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ABSTRACT
Opportunistic Networking allows wireless nodes to exchange
data and information of interest with peers in communica-
tion range. These nodes form a large, dynamic, multi-hop
network “on the fly”. Challenging optimization problems
arise, such as end-to-end routing, resource allocation (e.g.,
for buffer space and bandwidth), content placement etc.,
exacerbated by the lack of end-to-end connectivity. While
globally optimal solutions are normally sought in network
optimization, node actions and decisions in this context are
inherently local. As a result, most solutions proposed rely on
local heuristics without any guarantees about their conver-
gence properties towards a desired global outcome. In this
paper, we argue that the framework of Markov Chain Monte
Carlo (MCMC) optimization can be applied to many prob-
lems in Opportunistic Networking, providing efficient local
algorithms that provably converge to a globally optimal solu-
tion. As a case study, we use the problem of optimal relay
selection for group communication (e.g., multicast), based
on node contact patterns.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design—Store and forward networks,Wireless
communication; C.2.2 [Computer Communication Net-
works]: Network Protocols—Routing Protocols

General Terms
Algorithms, Design, Performance, Theory, Verification

Keywords
DTN, Distributed Optimization, Markov Chain Monte Carlo,
Content Placement, Contact Graph

1. INTRODUCTION
With the increasing integration of wireless short and medium

range communication technologies (Bluetooth, 802.11/WiFi)
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into mobile devices, the formation of a large, dynamic, multi-
hop network “on the fly” is possible. This type of network,
also known as an Opportunistic Network, can enable novel
applications based on spontaneous communication, interac-
tion, and collaboration (e.g., social networking, location-
based services, micro-blogging etc.), as well as support tradi-
tional ones, such as file sharing, chatting, and web browsing.

Connectivity in Opportunistic Networks is usually inter-
mittent and partial (i.e., not end-to-end) and the contact
(temporary physical proximity of two devices) is the only
means to spread data. Common network optimization prob-
lems such as routing, congestion control, and resource allo-
cation, whose distributed solution is already challenging, are
further complicated in this context. Here are some problems
often addressed in Opportunistic Networking research:⋆ Routing. A node carrying messages must make local deci-

sions about which messages to forward upon contact with
other nodes [19, 23, 5, 12]. Locally, the goal is to improve
the delivery probability with each decision. Globally, the
goal is for individual decisions of nodes to optimize per-
formance (e.g., maximize delivery ratio) for all messages.⋆ Buffer Management. When node buffer capacity is lim-
ited, each node must locally decide which message to
drop [1, 16]. Globally, the goal is once more to maximize
performance for all messages in the network.⋆ Content/service placement. New content is injected into
the network, in which a large subset of nodes (e.g., a mul-
ticast group) might be interested over time [17]. To make
the content easily reachable by interested nodes, L repli-
cas are pushed from its source to L “carriers”, which will
make it most available to everyone (e.g., minimizing the
expected meeting time of an interested node and a car-
rier). The optimal configuration (i.e., set of L carriers)
requires global knowledge [21]. Yet, each node must lo-
cally decide who to forward the replica to, to reach the
optimal configuration, without explicit knowledge about
other replicas.
It is evident that globally optimal solutions are sought in

the above network optimization examples. However, node
actions and decisions in this context are inherently local
without any end-to-end semantics or global knowledge about
the network. In fact, limited and frequently changing con-
nectivity implies that up-to-date knowledge cannot ever be
obtained, unlike in more traditional distributed problems.
As a result, most solutions proposed rely on local best effort
heuristics without any guarantees about their convergence
properties towards a desired global outcome.

To this end, in this paper we take a first look into the gen-
eral problem of distributed optimization for Opportunistic



Networks. We examine two types of algorithms: (i) greedy
algorithms, corresponding to gradient-ascent based optimiza-
tion and (ii) stochastic optimization, based on Markov Chain
Monte Carlo methods. We argue that the framework of
Markov Chain Monte Carlo (MCMC) optimization can be
applied to many problems in Opportunistic Networking, pro-
viding efficient local algorithms that provably converge to a
globally optimal solution.

Throughout this work, we use the optimal relay selection
problem, described above, as a case study. This is an open
problem when considering realistic heterogeneous contact
patterns between nodes, with complex “social” structure, as
discussed in [12]. While most of the research in Opportunis-
tic Networks has focused on unicast routing, we believe that
group communication (e.g., multicast, anycast) and pub-
lish/subscribe models will be equally, if not more, relevant
to applications envisioned for these networks. Hence, a po-
tential solution to this problem would be of general interest.

