The bin size defines the adjustment speed of the calibration parameters. The change in
value of a single bin tuple (bf , b̃f , tf ) has almost no effect on the calibration parameters
if there are many bins, but if there are only a few the parameters change quickly.
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4 Multi-hop Calibration

In the previous section, we introduced three algorithms to calibrate sensors based on
reliable measurements of a perfect sensor (i.e., single-hop calibration). In this section,
we describe the extensions to support multi-hop calibration in order to facilitate the
calibration of sensors which are rarely or never in the vicinity of a perfect sensor. Hence,
their calibration is mostly based on unreliable measurements.

Consider five mobile sensors z0, . . . , z4 that happen to be in each others vicinity
from time to time. We denote with z0 a perfect sensor while z1 to z4 are low-cost gas
sensors. The movement patterns of the sensors determine whether and how regularly
two sensors are at similar locations, as illustrated in Fig. 5. The lines connect sensors
which are in each others temporal and spatial vicinity. The ground truth concentration is
unknown if both instruments are low-cost sensors delivering unreliable measurement.
We approximate the actual concentration by weighting the measurements with the cali-
bration ages of the two sensors that depend on: the time passed since the latest calibra-
tion and the quality of the used reference measurements for that calibration.

Hence, we define the age of a calibration as the sum of (i) the time passed since a
sensor’s most recent calibration Tm and (ii) the average calibration age of the sensor’s
calibration parents. A perfect sensor has calibration age 0 at all times. To compute the
calibration age locally, we additionally store with each calibration tuple the calibration
ages of the sensors building the calibration tuple. Let the calibration ages of sensors z1
and z2 be t1 and t2, respectively. Assume that sensors z1 and z2 are at time step tl in
each others vicinity. None of the two sensors is able to accurately measure the ground
truth concentration. We combine the measurements of the two sensors and assume for
this reason that all low cost sensors are identically constructed and thus have similar
precision and sensitivity characteristics, much like [12,15]. We solely examine the cal-
ibration ages of z1 and z2 to decide on their measurement quality. Therefore, given the
calibration ages in Fig. 5, we assume that at time step 10 the output of sensor z2 is
closer to the ground truth concentration than the output of z1, whereas at time step 20
the output of z1 is preferred. We extend the tuple in (3) to(

p(ti),
t1 · q̃(tj) + t2 · p̃(ti)

t1 + t2
, tl, t2

)
(9)(

q(tj),
t1 · q̃(tj) + t2 · p̃(ti)

t1 + t2
, tl, t1

)
(10)

which weights the sensor measurements inversely proportional to the sensor calibration
ages. The above transformation has the following two properties: (i) the approximated



ground truth concentration is exactly the averaged measurement of both sensors if both
sensor calibration ages are equal; (ii) if one of the sensors is perfect, its calibration age
0 and the ground truth is given by (3).

5 Evaluation

In this section, we evaluate experimentally the accuracy of our calibration algorithms,
and analyze multi-hop calibration and sensor aging in simulation.

5.1 Experimental Results

Two ozone gas sensors are integrated into a CoreStation [8] and installed next to a fixed
station which delivers reliable ozone concentration measurements. We assume that the
fixed station has a perfect sensor and take its measurements as the ground truth. The
measurements from the fixed station are used (i) as calibration reference and (ii) to
evaluate the accuracy of the three calibration algorithms.
Setup. The deployed gas sensors are two identical MiCS-OZ-47 ozone sensing heads
from e2v [1]. They are delivered with a transmitter PCB and are equipped with temper-
ature and humidity sensors providing data over a RS232-TTL interface. The reported
ozone concentration is based on the resistance of the sensor’s tin dioxide layer. As the
resistance is heavily temperature dependent, we use the on-board temperature sensor
to calculate a temperature compensation. The gas sensors are factory calibrated and re-
ported to work in the range from 20 ppb to 200 ppb with an accuracy of ±20 ppb. The
supported temperature range is between 10 ◦C and 40 ◦C, the humidity range between
20 % and 90 %. Due to aging effects the lifetime is limited to three years. We model
the sensor’s sensitivity loss w using an exponential function that maps t 7→ αt where
α = 0.9.

