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ABSTRACT

We consider in this paper fault-tolerant mixed-criticality
scheduling, where heterogeneous safety guarantees must be
provided to functionalities (tasks) of varying criticalities (im-
portances). We model explicitly the safety requirements for
tasks of different criticalities according to safety standards,
assuming hardware transient faults. We further provide
analysis techniques to bound the effects of task killing and
service degradation on the system safety and schedulability.
Based on our model and analysis, we show that our problem
can be converted to a conventional mixed-criticality schedul-
ing problem. Thus, we broaden the scope of applicability
of the conventional mixed-criticality scheduling techniques.
Our proposed techniques are validated with a realistic flight
management system application and extensive simulations.

Categories and Subject Descriptors

C.4 [Performance of Systems]|: Fault tolerance; C.3 [Special-

purpose and application-based systems]: Real-time
and embedded systems

General Terms
Algorithms, Design, Performance, Reliability

Keywords
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1. INTRODUCTION

Many complex embedded systems are mixed-critical [20],
where functionalities of varying criticalities (importances)
co-exist. Examples can be seen in avionics applications (e.g.
flight control and flight management systems) and automo-
bile applications (e.g. smart car systems). For such systems,
it is crucial to provide varying degrees of assurance for func-
tionalities of different importances.

In the meanwhile, such systems are typically safety-critical
[16]: the functionalities provided by such systems must be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC ’14, June 01-05 2014, San Francisco, CA, USA

Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

ensured under various stresses (e.g. random hardware er-
rors, software errors, power shortage, etc). For example, the
flight control and management systems are directly respon-
sible for the safety of the airplanes and must be guaranteed
to work under extreme situations. In order to guarantee
safety, fault-tolerance [14] is inevitable in the design of such
systems, e.g. tasks need to be replicated or re-executed in
order to enhance their strengths against potential failures.
Furthermore, due to the mixed-criticality nature of such sys-
tems, different safety guarantees need to be provided to func-
tionalities of different criticalities.

Motivation. The current research on mixed-criticality
systems has primarily focused on addressing the uncertain-
ties in task worst-case execution times (WCETs) [7]. The
problem investigated is to guarantee that critical tasks can
still meet their deadlines even if the WCETSs of tasks are
violated at runtime. For this purpose, killing of less criti-
cal tasks or degrading their services is assumed to guarantee
alternative (usually overly-pessimistic) WCETs for critical
tasks. However, the mixed-criticality problem here has ba-
sically neglected fault-tolerance, which would be necessary
to achieve safety for mixed-criticality systems. In addition,
safety is not explicitly modeled. For most safety standards
(e.g. IEC 61508 [6] and DO-178B [1]), it is required that
varying probabilistic safety guarantees should be provided
to functionalities of different criticalities. Such guarantees
cannot be made with the current research results. Further-
more, task Kkilling or service degradation could potentially
affect the safety of less critical tasks. To the best of our
knowledge, such impacts on the system safety are not quan-
tified in existing approaches. Therefore, analysis techniques
need to be developed in order to bound such impacts.

Contribution. We address in this paper mixed-criticality
scheduling under hardware transient faults. We consider
task re-execution as the fault-tolerance technique adopted.
The problem we are studying is to provide safety guarantees
for tasks of different criticalities while ensuring schedulabil-
ity of the system. Our main results are as follows:

e We model explicitly the safety requirements on differ-
ent criticality levels according to safety standards, which
would enable us to design mixed-criticality systems com-
plying with those safety standards.

e We provide analysis techniques to bound the system safety
under various scenarios, i.e. with and without task killing
or service degradation.

e We propose a scheduling algorithm unifying the concern
of safety and schedulability for mixed-criticality systems.
The algorithm is based on the insight that our prob-
lem can be converted to a conventional mixed-criticality



scheduling problem. Thus, a broad class of existing mixed-
criticality scheduling techniques can be applied.

e We show with a realistic flight management system (FMS)
application the applicability of our proposed techniques.
Furthermore, we evaluate with extensive experiments the
effectiveness of task killing and service degradation.Our
results indicate, if safety is a concern for less critical tasks,
then service degradation is more proper than task killing,
as the latter could directly violate the system safety.

