
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002 379

SPI—A System Model for Heterogeneously
Specified Embedded Systems

Dirk Ziegenbein, Member, IEEE, Kai Richter, Member, IEEE, Rolf Ernst, Member, IEEE,
Lothar Thiele, Member, IEEE, and Jürgen Teich, Member, IEEE

Abstract—Embedded systems typically include reactive and
transformative functions, often described in different languages
and semantics which are well established in their respective
application domains. Additionally, a large part of the system
functionality and components is reused from previous designs
including legacy code. There is little hope that a single language
will replace this heterogeneous set of languages. A design process
must be able to bridge the semantic differences for verification
and synthesis and should account for limited knowledge of system
properties. This paper presents the system property intervals
(SPI) model, which employs behavioral intervals and process
modes to allow the common representation of different languages
and semantics. This model is the basis of a workbench which
is targeted at the design of heterogeneously specified embedded
systems.

Index Terms—Embedded systems design automation, function
variants, multilanguage design, process modes, property intervals,
system modeling.

I. INTRODUCTION

M ANY embedded system applications consist of a com-
bination of reactive and transformative functions. Often,

several languages with different underlying models of compu-
tation are used in the design of an individual system. The lan-
guages are selected because of their particular suitability for
certain applications and optimizations or because they have be-
come generally accepted as a standard within an application
field. The lack of coherency of the different languages, methods,
and tools is a substantial obstacle on the way to higher design
productivity and design quality. A similar problem occurs when
reused components shall be integrated, possibly described in an-
other language and incompletely documented. Examples would
be intellectual property (IP) components “legacy code.”

The key problems in the context of multilanguage design are
the safe integration of the differently specified subsystems and
the optimized implementation of the whole system. Both require
the reliable validation of the system function as well as non-

Manuscript received October 28, 2000; revised September 18, 2001. This
work was supported in part by the German DFG Research Priority Program
1040.

D. Ziegenbein, K. Richter, and R. Ernst are with the Institute of Computer
and Communication Network Engineering (IDA), Technical University of
Braunschweig, Braunschweig, Germany (e-mail: ziegenbein@ida.ing.tu-bs.de;
richter@ida.ing.tu-bs.de; ernst@ida.ing.tu-bs.de @ida.ing.tu-bs.de).

L. Thiele is with the Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (e-mail:
thiele@tik.ee.ethz.ch).

J. Teich is with the Computer Engineering Laboratory (DATE), University of
Paderborn, Paderborn, Germany (e-mail: teich@date.uni-paderborn.de).

Digital Object Identifier 10.1109/TVLSI.2002.807767

functional system properties. While there are several cosimu-
lation-based approaches from both academia (e.g., [1]) and in-
dustry (e.g., [2]) that are well suited for functional validation and
yield an easy understanding of the system function, these ap-
proaches fail to reliably validate nonfunctional constraints e.g.,
with respect to timing and power consumption. Since exhaus-
tive simulation is infeasible in most cases, cosimulation can only
cover part of the system behavior and thus, cannot guarantee that
a corner case resulting e.g., in the worst case latency time of a
process is covered.

We propose a novel system model called system property
intervals (SPI) [3]–[5], which enables global system analysis
and system optimization across language boundaries, in order
to allow reliable and optimized implementation of heteroge-
neously specified embedded real-time systems. SPI is based on
communicating processes whose behavior is described by a set
of parameters. These parameters enable the adaption to different
input models of computation. The consistency of these param-
eters is a prerequisite for global system optimization across the
boundaries of different input languages.

A major step toward high-semantic flexibility of the model is
the use of behavioral intervals, e.g., to describe input and output
rates of processes. Sources of these uncertainty intervals may be
data-dependent process behavior (e.g., due toif–then–else
constructs in the input description), limited analyzability, or in-
complete specification. Thus, behavioral intervals enable the in-
tegration of processes whose internal functional details are only
partially known, i.e., “legacy code.” On the other hand, using
the concept of process modes, conditional process behavior de-
pending on internal states or input data can also be modeled
explicitly.

Due to the use of intervals for the communication behavior,
a clear causal coupling of process executions may be lost re-
sulting in limited optimization possibilities. Therefore, virtual
processes and channels were introduced in the SPI model. These
virtual components can be used to specify additional relations
between processes concerning causality and timing constraints.
In combination with behavioral intervals, these virtual compo-
nents allow the modeling of the system environment as well as
the representation and combination of a variety of models of
computation in a consistent form. Since they are not part of the
system functionality, they do not need to be implemented di-
rectlyl; rather, do they represent additional information for syn-
thesis that e.g., might be implemented as part of a scheduler.

Many embedded systems are implemented with a set of al-
ternative function variants to adapt the system to different ap-
plications or environments. The SPI model provides constructs

1063–8210/02$17.00 © 2002 IEEE

380 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

to model the representation and selection of function variants of
processes and process groups.

Based on the SPI model, an open workbench for the analysis
and synthesis of heterogeneously specified embedded systems
is currently being developed. A main incentive for the creation
of such a workbench is the missing infrastructure in the field
of system design automation. An open research platform with
various opportunities for original contributions, exchange of al-
gorithms and access to demonstrators seems to be a reasonable
approach to this problem.

The remainder of the paper is structured as follows. After an
overview of related work is given, the intended application of
the model in the context of the SPI workbench is presented in
Section III. In Section IV, the concepts of the SPI model are
introduced and discussed, followed by an application example
in Section V. The paper concludes with an outlook on future
work.

II. RELATED WORK

An outline of the state of the art in the area of system-level
design is given in [6]. There, the insufficient coherence among
the different languages, methods and tools is identified as a sub-
stantial obstacle on the way to a higher design productivity and
to a reliable design process. An important aspect is the combina-
tion of domain-specific languages with their specific optimiza-
tion procedures. Traditionally, flow-oriented models of compu-
tation are used in the area of signal processing or automatic
control engineering. In the last two decades, models like syn-
chronous data flow (SDF) graphs and Boolean data flow (BDF)
have been established which are well suited for design space ex-
ploration, analysis, and synthesis. A very instructive comparison
of such representations can be found in [7]. These models have
already been accepted in industrial design driven by an exten-
sive set of design tools which also support application optimiza-
tion, i.e., COSSAP [8] or SPW [9]. A similar development can
be observed for event-oriented models of computation, which
are of special importance for reactive systems, e.g., STATE-
MATE [10] in automotive engineering or SDL [11] in the area
of telecommunications. There are many other examples, mainly
from academia, i.e., ESTEREL [12] and LOTOS [13], each of
which represents a different model of computation.

