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ABSTRACT

Hard real-time embedded systems impose a strict latency re-
quirement on interconnection subsystems. In the case of network-
on-chip (NoC), this means each packet of a traffic stream has
to be delivered within a time interval. In addition, with the
increasing complexity of NoC, it consumes a significant por-
tion of total chip power, which boosts the power footprint of
such chips. In this work, we propose a methodology to mini-
mize the energy consumption of NoC without violating the pre-
specified latency deadlines of real-time applications. First, we
develop a formal approach based on network calculus to obtain
the worst-case delay bound of all packets, from which we derive
a safe estimate of the number of cycles that a packet can be
further delayed in the network without violating its deadline—
the worst-case slack. With this information, we then develop
an optimization algorithm that trades the slacks for lower NoC
energy. Our algorithm recognizes the distribution of slacks for
different traffic streams, and assigns different voltages and fre-
quencies to different routers to achieve NoC energy-efficiency,
while meeting the deadlines for all packets.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Network Ar-
chitecture and Design

General Terms

Algorithms, Design
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1 Introduction

Contemporary embedded systems and SoCs feature an increas-
ing number of processing elements (PE) and other components,
a sign that interconnection will play a more vital role in these
chips. Network-on-chips (NoC) is a promising design paradigm
for future many-core chips as found by many previous researches
[1, 7]. However, the fundamental challenge of using NoCs in
many-core embedded systems is that these systems often have
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very limited resources and stringent processing latency require-
ments, which places very different constraints than general-
purpose processors on NoC design. There are two major dif-
ferences between embedded systems and general-purpose pro-
cessors: 1) General-purpose processors are often designed to
achieve a high aggregate throughput, and therefore the NoCs
for them are allocated sufficient resources to sustain the peak
performance. In contrast, embedded systems are designed to
provide just enough performance to accommodate specific tasks.
Thrift is a virtue in designing NoC for those systems, in order
for power and area reduction. 2) General-purpose processors
care about the overall progress of all tasks running on all cores.
In contrast, embedded systems often provide certain guarantees
for individual tasks’ progress. In the so-called hard real-time
embedded systems, to provide certain quality-of-service (QoS),
each task has an associated maximum allowed communication
delay. Reflected on NoC, each network packet needs to be de-
livered to the destination before a deadline; otherwise the cor-
responding task may not be able to deliver the required quality-
of-service, and even causes catastrophic outcomes.

One way to address the conflicting requirements of energy
and latency is to leverage the inherent heterogeneity in NoC
traffics, and use voltage frequency scaling (VFS) to improve the
energy-efficiency of NoC. A lot of previous work [15,19,21] have
adopted DVFS to reduce the energy consumption of NoC while
still providing high throughput. Heterogeneity can also be uti-
lized to improve the efficiency of NoC. Das et al. [9] was the
first to propose the idea of network slack , which refers to the
number of cycles that a packet can be delayed in the network
without affecting execution time. In their work, packets with
smaller slacks (those more likely to impact execution time) are
prioritized. This slack-based approach improves the through-
put of all running tasks. However, the above researches are
still focused on designing NoC for general-purpose processors,
and aimed at improving the overall throughput. For example,
the estimated slack proposed by Das et al. [9] does not con-
sider precise deadlines on individual packets and only serves as
a hint in assigning priorities to packets. There is no guarantee
that a packet will arrive in time before it is needed. There-
fore, these approaches cannot be applied to NoC in embedded
systems where violating deadlines could be disastrous.