Related Work. Recently, there is a wide-spread interest
to study mixed-criticality systems [7]. To date, a common
model exists to abstract such systems [21, 4, 17, 9, 19, 18,
12]: the WCETS of all tasks in the system are modeled on
all existing criticality levels. And whenever a task exceeds
its x criticality WCET, all tasks with criticalities x or lower
are killed or degraded hereafter. The rationale behind this
model is that: 1) the WCET on a higher criticality level
is typically more conservative; and 2) less critical tasks can
be compromised in emergent situations, e.g. when a criti-
cal task exhibits rarely a very large execution time. How-
ever, such a model is designed without any consideration of
fault-tolerance. Moreover, safety is not explicitly modeled.
This would be necessary as most safety standards do require
probabilistic guarantees on safety.

So far, various fault-tolerance techniques have been pro-
posed in literature, e.g. checking-point [8, 14], task re-
execution [8, 10], task replication [15, 14], etc. In addition,
existing works on fault-tolerance do maintain some notions
of mixed-criticality, see [11] for an overview. In [15], each
criticality level is modeled by a numerical value representing
its importance with the probability of transient hardware
faults given, the authors use task replication and propose
an evolutionary algorithm to explore the trade off between
system run-time, dependability and cost. In [2, 5], a loose
form of mixed-criticality is used: the authors differentiate
applications from fault-tolerance, fault-detection, and fault-
ignore and take this into account when performing design
space exploration to balance dependability and cost. How-
ever, a unified model of mixed-criticality is lacking in those
approaches. Moreover, those works primarily focus on sys-
tem level design space explorations, and useful scheduling
techniques still need to be developed.

2. PRELIMINARY
2.1 System Model

We consider the scheduling of a set of independent spo-
radic tasks 7 = {71, 72, ..., Tn} on a uniprocessor. Each task
7; is characterized by a minimal inter-arrival time T}, a rel-
ative deadline D;, a WCET C; and a criticality x;. Each
task may issue an infinite number of instances (jobs). We
assume tasks have arbitrary deadlines.For notational conve-
nience, we use x to denote the set of all existing criticalities,
and use 7, = {7 | xi = X} to represent all criticality x tasks.
For ease of presentation, we focus on dual-criticality systems
in this paper, where only a high criticality (HI) and a low
criticality (LO) exist, i.e. x = {HI,LO}.

Fault Model and Fault Tolerance. We assume for
every job issued by task 7;, there is an associated probability
fi that this job does not finish properly by its deadline.
We assume the cause be the transient hardware errors and
consider task re-execution as the fault-tolerance technique
adopted in this paper. For this purpose, sanity checks are
assumed to detect whether tasks execute correctly. In case of

Table 1: DO-178B Safety Requirements
X A B C D |E
PFH, [< 107°|< 1077|< 1075 |> 107°| -
faults detected, the faulty task instances are re-executed up
to a given number of times in order to achieve the required
safety. We assume that any instance of 7; can execute at
most n; times (n; € N). We call n; as the re-ezecution
profile of task 7;. For notational convenience, we use N =
{ni | i € T} to denote the re-execution profile of all tasks,
and use Ny = {n; | m € 7 A xs = x} to denote the re-
execution profile of all criticality level x tasks.

Safety Requirements. We consider in this paper the
failure of tasks in the temporal domain, i.e. an instance of
a task is said to fail if it does not successfully finish by its
deadline. To characterize the safety of the system, we use
probability-of-failure-per-hour (PFH) as our metric, which
is adopted in most safety standards (e.g. IEC 61508 [6] and
DO-178B [1]) for the measurement of safety of continuous
functions. Specifically, for each criticality level y, there is
an associated safety requirement, PFH,, which represents
the PFH that must be met by all criticality x tasks. PFH,
strictly decreases with increasing criticality x. Furthermore,
according to the definition stated in IEC 61508, PFH can be
represented as the average failure rate in one hour over an
operation duration of the system lasts Og hours (e.g. the
typical range of Og for commercial aircrafts is 1 < Og < 10).

In this paper, we will stick to the DO-178B [1] safety stan-
dard, where in total 5 criticality levels are defined, with A
being the highest and E being the lowest. The considered
dual-criticality task sets can have any two criticalities out
of the 5 criticality levels. Furthermore, for all 5 critical-
ity levels, different safety requirements are specified, which
are summarized into Table 1. As shown in this table, for
DO-178B, the level D and level E tasks are essentially not
safety-related. For criticality levels A, B and C, the required
PFHs are essentially very small (at least less than 107°).