We identify different cost functions for this optimal relay
selection problem and evaluate both greedy and stochastic
gradient search algorithms on real and synthetic traces. Our
findings suggest that MCMC-based algorithms are able to
efficiently navigate through local maxima, when these ex-
ist, and converge to desirable configurations. Surprisingly,
simple greedy algorithms are often able to achieve good per-
formance, in this context. We conjecture that this property
is related to the dynamicity of the “local” neighborhood for
gradient-based searching, in contrast to the static neighbor-
hood of traditional cost functions. We believe these prelim-
inary findings are more generally applicable to the problem
of distributed optimization in Opportunistic Networks.

The remainder of this paper is organized as follows: In
Section 2, we review previous studies concerning global op-
timization in contexts similar to ours. Section 3 formally
introduces our network model and the various cost/utility
functions we use. The two algorithms under consideration
are described in Section 4. We show our empirical evalua-
tion of the algorithms in Section 5. Finally, we present our
future work plans and conclusions in Section 6.

2. RELATED WORK
Numerous aspects of networked or distributed systems are

configurable or depend on parameter settings, such as topol-
ogy, routing, congestion control etc. Network optimization
attempts to find optimal configurations of different features
of distributed systems. In [24], Weise et al. provide a thor-
ough review of a number of optimization-related works in the
area of distributed systems. Techniques like Evolutionary
Algorithms, Ant Colony Optimization, Simulated Anneal-
ing and Tabu Search are discussed, along with their applica-
tion to problems as diverse as network topologies, generating
routing protocols, security, and software configuration.

In the area of Opportunistic Networking, as mentioned
earlier, a number of these optimization problems arise, yet
are usually treated using heuristics. One of the first works to
formulate a DTN-related problem, namely end-to-end rout-
ing, expressly as an optimization problem is [1]. In this
work, an intentional routing protocol is proposed, which at-
tempts to explicitly optimize user-specified routing metrics.
The authors prove that under the considered conditions, the
routing problem is NP-hard; they propose instead that each
node implements a greedy algorithm that chooses locally be-
tween messages (e.g., to forward) according to a per message

utility. Yet, no guarantees are given about the performance
of this algorithm relative to an optimal one.

More recently, Hu et al. have proposed in [11], to use
a Markov Chain Monte Carlo algorithm for the optimiza-
tion of the dissemination time in collaborative ad hoc infor-
mation dissemination. In this application, devices help in
forwarding information channels to the entire network, by
disseminating the channels they subscribe to, plus others.
[11] treats the case where devices have limited storage, and
thus must decide which channels they are willing to help
disseminate. The authors use a Markov Chain Monte Carlo
algorithm to find channel selection strategies which provably
optimize the dissemination time across the channels.

Markov Chain Monte Carlo algorithms have also been ap-
plied in an area more closely related to Opportunistic Net-
working: Mobile Ad Hoc Networking. Kauffmann et al.
apply an MCMC algorithm to the problem of distributed
channel selection in MANETs, in [14]. Yu et al. use an
MCMC method, in [25], to solve a resource replication prob-
lem. Their end goal is to optimize for application require-
ments such as: load balance, connectivity, energy etc.

Algorithms using the Markov Chain Monte Carlo frame-
work are also relatively popular in other networking con-
texts. In [22], Sandberg describes an MCMC-based routing
algorithm for peer-to-peer networks, which is now used in
the Freenet Project. In sensor networks, [13] uses an MCMC
scheme for distributed estimation.

Our main contributions in this paper are the following:
(i) we address the problem of content placement and group
communication in networks with largely heterogeneous mo-
bility patterns as a distributed optimization problem, (ii) we
derive a simple distributed solution for this problem, based
on Markov Chain Monte Carlo optimization, and demon-
strate the general applicability of the MCMC framework for
solving difficult Opportunistic Networking problems.

3. PROBLEM AND NETWORK MODEL
Many problems arising in the context of Opportunistic

Networks can be modeled as combinatorial optimization prob-
lems. This comes naturally, as we are dealing with indivis-
ible entities (nodes, messages, channels etc) and with rules
that define a finite number of allowable choices (choice of re-
lays, assignment of channels etc). A more formal definition
of a combinatorial optimization problem in this context is:

Definition 1 (Combinatorial Optimization Problem).
A combinatorial optimization problem, O, is defined by a set
of allowable configurations (e.g., subset of nodes, assignment
of objects to nodes), given a set of constraints, and a cost
or utility function UO. Given a configuration s, the util-
ity function outputs either UO(s), the cost of the solution
(a non-negative real number), or the special value ⊥, if s is
not a feasible solution for O (does not meet the constraints).
The goal is to find a feasible solution s, such that UO(s) is
minimized (for cost) or maximized (for utility).

In general, there are two major challenges when consid-
ering such optimization problems in the context of (Oppor-
tunistic) networks. First, obtaining a solution to many in-
teresting combinatorial problems is often NP-hard. Thus,
finding a direct solution is often prohibitive for small wire-
less devices. Second, calculating UO(s) often requires cen-
tral knowledge. As a result, optimal centralized algorithms



do not always lend themselves to optimal distributed im-
plementations. Furthermore, obtaining up-to-date global
knowledge is usually infeasible in Opportunistic Networks
due to connectivity considerations and high node churn.

