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State-of-the-art wireless protocols
are predictable or adaptive
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Blink A real-time, reliable and

[1] adaptive wireless protocol
Adaptive Based on Glossy
Flooding primitive
Reliable Average 99.97% reception rate
Multiple testbeds

Tested up to 94 nodes

Real-time Online scheduling
EDF-based Lazy Scheduling

[1]  Zimmerling M. et al., Adaptive Real-time Communication for Wireless Cyber-physical Systems
To appear in ACM Transactions on Cyber-Physical Systems, 2016
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[1] adaptive wireless protocol

Abstraction Low-power Wireless Bus (LWB)
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Second A dual-processor architecture

piece  to mitigate local interference
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Bolt
[2]

A dual-processor architecture
to mitigate local interference

( Application
Processor (AP)

Application\I

Tasks 1

>

Receive Buffer

\

(" Communication )

G Bowt el Processor (CP)
API Incoming API F o N
lush write Wireless |

|

read / ;Comm. Tasks
|
flus : |
write - rea I |
Outgoing Receive Buffer \ 1

\_

_____ /)

Real-time
behavior

Efficient

Composable

Formally verified
Implemented, tested, deployed

uWw sleep
mv active
Hardware/Software

free composition

[2] Sutton F. et al., Bolt: A Stateful Processor Interconnect, SenSys’15, 2015



Design goals

v v
na

v v
v v
na v

17




Design goals — How can we fill the blanks?




Third  Distributed Real-time Protocol (DRP)

piece
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DRP is based on
three main concepts

Communication is constrained
within registered flows only

Global requirements are splited
across distributed components

Interaction between components
is based on contracts
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Communication is constrained
within registered flows only

Flow i Fi=(nf,n?,Ti,]i;Di)

Source

Destination

Min. release interval
Jitter

End-to-end deadline

Release model Sporatic with jitter
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Global requirements are splited
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Interaction between components

is based on contracts
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Contract

CONSTRAINTS
ON LOCAL
SCHEDULES
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Node < Network

Max resource demand
Min service delivered
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Example

Scheduling of Communication Processors (CP)

Real-time
guarantees

Buffer
management

Participate in rounds
T,.+ Blink schedule

Flush before rounds
Write after rounds
T,.+ Blinkschedule

Flush Bolt regularly
TfS Comm. Processor

schedule
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Predictability of Network

+ Predictability of Devices
+ DRP contracts
= System predictability Worst-Case
Analysis
Ultimately
End-to-end latency | = f( Local parameters)
Buffer size
Can we set local - End-to-end deadline
parameters such that... — Memory space

If YES System predictability
by design

34
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From there, adaptability
is one (close) step away

Can we set local ADMISSION
parameters such that... TESTS
End-to-end latency End-to-end deadline

Buffer size = Memory space



From there, adaptability
is one (close) step away

Example ADMISSION
Communication Processor TESTS
T7:+C,+C, +J;
Spoit = Z { / T -‘ and
Fiefnew:

__ s
n_ni

Di+ J; + Cf
Scp > Z 1-|—{ T -‘—I— Z 1
F?',Efnew: Fief'newa

— S d
n—ni n:n,.,;

Depends only on .
local parameters!




Adaptability is achieved via

d

end-to-end latency < D;

. 4

f(TF, D) 9 g(TH) Rk
— [ - Packet

T;,]iDi
REGISTRATION : :
: : : ADMISSION
SCHEME : : : :
request : P P A _ A~ TEsTs
T;,J;D;, Dy Bolt buffer and YE Network YES local . YES Bolt buffer ~
P < > "<
Comp:ute D; local memory OK? schedule OK? memory OK? and de OK? -
: \/ N ~——"
: nack y No nack No nack NO nack NO -
---------- ------ = - == { Abort |q---=---
: : : update : de
Register flow and ack Register | ack Register flow and | ack | Register ¢ ack Register flow and 4
update schedule < flow update schedule flow update schedule

PHYSICAL LAYER

LOGICAL LAYER
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The detailed system analysis

allows for performance optimization

Minimal admissible end-to-end deadline
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The detailed system analysis
allows for performance optimization

Minimal admissible end-to-end deadline
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The detailed system analysis
allows for performance optimization
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The detailed system analysis
allows for performance optimization
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The detailed system analysis
allows for performance optimization

Minimal admissible end-to-end deadline

LT

Destination delay: Application
Message available in the Bolt queue
Message retrieved by the destination application

d
Tf,min
...."“’Packet
# AP, — flow




The detailed system analysis
allows for performance optimization

Minimal admissible end-to-end deadline

d
Dmin — ;onst T Tmin T Tmin + 650n5t + Tf,min

Given Packet size 32 Bytes
Chet 1 S
d
T¢ min 0.1 s
> D,,in 3.46 s

Max data rate 29.7 Bps per flow



Design goals

Predicatability

Real-time guarantees
Buffer management
Adaptability
Efficiency

Composability

v
na
v
v
na

Device

System




Using
enables the design of both

AND
Wireless Cyber-Physical Systems
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Simulation correlates
closely with the analysis

Typical simulation trace result

Percentage of packets [%] Analytic bound

96%

0 10 20 30 40 50 60 70 80 90 100
End-to-end latency of packets [% of analytic bound]