Problem Definition. Given the system model, the prob-
lem we are studying in this paper is defined as follows:

DEFINITION 2.1. (Fault-Tolerant Mixed-Criticality Schedul-
ing) Given a dual-criticality sporadic task set T, and given
the probability of failure f; for all instances of each task T;.
Find a re-execution profile N for all tasks and a scheduling
technique S, such that both safety requirements on all criti-
cality levels and the schedulability of the system are satisfied.

2.2 Conventional Mixed-Criticality Scheduling

Vestal proposed the state-of-the-art model for mixed-criticality

systems in his seminal work [21]. The key idea is to model
the WCETsSs of tasks on all criticality levels. The WCETs of
one task when considering from low to high criticality levels
are strictly non-decreasing, assuming that the WCET on a
high criticality level is typically more conservative than that
on a low criticality level. A task is not allowed to exceed
the WCET on its own criticality level. The WCET of task
7; on criticality level x is denoted by C;(x).

Based on this model, the problem studied in literature is
to provide dynamic guarantees to all tasks based on their
run-times: whenever any task 7; exceeds its x criticality
WCET (Ci(x)), only tasks with criticalities higher than x
are guaranteed to meet their deadlines thereafter, and all
other less critical tasks are killed or their services are de-
graded to guarantee critical tasks. The system is said to be
schedulable if there exists a scheduling technique, which can
provide such dynamic guarantees to all tasks.



3. QUANTIFY THE SAFETY METRIC

We present in this section how to quantify the safety on
different criticality levels without and with task killing or
service degradation. To the best of our knowledge, this
has not been studied for mixed-criticality systems. Explic-
itly quantifying safety will enable the certification of mixed-
criticality systems according to established safety standards.

3.1 Plain Safety Quantification

We first study the quantification of safety on different crit-
icality levels without task killing or service degradation.Recall
that we assume any job of 7; can execute at most n; times.
In the worst-case, each job of 7; will execute n; times until
we know it fails or not. Let us call n; times of executions of
one job of 7; as one round. The following result is presented.

LEMMA 3.1.  Given the re-execution profile N for all
tasks, the mazimum number of rounds of T; that the time
domain [0,t] can accommodate, is given by:

ri(ni, t) = max{ {1?—7}7101 + 1J ,0}.1 (1)
The probability-of-failure-per-hour (PFH) on criticality level
X can be upper-bounded by:

pfh(x) = Z ri(ns,t) - fI'', ¢t =1 hour. (2)

T; €ETx

ProoF. All proofs can be found in [13]. O
3.2 The Need for Task Killing

As convinced by existing results on conventional mixed-
criticality scheduling [7], killing of less critical tasks will
help to improve the schedulability of critical tasks. For our
fault-tolerant mixed-criticality scheduling problem (Defini-
tion 2.1), we show here a concrete example that motivates
the need of task killing under our problem setup. Our de-
tailed scheduling algorithm will be presented in Section 4.

Table 2: Example 3.1 task set

T ||| 3| T4 | TS
x [HI|HI|LO|LO|LO
T/D|60|25|40 |90 | 70
C |5|4|7|6]|8

ExXAMPLE 3.1. Given a set of 5 sporadic tasks as shown
in Table 2 with task parameters in units of ms. The tasks
have criticalities HI and LO, with HI € {A,B,C} and LO €
{D,E}. The failure probability of each job for every task is
assumed to be a constant 1075,

Since the LO criticality tasks are either level D or level E
tasks, the PFH on the LO criticality is of no interest and we
can set n3 = ng = ns = 1. Furthermore, for the HI critical-
ity tasks, we can derive according to (2) their minimal re-
execution profiles: n1 = ng = 3. In this case the calculated
PFH on the HI criticality is 2.04 x 1071°, which satisfies the
safety requirement on the HI criticality level. This will lead
to an unschedulable system as the the total system utilization
is greater than 1: U =3x > %’ + > %’ = 1.08595.

T; ETHI T, €ETLO

However, since there is no requirement on the upper bound

of PFH for level D/E tasks (they are intrinsically not safety-

related, and can be killed without jeopardizing the sytem safety).

"'We assume in this paper that each job of task 7; takes C;
to finish at runtime. If this assumption does not hold, then
Ci in (1) , (4) and (6) should be modified to 0.