In system-level design, programming languages like VHDL,
C, C++, or Java are often used as a basis for the description
of more abstract models. The commercial codesign system
CoWare uses a client–server mechanism for process com-
munication which is implemented in C-functions. [14]
and SpecC [15] use communicating processes with message
passing via abstract channels whose behavior is described
by C- functions. In the COSMOS codesign system [1], syn-
chronous communicating finite state machines described in the
SOLAR model are mapped to C or VHDL processes which,
again, communicate via abstract channels. Communication
between processes and channels is realized using an RPC
mechanism. The RPC mechanism is also used in Matisse
[16] where C++ methods enable process communication.

CHINOOK implements message passing with Java methods
[17] while in [18], C++ methods are used for the same purpose.

Languages like VHDL or SystemC [19] are obviously able
to implement different models of computation enabling the
common simulation of these models. For system synthesis,
process communication has to be identified from such a detailed
input description and abstracted, otherwise process scheduling
as well as memory sizing are not possible. Exceptions are
simple but less efficient scheduling techniques, which neglect
communication like round robin scheduling or the traditional
rate monotonic scheduling (RMS) [20]. Thus, for synthesis,
common modeling at this low level of abstraction has no
advantages.

Approaches to common modeling of substantially different
semantics at a higher level of abstraction as needed for system
synthesis are rare. Thecharts [21] model combines finite state
machines (FSM) and a variety of concurrency models (e.g.,
SDF) in an alternating hierarchy. Thus, FSM states can be
refined by concurrency models and concurrency model nodes
(e.g., data flow actors) can be refined by FSMs. Restrictions
most notably concerning termination and communication of
lower level models (e.g., an iteration defined by a minimum
cycle for SDF graphs) allow propagation of properties like
timing to higher levels of hierarchy resulting in a set of
equations describing the system behavior. Similarly, the com-
mercial CoCentric system studio [22] allows the combination
of FSMs and data flow. However, instead of the well defined
and restrictive integration semantics ofcharts, CoCentric
system studio allows not only hierarchical, but also parallel
combination as well as a variety of termination semantics of
nested models. This multitude of possibilities diminishes the
analysis capabilities of the model in comparison tocharts.

Another approach based on the parallel composition of
models of computation is the PCC model proposed in [23].
PCC differentiates event- and data-controlled processes with
different activation mechanisms and introduces a partial order
at the transitions between the different subgraphs in order to
exclude possible nondeterministic behavior. This approach
seems too restrictive for a common representation of a large
number of different languages and models of computation.

In contrast to the above approaches, the proposed SPI model
is not intended for unified functional specification but rather as
a means to represent system properties relevant to analysis and
synthesis in a homogeneous way. Thus, SPIs modeling concept
naturally allows the representation of system parts without a sys-
tematic model of computation (e.g., legacy code) which seems
to be a must for a complete design flow. However, SPI seems
much less suited for functional verification which is a strength
of charts and PCC.

The FunState [24] internal design representation can be seen
as a refinement of the SPI model that allows the explicit sep-
aration of data and control flow in subsystems called compo-
nents. Thus, it seems to be a good choice for the representa-
tion of scheduling mechanisms and the intuitive visualization of
state-based process behavior. A more comprehensive compar-
ison of approaches to composition of different models of com-
putation can be found in [25].

ZIEGENBEIN et al.: SPI—A SYSTEM MODEL FOR HETEROGENEOUSLY SPECIFIED EMBEDDED SYSTEMS 381

Fig. 1. Simplified structure of the SPI workbench.

III. T HE SPI WORKBENCH

In this section, the concept and structure of the SPI work-
bench is presented. This workbench shall enable the analysis
and synthesis of mixed reactive/transformative embedded sys-
tems described in several languages with possible differences in
their underlying models of computation.

Fig. 1 shows the intended workbench structure that stresses
the generation of a SPI representation and simplifies analysis
and synthesis. Input to the SPI workbench is a system with its
system function captured and optimized in application specific
languages. The advantage of such a multilanguage representa-
tion compared to using a uniform system specification language
is the possibility to include and utilize the traditional design
environment of the application developer with domain-specific
optimization techniques and tools.

The SPI model shall serve as an internal abstract represen-
tation of the mixed system function specifically targeted to
synthesis. For this purpose, all information relevant to synthesis
is abstracted from the input languages and transformed into the
semantics of the SPI model. A crucial point for the applicability
of the SPI workbench is the availability of transformations
from widely used standard languages to the SPI model. The
principle of this translation and transformation has already
been shown for different standard languages and models like
Kahn process networks, SDF, periodic communicating pro-
cesses, SDL, VHDL, or StateCharts [26]. Recently, a language
transformation for Matlab/Simulink has been developed and
implemented [27].

The extraction of relevant aspects from the input descriptions
and the mapping to the SPI model is dependent on user informa-
tion regarding the level of abstraction in the extraction step and
the granularity in the mapping step. Using the concept of process
modes, the degree of abstraction used in parameter extraction
can be controlled. The extreme cases are specifying one mode

for each possible execution path of a process (high accuracy
of modeling but exponential growth of paths with number of
branches), or specifying a single behavior using uncertainty in-
tervals (low accuracy but problem size reduction). Thus, during
parameter extraction, a tradeoff between problem size and ac-
curacy of modeling which is directly related to the accuracy of
the results is possible.

The SPI model is not a universal specification language, but
models the system behavior only in so far as it is relevant for
synthesis, i.e., the resource utilization, the communication, and
timing behavior. As can be seen from Fig. 1, SPI can be viewed
as a coordination language that captures the subsystems’
internal process interaction, as well as the coupling of the
different subsystems. The functional description of the SPI
processes may be given in various host languages. This dualism
between function and coordination is visualized by the light
(host languages) and dark (SPI) gray shaded elements in Fig. 1.

Based on this SPI representation, system-level analysis
and optimization regardless of language boundaries can be
performed. It has been shown that standard scheduling tech-
niques like periodic LCM-scheduling [3] can be applied to SPI
graphs. A scheduling approach applicable to the SPI model
that combines static and dynamic scheduling can be found
in [28]. Furthermore, a dynamic scheduling approach based
on earliest deadline first (EDF) has been developed for SPI
representations with fixed communication [29]. The synthesis
can be divided into the coordination synthesis (generation of
interfaces, scheduler etc.) based on the SPI model and the
functional synthesis (generation of functional blocks) based
on the embedded host languages. Here, the goal is to reuse
as much existing tools as possible, such as code generators
for functional synthesis. The implementation of the Simulink
transformation [27] that is based on the commercial real-time
workshop code generator [30] shows that this goal is realistic.

