
Mind the Gap: Removing the Discretization Gap
in Differentiable Logic Gate Networks

Shakir Yousefi 1 Andreas Plesner 1 Till Aczel 1 Roger Wattenhofer 1

Abstract
Modern neural networks exhibit state-of-the-art performance on many benchmarks, but their high computational
requirements and energy usage have researchers exploring more efficient solutions for real-world deployment.
Logic gate networks (LGNs) learns a large network of logic gates for efficient image classification. However,
learning a network that can solve a simple problem like CIFAR-10 can take days to weeks to train. Even then,
almost half of the network remains unused, causing a discretization gap. This discretization gap hinders real-world
deployment of LGNs, as the performance drop between training and inference negatively impacts accuracy. We
inject Gumbel noise with a straight-through estimator during training to significantly speed up training, improve
neuron utilization, and decrease the discretization gap. We theoretically show that this results from implicit
Hessian regularization, which improves the convergence properties of LGNs. We train networks 4.5× faster in
wall-clock time, reduce the discretization gap by 98%, and reduce the number of unused gates by 100%.

1. Introduction
Deep neural networks achieve human-level performance on many tasks, but their high computational cost limits real-world
deployment. This has sparked interest in models that retain accuracy while being more efficient. At their core, all digital
computations reduce to Boolean operations (AND, OR, NOT, etc.). Motivating the question: Can we express and execute
machine learning models directly in the native language of hardware—namely, logic gates? Logic Gate Networks (LGNs)
offer one such approach by replacing arithmetic with compositions of discrete logic operations. While LGNs enable efficient
inference, training them is difficult. Differentiable LGNs address this by introducing continuous relaxations that allow
gradient-based training (Petersen et al., 2022; 2024).

We identify and propose solutions to two major challenges. (1) Discretization gap: The final model must be discretized
after training, often leading to a significant accuracy drop (3%). (2) Slow convergence: Despite efficient inference, training
is slow due to reliance on differentiable relaxations, making convergence slower than in standard neural networks. These
challenges are interrelated.

The gap arises because the final parameters, after training, must be discretized. Small parameter perturbations can
significantly change performance if the loss landscape is sharp. A sharp loss landscape can also cause poor gradient signals,
which impact the convergence speed, causing training to take much longer, while a smooth loss landscape can reduce
the discretization gap and speed up convergence (Foret et al., 2021; Chen & Hsieh, 2021). Our central hypothesis is that
smoother loss landscapes make LGN models more robust to discretization and facilitate faster and more stable training.
Since the loss landscape is smoother, the gradient signal is better, and the networks converge faster. Also, the improved
gradient signal causes more neurons to collapse, thus reducing the impact of discretization.

We propose Gumbel Logic Gate Networks (Gumbel LGNs), which use the Gumbel-Softmax trick to inject noise into gate
selection during training. This encourages exploration, smooths the loss landscape, and reduces the training-inference gap.
Empirically, Gumbel LGNs converge faster and have smaller discretization gaps than standard Differentiable LGNs. To
further reduce this gap, we adopt a discretization-aware training inspired by NAS: applying continuous relaxations only

1ETH Zurich, Zurich, Switzerland. Correspondence to: Andreas Plesner <aplesner@ethz.ch>, Till Aczel <taczel@ethz.ch>.

Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the
author(s).

1

Removing the Discretization Gap in DLGNs

1

0

1

1

1

1

1

1

0

1

0

0

1

0

1

0

1

1

1

1

0

1

0

0

1

Sn
ow

 L
eo

pa
rd

Ca
t

0

....

+

0

....

0 1 0 1

(a) (b)

(c) (d)

Training Time
(GPU Hours)

Discretization
Gap (%, ×10)

Unused
Neurons (%)

4.5× Faster

98% Reduction

100% ReductionDLGNs
GLGNs (ours)

Figure 1. Overview figure. (a) Differentiable LGNs: Each node weighs and sums outputs of 16 logic gates, creating a brittle loss landscape
that slows training and increases the discretization gap. (b) Gumbel LGNs: Injecting Gumbel noise and selecting the top gate smooths the
loss landscape and aligns training with inference, improving convergence and reducing the gap. (c) Structure of Differentiable LGNs and
Gumbel LGNs. Each neuron takes two inputs; final layer nodes are summed to produce class scores. (d) Gumbel LGNs yield up to 4:5�
faster convergence, 98% lower discretization gap, and elimination of unused neurons.

in the backward pass and using discrete gates in the forward pass. While the straight-through estimator may slightly slow
convergence, it greatly reduces the gap and aligns training with inference without impacting inference speed.

To our knowledge, this is the first work to analyze the discretization gap in LGNs and connect it to loss landscape
smoothness. Our approach scales to parameter spaces comparable to deep networks, exceeding 103;600;000—vastly beyond
NAS benchmarks, which typically reach up to 1018.

Our contributions are as follows:
Empirical validation: We demonstrate that Gumbel LGNs train faster and improve neuron utilization.
Theoretical analysis: We prove that injecting Gumbel noise into Differentiable LGNs smooths their loss landscape by
regularizing the Hessian’s trace, thereby reducing the discretization gap and accelerating convergence.
Practical algorithmic insight: We show that using the straight-through estimator further reduces the discretization gap.

Extended background, related work, and Gumbel LGN details are in Appendices A to C.

2. Background
Logic Gate Networks Logic Gate Networks (LGNs) represent an entire network as a composition of discrete logic
operations. In a learned network, each neuron in a hidden layer takes as input the value of two neurons (with output a and
b) in the previous layer1 and applies a fixed logic gate hi(a, b) to get its output. The final layer neurons are partitioned
into k disjoint groups Gi. Following Petersen et al. (2022), we implement GroupSum, which computes class scores as
si =

1
�GS

P
j2Gi

aj , where aj is the binary activation of neuron j and τGS is a GroupSum temperature parameter. The class
with the highest neuron activation count is predicted.

1At initialization, each neuron randomly picks which two neurons in the previous layer it uses for its inputs.

2