We assume that the fixed station has a perfect sensor. It measures the ozone concen-
tration once per minute, but we only have access to 10-minute averages. The two ozone
sensors are installed on the outer wall of the station. They measure the ozone concen-
tration once per minute and transmit the computed ozone concentration (based on the
factory calibration) as well as raw data (resistance of the tin dioxide layer, temperature,
and humidity) to our server.

We analyze data from a six-week measurement campaign, which results in the eval-
uation of over 8,000 measurements from the fixed station and more than 160,000 read-
ings from the two gas sensors. First, we study the accuracy of the factory calibration.
Next, we use the reference measurements from the fixed station to initially calibrate the
sensors according to our needs. Then, we apply either forward, backward, or instant
calibration to periodically recalibrate the sensors and compare the accuracy of the dif-
ferent algorithms. Finally, we show the impact of multi-hop calibration on the accuracy
of the sensor measurements.
Performance Measures. We evaluate the efficacy of a calibration algorithm by looking
at the differences of calibrated sensor readings p̃(ti) and measurements of the fixed
station q̃(tj) during time interval [TS , TE) with TS , TE ∈ T . The set B(TS , TE) =
{tl | TS < tl ≤ TE} contains all joint measurement times tl of calibration tuples
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generated between TS and TE . For all these tuples we calculate d(tl) = |p̃(ti)− q̃(tj)|
and evaluate the mean absolute error M and the standard deviation S:

M =
1

|B(TS , TE)|
·

∑
tl∈B(TS ,TE)

d(tl) (11)

S =
( 1

|B(TS , TE)|
·

∑
tl∈B(TS ,TE)

(d(tl)−M)2
) 1

2

(12)

Initial Calibration. The gas sensors are delivered with a factory calibration that does
not fulfill our accuracy demands. Fig. 6 shows the measured ozone concentration from
the two gas sensors and the fixed station over a period of one week. The measurements
are off the mark by up to a factor of two. We use sensor readings from the first installa-
tion days to calculate custom initial calibration parameters γ(T0) for both gas sensors.
Having the tin dioxide layer resistance R at ambient temperature T , we calculate the
resistance R̃ at the reference temperature T0 = 25 ◦C with R̃ = R · eK·(T −T0) where
K = 0.019 is the temperature coefficient given in the sensor data sheet [1]. The calibra-
tion parameters γ(T0) are chosen to minimize the sum of squared differences between
the sensor readings R̃ and the reliable measurements from the fixed station. Fig. 7 de-
picts sensor readings, reference measurements, and computed calibration curves for the
two gas sensors. The output of the two sensors are already from the very beginning
fairly different, which underlines the need for individual sensor calibrations.

Fig. 8(a) depicts the measurement errors of a one-week extract from our measure-
ment campaign. We calculate the errors by comparing the gas sensor readings to the
measurements from the fixed station. It can be seen that the measurement error varies
significantly over time. Performing an initial calibration leads to considerably more
precise sensor measurements than using the factory calibration, reducing the average
measurement error by a factor of four.

Periodic Calibration. After the initial calibration, sensors are periodically calibrated
to keep the calibration parameters up to date using either forward, backward, or instant
calibration. We consider a setup where the two gas sensors are part of a mobile air
quality monitoring system deployed on top of public transport vehicles. We assume
the following: (i) public transport vehicles are moving on a known and fixed track,
(ii) vehicles pass by a fixed station every 40 minutes, and (iii) vehicles continuously
operate between 5.00 AM and 1.00 AM. We use measurements from our static setting to
simulate the above described mobility pattern. Hence, the gas sensors only have access



20/05 21/05 22/05 23/05 24/05 25/05 26/05
−20

−10

0

10

20

Time [day / month]

M
e
a
s
u
re

m
e
n
t 
E

rr
o
r 

[p
p
b
]

 

 

Sensor 1

Sensor 2

(a) Initially calibrated gas sensors.

20/05 21/05 22/05 23/05 24/05 25/05 26/05
−20

−10

0

10

20

Time [day / month]

M
e
a
s
u
re

m
e
n
t 
E

rr
o
r 

[p
p
b
]

 

 

Sensor 1

Sensor 2

(b) Forward calibrated gas sensors.
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(c) Backward calibrated gas sensors.
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Fig. 8. Measurement errors depicted for a time period of one week. The vertical dashed lines
denote the times of calibration when using forward and backward calibration. Instant calibration
adjusts the calibration parameters every 40 minutes.

to reference measurements once every 40 minutes between 5.00 AM and 1.00 AM,
which correspond to around 30 reliable measurements per day.