To address the issue of complexity, stochastic optimiza-
tion and approximation algorithms are usually applied, yet
in the context of centralized solutions. To enable distributed
implementations of general network optimization problems,
Chen et al. propose a systematic transformation of utility
functions using log-sum-exp functions [4]. While this trans-
formation yields an approximation to the original problem,
it also enables a distributed solution. To cope with the issue
of global knowledge, estimates of required global parameters
can be used [11, 16].

3.1 Network Model
We will focus here on optimization for Opportunistic Net-

works. The general network model considered is as follows.
Let N be the set of all nodes in the Opportunistic Net-
work under consideration, ∣N ∣ = N. Each of the N nodes
is identified by a unique ID and its mobility is assumed to
be governed by (implicit or explicit) social relations. Specifi-
cally, (i) we can identify node communities, i.e., sets of nodes
that tend to meet each other preferentially, and ii) nodes
have different sociability or number of nodes they meet in
a given time interval, ranging from solitary to gregarious.
This seems a reasonable assumption, since mobile devices
(network nodes) are carried by humans, who engage in so-
cially meaningful relationships. Several previous DTN ex-
periments, [6, 18], have confirmed this type of interaction
patterns and information flow. We assume a social graph is
created using past contacts between nodes.

Contacts. A contact between two nodes happens when
those nodes setup a bi-directional wireless link between them.
We assume contacts last for a negligible time compared to
that between two successive contacts, but long enough to
allow all the required exchanges to happen. For the purpose
of analysis, we also assume that contacts occur in sequence,
i.e., the probability of simultaneous contacts is small1.

Social graph. A social graph represents our network:
nodes (mobile devices) are vertices and existence of an edge
implies a “strong” relationship (e.g., a recent contact, or fre-
quent contacts) between the two endpoints. The graph seeks
to capture the aforesaid social features of this network. Ways
of creating the social graph of a DTN, out of a sequence of
occurring contacts are implicitly used in various previous
works [5, 12]. More recently, [9] explicitly addresses this as
a standalone issue. Here, we build the social graph using
the density-based aggregation described there.

3.2 Optimal Relay Selection
Using the above network model, we define here the prob-

lem of optimal relay selection given a fixed budget of mes-
sage/service replicas.

Definition 2 (Optimal Relay Selection). A source
node ns ∈ N, creates a message/service m that can be con-
sumed by any interested node in the network. To maximize
the availability of m to requesting nodes, the source must find
a subset of nodes L of size L = ∣L∣, which will permanently
(or while m is valid) store a copy of m. The optimization

1This is the case, for example, if we assume that the arrival pro-
cess of contact events is Poisson. In general, this assumption just
implies a relatively sparse network.

goal can be to (i) minimize the expected discovery/delivery
delay for any requesting node, or (ii) maximize the number
of requests served before a deadline (time to live (TTL)) .

The assumption of a limited budget of replicas is rea-
sonable if we consider a large, resource-constrained Oppor-
tunistic Network. A vast amount of user-generated content
is expected to be shared over it, each content possibly of
large size (e.g., music files, videos, images etc.). As a result,
nodes will not be able to locally store all available content.
While different flavors of the problem can be conceived (e.g.,
minimizing the number of replicas given a performance con-
straint), their solution could be cast in a similar framework.

The above problem consists of the following two subprob-
lems. First, given the entire contact graph, choose the L
relays that would minimize the expected content discovery
time for any node. This essentially depends on the mobil-
ity properties of the nodes in the network. Since the contact
graph captures node mobility properties, the choice of relays
depends on the relative “position” of candidate relays in this
graph. Nevertheless, knowledge of the entire graph is not
available locally, and local “importance” metrics such as de-
gree centrality and ego-centrality are usually considered [5,
12]. In [21], we have proven that, if one considers degree
centrality only (i.e., the number of neighbors of each node),
the optimal relay set L consists of the highest degree nodes.

Having identified the optimal set of relays, the second
problem consists in actually “pushing” the L replicas from
a source to the chosen relays. This non-trivial problem is
the optimization case study we consider here. There are
two major challenges in this context. First, as mentioned
earlier, a source node does not have a global picture of the
network, and thus cannot know a priori the optimal set of
relays (e.g., the highest degree nodes, as defined in [21]).
Consequently, a set of local forwarding rules is required that
can deliver the replicas to the optimal relays without prior
knowledge about them. Second, complex mobility patterns
of nodes involved have an important impact on both the
convergence time (i.e., time to distribute all copies to the
optimal relays) and the quality of “found solution”, as some
replicas may get stuck or oscillate due to local maxima.