Hence, to guarantee the schedulability of HI criticality tasks,
one may kill LO criticality tasks, when e.g. any HI critical-
ity task instance executes a third time. As we will show in
Section 4, this will indeed make the task set schedulable.

The above example motivates from the schedulability point
of view the need of killing less critical tasks in order to guar-
antee critical tasks. However, killing of less critical tasks
should be assessed such that the less critical tasks can still
meet their safety requirement. For example, if the low criti-
cality tasks in Example 3.1 are criticality level C tasks, then
they still need to meet the safety requirement on criticality
level C (pfh(C) < 107?), even though they could be killed.

3.3 Safety Quantification with Task Killing

We proceed to present how to quantify the system safety
on different criticalities when killing of LO criticality tasks
is adopted. This is not a trivial problem, as the safety of
those LO criticality tasks now depends on when they are
killed by the HI criticality tasks.

Recall that for any instance of task 7;, it is executed up to
n; times in order to meet the safety requirement. We assume
in this paper that, for each HI criticality task 7;, killing of
LO criticality tasks is controlled by another parameter n/
(n; € NAn; < n;): whenever an instance of 7; executes the
(n; + 1)th time, all LO criticality tasks are killed thereafter.
We call nj as the killing profile of the HI criticality task 7,
and we use Nyij; = {n} | x; = HI} to denote the killing profile
of all HI criticality tasks. Notice that Njj; is required by the
scheduling technique in order to guarantee schedulability.

We now first quantify the probability that the LO critical-
ity tasks are killed within the time domain [0,¢] under this
setting. Formally, we have the following result.

LEMMA 3.2.  Within the time domain [0,t], the proba-
bility that no instance of any HI criticality task T; executes
the (n; + 1)th time, is lower-bounded by:

R(Nlliht) = H (1 -

Ti ETHI

The probability that the LO criticality tasks are killed within
[0,] is upper-bounded by 1 — R(Niy, t).

Notice that according to (3), R(Nfy,t) will decrease with
increasing t. This implies that the probability that the LO
criticality tasks will be killed increases as time elapses. As
R(Nfy, t) can approach 0 if ¢ is sufficiently large, this means
that the LO criticality tasks will eventually be killed for sure.
Based on Lemma 3.2, we now quantify the safety of the LO
criticality tasks providing that they can be killed by the HI
criticality tasks. The following result is presented.

fﬁi )Ti(n,nt). (3)

k3

LEMMA 3.3.  Given the re-execution profile N for all
tasks and the killing profile N{j; for the HI criticality tasks.
Define m;(t) as a sequence of timing points unique to T;:

7Ti(t) = {t—nlCl—mTH—Dz | m e NAm 2 1IAm < ri(ni,t)}u{t}.
4)

The PFH on the HI criticality level can be calculated as
shown in (2). The PFH on the LO criticality level can be
upper-bounded by:

pfh(LO) = Z Z 1 — R(Nf, ) - (1= f') /Os,

T ETLO a€m;(t)
(5)
where t = Og hours.



The result as shown in Lemma 3.3 confirms that the safety
of the LO criticality tasks under task killing depends on
when they are killed by the HI criticality tasks (i.e. Nyy).
In particular, for any HI criticality task 7;, if we decrease n},
then the PFH for the LO criticality tasks will be increased
(safety comprised). On the contrary, if nj is increased, then
the PFH of the LO criticality tasks will decrease (safety im-
proved). This can be intuitively explained: with increasing
killing profiles, the LO criticality tasks will be killed “less
often”, leading to improved system safety.

3.4 Service Degradation Instead of Task Killing

Analogous to our discussion in Example 3.1, service degra-
dation of the LO criticality tasks can also help to alleviate
the system load if the HI criticality tasks are re-executed
“too many” times. In addition, for many real-life mixed-
criticality applications, task killing may not be the best
choice. For example, for the flight management system ap-
plication, there are B criticality tasks for location computa-
tion and C criticality tasks for flightplan computation. How-
ever, as the system may constantly require the flightplan in-
formation, it would not be a good design choice to kill the
flightplan tasks if any B criticality task overruns. Instead, a
degraded service should be provided to the flightplan tasks.