Figs. 8(b)–(d) show measurement errors of the two gas sensors when compared
to data from the fixed station. The calibration period is denoted with dashed lines for
forward and backward calibration, instant calibration is adjusting the calibration param-
eters after every available calibration tuple, i.e., every 40 minutes. In Fig. 8(b) forward
calibration shows a distinct offset compared to the reference measurements, which is
fixed with the calibration on the 22nd May. The offset probably originates from the
calibration performed on the 19th May based on outdated data. With backward and
instant calibration (see Fig. 8(c) and Fig. 8(d)) the measurement errors are consider-
ably reduced compared to forward calibration. The absolute mean errors M and the
standard deviations S of both gas sensors when compared to the measurements of the
fixed station during the six-week deployment period are shown in Fig. 9. The achieved
measurement accuracy of instant calibration is very similar to the one of backward
calibration with the advantage that accurate measurements are immediately available.
The measurement error of ±2 ppb is acceptable for ozone concentration monitoring,
given that ordinary daily measurements range between 0 ppb and 70 ppb, and that the
European Union sets the information and alert thresholds to 90 ppb (1 h average) and
120 ppb (1 h average), respectively [2]. We show in Table 1 that with the improved cal-
ibration accuracy it is possible to precisely measure whether the ozone concentration
is above a certain threshold, e.g., 60 ppb. Using backward calibration the relative error
of the calculated total hours sensed above 60 ppb are below 1 % for both sensors when
compared to the hours evaluated by the fixed station. With instant calibration, still both
sensor’s relative errors in measuring this time duration are below 5 %.

Furthermore, we evaluate the measurement errorsM and S of instant calibration for
different bin sizes d. The errors are minimized if the measurement range is segmented in
3 to 4 bins (d = 25 ppb), hence, the calibration process is able to quickly adapt the cal-
ibration parameters to varying sensor characteristics. The calibration period has a large
impact on the measurement errors when using forward and backward calibration. Fre-



Table 1. The total amount of time while the calibrated sensors measured more than 60 ppb (left)
and their relative errors when compared to the 66.2 h measured by the fixed station (right).

Calibration Initial Forward Backward Instant Initial Forward Backward Instant
Sensor 1 90.5 h 54.3 h 65.8 h 64.6 h 36.7 % 18.4 % 0.6 % 2.4 %
Sensor 2 231.3 h 69.5 h 65.6 h 69.3 h 249.4 % 5.0 % 0.8 % 4.7 %
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Fig. 9. Mean and standard deviation of the abso-
lute measurement errors of the two gas sensors.
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Fig. 10. Calibration accuracy for passing periods
between 10 minutes and 1 day.

quent calibrations help to quickly adjust to temporal changing of sensor characteristics.
However, a too short calibration period involves the danger of calculating calibration
parameters that do not optimally represent the sensor characteristics as the parameters
are only based on a few reference measurements. Extensive evaluations with different
calibration periods show that it is best to calibrate the sensors every three and two days
for forward and backward calibration, respectively. The period for forward calibration
is longer, because it relies on the knowledge of the average sensor characteristics to cal-
culate upcoming sensor readings as effectively as possible. Backward calibration tries
to capture short-term temporal differences to recalculate sensor measurements, hence
its calibration period is shorter.

Until now, we assumed that the gas sensors are in the vicinity of a fixed station
every 40 minutes (passing period). Since we assume that the sensors are deployed on
top of pubic transport vehicles, our influence on this passing period is very limited.
Hence, we analyze the dependency of the calibration accuracy on the passing period,
that has a direct effect on the number of available reference measurements. We evaluate
the calibration accuracy for various passing periods between 10 minutes and 24 hours.
The decreasing number of available reference measurements has the least impact on
the measurement accuracy of instant calibration, as shown in Fig. 10. Forward and
backward calibration encounter problems as soon as new calibration parameters are
calculated based on only a few reference measurements.