382 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

Fig. 2. Remote motor controller.

This very comprehensive workbench is currently created and
used by an international cooperation. Cooperation partners are
research groups at the Technical University of Braunschweig,
Germany, the Swiss Federal Institute of Technology Zurich,
Switzerland, and the University of Paderborn, Germany.
Also involved is a team at Princeton University, Princeton,
New Jersey.

IV. THE SPI MODEL

In this section, the concepts of the SPI model [3]–[5] are in-
troduced. An example system will be used throughout the rest
of the paper to demonstrate the features of the SPI model and
the advantages of using a common internal representation.

This example system, is a remote motor controller which is
specified as depicted in Fig. 2. The system collects message
parts from a bus and tests them for an error , decodes the
collected message , and sends a control word to the motor
control loop . In this system, process is specified in a
state-based language, processin a C derivative and process

, in a synchronous data flow language. The interaction of the
processes and the environment is loosely defined.and are
both periodic processes that are activated everyand
and have a deadline at the end of their period, whileis driven
by a periodic input. There is a timing constraint that constrains
the maximum response time to an erroneously received message
part to be no longer than 0.7 of the bus period.

In the following sections, we will introduce constructs of the
SPI model and often give examples each referring to parts of
Fig. 6, which is a mapping of the remote motor controller to
SPI.

A. Basic Model

The SPI model describes a system by means of processes
communicating via unidirectional channels. There is no global
communication, i.e., communication between processes has
to be explicitly modeled in terms of channels. The channels
are of two types, either first in first out (FIFO)-ordered queues
(destructive read) or registers (destructive write). All channels
have at most one writing process. But while registers may
have more than one reading process (multireader registers),
queues are constrained to have at most one reading process.
This restriction prevents process activation conflicts due to
the destructive read semantics and the data-driven activation
principle (see Section IV-B).

This basic model can be represented by amodel graphin
which processes and channels are denoted as nodes connected
by edges. Later on, this model will be extended by including
additional parameters and incorporating hierarchical refinement
(cluster graph).

Definition 1 (Model Graph): Themodel graphis a directed
bipartite graph where

1) denotes the set ofprocess nodes;
2) denotes the set ofchannel nodeswith and

being the sets of queues and registers, respectively;
3) denotes the set of edges;
4) for each , indeg outdeg , and for

each , indeg . With indeg andoutdeg being
functions which return the number of a node’s incoming
and outgoing edges, respectively.

B. Execution Model

SPI is a nonexecutable model. Rather, a SPI representation
bounds all possible behaviors of the system which it represents.
In particular, we are interested in the activation, execution, and
communication of processes.

The execution of a process is based on activation by data
availability, i.e., a process is activated if its required input data
is present and may execute if it is activated. Once a process is
activated, its complete input data is present and the activation
can not be invalidated by additional incoming data tokens.

Both computation and communication may consume time.
The timing of a process may be described by a latency interval
and communication regions for all edges connected to the
process. In particular, the latency of a process denotes the time
interval during which the required resource must be assigned to
the process. A communication region denotes the time interval
during which a process may send data on or receive data from
the channel connected to the respective edge. Communication
regions are specified relative to the start time of a process
instance. These parameters obviously depend not only on the
system specification but also on the resources the system is
mapped onto and can be obtained by analysis methods like [31]
(see Section IV-C).

The concept of communication regions enables a flexible
adaptation of the process communication behavior in SPI,
necessary to model several input languages and models of
computation. A fixed communication scheme (e.g., read at
start, write at end) is not flexible enough e.g., to capture C
processes (legacy code) which can communicate at any time
during their execution.

ZIEGENBEIN et al.: SPI—A SYSTEM MODEL FOR HETEROGENEOUSLY SPECIFIED EMBEDDED SYSTEMS 383

Fig. 3. Qualitative timing of SPI process execution assuming nonpreemptive
implementation.

The qualitative timing of a SPI process execution is shown in
Fig. 3. The time between process activation and start of process
execution is indefinite (due to the “may start”-semantics) and is
resolved during scheduling. The diagram assumes nonpreemp-
tive implementation i.e., a process once started is never inter-
rupted e.g., by a higher priority process. However, this assump-
tion is only made to clearly show the relation between process
start, completion, and communication regions and is not a re-
striction of the SPI model.

C. Parameters

For scheduling, allocation, and performance analysis, knowl-
edge about the detailed functionality of a process is not needed.
It is sufficient to know for each process the properties related to
resource requirements and interaction with its environment.

These properties of processes and channels are defined by
parameters that are annotated to the corresponding graph ele-
ments. This allows an easy adaptation of the model to include
all required information for a certain optimization goal or task
in the design flow.

The parameters need not be fixed but can be specified using
uncertainty intervals, i.e., they are constrained by an upper-
and lower- bound. The sources for this nondeterminism can be
abstraction of data-dependent functionality of a process (e.g.,
due toif–then–else structures) or limited analyzability of
the input model on the one hand, or incomplete specification
resulting in estimation of parameters on the other hand. While
for the abstraction and limited analyzability, the parameter
may switch between all possible values of the interval at
runtime. The nondeterminism of the incomplete specification
will be eliminated before runtime, such that it can be assumed
that the parameter will take just one of the possible values
of the uncertainty interval. For implementation-dependent
parameters, limited analyzability of the target architecture
(e.g., caches, out-of-order execution) is another source of
nondeterminism. In the SPI model, however, the different types
of nondeterminism are not distinguished since the differences
that could be utilized by analysis and optimization methods
could utilize are minimal.

In the following, we distinguish parameters based on their
dependencies on application and target architecture. Functional
parameters are solely dependent on the application while im-
plementation-dependent parameters also depend on the target
architecture.

Functional Parameters:
In order to determine communication and activation rates of

processes, the communicated amount of data has to be known.

Therefore,data rates denoting the number of data tokens
communicated through a port at each process execution are
specified.

Definition 2 (Data Rates):Let Inputs
denote the set ofinput channelsof process

andOutputs denote the set of
output channelsof .