We assume that service degradation is only allowed for
the LO criticality tasks, and it is facilitated by a new inter-
arrival time T; (Vi € 7.0). We use a factor d; (> 1) to
characterize the service degradation: Vr; € 1.0, TZ =dyxT;.
Similar to task killing, the service degradation is triggered
when any instance of a HI criticality task 7; executes the
(n; + 1)th time. We call n] the degradation profile of task
7; in this case (IVfj; represents the degradation profile for all
HI criticality tasks). For ease of presentation, we call both
the killing and degradation profiles as the adaptation profile
when this does not cause any ambiguity.

To safely facilitate service degradation, its impact on the
system safety should also be quantified. We present the
following result in this regarding.

LEMMA 3.4.  Given the re-execution profile N for all
tasks, the degradation profile Niy for the HI criticality tasks,
and the service degradation factor dy for the LO criticality
tasks. Define function w(dy,t) as follows:

w(ds,t) = Z max{vinii'ci

T; €ETLO df ' TZ

+1J 0} f.(6)

The PFH on the LO criticality level, if service degradation
is allowed, can be upper-bounded by:

pfh(LO) = (1 — R(N, t)) -w(1,t)/Os ,t = Os hour. (7)

According to (7), one can verify that the PFH on the LO
criticality level is decreased if service degradation is adopted
as compared to (2) when it is not. This is intuitive: for
increased inter arrival times of LO criticality tasks, we have
“less” such tasks to execute within a given time interval, and
the failure probability of LO criticality tasks is decreased.

4. FAULT-TOLERANT MIXED-CRITICALITY

SCHEDULING

Clearly, task re-execution will have an impact on the ac-
tual run-times of tasks. From another point of view, depend-
ing on how many re-executions are performed, a list of dif-
ferent WCETs is generated for a task. Hence, if the LO criti-
cality tasks are killed/degraded when the HI criticality tasks

Table 3: Converted mixed-criticality task set (Example 3.1)

T T1 |72 | T3 T4 T5
x |HI[HI|[LO[LO[LO
T/D [60[25] 4090 |70
cHD|15]12] 76|38
cwo)lwo|s |7

exceed certain times of re-execution, this can be alternatively
viewed as the LO criticality tasks are killed/degraded when
the HI criticality tasks exceed certain WCETs. In light of
this, there exists an underlying link between our problem
and the conventional mixed-criticality scheduling problem.
We will show in this section how our problem can be solved
leveraging existing results on mixed-criticality scheduling.

4.1 Problem Conversion

We first present a concrete example to show how our prob-
lem can be converted to a corresponding conventional mixed-
criticality scheduling problem.

ExamMpPLE 4.1. Consider the same task set as presented
in Example 3.1. Since any instance of a HI criticality task
T; can execute up to 3 times, we can set its HI criticality
WCET as 3C;. Furthermore, all LO criticality tasks are
killed whenever any HI criticality task instance executes a
third time. Therefore, the LO criticality WCET of any HI
criticality task m; can be set as 2C;. For the LO criticality
tasks, their HI and LO criticality WCETs can be set as their
original WCETs (i.e. all LO criticality task instances can
ezecute only once). In this way, we construct a conventional
mized-criticality task set for our problem, which is shown in
Table 3. Notice that our problem conversion is conservative:
if an instance of the HI criticality task T; exceeds 2C; units of
execution at runtime, we know that this instance is executing
a third time. However, the reverse is not true as a task may
take less than its WCET to finish.

For the converted mized-criticality task set, one can verify
that, it can be scheduled by existing mized-criticality schedul-
ing techniques, e.g. EDF-VD [8]. Hence, we get a schedula-
ble dual-criticality task set with the safety requirements met.

We now formalize our findings in Example 4.1.

LEMMA 4.1.  Given the re-execution profile N for all
tasks and the adaptation profile Ny for the HI criticality
tasks. Construct a conventional mized-criticality task set
by: 1) for any HI criticality task 7, let its HI criticality
WCET be n;C;, and let its LO criticality WCET be n;C;;
2) for any LO criticality task 7, let its HI criticality and
LO criticality WCETs both be n;C;. Then the system safety
and schedulability are guaranteed if: 1) the PFH on each
criticality is satisfied under N and Nij; and 2) the converted
mized-criticality task set is schedulable.