Multi-hop calibration. We continue using our static setting to evaluate the loss in mea-
surement accuracy if the gas sensors are calibrated over multiple hops. To this end, we
assume that only one of the two sensors passes by a fixed station. This sensor is single-
hop calibrated as its calibration is based on reliable measurements. The other sensor
uses the sensor readings of the calibrated gas sensor as reference. Just as before, we
assume that the two gas sensors are in each others vicinity every 40 minutes. Fig. 11
shows the slight increase of the mean measurement error M and its standard deviation
S if the gas sensors are calibrated over two hops. With two sensors we can at most
compare the calibration accuracy of one and two hops. We circumvent this restriction
by extending our multi-hop analysis with simulated sensor readings.



0

5

10

15

20

A
bs

ol
ut

e
E

rr
or

[p
pb

]

Hop 1
Sensor 1

Forward calibration
Backward calibration
Instant calibration

Hop 2
Sensor 2

0

5

10

15

20

A
bs

ol
ut

e
E

rr
or

[p
pb

]

Forward calibration
Backward calibration
Instant calibration

Hop 1
Sensor 2

Hop 2
Sensor 1

Fig. 11. Absolute measurement errors when sen-
sors are calibrated over one and two hops.
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Fig. 12. Mean and standard deviation of the daily
average measurement error from sensor 1.
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Fig. 13. Simulative analysis of the measurement
errors when calibrating over multiple hops.
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Fig. 14. Simulative analysis of the influence of
sensor aging on the calibraiton accuracy.

5.2 Simulations

Analyzing the measurement accuracy of the initially calibrated sensors from our six-
week measurement campaign results in the following observations. The measurement
errors (i) vary significantly over time as depicted in Fig. 8(a) and (ii) if only initially cal-
ibrated are normally distributedN (µ, σ2) with µ ∼ U(−9, 9) ppb and σ ∼ N (3, 1) ppb
over the period of one day as shown in Fig. 12. Accordingly, we generate artificial se-
quences of occurring ozone concentrations, h(ti), and corresponding gas sensor mea-
surements, p(ti), for ti ∈ [0, 365] days with a sampling interval v of 10 minutes. For
each day a new µ and σ is chosen, i.e., for 144 consecutive sensor readings. We only
consider positive values for σ.

Multi-hop calibration. We simulate the measurements of 20 gas sensors z1, . . . , z20.
To obtain the maximum hop distance, we assume that the sensors are calibrated in
line, i.e., calibration of sensor zi is based on measurements from zi−1. Sensor z0 is the
perfect sensor of a fixed station not requiring any calibration. Fig. 13 shows the absolute
mean calibration error for sensors calibrated over 1 to 20 hops. The measurement errors
are averages of three simulation runs over a simulated time of 365 days. As expected the
error linearly increases with the number of calibration hops. In general, public transport
networks are dense, hence, the maximum calibration hop distance is rather limited.
As long as a sensor using instant calibration is calibrated over less than six hops, its
measurement error is smaller compared to calibrating over a single hop using forward
calibration.

Sensor aging. Solid-state gas sensors suffer from loss of sensitivity over time, which
limits their lifetime to about three years. The sensitivity loss reduces the measurement
accuracy. We simulate these aging effects by adjusting the uniform distribution of µ
over time using µ ∼ U(−9 − d

5 , 9 +
d
5 ), where d denotes the number of days the sen-

sor is in use. Thus, the maximum possible measurement error increases each day by



0.2 ppm [16]. Again, we simulate sensor readings over a period of 365 days and show
in Fig. 14 the average measurement errors and standard deviations of three simulation
runs. Sensor aging has the least effect on the accuracy of backward calibration since the
measured concentrations are postprocessed. The measurement errors of instant calibra-
tion is considerably lower than those of forward calibration. Comparing these results
to previous simulations with multi-hop calibration reveals that calibrating sensors over
multiple hops has a higher influence on the measurement error than sensor aging as
long as backward or instant calibration is used.

6 Related Work

A wide range of research projects have recently emerged dealing with air pollution
monitoring using low-cost gas sensors [22,25]. There is significant amount of work
about calibrating sensors in general, but only little attention has been given to the fact
that these sensors are often installed in sensor nodes and are part of a mobile sensor
network [12,15], e.g., by using public transport networks [3,7]. We exploit co-located
sensor measurements to improve sensor calibration.