Unlike previous work, we focus on improving NoC energy-
efficiency in hard real-time embedded systems by leveraging the
heterogeneity in NoC traffics. We propose a design methodol-
ogy that provides just enough power to NoC in order to meet
the latency requirements (deadlines) of all traffic streams. In-
spired by Das et al.’s work [9], we first calculate the worst-case
slacks for packets of different streams. Then an energy op-
timization algorithm is proposed that leverages the slacks to
allocate differentiated resources (energy) to different portions
of the network. Different from their work, the slack calcula-
tion must be precise and conservative in order to guarantee the



timing-correctness of real-time systems. To solve this problem,
we adopt network calculus [3, 4] to predict the worst-case la-
tency of different packets, from which the worst-case slacks can
be obtained. Leveraging these slacks, we can progressively re-
duce the voltages and frequencies of individual routers in the
network to reduce energy consumption while still meeting all
deadlines. To summarize, the contributions of this work are:
• We develop a formal method based on network calculus to
obtain the worst-case slacks of packets in the NoC for hard real-
time embedded systems. We improve over previous work [18]
by taking virtual channels and heterogeneous router frequencies
into consideration.
•We propose an effective algorithm that trades slacks for energy-
efficiency of NoC, and thus minimizes the total communication
energy while still maintaining timing-correctness. This algo-
rithm adjusts energy and performance by applying voltage and
frequency scaling (VFS) to individual routers in the network.

Finally, the voltage-frequency assignments computed using
the proposed approach are static, which fits into a design cat-
egory where a large number of real-time embedded systems
fall into. While not considered here, the framework devised
in this work can be applied in dynamically reconfigured NoCs
by periodically performing voltage/frequency scaling based on
run-time network states.

2 Worst-Case Delay Analysis

2.1 Router Architecture

Most of the state-of-the-art NoC researches assume a base-
line wormhole router that achieves high energy-efficiency [7].
To provide guaranteed services in NoC, researchers extended
the baseline router architecture to either pre-allocate switching
time slots for critical packets [10,11], or preserve a virtual chan-
nel for each traffic stream [2,20]. Pre-allocating switching time
slots eliminates run-time contentions altogether, while preserv-
ing virtual channels only prevents head-of-line blocking and still
needs proper arbitration schemes for performance guarantee.

In this paper, we assume a baseline wormhole router archi-
tecture with five router stages (1. BW: Buffer Write; 2. RC:
Routing Computation; 3. VA: Virtual Channel Allocation; 4.
SA: Switch Allocation; 5. ST: Switch Traversal). Recently
NoC router architectures with fewer stages were also proposed.
However, changing the number of router stages affects only the
initial latency in our analysis (refer to details below), and there-
fore our approach can be applied to router architectures with
fewer pipeline stages. In addition, we assume that each traffic
stream uses a dedicated virtual channel throughout the net-
work, which is in line with the designs proposed by [2,20]. We
do not opt for pre-allocating time-slots for each packet [10,11],
because this approach eliminates the flexibility of scaling volt-
age and frequency to reduce energy consumption.

In this section, the detailed analytic models for the two types
of router pipeline stalls are presented, and the worst-case packet
delay bound is derived from these models. Table 1 summarizes
symbols used in our modeling and analysis.

2.2 Principles of Network Calculus

Network calculus [3] is a theory of deterministic queuing sys-
tems for communication networks. In particular, this approach
is based on three important concepts:
Arrival Curve: If A[s, t) denotes the number of packets

(here we define a packet as a fixed-length basic unit in network
traffics; variable-length packets can be viewed as a sequence of
fixed-length packets) that arrive in the time interval [s, t), then
we say the flow A is constrained by an arrival curve α if and
only if for all s < t:

A[s, t) ≤ α(t− s) (1)

Table 1: Symbols used for modeling and analysis

Symbols Description
α arrival curve
β service curve
βRi overall service curve of router Ri

βR
′
i ideal service curve of router Ri without back-pressure

A[s, t) the number of packets that arrive during [s, t)
C[s, t] the number of packets that can be processed during [s, t]
dworst worst-case packet delay
si number of slots assigned to flow i in the scheduling model
B VC buffer size
η router frequency scaling factor
Di deadline constraint for flow i
⊗ min-plus convolution e.g. a⊗b = min0≤s≤t{a(s)+b(t−s)}
∧ infimum e.g. a ∧ b = min{a, b}
δT burst delay function δT = +∞ if t > T , else 0
γr,b affine arrival curve γr,b(t) = rt+ b if t > 0, else 0
βλ,T rate-latency function λ[t−T ]+ = λ(t−T ) if t > T , else 0
f sub-additive closure f = δ0 ∧ f ∧ (f ⊗ f)∧ (f ⊗ f ⊗ f)∧ ...