For each input channelin Inputs , a process has
an input data rate interval in in , in , which
constrains the number of data tokens read from channelin
per process execution. Analogously, for each output channel
out Outputs , there is anoutput data rate interval
out out , out .
Note that the interval representation allows processes to have

nonconstant data rates. Contrary to existing data flow models
(e.g., synchronous data flow [32]) where data rates are fixed
and time invariant, our representation allows for the modeling of
nondeterminism to abstractly capture conditional behavior and
incomplete specification.

Using process in Fig. 6, the meaning of data rate inter-
vals can be easily explained. At each execution,consumes
16 tokens containing a message from channel. Thus, is
equal to which is usually abbreviated as 16. If the mes-
sage is for this controller, decodes the message and produces
one token containing a control word on channel. Otherwise,
no control word and, thus, no token is written to . There-
fore, ’s data rate interval for the production on channelis

.
Furthermore, we need to define the initialization of channel

contents as known from models of computations like dataflow
process networks [7].

Definition 3 (Channel Initialization):Associated with each
channel , there is the parameter ,
denoting the initial number of data tokens on channel.

For the calculation of absolute values for the amount of com-
municated data or memory size requirements, the size of data
tokens has to be specified.

Definition 4 (Token Size):Associated with each channel
, there is atoken size , denoting the size

of each token communicated on channel.
For modeling purposes, we introduce the concept ofvirtuality

for processes and channels.
Definition 5 (Virtuality): Associated with each process
and each channel , there is avirtuality flag true ,

false which denotes the fact whether the process or channel
is part of the system to be implemented (false) or has
been introduced for modeling purposes only (true).

Virtual model elements are used to describe the system envi-
ronment and to visualize implementation-relevant information
like rate constraints (see Section IV-E) or relative execution
rates [27]. Although, there is usually no direct implementation
equivalent to a virtual model element, the visualized information
imposes constraints on the design space (e.g., precedence con-
straints between processes) and has to be regarded during im-
plementation (e.g., during scheduling). Virtual model elements
are denoted by dashed lines in the graphical representation.

Implementation-Dependent Parameters:
Besides the implementation-independent behavior captured

by the above constructs, properties like execution time, commu-
nication time, or power consumption are of central importance

384 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

for system cost optimization. These properties do not only de-
pend on the functional specification but also on the available
target architecture and its resources. Thus, they are usually ob-
tained by estimation or analysis [31].

Then, parameters describing these properties may be anno-
tated to the SPI model elements. However, since the SPI model
is to be independent of the target architecture, these parame-
ters are not part of the core SPI model. Rather, the placement
of this information should represent its dependencies not only
on the functional specification but also on the target architec-
ture. This is regarded in the current development of a specifi-
cation graph that augments the SPI model with a model of the
HW/SW target architecture and edges between elements of both
models mapping functional elements to architectural resources.
This approach is based on the model proposed in [33].

In the context of this paper, we show the intended use of im-
plementation-dependent parameters by annotating latency time
intervalslat to processes. Latency-time intervals denote the du-
ration of a process execution on a certain resource and are used
by the static scheduling approach applied to the example system
in Section V. Evidently, communication regions are equally im-
plementation dependent as the process latency. For reasons of
simplicity, we assume in the context of this paper that processes
always read at start and write at completion, although commu-
nication regions allow a more flexible communication behavior.

Note that implementation-dependent parameters of virtual-
model elements are not defined since they do not have a direct
implementation equivalent.

D. Process Modes

Fig. 4 shows a simplified-process network implementing the
wireless IP standard on a pico cellular base station [34]. The
solid arrows visualize different execution paths through the
network depending on the context of the arriving data packets
(e.g., packet from wireless to Ethernet). Depending on this con-
text, processes show different behaviors e.g., processif_output
sends a packet either to processether_outputor radio_output
depending on the target information in the packet header.

With the SPI model as presented so far, a SPI process models
the nondeterminism caused by different execution paths in the
original process by means of uncertainty intervals. For process
if_output, this means that a corresponding SPI process would
have an input data rate of 1, while both output data rates would
be [0, 1]. This interval abstraction may lead to too imprecise
modelings, having not enough detail for efficient scheduling or
successful validation. For the example, the fact thatif_output
will produce data only on one of its output channels and, thus,
the correlation between both output data rates (eitherone token
to ether_output orone token toradio_output) is lost. Therefore,
the concept of process modes is introduced to be able to explic-
itly model different process behaviors and represent the corre-
lation between process parameters.

Definition 6 (Process Modes):A process mode
of a process is a tuple of a latency time in-
terval1 lat p , latp , an input data rate
interval in in , in for each of its input
channels Inputs and an output data rate interval

1Only included in the context of this paper to demonstrate the mode-depen-
dency of implementation-dependent parameters.

Fig. 4. Context-dependent flow of execution in a base station.

out out , out for each of its output channels
out Outputs .

Associated with each process , there is a nonempty,
finite mode set where is
the total number of modes of process.

A process mode describes a subset of the possible process
behaviors, i.e., a mode can be obtained for a subset of execution
paths just like the single process behavior is obtained for the set
of all possible execution paths of a process.

An example for a process with different possible execution
paths is the bus interface control process of the example system
in Fig. 2. Assuming this process is to be modeled using two
modes, the different execution paths can be grouped as follows.
The process either reads an erroneous message part from the bus
and outputs an error message (mode), or it reads a correctly
received message part (mode). Then, the process modes de-
scribing the corresponding SPI processin Fig. 6 are

lat

For simplicity, process latencies are expressed as fractions or
multiples of , the period of the incoming bus signals. Note that
mode still contains uncertainty with respect to the communi-
cation behavior of process as denoted by the output data rate
interval for register . This interval represents the fact that this
output is only produced if the received message is the last part
of a telegram, i.e., the whole telegram is written to the decoder.

Usually (and in both examples above) a process adapts its be-
havior, i.e., selects its mode based on the content of its input data
(wireless IP: target information in packet header, motor con-
troller: erroneous or correct message part). So far, data has been
abstracted to tokens that carry no information on data content or
value. Thus, a set ofmode tagsmodeling data content informa-
tion may be associated with the data tokens.

Definition 7 (Mode Tags):A mode tag (name , val) is a pair
of a unique identifiername and a valueval name with

name being the finite domain ofname .
Then, e.g.,answer denotes that the taganswer has the

value 42 which abstracts information of the token the tag is as-
sociated to. Although, a tag may have only a single value at a
time, it is possible to specify a set of possible values for a tag de-
noting uncertainty of the correct value at a certain time instance.