Based on Lemma 4.1, our problem is then twofold:

e How to decide the re-execution profile N for all tasks and
the adaptation profile Nyj; for the HI criticality tasks?

e How to schedule the system?

For scheduling the system, we may use existing mixed-
criticality scheduling techniques assuming the problem con-
version. However, it is not trivial to solve both problems
together, as they are correlated: how we choose the re-
execution and adaptation profiles will have an impact on
how the system can be scheduled. Therefore, it is necessary
to first gain understandings of such impacts.



Algorithm 1: Pseudo code — FT7-S
Input: 7, mixed-criticality scheduling algorithm &
foreach x € {HI,LO} do
| ny < inf{n € N: pfh(x) < PFH,} ((2));
end
niy < inf{n € N : pfh(LO) < PFHLo} ((5)/(7));
if ni;; > nar then
| return FAILURE;
end

ni = sup{n € N: T'(nu1, nLo, n) schedulable by S};
if niy < n¥; then
Ny +— N
schedule the converted mixed-criticality tasks
I'(n#1, nLo, nar) by S;
12 return SUCCESS;
13 else
14 | return FAILURE;
15 end

© 0 N o oA WN
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4.2 A General Scheduling Method

Intuitively, if we decrease the task re-execution or adap-
tion profiles, the system schedulability can be improved: for
decreasing re-execution profiles, the load of the system will
also be decreased; while for decreasing adaptation profiles,
the LO criticality tasks will be killed /degraded “more often”,
leading to “more help” on alleviating system loads. On the
contrary, decreasing the task re-execution and adaptation
profiles will lead to compromised system safety (Lemma 3.1,
Lemma 3.3 and Lemma 3.4).

Thus, safety and schedulability are “conflicting” forces on
choosing the re-execution profile for all tasks and the adap-
tation profile for the HI criticality tasks.In order to simplify
the problem, we restrict that all tasks of the same criticality
have the same re-execution profile, i.e. V7i,7; € 7y, n; = nj.
Furthermore, we assume that the adaptation profiles for all
HI criticality tasks are the same, i.e. V74,75 € a1, nj = nj.
We use nur (nrLo) to denote the re-execution profile for each
HI (LO) criticality task. And we use my; to denote the
adaptation profile for each HI criticality task. We further
use a function F(nHI,nLo,n’HI) to denote the constructed
mixed-criticality task set according to the re-execution and
adaptation profiles (Lemma 4.1).

We now explain our proposed algorithm (as shown in Al-
gorithm 1). We assume a mixed-criticality scheduling tech-
nique S is used to schedule the system (the converted mixed-
criticality task sets). We first calculate the minimal re-
execution profiles for all tasks with the guarantee of safety
on both criticality levels. For this first step calculation, we
assume that no task will be killed/degraded (line 1-3). We
then calculate the adaptation profiles for the HI critical-
ity tasks, providing that the safety requirement on the LO
criticality level can still be satisfied. For this purpose, we
first calculate according to (5) (or (7), if service degradation
is adopted instead of task killing) the minimal adaptation
profiles (niy) for all HI criticality tasks, which will still guar-
antee the safety of the LO criticality tasks (line 4). We then
calculate from the schedulability point of view, the mazimal
adaptation profiles (nfy) for all HI criticality tasks in order
to guarantee the schedulability of the system (line 8). Based
on niy and nfy, our algorithm can then decide the feasible
adaptation profiles for the HI criticality tasks (line 9-12).

Notice that the calculation of n¥; depends on S, we will

give detailed explanations on how to compute it for some
well-known mixed-criticality scheduling algorithms in [13].
Notice also that our proposed algorithm is general in the
sense any mixed-criticality scheduling algorithm can be in-
tegrated. Formally, our result in this section is summarized
as follows:

THEOREM 4.1.  Given a dual-criticality task set T, the
failure probability f; for any instance of each task 7; (Vr; €
7) and a mized-criticality scheduling technique S. Both safety
and schedulability of the system are satisfied if the FT-S al-
gorithm signals success.

S. EVALUATION

5.1 Flight Management System

We first validate the proposed techniques with a real-life
flight management system (FMS) application. In particular,
we evaluate the impacts of task killing and service degrada-
tion on the system safety and schedulability. The consid-
ered FMS is a subset of the original FMS and consists of
11 criticality level B and C tasks. The failure probability of
each task’s instance is assumed to be a constant (107?) for
our experiments. We select EDF-VD [3] with task killing
and its variant [12] with service degradation as our explored
mixed-criticality scheduling techniques ([13]). The detailed
experiment setup can also be found in [13].