To address these issues we will take the following ap-
proach. Once a node creates a message, it binary sprays
the L copies to the first nodes it meets [23]. This quickly
creates an initial configuration of L copies at L (random)
nodes. This is also the starting point of the optimization al-
gorithm. The goal is, from the initial configuration, to reach
the optimal configuration by gradually improving the set of
relays. However, in order to evaluate the quality of a solu-
tion L, a utility or cost function is needed. Some candidate
utility functions are examined in the following.

3.3 Utility Functions
As discussed in the previous section, it has been proved

in [21], that the nodes of maximum degree are the optimum
relays, when degrees are the only information available to
nodes. In this case, the best utility function to maximize is
the sum of the degrees of the relays.

When more information is assumed available, various other
utility functions are possible. While node degrees express
node sociability (and are important in scenarios with skewed
degree distributions), node communities are another salient
characteristic of social mobility. Covering all communities
would be an additional goal of the relay selection algorithm.



Yet, this requirement is sometimes in conflict with the de-
gree maximization requirement, as high degree nodes might
reside in the same community. To capture this, one could
assume that each node also has knowledge of the identities
of its neighbors, not only their number. In this case, an intu-
itive utility function for minimizing the delivery time would
be the total number of nodes “covered” by the set of relays
or having at least one neighbor that is a relay2.

More formally, these utility functions could be written as:

U1(m,N ,L) = ∑
1⩽i⩽L

di (degree only), (1)

U2(m,N ,L) = ∣ ⋃
1⩽i⩽L

Γ(ni)∣ (degree and community), (2)

with Γ(nx), the set of neighbors of node nx and ∣Γ(nx)∣ = dx .

4. DISTRIBUTED OPTIMIZATION ALGO-
RITHMS

We have thus far described the network model assumed,
the network (combinatorial) optimization problem(s) we are
interested in solving in this context, and appropriate utility
functions to evaluate the quality of different configurations
(i.e., solutions). Our starting point is the initial configura-
tion reached after the binary spraying phase. In this section,
we will present two types of algorithms to progress from any
initial configuration to the globally optimal one.

When the optimization (utility) function is convex, gradient-
ascent algorithms can be used [2]. Since the solutions space
for our problem is discrete, this would correspond to the fol-
lowing rule: define a neighborhood around the current config-
uration, and replace the current configuration with the one
(within the neighborhood) that most improves the utility
function. The choice of neighborhood is a tradeoff between
speed and convergence accuracy.

In the context of Opportunistic Networks, the sequence
of steps an optimization algorithm goes through is deter-
mined by node meetings. At each contact between two
nodes, the algorithm is presented with a set of choices, usu-
ally messages-related. Examples are forwarding a message,
replicating it, or dropping it. The choice made determines
the new configuration. In the context of relay selection, the
state of only one replica can change. Hence, the local search
neighborhood consists of all (or a subset of) configurations
with at most one different relay compared to the current one
(note this is related to Gibbs sampling [3]). However, be-
cause the decision is made at the level of each node, during a
contact, a distributed implementation of the gradient-ascent
algorithm is presented with only two candidate configura-
tions involving the two nodes in contact. It can evaluate the
utility of the two configurations, and choose accordingly.

The first algorithm we consider is a greedy algorithm, that
deterministically chooses the highest utility configuration at
every step. While this converges to an optimal solution if
the utility function is convex, its performance suffers in the
presence of local maxima. To address this issue we present
a stochastic algorithm, based on the Markov Chain Monte

2We note that this problem is related to the partial dominating
set problem, known to be hard [15]. It is beyond the scope of this
paper to find the best (approximation) solution to this problem
and a respective utility function. Instead, we are interested in
evaluating a gamut of relevant utility functions and their effect
on distributed optimization algorithms.

Carlo method that introduces a carefully chosen amount of
randomization to evade local maxima and converge to the
global maximum. Both of these algorithms are distributed,
as configurations are improved locally, contact-by-contact,
with the hope to reach an optimal one.

4.1 The Greedy Algorithm
For the optimal relay selection problem defined, the greedy

algorithm is applied after the binary spraying stage. Each
node taking part in a contact behaves as in Algorithm 1.

Algorithm 1: Greedy for Optimal Relay Selection

Data: na applies Greedy upon meeting nb . La , Lb
the set of relays with na , and resp. with nb .

Result: For each message carried by na , potentially
a new configuration.

1.1 for m ∈ Messages(na) do
1.2 Ua ← UM(m,N,La);
1.3 Ub ← UM(m,N,Lb);
1.4 if Ub ⩾ Ua then
1.5 Messages(na) ← Messages(na)∖m;
1.6 Messages(nb) ← Messages(nb)∪m;

While the search over configurations is performed in a
distributed way, the above description implies that, in the
general case, global knowledge may be needed to evaluate
the utility of each configuration. Indeed, as shown in the
beginning of Section 3, nodes na and nb may need to know
which L − 1 other nodes currently hold a copy of message
m, in order to calculate utilities Ua and Ub in Algorithm 1.
Therefore, additional measures are required to ensure that
the utility function can be evaluated or estimated locally.