ZIEGENBEIN et al.: SPI—A SYSTEM MODEL FOR HETEROGENEOUSLY SPECIFIED EMBEDDED SYSTEMS 385

This corresponds to the use of intervals for parameters such as
data rates. Please note that mode tags are a virtual concept i.e.,
they do not have to be implemented since they only visualize
content of data that is already communicated.

In the following, constructs for the generation and evaluation
of mode tags will be introduced. Since the specification of con-
tent information is only meaningful in correlation to the data
containing the content, mode tag production has to be directly
coupled with the production of data tokens. Thus, the produc-
tion of mode tags modeled bymode tag production rulesis as-
sociated with the processes producing the corresponding data.
Furthermore, the definition of the channel initialization has to
be extended to include a possibility to associate mode tags with
the initial tokens.

Definition 8 (Production of Mode Tags):Associated with
each process , there is a finite set ofmode tag production
rules . Each tag production rule is a mapping:
where is a set of input predicates and is a set of output tag
production patterns.

An input predicate is a function on the numbers of available
tokensin num on input channelsin Inputs and on the
tag setsin tag of the tokens read by in its current execu-
tion wherein tag with denotes the tag set of theth
token in channelin . The value of the predicate is either “true”
or “false.” Each input predicate maps to an output tag
production pattern that is activated if the value of
is “true.” An activated tag production pattern associates mode
tags with certain tokens produced on the output channels of the
process. The tag setout tag of the th token produced on
channelout during the current process execution is the union
of all mode tags associated with this token by activated tag pro-
duction patterns.

Note, that the production of mode tags like the production
of data tokens may be mode dependent. Thus, the definition
of process modes has to be extended to include mode tag
production rules.

The following example demonstrates the use of tag produc-
tion rules. Process in Fig. 6 models the production of bus
telegrams that may be correct or faulty. This fact is denoted by
a mode tag namederror that has the possible values “true” or
“ false ” and that is attached to all produced tokens. Then, process

has the following two modes representing the cases of pro-
ducing a correct () or a faulty telegram ()

true

tag error false

true

error true

Since the mode tag production depends only on the mode (
or) the predicates of the rules in both modes are simply
“ true .” In general, the output tag production is described by a
function tag name value 2 that causes a mode tag
name value to be added to the tag set of theth token pro-

duced on channel. Therefore, if executes e.g., in mode
one token with the tagerror false is produced on .

2It is possible to specify a set of possible values for thevalue parameter
denoting uncertainty about the value of the produced tag.

Nothing can be said about the selection of the mode since there
is no incoming data for besides tokens from the virtual
queue only constraining the relative timing of .

How mode tags are utilized for process mode selection is
part of the activation function that is described in the following
section.

E. Activation Function

An activation functiondetermines the conditions under which
a process is activated and at the same time, determines the mode
in which a process will execute.

Definition 9 (Activation Function):Associated with each
process , there is anactivation functionthat may be for-
mulated as a finite set of ruleswhere each rule is a mapping
of an input predicate to a finite set of modes .

The input predicate of a rule is a function on the numbers
of available tokensin num and on the tag setsin tag of the
tokens that will be read by in the execution to be activated
on input channelsin Inputs . The value of the predicate
is either “true” or “false.” The union of all sets with the
predicate of rule being “true” is the set of modes the process
can execute in. If and only if this set is not the empty set, the
process is activated.

If the activation function results in a set of several possible
modes for an execution, then it is uncertain in which of the ac-
tivated modes the process will execute.

The activation rules in its general form allow the specifica-
tion of activation conditions that violate basic principles of the
SPI model. Thus, in the following some restrictions for activa-
tion rules are defined. These restrictions do not impose addi-
tional constraints on the valid process behavior but rather allow
a check for correct modeling.

Note that the predicate of a rule has to be “false” if in
some input queue there is a smaller number of available to-
kens than possibly consumed by the process in any mode

. Otherwise, the execution of this process may lead to an
attempted consumption of nonavailable data and would violate
SPI’s data-driven activation principle.

Since SPI processes are not allowed to test for input data
without reading it, process behavior, and thus process modes,
may only depend on read input data. This is accounted for by
the restriction for input predicates to only consider mode tags
of tokens (to be) read during the current process execution.

A consequence of the data-driven activation and the forbidden
test for input data is that an activation of a process can never be
invalidated.

In examples, the activation function is often omitted for sim-
plicity. In these cases, the default activation is that each mode is
enabled (i.e., the process may execute in it) if there are enough
input tokens available for an execution.

Evidently, the specified activation function is capable of rep-
resenting data flow or event driven models of computation. In
the following, it will be shown how time driven activation can
be modeled using the SPI activation function.

Periodic activation(e.g., of process in Fig. 6 neglecting
the input channels , , and) can be modeled by a vir-
tual channel starting and ending at the process to be acti-
vated. The process has a static consumption and production rate
of one data token per execution for channel and, thus, an
activation function consisting of a single rule num

386 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

mapping to the only mode of . With one initial data
token on the channel () supporting the first activa-
tion, each execution now enables its following activation. The
time between two consecutive executions can be constrained
by a latency constraint on channel (to be introduced in
Section IV-G).

Another possible application is theactivation by relative exe-
cution rates(e.g., no exact periodicity but constrained mobility
intervals as in the process model used in RMS [20]). An example
for this is process in Fig. 6, which has to be executed once
during every period and thus once between two executions of
the virtual process time having an exact period of . To model
this fact, two virtual channels and with having one
preassigned token are introduced. With the modes of(as de-
fined in Section IV-D), the activation function of consists of
the following two rules3

num is tag error true

num is tag error false

Then, the first execution of time causes an activation of
whose execution in turn leads to another activation oftime etc.
The chosen mode depends on the value of the tagerror de-
noting a transmission error on channel. In general, the func-
tion is name val returns “true” if the tag set contains
the information that tagname has the valueval .

F. Function Variants

Many embedded systems are implemented with a fixed-core
function and a set of alternativefunction variantsto adapt the
system to different applications or environments. Examples are
TV sets, which can be adapted to different standards or auto-
motive control systems used in countries with different emis-
sion laws. Function variants are mutually exclusive, i.e., only
one variant of a set of alternative functions is selected at a time.
There may be several of those variant sets in one embedded
system, e.g., for different input and output standards of a multi-
media device. The variant selection for these sets may be related
or independent.