Service Curve: If C[s, t) denotes the number of packets
that can be processed by a router or a whole network over the
time interval [s, t), and C is bounded by a service curve β if
and only if for all s < t:

C[s, t) ≥ β(t− s) (2)

Delay Bound: Assume a packet stream, constrained by an
arrival curve α, traverse a system that offers a service curve β.
Then the worst-case packet delay dworst can be bounded as:

dworst ≤ sup
t≥0
{inf{τ ≥ 0 : α(t) ≤ β(t+ τ)}} (3)

An example is shown in Figs. 1a and 1b for a single router,
where we show an affine arrival curve γr,b, defined by: γr,b(t) =
rt + b for t > 0, and γr,b = 0 otherwise, and a rate-latency
service curve βλ,T , defined by: βλ,T (t) = λ[t− T ]+ = λ(t− T )
for t > T , and βλ,T = 0 otherwise. The arrival curve γr,b
implies that the source can send at most b packets at once, but
no more than r packets/cycle in the long run, while the service
curve βλ,T implies a pipeline delay T for a packet to traverse
a router and an average service rate of λ packets/cycle. As
shown in Fig. 1b, the worst-case delay bound d is the maximum
horizontal distance between arrival curve and service curve.

When extended to multiple interconnected components, as
shown in Fig. 1c, the end-to-end packet delay becomes more
unpredictable. Fig. 1d is the worst-case delay analysis for one
flow f2. As we can see, arrival curve α remains as the given
injection pattern, while service curve is now the concatenation
of all the routers that f2 traverses from source to destination,
which can be calculated through server concatenation [3]. For
instance, the concatenation of two routers with service curve
βR1 and βR2 is:

βR{1,2} = βR1 ⊗ βR2 = min
0≤s≤t

{βR1(s) + βR2(t− s)} (4)

So far we only consider the case where routers with infinite
buffers provide service to a single flow. In reality, the router
is designed with a finite buffer size that exerts back-pressure,
and many flows may share routers in NoC experiencing reduced
service quality. Both factors introduce additional stalls (flow-
control stall and switch-contention stall). In the rest of this
section, we consider the additional stalls resulted from back-
pressure and resource sharing in the worst-case delay analysis.

2.3 Flow-Control Stall

With credit-based flow control [8], the upstream router keeps
a count of the number of free buffers in each virtual channel
downstream. No packets will be forwarded if their intended
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Figure 1: Delay bound from network calculus

buffers are full, until the downstream buffer forwards a packet
and sends a credit back to the upstream router. Here we adapt
Chang et al.’s work [5] to derive the worst-case latency bound
under the back-pressure of credit-based flow control. For sim-
plicity, we consider two adjacent routers R1 and R2 in our
demonstration, and the results can be easily applied to the
case when more routers are involved. Fig. 2 shows a graphical
view of the two-router case.
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Figure 2: Analysis of credit-based flow control

Let αin be the generic input process to router R1 while α be
the effective input process to the internal crossbar of the router,
which is the outcome of both αin and back-pressure. αout is
the output process of router R2. Suppose the overall service
curve βR2 of R2 seen by R1 is known, and the ideal service

curve (without back-pressure) of R1 is βR
′
1 (provided by the

crossbar), then according to [5], the overall service curve βR1

of R1 considering back-pressure is given as:

βR1 = βR
′
1 ⊗ (IB ⊗ (βR

′
1 ⊗ βR2)) (5)

where B is the buffer size, and IB is defined as IB(t) = ∞
for t > 0 and IB(0) = B. The horizontal bar is the operation
for sub-additive closure. In this way, we can derive the service
curve of each router and then recursively concatenate them
based on Equation (4) from destination to source to get the
concatenated service curve for all routers along a flow’s path.