4.1.1 Distributed Utilities
To enable a fully distributed implementation of the opti-

mization algorithm at hand, the utility function should be
suitably chosen, such that it can be evaluated locally. This
implies that the marginal contribution of each node (for each
state) should be independent of the state of other nodes. For
example, this is the case when the utility function is the sum
of the state (e.g., relay or non-relay) or performance (e.g.,
throughput) of individual nodes (see e.g., [4]). While this is
not always possible, it implies that appropriate approxima-
tions or local estimates of the utility should be sought, that
can be decomposed in such a manner.

Let us consider the utility function U1 in equation 1. With
this function, line 1.4 in Algorithm 1 can be rewritten as Ub−
Ua ⩾ 0, which reduces to db −da ⩾ 0, according to equation 1.
Thus, when using utility U1, the greedy algorithm forwards
messages only to nodes of higher degree than the current.

In the case of utility function U2, things are more compli-
cated. Community structure introduces inter-dependencies
between nodes. From equation 2, U2 can be written as:

U2(m,N ,L) = ∣ ⋃
1⩽i⩽L

Γ(ni)∣
= ∑

1⩽i⩽L
di − L∑

k=2
(−1)k ∑

1⩽x1<. . .<xk⩽L
∣Γ(nx1) ∩ ⋯ ∩ Γ(nxk )∣ .

(3)

Using the same rewriting as before, for line 1.4 in Al-
gorithm 1, we can obtain a similar result. We denote by



Ca
L−1 = ⋃

1⩽i⩽L
i≠a

Γ(ni), the coverage of the (L−1)-node set of relays

formed by excluding the relay node involved in the contact,
here na . The corresponding utility is U2(m,N ,L ∖ {na}) =∣Ca

L−1 ∣. Then,

Ub −Ua =[db − ∣Γ(nb) ∩ Ca
L−1∣] − [da − ∣Γ(na) ∩ Ca

L−1∣]
= deff

b − deff
a . (4)

In equation 4, we call the two terms of the difference, the
effective degrees of nodes na and, respectively nb , for the
message in question. For each message, the effective degree
is defined as the number of nodes that are uniquely covered
by a relay, that is, none of the other relays covers them. The
above equation still requires knowledge of the other relays
and their neighborhoods. Yet, it also suggests a possible
way to estimate each node’s effective degree locally.

A node can maintain its effective degree (per message),
the value of which gets updated upon encounters with other
nodes carrying the same message. In that event, the node
with the lower degree would subtract the number of neigh-
bors in common from its current effective degree for that
message. The node with the higher degree would keep its
current effective degree. Through this algorithm nodes in-
side the same community quickly converge to their effective
degree, which is exactly the desirable behavior since overlaps
mainly occur between nodes sharing a community. Never-
theless, this simple algorithm does not guarantee an accurate
estimate in the worst case. While the issue of distributed
estimation is equally important (see e.g., [8]), our focus in
this paper is distributed optimization in the presence of lo-
cal maxima. To this end, we will assume the effective degree
is known during any evaluation concerning utility U2.

4.1.2 Impact of Local Maxima
While deterministic gradient-ascent algorithms (i.e., greedy)

do well for convex optimization functions, they usually fail
in the presence of complex non-linear utility functions with
many local extrema, i.e., points where the utility function is
higher than all points inside the local search neighborhood.
In the context of Opportunistic Networking and related op-
timization problems described earlier, it is not fully clear
what a local maximum corresponds to. Existence of local
extrema heavily depends on the mobility pattern of nodes
involved and the utility function at hand. Furthermore, the
“local neighborhood”changes due to node mobility, and thus
a local maximum could be only temporary.

To demonstrate our point, let us consider the following
community-based mobility scenario, generated with the mo-
bility model of [10]. This model attempts to capture the
observed preference of most nodes to move within a small,
“home” subset of locations most or all of the time. A sim-
ple example instance of this scenario is shown in Figure 1.
There are a number of communities in the network (4 in
our example): The majority of nodes are community nodes.
Community nodes only move inside their community. There
are also a small subset of roaming or bridging nodes that
move freely around the entire simulation area. Finally, the
transmission range is such that nodes from adjacent subar-
eas cannot communicate with each other.

In this class of scenarios, if we consider the aggregated
contact graph [9], it is reasonable to assume that we have
a set of non-overlapping communities, and that the only
means of communication among them is through the bridge
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Figure 1: Worst case scenario

nodes. Moreover, if each community consists of a large num-
ber of nodes, the degree of community nodes is expected to
be higher than the degree of bridge nodes, since the lat-
ter roam a much larger area, encountering quite fewer nodes
during a time window (this is the case for both“most recent”
and “most frequent” aggregation [9]).