Function variant selectioncan occur at different stages of a
product life time corresponding to different variant types.Pro-
duction variantsare selected at production time, e.g., by down-
loading a certain software variant into an EPROM.Run-time
variantsare selected at system start-up time, e.g., as part of a
boot sequence, which reads switches or flash memory stored
parameters. In both cases, system optimization can assume that
the system’s variants can not be changed during system oper-
ation. A more complicated selection process is found in dy-
namically reconfigurable architectures. Here, a subsystem is
typically configured by a higher level controller to execute a
function which the subsystem itself cannot change.

Clearly, a single process with a set of modes can be used to
represent function variants, where each of the variants is mapped
to one or more modes of that process. Then, the variant se-
lection maps to mode selection inside the process. The draw-
back of this representation is that the modeling is too coarse

3(R :num � 1) does not have to be specified since registers always are
“full” and thus a register access can not result in an attempt to consume unavail-
able data.

grain, since function variants usually incorporate several pro-
cesses and channels, i.e., whole subgraphs, instead of a single
process. To keep the level of granularity, the subgraphs of all
function variants can be included in the system model together
with some coordination framework that is responsible for the
distribution of the data according to the currently selected sub-
graph (by means of mode tags). In this case, the information
about the mutual exclusion of the function variants is distributed
within the process network and can hardly be recovered. Thus,
the use of processes and process modes is not sufficient for a
reasonable representation of function variants.

In the remainder of this section, we will only focus onfunc-
tion variant representation. For detailed information about re-
configuration and dynamic variant selection, we refer to [35],
[5].

SPI Representation of Function Variants:
As already indicated, changing a system’s variant in the func-

tional description corresponds to exchanging subgraphs in SPI.
Such subgraphs may be represented asclusters. A cluster con-
tains a set of graph elements which communicate through the
cluster border via input and output ports. This concept allows
for hierarchical construction of complex SPI models and en-
ables stepwise refinement.

Definition 10 (Cluster): A cluster is a tuple
where denotes the set of input ports

and the set of output ports, respectively. denotes the
set of embedded processes, the embedded channels, and

the
embedded edges. denotes the set of embedded interfaces to
be defined later. In addition to the constraints on channels as
given in Def. 1, an input portin satisfiesindeg in ,
outdeg in and an output portout satisfies
outdeg out , indeg out .

Clustering does not add functionality to the model and is only
a structuring concept. The only restriction in this context is that
a cluster, like a process, can only be connected to channels.

Now, a system with two function variants can be represented
consisting of three parts. The first common part contains all
elements that are not variant-dependent, while the remaining
parts are mutually exclusive clusters which represent the dis-
tinct function variants. Evidently, both clusters must have the
same external connections in terms of input and output ports,
since otherwise they could not be reasonably exchanged by each
other. In other words, the three parts need a commoninterface.
Furthermore, information is needed about a reasonablemapping
between interface ports and cluster ports.

Definition 11 (Interface): An interface is a tuple
PortMap where denotes the set of

input ports, the set of output ports, the set of clusters
associated with this interface, and a partial functionPortMap,
which maps the input and output ports of each cluster into
an input or output port of the interface, respectively. If an
interface is embedded into a cluster, the indegree of input ports
and the outdegree of output ports is at most one.

Using these two constructs, a system part for which different
function variants exist can be represented by an interface with a
set of different clusters associated. Then, each function variant
is represented by exactly one of the clusters that can be con-
nected to the interface according to the corresponding mapping
in PortMap. An example for a system part with two-function

ZIEGENBEIN et al.: SPI—A SYSTEM MODEL FOR HETEROGENEOUSLY SPECIFIED EMBEDDED SYSTEMS 387

Fig. 5. Example system with two-function variants.

variants is the interface in Fig. 5. The different variants are
depicted as clusters and . The port mappings are not shown.

G. Environment Modeling

Evidently, the modeling of an embedded system has to in-
clude the system’s environment and its constraints imposed on
the system. Using virtual model elements, system and environ-
ment can be modeled in a coherent way. Examples for virtual
processes modeling the environment are the source processes

and as well as the sink processes and
in Fig. 6. Note that the channels between the environment and
the system are not virtual, since in this example this communi-
cation has to be implemented (e.g., using memory mapped I/O).

Another important part of the environment aretiming con-
straints. In the SPI model, latency constraints can be specified
for paths of channels and restrict the time tokens may take to
travel along these paths.

Definition 12 (Latency Path Constraints):
A path constraint is a labeled path in the SPI graph. A path is

of the form

while involving processes, channel nodes and edges.
A latency path constraint

denotes the time interval between the time a token is written to
the first channel of the path and the time a causally dependent
token is removed from the last channel of the path. The path
constraint must be satisfied for any token sequence during any
possible execution of the system.

A token is said to be causally dependent on another token
, if it was produced by a process execution which either read

or a token which is causally dependent on. For a constructive
method to check these latency path constraints see [4]. Using
virtual model elements, other types of timing constraints like
periodicity constraints can be modeled using latency constraints
(e.g., process in Fig. 6).

Fig. 6. Remote motor controller (SPI Mapping).

V. APPLICATION EXAMPLE

In this section, an offline nonpreemptive scheduling method
(e.g., [36]) is applied to the remote motor controller of Fig. 2.
The corresponding SPI representation of this system is depicted
in Fig. 6. Different parts of this representation have already been
discussed throughout the paper while serving as examples for
the different SPI model elements and concepts. Note that the
SDF graph in process is mapped to three processes (,

, and) while the state machine in is mapped to a
single process. These mapping decisions are left to the designer
as part of a tradeoff between problem size and modeling accu-
racy. A suitable notation to provide this granularity information
is currently being developed using the Matlab/Simulink transla-
tion as a demonstrator [27].

Another mapping decision is the representation of process
with two modes as previously described in Section IV-D,

instead of representing it using a single behavior. This behavior
could be generated by merging the intervals of both modes and
would be

When looking at the constraint limiting the response time to a
transmission error that is modeled by the latency path constraint

, it becomes
evident that the specification of using two modes is necessary
in order to be able to guarantee the satisfaction of . With
a single behavior we have to assume the maximum execution
time 0.8 for which violates the maximum response time
0.7 specified by . However, when using the two-mode
representation, we just have to consider the maximum latency
of mode which is the mode that outputs the error message
that is such that the satisfaction of becomes
possible.

388 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

Fig. 7. Gantt diagram of remote motor controller.

Furthermore, the correct periodic execution of
and is enforced by the latency path constraints

and
, respectively.