2.4 Switch-Contention Stall

Packet stall can happen at switch allocation stage, when all
front packets in different virtual channels compete for the same
crossbar input or output port. Here we model a generic switch
arbiter that allocates time slots to different input ports accord-
ing to their priorities. In Fig. 3a, we show an example where
two flows arrive at a router and compete for the same output
link to illustrate service curves experienced by each flow.
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Figure 3: Analysis of switch contention

The length of individual slot si(i = 1, 2) assigned for flow fi
is proportional to the relevant priorities of incoming flows and
should only take values that are multiples of a cycle length, and
the corresponding total cycle length is s =

∑
i si. Assume the

full ideal service curve of the router is βR
′
1 , then the partial

ideal service curve for fi, as shown in Fig. 3b, is proportional
to the slot distribution:

β
R

′
1

i =
si
s
βR

′
1 ⊗ δs−si (6)

where δs−si is the delay bound when stream fi just missed its
slots in the worst case and has to wait for the next round.

As for stream fi, (5) can be re-written as:

βR1
i = β

R
′
1

i ⊗ (IB ⊗ (β
R

′
1

i ⊗ β
R2
i )) (7)

Then by plugging Equation (6) into (7) we can derive the
allocated service curve for a specific stream at each router it
traversed, and the concatenated service curve according to (4).
Finally, the worst-case delay bound can be obtained by apply-
ing the principles of network calculus. In this paper, we assume
a round-robin arbiter for every router in the network, which
implies that the priorities of each flow are proportional to their
arrival rates to a specific router. While not considered here,
such results can be obtained in a similar way for other schedul-
ing policies like Fixed Priority (FP), Rate Monotonic (RM),
and Earliest Deadline First (EDF).

3 Slack Optimization for Saving Energy

Applying the methodology in the previous section, we are able
to bound the worst-case packet delay for individual applica-
tion streams, hence obtaining worst-case slack—the time inter-
val between the delay bound and its pre-specified transmission
deadline, which indicates the number of cycles that a packet can
be further delayed in the network. Based on this idea, we pro-
pose an energy-aware voltage and frequency scaling approach to
optimize network energy-efficiency under deadline constraints.

3.1 Frequency and Voltage Scaling

The existence of packet slack implies that we can still achieve
the required performance while lowering the operating frequency
of some routers instead of making them run at a homogeneous
high speed. The supply voltage, in the meantime, can be re-
duced together with the frequency to reduce energy.

Voltage-frequency islands (VFI) [14] have been adopted for
achieving fine-grain system-level power management. A fine
granularity partitioning could assume that each module in the
design belongs to a different island [16] for best flexibility, or
find the optimum partitioning via island merging [17] for energy
savings. Here we are doing static voltage-frequency assignment
and model these routers to be able to run at its own voltage and
frequency. For completeness, we also explore the energy gain
of operating all routers at homogeneous voltage and frequency.

In order for the network routers to operate at different fre-
quencies, they should communicate in a Globally Asynchronous



Locally Synchronous (GALS) mechanism. To address synchro-
nization latency, we adopt the fast synchronizer proposed by
Dally et al. [6] which adds only half cycle of synchronization
delay that can be well absorbed in the buffer write stage.

Note that if we assign a lower frequency to a router, its service
curve is affected accordingly. Specifically, the packet service
rate will decrease and the time it takes to traverse a router
will increase. For example, for a router Rk with rate-latency

service curve β
Rk
λ,T (t) = λ[t − T ]+ as discussed in Section II,

when its operating frequency is scaled by a factor η, its new
service curve is modeled as:

β
Rk
ηλ,T/η(t) = ηλ[t− T/η]+ (8)

Then the worst-case packet delay should be updated to check
if there is remaining slack time for further optimization. Our
energy optimization algorithm is described below in detail.