Evidently, this creates a problematic situation for the greedy
algorithm. Message replicas cannot exit a community, and
thus will never reach the optimal set of relays, since bridges
have much smaller degrees and will never be chosen by the
greedy algorithm. This is clear in the case of U1, and also the
case in most simulated instances for U2 (see in Section 5).

While it would be of great interest to rigorously define the
conditions under which such local extrema arise, as a func-
tion of the mobility model and utility function, and to more
deeply understand the impact of their existence in the con-
text of Opportunistic Networks, the above scenario clearly
demonstrates that a different type of algorithm is needed,
that is able to cope with such scenarios. We defer a detailed
analytical treatment of this problem for future work.

4.2 Markov Chain Monte Carlo Methods
As shown above, situations arise, when the greedy algo-

rithm will be stuck in a local optimum. To cope with this,
stochastic optimization uses randomness in the algorithm, in
order to provide the opportunities to move away from a lo-
cal solution. While randomization is required, we would still
like to converge to near optimal solutions. Randomization it-
self will not suffice, as this would essentially correspond to a
random walk over the configuration space. In the context of
stochastic optimization, this is often achieved via simulated
annealing techniques, where the amount of randomization
decreases over time (more about this later).

In the context of Opportunistic Networking, the type of
solution-space-traversal permissible by occurring contacts
can be naturally mapped to Markov Chain Monte Carlo
(MCMC) methods [3]. While MCMC methods are often
used to simulate and sample complex (and non-invertible)
functions, they also provide a powerful tool for stochastic
optimization. They allow moving to lower utility states, but
calibrate the probability of such moves so as to provably
converge to an optimal solution [11, 14]. We will consider
here the Metropolis-Hastings algorithm.

4.2.1 The Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is a sampling algo-



rithm. In the context of optimization, it consists of building
an ergodic Markov chain, whereof the states are feasible solu-
tions of the optimization problem at hand. For the chain to
converge to the optimal solution, the stationary distribution
of the chain must be concentrated around that solution.

Concretely, when applying a Metropolis-Hastings algo-
rithm, one needs the following:⋆ Probability distribution to be sampled : π(s). This is the

stationary distribution of the Markov chain formed by
the feasible solutions s of our system (e.g., all possible L-
node subsets in the network). In order to ensure that the
Markov chain has a unique stationary distribution, the
Markov chain must be ergodic. Usually, this distribution
is chosen such that it maximizes a desired utility.⋆ Proposal density : Q(s, s′). This is the probability that
governs the “creation” of new solutions s′. In Opportunis-
tic Networks, this is the probability of two nodes meeting
each other.
From these, a new solution is accepted with probability:

p(s, s′) = min(1, π(s′)
π(s) ⋅

Q(s′ , s)
Q(s, s′)) (5)

As mentioned, the proposal density is imposed by the
meeting probabilities. In general, the probability of two
nodes meeting in an Opportunistic Network is symmetric.

Thus, the term Q(s′ ,s)
Q(s ,s′) in equation 5 cancels. Hence, it is not

necessary to know the contact probabilities between nodes,
as long as they are symmetric. This is very convenient, since
one can usually only get approximations of the probabilities.

Thus, the acceptance probability of a new solution de-
pends only on the distribution to be sampled, π(s):

p(s, s′) = min(1, π(s′)
π(s) ) (6)

We must choose π(s) in such a way that, with high proba-
bility, the Markov chain “walks” towards a solution with the
highest utility. The Gibbs distribution has this property [3]:

π(s) = exp( U(s)T )
∑
v∈S

exp ( U(v)T )
, (7)

where S is the space of all possible configurations and T is
a system parameter, the “temperature”. When T is small,
the distribution is concentrated around the large values of
U(s) and thus, the algorithm will converge to a “good” solu-
tion with high probability. Seen over time, this equivalently
means that good configurations are in place for the majority
of time. Note that calculating the normalizing constant in
the denominator in equation 7 could be a potential prob-
lem. Nevertheless, the advantage of MCMC algorithms is
that this cancels out in equation 6 and nodes in contact can
locally calculate the following quantity:

p(s, s′) = min
⎛⎜⎝1,

exp (U(s′)T )
exp (U(s)T )

⎞⎟⎠ =min(1, exp(U(s′) −U(s)
T

))
(8)

Summarizing, the algorithm executed by each node on
contact with another node, in the case of MCMC-based op-
timization is shown in Algorithm 2.

Such a Metropolis-Hastings algorithm using the Gibbs dis-
tribution as the stationary distribution is also known as sim-
ulated annealing.

Algorithm 2: MCMC for Optimal Relay Selection

Data: na applies MCMC upon meeting nb . La , Lb
the set of relays with na , and resp. with nb .

Result: For each message carried by na ,
potentially a new configuration.