Miluzzo et al. propose CaliBree [21], a self-calibration system for mobile sensor
nodes. A sensor is considered to be at the same location as a ground-truth node if both
their readings are virtually identical. Additionally packets are broadcast by the ground-
truth nodes to allow sensor nodes to detect whether they are approaching a ground-truth
node by evaluating the received signal strength indicator (RSSI). Our sensor nodes have
a built-in GPS module. As a result, it is possible to accurately check the position of a
node in order to evaluate whether it is in the vicinity of another node.

Both CaliBree [21] and the in-place sensor calibration from Bychkovskiy et al. [9]
assume to have enough nodes with perfect sensors delivering reliable measurements to
provide a single-hop calibration to all low-cost sensors in the network. Both attempts do
not consider that a calibration of a low-cost sensor can also be based on sensor readings
of another (calibrated) low-cost sensor. We distinguish single-hop calibration (between
a low-cost sensor and a perfect sensor), where reliable reference measurements are
available, from multi-hop calibration (between two low-cost sensors), where the sensor
measurements are not reliable. Our algorithm deals with the limited accuracy of the
reference measurements of low-cost sensors appearing when calibration is performed
over multiple hops.

Balzano and Nowak introduce blind calibration [5] whereby no perfect sensor is re-
quired for calibration. By oversampling the signal of interest, they recover the unknown
sensor gain. Just the same as a large group of calibration techniques [9,15,21,17,25]
these all strongly depend on the assumption that only aging effects invalidate calibra-
tion parameters, i.e., these calibration approaches only adjust gain and offset which are
the calibration curve’s slope and the sensor’s output in clear air. Against this, our field
experiments reveal that low-cost gas sensor characteristics are more complex. Besides
the aging effect also changing environmental conditions have a serious effect on the
sensor readings. Our algorithms do not have the above mentioned constraints regarding
the nature of the captured signal.



Already some previous work [10,17] proposed to initially calibrate gas sensors
based on real pollution measurements. We pursue this road and also perform (besides
the initial calibration) the re-calibrations based on real pollution data, such as [7].

In contrast to previous work presenting automatic calibration algorithms with rather
simple sensors measuring the temperature [21], humidity [5], or light intensity [9], we
evaluate our calibration approaches with ozone gas sensors in an urban setting and
compare the sensor measurements to highly accurate reference data from a fixed station.

Gas sensor calibration reveals similarities with time synchronization. Time synchro-
nization protocols such as FTSP [20] try to estimate the clock drift over time. The drift
is calculated by analyzing previously measured clock deviations and using linear regres-
sion for its compensation. Forward and instant calibration show similarities with FTSP
which uses linear regression to estimate clock drifts based on prior clock drift measure-
ments. Backward calibration bears resemblance to Sundial [14] that reconstructs global
timestamps offline. Compared to these time synchronization protocols we introduce an
age-dependent weight in the linear regression to give up-to-date measurements a higher
impact on the calculated calibration parameters.

7 Conclusions

We have addressed the challenge of on-the-fly calibration of low-cost gas sensors. Our
calibration algorithms exploit the sensors’ mobility to repeatedly improve the calibra-
tion parameters of the sensors. This is required as the sensor characteristics are highly
temporally dependent due to the influence of sensor aging and the cross-sensitivity to
gases in the atmosphere. We show with real pollution measurements and simulations
that with instant calibration the measurement error is reduced by a factor of two com-
pared to the traditional approach widely used in the literature. Especially, using instant
calibration our gas sensors are able to measure the ozone concentration with an error
of ±2 ppb only when compared to measurements of high-quality instruments. This is
remarkable as the accuracy given in the datasheet is ±20 ppb [1]. We also find a linear
dependency of the calibration accuracy on the number of calibration hops. The accu-
racy loss is tolerable as long as the number of calibration hops is rather limited, as
found in public transport networks. Furthermore, we reveal that among the investigated
calibration approaches, instant calibration’s measurement accuracy is least dependent
on the available number of reference measurements. This is important because both the
location of fixed stations and the schedule of the mobile sensor nodes can usually not
be changed.
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