3.2 Energy-Aware Heuristic Search Algorithm

There are two straightforward ways to trade slack for energy
savings. One is to simply scale down all the routers simulta-
neously by the same factor, which will keep them running at
homogeneous frequency and voltage. The other is through ex-
haustive search to find out the optimum assignment. However,
the former approach is not flexible enough for adjustment, be-
cause the degree to which the network speed can be reduced
is limited by the packet flow with minimum slack. The latter
is time-consuming and not scalable for a large network with
multiple voltage-frequency levels.

Therefore, we propose an energy-aware heuristic search (EHS)
algorithm, which can find an efficient solution leveraging net-
work heterogeneity and avoiding exhaustive search at the same
time. Specifically, we abstract a NoC energy model and inte-
grate it into our worst-case delay analysis framework to auto-
matically generate the frequency-voltage assignments.

3.2.1 Energy Models

The set of nodes in the network is denoted by T = {0, 1...N − 1}.
The supply voltage-frequency pairs of each node i ∈ T are given
by (Vi, fi). Then the sum of dynamic and static energy con-
sumption associated with node i is:

E(Vi, fi) = Ed(Vi, fi) + Es(Vi, fi) (9)

The dynamic energy part can be calculated through:

Ed(Vi, fi) = Mi ∗ Ep(Vi, fi) (10)

where Mi is the total number of packets that traverse node
i during execution, and Ep(Vi, fi) is the energy consumption
when a packet traverses node i:

Ep(Vi, fi) = Ebuffer + Eswitch + Elink (11)

where Ebuffer, Eswitch, and Elink represent the energy dissi-
pated at input buffers, switch and link and are found experi-
mentally using ORION 2.0 [13].

The static energy Es(Vi, fi) part is defined as:

Es(Vi, fi) = Ps(Vi, fi) ∗ t (12)

where t is the system execution time, while Ps(Vi, fi) is static
power for node i and can be obtained as:

Ps(Vi, fi) = Iistatic ∗ Vi (13)

where Iistatic is the leakage current for node i and can also be
extracted from ORION 2.0 [13].

Thus, combining Equation (9), (10) and (12), the total NoC
energy consumption for an application can be expressed as:

E =

N−1∑
i=0

(Mi ∗ Ep(Vi, fi) + Ps(Vi, fi) ∗ t) (14)

3.2.2 Algorithm Description

If node i is scaled from the current voltage-frequency level
(V ki , f

k
i ) to the next lower level (V k+1

i , fk+1
i ), then energy re-

duction can be expressed as:

∆Ei =

N∑
i=1

(Mi ∗ (Ep(V
k
i , f

k
i )− Ep(V k+1

i , fk+1
i ))

+Ps(V
k
i , f

k
i ) ∗ tk − Ps(V k+1

i , fk+1
i ) ∗ tk+1) (15)

Under deterministic routing, the only undetermined variable is
the system execution time tk. Assume the set of application
streams is denoted by S = {s1...sm}. The number of packets
injected by sj is MSj with average injection rate rsj . Then tk

can be approximated from the slowest stream:

t = max
sj∈S

{
Msj/rsj

}
(16)

This is because the end-to-end packet delay is negligible com-
pared to t, especially when the packet number is large.

At the same time, the service curve βRi is modified based
on Equation (8) if scaling i and the new stream delay dsj is
calculated via the worst-case delay analysis in section II. The
accumulated slack cost after scaling is represented as:

∆di =
∑
sj∈S

∆dsj (17)

where ∆dsj is the reduced slack for stream sj .