2.1 for m ∈ Messages(na) do
2.2 Ua ← UM(m,N,La);
2.3 Ub ← UM(m,N,Lb);
2.4 if Ub ⩾ Ua then
2.5 Messages(na) ← Messages(na)∖m;
2.6 Messages(nb) ← Messages(nb)∪m;

2.7 else

2.8 p ← exp(
Ub−Ua

T
);

2.9 if p ⩾ rand(0, 1) then
2.10 Messages(na) ← Messages(na)∖m;
2.11 Messages(nb) ← Messages(nb)∪m;

4.2.2 The Role of the Temperature
As aforementioned, the temperature parameter in equa-

tion 7 controls the kurtosis or peakedness of the Gibbs distri-
bution we use as the stationary distribution of our Markov
chain. There is a tradeoff involved in the choice of T:⋆ T → 0. For very small T, the distribution has very sharp

peaks at large values of U(s). In theory, this means that,
after a high enough number of steps the Markov chain will
almost surely converge to the maximum U(s). However,
this also means that it will be very difficult to escape local
maxima, since they too have high probabilility compared
to neighbouring configurations. Because of this, the con-
vergence time will be significantly increased.⋆ T high. For larger values of T, the distribution is rather
flat even for high values of U(s). Therefore, the Markov
chain will easily escape local maxima and converge faster
to the global maximum. However, when it does reach the
global maximum, it will equally easily escape from it.
To overcome these difficulties, an adaptive T is ideal. This

type of algorithm is often referred to as simulated annealing.
The way in which the temperature is adapted is called a
“cooling schedule”: start with a relatively high T, so that the
Markov chain is directed towards the region of high utility
configurations and gradually cool down the system, in order
to contain the chain to that region.

Cooling schedules are specific to each problem, and re-
lated to the mixing times of the respective Markov Chains.
However, some very popular cooling schedules are used in
a broad range of contexts. Assuming we start with an ini-
tial temperature value T0, some examples of schedules are
[20]: (i) linear schedule: T(t) = T0 − ηt, (ii) exponential
schedule: T(t) = T0 ⋅ αt , (α < 1), (iii) logarithmic schedule:
T(t) = c

log(t+d) . While in theory, the logarithmic cooling with

appropriate parameters is guaranteed to find a global opti-
mum [7], in practice, it is often more efficient to use the
empirically best suited cooling. In this paper, we will use an
empirical exponential cooling schedule.

5. PERFORMANCE EVALUATION
In this section, we will present a preliminary evaluation of

distributed optimization algorithms (greedy and stochastic)
using a real mobility trace and a synthetic mobility model.
With optimal relay selection as our case study, we will study



the convergence properties of these two algorithms towards
the optimal solution.

5.1 Contact Generators
We use the following two contact generators:
TVCM Contacts: The TVC model [10] creates com-

munity-based mobility scenarios of tunable complexity, and
has been shown to reproduce a number of properties ob-
served in real traces. We use it here to create a scenario
that includes local maxima for the optimal relay selection
problem, as described in Section 4.1.2. This scenario (Fig-
ure 1) has 104 nodes and 1 000 000 contacts. The four com-
munities contain respectively 47 nodes, 19 nodes, 19 nodes
and 9 nodes3. In addition, there are 10 bridging nodes.

MIT Contacts: The second trace comes from the Real-
ity Mining [6] project. 97 students and employees of MIT
were equipped with mobile phones scanning every 5 min-
utes for Bluetooth devices in proximity during 9 months.
This trace is unique in terms of number of devices and du-
ration. Nevertheless, with a time granularity of 5 minutes,
many short contacts were presumably not logged. For our
simulations, we cut the trace at both ends and used 100 000
contacts reported between September 2004 and March 2005.

For both traces we ignored logged timing information and
just ordered the reported contacts according to their start
times (i.e., slotted contacts). We obtain the social graph
from the contacts using the method discussed and the results
(optimal parameters) obtained in [9].

5.2 Simulation Results
On these traces, we conducted experiments using both

utilities U1 and U2. For each utility, we compared the per-
formance of the two algorithms presented in Section 4. Due
to space limitations, only a selection of these results is dis-
cussed in the following.

Figure 2 compares the convergence behavior of the two
algorithms in the case of the TVC model, for 7 message
replicas. We define convergence as the percentage of the op-
timum utility actually reached by each algorithm. Each plot
represents the average over all messages from the creation of
the message until its expiration (around 600 messages gen-
erated randomly throughout each trace; error bars measure
the standard deviation).
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(a) TVC model with U1
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(b) TVC model with U2

Figure 2: Average convergence over the duration of
a TTL in the TVC Model

For both utilities the MCMC algorithm shows clear supe-
riority over the greedy algorithm. As explained in Section
4.1.2, the TVCM scenario we are using has permanent lo-
cal maxima by construction. Therefore, it is anticipated
3The choice of community sizes is random. Any values > 10 nodes
per community produce qualitatively similar results.

that the greedy algorithm will not converge to the maxi-
mum. The MCMC algorithm, on the other hand, is able to
effectively navigate through the local maxima and reach con-
siderably higher convergence4. Finally, we observe that the
variance for the MCMC case is significantly smaller. This
implies that the MCMC-based schemes have a better worst-
case behavior, especially for larger numbers of replicas (this
is expected due to the law of large numbers).