According to Algorithm 1, the re-execution profiles are set
as the minimal profiles (nur = 3, nLo = 2), such that safety
on both criticality levels is satisfied without task killing or
service degradation. The FMS application is not schedula-
ble with the task re-execution profiles. Hence, we consider
the option of killing or degrading the level C tasks in order
to improve schedulability. To evaluate the impact of task
killing and service degradation on the system schedulability,
we use the mixed-criticality system utilization metric (Umc,
with detailed explanation given in [13]).

Our results are shown in Fig. 1 and Fig. 2. First, we see
that with increasing adaptation profiles for the HI critical-
ity tasks (i.e. with increasing nyy), Umc will continuously
increase. This is because the system load is increased in
scenarios when the LO criticality tasks are killed/degraded
“less often”. We see that, in both cases, the system will no
longer be schedulable when nj; > 2 (ny; € N). Second,
we see that, with increasing nfy, the PFH on the LO criti-
cality level under task killing or service degradation can be
decreased, i.e. safety can be improved. This also matches
with our analysis: with increasing njy, the chance that the
LO criticality tasks will be killed or degraded is decreased,
leading to enhanced safety. Furthermore, we see that task
killing has stronger impact on the system safety than service
degradation, e.g. when njy; = 2, if task killing is adopted,
then the order of magnitude of pfh(LO) is 107!, compared
to 107! when service degradation is adopted. This is due
to the reason that, if tasks are killed, there is no function-
ality /safety they can still deliver. This also suggests that
service degradation is more proper than task killing from
the safety point of view. Notice that in both cases, Unc is
incomparable as different schedulability analyses are used.

5.2 Extensive Simulation

It is known in theoretical study of conventional mixed-
criticality scheduling [7] that task killing and service degra-
dation can improve the system schedulability, assuming that
the LO criticality tasks can be “safely” killed or degraded.
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Figure 2: The impacts of service degradation

We will investigate now, with explicit quantification of safety
under task killing or service degradation, their impacts on
the system schedulability. For this purpose, we apply our al-
gorithms to synthetic dual-criticality task sets (500 at each
data point) and compare the acceptance ratios (ratio of the
number of schedulable task sets to the number of tested
task sets) under different settings. Details of our experi-
ment setup can be found in [13]. Our results are shown in
Fig. 3, where x-axis represents the system utilization and
y-axis represents the acceptance ratio. f represents the uni-
versal probability of failure for all task instances.

Based on the experimental results, we see that with safer
and more expensive hardware (decreased f), the system
schedulability will be improved. We further observe:

e As shown in Fig. 3a and Fig. 3c,if the LO criticality
tasks are not relevant to the system safety (i.e. they have
criticality level D or E), then the system schedulability
for our problem can also be improved considerably by
adopting task killing or service degradation.

e According to the results Fig. 3b, if the LO criticality
tasks have explicit safety requirements (e.g. they have
criticality level C in our experiments), then killing those
tasks could rarely help the design of fault-tolerant mixed-
criticality systems. The underlying reason is that task
killing could directly violate the system safety.

e Service degradation is more proper than task killing if
safety is a concern for the LO criticality tasks: by com-
paring Fig. 3d to Fig. 3b, we see that service degradation
helps more to improve the system schedulability in this
case. This observation also matches our analysis: service
degradation has less effects on the system safety. In fact
according to Lemma 3.4, the safety on the LO criticality
level can only be improved with service degradation.

6. CONCLUSION

We study in this paper fault-tolerant mixed-criticality schedul-

ing under hardware transient faults. We explicitly model the
safety requirements on different criticality levels according
to established safety standards. We analytically bound the
impacts of task re-execution, task killing and service degra-
dation on the system safety and schedulability. We propose
a scheduling algorithm for our problem and show that it
can be converted to a conventional mixed-criticality schedul-
ing problem. Our proposed techniques are validated with a
real-life flight management system application and extensive
simulations.
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Figure 3: Schedulability evaluation — shadows represent
schedulability gaps (Fig. 3a and Fig. 3b — with/without task
killing, Fig. 3c and Fig. 3d — with/without degradation)
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