Our heuristic search algorithm uses ∆di/∆Ei as a measure
of the slack cost and the energy gain if we adjust the voltage-
frequency level of a router i. The pseudo-code below outlines
this algorithm. Specifically, the algorithm iterates through all
routers in the network. At each iteration, it generates a list
containing the slack costs and the energy gains for all routers
in the network, picks the router i with lowest ∆di/∆Ei without
causing deadline violations, and steps down the router’s voltage
and frequency. Finally, the algorithm terminates when there is
no router in the network of which the voltage and the frequency
can be further reduced without causing timing violations.

Algorithm 1: Energy-aware heuristic search algorithm

Result: Frequency-voltage assignment for all nodes
Initialize: Flag = 0;
while Flag == 0 do

Flag = 1;
for i← 0 to N − 1 do

if fi is at its lowest level then
continue;

else
/* worst-case delay analysis */

Calculate dsj (∀sj ∈ S), ∆di and ∆Ei if scaling
down fi by one level, and insert them into a list L
as one element ;

end
end
Sort L in ascending order of ∆di/∆Ei, associated with the
original index i;
for each entry in the list L do

if dsj < Dsj (∀sj ∈ S) then
Scale down fi by one level; Flag = 0; break;

end
end

end

For an N -node NoC with k voltage-frequency levels for each
node, the algorithm complexity of our EHS algorithm is (k −
1) ∗N2logN , compared to kN for exhaustive search.



4 Experiments

4.1 Experimental Setup

We implemented a cycle-accurate network simulator based on
the booksim 2.0 simulator [12], with dynamic and leakage power
numbers extracted from ORION 2.0 [13] .

We also analyze the timing behavior of some video appli-
cations and characterize the arrival curves for packet streams.
Table 2 shows the simulator and benchmark configurations.

Table 2: Simulation Parameters

Baseline Network Configuration
Topology 2D mesh Phit width 128bits
Size 4×4=16 Frequency 2GHz
VC # 3 Voltage 1.5v
Buffer depth 4 flits Routing dimension-order

Video Application Configuration
MJPEG PiP (HR) PiP (LR)

Frame 352×240 Frame 704×576
Period 90,000 PE service 226.57
Throughput 307.2KB Macroblock # 1584
JPEG size 8Kb Rate: 25 frames/s Rate: 12.5 frames/s

Deadline Constraint (cycle)
D1 = 50 D2 = 95 D3 = 50

Motion-JPEG (MJPEG) decoder: The MJPEG decoder
is a video codec in which each video frame is compressed as a
JPEG image. The video of 352 × 240 pixels is spilt into JPEG
image size of 8 Kb. The maximum throughput is 307.2 KB per
invocation with a period of 90,000 cycles.
Picture-in-picture (PiP): We use two sets of video clips:

Regular clips with moderate to high motion content and clips
displaying still images. These two sets characterize the two
streams high-resolution (HR) and low-resolution (LR). Incom-
ing streams have the same frame resolution of 704× 576 pixels
but will be down-scaled for LR, and each frame consists of 1584
macroblocks. Frames are read at a constant rate of 25 frames/s
for HR and 12.5 frames/s for LR. The service offered by a pro-
cessing element is 226.57 macroblocks/ms.

A JPEG image or a macroblock is treated as a packet, and
we derive arrival curves for the three packet streams:

MJPEG stream f1: α1 (t) = 0.218t+ 3.0 (18a)

PiP HR stream f2: α2 (t) = 0.175t+ 13.109 (18b)

PiP LR stream f3: α3 (t) = 0.086t+ 4.37 (18c)

And the baseline service curve is shown in (19) for a generic
wormhole NoC router that can process one packet per cycle
with a total pipeline length of five cycles.

Baseline router: β (t) = [1.0× t− 5]+ (19)

As a case study, we consider that the three application streams
are mapped in a 4×4 mesh network shown in Fig. 4a with deter-
ministic routing. Fig. 4b shows the resource sharing, including
feedback loops in stream f1 as an example. A detailed network
configuration is shown in Table 2.