In Table 1, we further examine the effect of number of
replicas (relays) used on the performance difference between
the two algorithms for utility U2. As shown there, when the
number of replicas is smaller than the number of commu-
nities, neither algorithm can achieve 100% coverage, as ex-
pected. However, with 4 or more relays, MCMC converges
quickly to near optimal coverage, significantly outperform-
ing the greedy algorithm.

# relays 2 4 6 8 10

MCMC 45 78 87 90 90
Greedy 17 28 37 45 54

Table 1: Final convergence (% of N) in function of
the number of carriers

We now turn our attention to the MIT trace. Figure 3
compares the two algorithms for utility U2 (results for U1
are similar and omitted due to space limitations). Figure
3(a) shows the average convergence calculated as above, for
10 relays. As the figure implies, on average, the two algo-
rithms achieve comparable performance5. This is somewhat
surprising, as it implies that, for most initial configurations
(relays reached initially after spraying), there exist no (long-
lasting) local maxima in the MIT trace. To get a better view,
in Figure 3(b) we plot the empirical distribution for the util-
ity of the reached configuration, by different messages. As
is shown there, the two algorithms do appear to make some
different decisions, with the MCMC algorithm managing to
reach a better configuration for some messages. We noticed
that is more prominent when the number of relays increases.
This is reasonable, as this increases the chance that one of
the replicas will get “stuck” in the greedy case.

−2000 0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

100

Time

A
ve

ra
ge

 c
ov

er
ag

e 
of

 th
e 

re
la

ys
 (

%
 o

f N
)

Average coverage of relays vs. time (10 relays)

 

 

Greedy
MCMC

(a) Average convergence

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

4

Final coverage (% of N)

N
um

be
r 

of
 m

es
sa

ge
s

Final coverage distribution (10 relays)

 

 

Greedy
MCMC

(b) Convergence distribution

Figure 3: Convergence average and distribution for
the MIT trace using U2
4
Yet, we have observed that not all MCMC-navigated messages

reach an optimal configuration during the TTL. This is partly
due to cooling that must be tuned to a scenario, or the need for
longer time than the TTL to converge. In the future, we will look
deeper into optimal cooling, in function of the mobility pattern.
5The y-axis now depicts the total number of nodes dominated
by the reached relay set. Hence, a convergence of < 100% simply
implies that perhaps more vertices are needed.



Summarizing, our preliminary implementation of a dis-
tributed optimization algorithm using MCMC methods seems
to be able to converge to high quality configurations for the
MIT trace as well, most of the time6. As mentioned earlier,
performance could be further improved by carefully tuning
the cooling scheme. At the same time, these results also sug-
gest that simple greedy algorithms might suffice to achieve
good performance in some real mobility scenarios, due to fa-
vorable mixing properties. However, we cannot yet general-
ize before considering additional traces, and larger networks
(where some local maxima are more probable to appear).

Finally, we turn back to the TVCM scenario and compare
the performance of the two utility functions with respect to
the achieved coverage rather than optimality, in Figure 4.
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Figure 4: Comparison between coverages achieved
by the MCMC algorithm with utilities U1 and U2

When using U1 both algorithms will try to send each
replica to high degree nodes (most of which reside in the
largest community). While both algorithms do a decent job
for this task (as shown in Figure 2(a)), when considering
our content placement case study, sending all copies in the
same community is clearly sub-optimal. U2 attempts to cor-
rect this and can achieve a much better performance for the
problem in hand, as is evident in this figure.

6. CONCLUSION
In this paper, we have looked into the problem of dis-

tributed optimization for Opportunistic Networks. We have
argued that stochastic optimization algorithms, namely the
framework of Markov Chain Monte Carlo (MCMC) opti-
mization, are a natural fit for this type of problems. We
have used the problem of optimal relay selection for group
communication (e.g., multicast), as a case study, and have
shown that MCMC-based algorithms are able to evade lo-
cal maxima and converge to high utility configurations. At
the same time, we have also observed that simple (deter-
ministic) “gradient-ascent” type of algorithms often perform
well, despite the non-trivial contact patterns observed in col-
lected traces. We believe this is due to the dynamicity of
local search neighborhoods, which while static and fixed for
traditional optimization problems, are constantly changing
here due to node mobility. In future work, we intend to ana-
lytically study both greedy and MCMC-based optimization
algorithms, and derive appropriate predictors for their per-
formance, as a function of the mobility pattern and utility
function in hand.

6These traces are known to have skewed degree distributions, so
random choice of relays cannot lead to the high coverage values
observed here.
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