For the application of an offline periodic scheduling method,
the periods of the remote motor controller processes can be
derived from the SPI representation (Fig. 6). This is trivial for
processes and which are specified as periodic processes
(e.g.,) but could also be derived from the SPI rep-
resentation [e.g.,]. Similarly,
the periods of the SDF processes , , and depend on
the period of the signal source driving them modeled by process
sensor . Due to the uniform data rates throughout the SDF part,

their periods evaluate to . Furthermore, the
queues between the SDF processes form precedence constraints
for their execution. These precedence constraints can be formu-
lated as denoting that theth execution of has
to be completed before can be executed for theth time.
Similarly holds and where
originates from the preassigned token on queue.

Assuming a fixed relation , a macro period which is
the least common multiple of all process periods can be calcu-
lated. Then, an offline schedule can be generated for all process
instances in the macro period by a standard approach such as
[36]. A Gantt chart for such a possible scheduling of the motor
controller on two processing elements is shown in Fig. 7. Since
the used scheduling algorithm does not support preemption
needs to be executed on a separate resource in order not to vio-
late its rate constraint.

VI. CONCLUSION

We proposed a model for the coherent representation of
heterogeneously specified embedded systems with respect
to scheduling, allocation and performance validation. With
this model called SPI, properties like timing, communication
behavior and other properties that are important for the above
mentioned problems can be represented using parameter inter-
vals. This allows the coherent representation of system parts
with different underlying models of computation as well as
the modeling of incomplete information and nondeterministic
behavior. The approach includes the capability to vary the
degree of modeling accuracy using the concepts of parameter
intervals and process modes.

Based on the SPI model, the publicly available SPI work-
bench is currently under development. This workbench will
include open extensible data structures representing the SPI
model, extractors for several modeling or specification lan-
guages, methods for scheduling, allocation, timing analysis and
verification, and a user interface that will allow easy integration

of model extensions or new methods. The user will be able to
perform experiments by embedding his own methods into the
infrastructure provided by the workbench.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive comments and suggestions.

REFERENCES

[1] C. A. Valderama, M. Romdhani, and J. M. Daveauet al., Hard-
ware/Software Co-Design: Prinicples and Practice. Norwell, MA:
Kluwer , 1997, ch. COSMOS: A Transformational Co-design Tool for
Multiprocessor Architectures.

[2] Mentor Graphics. (2001) Seamless data sheet. [Online]. Available:
http://www.mentorg.com/.

[3] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele, “Combining
multiple models of computation for scheduling and allocation,” inProc.
6th Int. Workshop. Hardware/Software Co-Design (Codes/CASHE ’98),
Seattle, WA, 1998, pp. 9–13.

[4] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele, “Represen-
tation of process mode correlation for scheduling,” inProc. Int. Conf.
Computer-Aided Design (ICCAD ’98), San Jose, CA, Nov. 1998, pp.
54–61.

[5] K. Richter, D. Ziegenbein, R. Ernst, L. Thiele, and J. Teich, “Represen-
tation of function variants for embedded system optimization and syn-
thesis,” inProc. 36th Design Automation Conf. (DAC ’99), New Orleans,
LA, June 1999, pp. 517–522.

[6] R. Ernst, “Codesign of embedded systems: Status and trends,”IEEE
Design Test Comput., pp. 45–54, Apr. 1998.

[7] E. A. Lee and Th. M. Parks, “Dataflow process networks,”Proc. IEEE,
vol. 83, pp. 773–799, May 1995.

[8] Synopsys. (2001) COSSAP data sheet. [Online]. Available:
http://www.synopsys.com/.

[9] Cadence. (2001) Signal processing worksystem SPW data sheet. [On-
line]. Available: http://www.cadence.com/.

[10] D. Harel and A. Naamad, “The STATEMATE semantics of StateCharts,”
ACM Trans. Software Eng. Methodology, vol. 5, no. 4, pp. 293–333, Oct.
1996.

[11] ITU-T, “Recommendation z.100, specification and description language
SDL,”, 1993.

[12] F. Balarin, P. Giusto, and A. Jurecskaet al., Hardware–Software
Co-Design of Embedded Systems: The POLIS Approach. Norwell,
MA: Kluwer , May 1997.

[13] C. Carreras, J. C. Lopez, M. L. Lopez, C. Delgado-Kloos, N. Mar-
tinez, and L. Sanchez, “A co-design methodology based on formal
specification and high-level estimation,” inProc. 4th Int. Workshop
Hardware/Software Co-Design (Codes/CASHE ’96), Pittsburgh, PA,
Mar. 1996, pp. 28–35.

[14] R. Ernst and Th. Benner, “Communication, constraints and user direc-
tives in COSYMA,” Institut für DV-Anlagen, Technische Universität
Braunschweig, Tech. Rep. CY-94-2, 1994.

[15] J. Zhu, R. Dömer, and D. D. Gajski, “Syntax and semantics of the SpecC
language,” inProc. ’97 Synthesis and System Integration Mixed Tech-
nology (SASIMI), Osaka, Japan, Dec. 1997, pp. 75–82.

[16] B. Lin, “A system design methodology for software/hardware co-devel-
opment of telecommunication network applications,” inProc. 33rd De-
sign Automation Conference (DAC ’96), Las Vegas, NV, June 1996, pp.
672–677.

[17] P. Chou, R. B. Ortega, and G. Borriello, “The chinook hardware/software
co-synthesis system,” inProc. 8th Int. Symp. Syst. Synthesis (ISSS ’95),
Cannes, France, Sept. 1995, pp. 22–25.

[18] C. Weiler, U. Kebschull, and W. Rosenstiel, “C++ base classes for spec-
ification, simulation and partitioning of a hardware/software system,” in
Proc. VLSI, Tokyo, Japan, Aug. 1995, pp. 777–784.

[19] Open SystemC Initiative. (2001) SystemC documentation. [Online].
Available: http://www.systemc.org/.

[20] C. Liu and J. Layland, “Scheduling algorithm for multiprogramming in
a hard-real-time environment,”J. ACM, pp. 46–61, 1973.

[21] E. A. Lee, “Modeling concurrent real-time processes using discrete
events,”Ann. Software Eng., vol. 7, no. 1–4, pp. 25–45, Apr. 1999.

[22] Synopsys. (2001) CoCentric System Studio data sheet. [Online]. Avail-
able: http://www.synopsys.com/.

ZIEGENBEIN et al.: SPI—A SYSTEM MODEL FOR HETEROGENEOUSLY SPECIFIED EMBEDDED SYSTEMS 389

[23] T. Grötker, R. Schoenen, and H. Meyr, “PCC: A modeling technique for
mixed control/data flow systems,” inProc. European Design. Test Conf.
(ED&TC ’97), Paris, France, Mar. 1997, pp. 482–486.