4.2 Experimental Results

We use the methodology in Section II to analyze the worst-case
latency in our case study, and results are shown in Fig. 5.

At the same time, we run simulation to get the maximum
packet latency for individual streams. A comparison between
the calculated worst-case delay bound (solid lines) and the sim-
ulated maximum packet latency (dashed lines) when varying
virtual channel buffer size B is shown in Fig. 6a. We can see
that the calculated delay bounds are fairly tight.

Apart from the case study with three applications streams,
we duplicate each of the three sample streams to generate more
streams and map them on the NoC platform to form different
traffic scenarios. The whole process is conducted randomly.
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Figure 4: Case study: Three video streams
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Here we consider running another five streams (Two MJPEG,
two PiP HR, one PiP LR) and eight streams (Three MJPEG,
three PiP HR, two PiP LR). Similarly, we do worst-case de-
lay analysis to derive the delay bound and run simulation to
get the maximum packet latency. Due to space limitation, we
only show the differences between calculated delay bounds and
simulated results as the ratio with respect to simulated results,
when buffer size varies from 3 to 7, as shown in Fig. 6b.

We find that the average difference is 17.2% while the ratio
is generally decreasing as VC size increases. This is because
with a small VC size, the effect of back-pressure is more salient
and the results from our analytical model is more pessimistic.
With VC size increased, the effect of back-pressure is smoothed
out, resulting in a tighter delay estimate that converges with
the simulation results.

Furthermore, we perform the proposed EHS algorithm to re-
duce the energy of routers, assuming that three discrete fre-
quencies are available (1.0, 1.5 and 2.0 GHz), and the mini-
mum required voltage is 0.8, 1.2 and 1.5 volts in 45nm CMOS,
respectively. As a comparison, we also evaluate homogeneous
scaling (Homo) in which case the frequency-voltage level of the
routers in the whole network is scaled together. Results of the
worst-case delay bounds and the normalized total network en-
ergy consumption are shown in Fig. 7, where we refer to the



jth duplicate of the ith sample stream as f ji .
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Figure 7: Worst-case delay bound after frequency scaling and
energy saving comparison for three, five and eight streams

As we can see from Figs. 7a to 7c, there is no deadline miss
using any of these scaling mechanisms. We define slack utiliza-
tion as the amount of slack scavenged by the algorithm to save
energy, divided by the amount of initial slack under baseline
configuration. Our proposed EHS algorithm has effectively
exploited individual stream slack, making the completion time
(delay) close to the deadline with a slack utilization of 80.7%
on average. In contrast, Homo only has a slack utilization of
53.9% on average.

As for energy optimization, shown by Fig. 7d, our proposed
EHS mechanism significantly outperforms Homo. On aver-
age, EHS achieves 42.7% energy reduction, while Homo saves
22.0%. These results confirm the effectiveness of our energy op-
timization algorithm. EHS can efficiently utilize the available
slack of individual application streams for energy optimization,
while for Homo case, it cannot exploit slack in fine granularity
and therefore leads to relatively poor energy savings.

In addition, for sensitivity evaluation, we apply the proposed
EHS algorithm with different slack ratios available. Slack ratio
is the amount of slack over baseline worst-case latency. As
shown in Fig. 8, Our EHS algorithm works well under different
slack ratios, saving energy by 23.1%, 31.1%, 38.4%, 52.0%, and
59.7%, respectively.
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Figure 8: Energy savings when slack varies

5 Conclusion
In this paper, a formal analysis based on network calculus is
adopted to obtain the worst-case slacks of packets in the NoC
for hard real-time embedded systems, and used to trade slacks
for energy savings by applying different voltages and frequen-
cies to individual routers. Experimental results show that our
worst-case delay analysis can derive a upper bound for packet
latency, and our energy-aware heuristic search algorithm can
effectively find the frequency-voltage assignment that can re-
duce network energy significantly under variable slack ratios.
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