[24] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich, “Fun-
State—An internal design representation for codesign,” inProc.
IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD ’99), San Jose,
CA, Nov. 1999, pp. 558–565.

[25] R. Ernst and A. A. Jerraya, “Embedded system design with multiple lan-
guages,” inProc. Asia South Pacific Design Automation Conf. (ASPDAC
’00), Yokohama, Japan, Jan. 2000, pp. 391–396.

[26] K. Richter, “Developing a general model for scheduling of mixed trans-
formative/reactive systems,” M.S. thesis, Institut für DV-Anlagen, TU
Braunschweig, Jan. 1998.

[27] M. Jersak, Y. Cai, D. Ziegenbein, and R. Ernst, “A transformational ap-
proach to constraint relaxation of a time-driven simulation model,” in
Proc. 13th Int. Symp. Syst. Synthesis, Madrid, Spain, Sept. <<AUTHOR:
PAGE NO?>> 2000.

[28] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich, “Scheduling
hardware/software systems using symbolic techniques,” inProc. 7th
Int. Workshop on Hardware/Software Co-Design (Codes/CASHE ’99),
Rome, Italy, May 1999, pp. 173–177.

[29] D. Ziegenbein, J. Uerpmann, and R. Ernst, “Dynamic response time op-
timization for SDF graphs,” inProc. Int. Conf. Computer-Aided Design
(ICCAD ’00), San Jose, Nov. 2000, pp. 135–140.

[30] The MathWorks. (2001) Real-time workshop data sheet. [Online]. Avail-
able: http://www.mathworks.com.

[31] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, and R. Ernst, “Interval-
based analysis of software processes,” inProc. Workshop Languages,
Compilers, Tools Embedded Syst. (LCTES ’01), Snowbird, UT, June
2001, pp. 94–101.

[32] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,”IEEE Trans. Comput.,
vol. C–36, Jan. 1987.

[33] J. Teich, T. Blickle, and L. Thiele, “An evolutionary approach to
system-level synthesis,” inProc. Fifth Int. Workshop. Hardware/Soft-
ware Co-Design (Codes/CASHE ’97), Braunschweig, Germany, Mar.
1997, pp. 167–171.

[34] F. Wolf and R. Ernst, “Execution cost interval refinement in static soft-
ware analysis,”J. Syst. Architecture, The EUROMICRO J., vol. Spe-
cial Issue on Modern Methods and Tools in Digital System Design, pp.
339–356, Apr. 2000.

[35] R. Ernst,System-Level Synthesis, ser. NATO Science Series. Norwell,
MA: Kluwer , 1999, ch. Embedded System Architectures, pp. 1–43.

[36] T. Benner and R. Ernst, “An approach to mixed systems co-synthesis,” in
Proc. 5th Int. Workshop Hardware/Software Co-Design (Codes/CASHE
’97), Mar., 1997, pp. 9–14.

Dirk Ziegenbein (M’01) received the M.S. degree
in electrical engineering from Virginia Polytechnical
University, Blackburg, VA, in 1996.

Since 1997, he has been a Member of Rolf Ernst’s
Research Group, Institute of Computer and Com-
munication Network Engineering (IDA), Technical
University of Braunschweig, Germany, where he is
working on the development of the SPI Workbench,
an approach to multilanguage embedded system
design. His research interests include modeling,
analysis, and optimization of complex embedded

systems, in particular systems specified using several languages or models of
computation.

Kai Richter (M’01) received the diploma
(Dipl.-Ing.) degree in electrical engineering from the
Technical University of Braunschweig, Germany,
in 1998, and is currently working toward the Ph.D
degree at the same University.

Since 1998, he has been with Rolf Ernst’s
Research Group, Institute of Computer and Com-
munication Network Engineering (IDA), Technical
University of Braunschweig, Germany. He is cur-
rently involved in the development of performance
analysis tools for the SPI Workbench. His research

interests include real-time systems, performance analysis, heterogeneous
HW/SW platforms, and modeling languages.

Rolf Ernst (M’89) received the diploma in Computer Science and the Ph.D.
degree in electrical engineering from the University of Erlangen–Nuremberg,
Germany, in 1981 and 1988, respectively.

From 1988 to 1989, he was a Member of the Technical Staff with Bell Labs
in Allentown, PA. Since 1990, has been a Full Professor with the Technical Uni-
versity of Braunschweig, Germany, and head of the Institute of Computer and
Communication Network Engineering (IDA). He is codeveloper of COSYMA,
one of the first hardware/software cosynthesis systems. His main research inter-
ests include embedded system design and embedded system design automation.

Lothar Thiele (SM’83–M’85) received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical engi-
neering from the Technical University of Munich,
Germany, in 1981 and 1985, respectively.

From 1981 to 1987, he was a Research Associate
with the Institute of Network Theory and Circuit
Design, Technical University of Munich, Ger-
many. In 1987, he joined the Information Systems
Laboratory, Stanford University, CA. In 1988,
he joined the Faculty of Engineering, Saarland
University, Saarbrücken, Germany, as Chair of

Microelectronics. In 1994, he joined the Swiss Federal Institute of Technology
(ETH), Zurich, Switzerland, as a Full Professor in Computer Engineering. His
research interests include models, methods, and software tools for the design
of embedded systems.

In 1986, Dr. Thiele received the Award of The Technical University of Munich
for his Ph.D. thesis. He received the 1987 Outstanding Young Author Award of
the IEEE Circuits and Systems Society. In 1988, he was the recipient of the 1988
Browder J. Thompson Memorial Prize of the IEEE.

Jürgen Teich(SM’89–M’95) received the Dipl.-Ing.
degree (with honors) from the University of Kaiser-
slautern, Germany and the Ph.D. degree (summa cum
laude) from Saarland University, Saarbrücken, Ger-
many, in 1989 and 1993, respectively.

In 1994, he joined the DSP design group of
Edward A. Lee and David G. Messerschmitt at the
University of California Berkeley, where he worked
on the Ptolemy Project. From 1995 to 1998, he
was with the TIK at the Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland. In 1998,

he became a Full Professor with the Electrical Engineering and Informa-
tion Technology Department, and Chair of the Department of Computer
Engineering, University of Paderborn, Germany. He is author ofDigitale
Hardware/Software-Systeme(Germany: Springer, 1997). His research interests
include massive parallelism, embedded systems, hardware/software codesign,
and computer architecture.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

