
Fast Online Task Placement on FPGAs: Free Space Partitioning and 2D-Hashing

Herbert Walder, Christoph Steiger, Marco Platzner
Computer Engineering & Networks Lab

Swiss Federal Institute of Technology (ETH) Zurich, Switzerland

Abstract

Partial reconfiguration allows for mapping and executing
several tasks on an FPGA during runtime. Multitasking on
FPGAs raises a number of questions on the management of
the reconfigurable resource which leads to the concept of
a reconfigurable operating system. A major aspect of such
an operating system is task placement. Online placement
methods are required that achieve a high placement quality
and lead to efficient implementations.

This paper presents placement methods that rely on ef-
ficient algorithms for the partitioning of the reconfigurable
resource and a hash matrix data structure to maintain the
free space. Given n as the number of currently placed tasks,
previously known placers find a feasible location in O(n)
time. Our approach is able to find a feasible location in con-
stant time. Additionally, simulations show that our methods
improve the placement quality by up to 70%.

1 Introduction
Reconfigurable computing systems usually consist of a host
processor and reconfigurable devices such as SRAM-based
Field-Programmable Gate Arrays (FPGAs). Such systems
map algorithms or parts thereof to a circuit which is con-
figured and executed on the FPGA, enabling the execution
of algorithms in parallel to operations carried out on the
host processor. While early FPGAs were rather limited in
their densities and reconfiguration capabilities, todays de-
vices provide millions of gates and enable partial reconfig-
uration and readback. This allows to configure and exe-
cute a circuit onto the device without affecting other, cur-
rently running circuits. To express their dynamic nature,
such circuits are denoted as hardware tasks. An application
is basically a collection of tasks which are subject to timing,
precedence and resource constraints.

The technique of partial reconfiguration can increase de-
vice utilization, but it also leads to complex allocation sit-
uations for dynamic task sets. This clearly asks for well-
defined system services that help to efficiently design and
run applications. Such a set of system services forms a re-
configurable operating system. From the designer’s point of

view, an operating system is an additional layer of abstrac-
tion in the design process that hides details of the underly-
ing hardware. The benefits of using the additional layer are
increased design productivity, portability and resource uti-
lization. On the other hand, these benefits are paid for by
overheads in the required area and computation time.

The decision where a task is mapped to determines the
fragmentation of the reconfigurable surface. A high frag-
mentation can lead to the undesirable situation that a task
cannot be placed although there would be sufficient area
available. A service is needed which organizes the place-
ment of tasks in order to avoid such situations. This work
focuses on methods for the online placement of tasks on
FPGAs. The objectives are a high placement quality and an
efficient implementation of the placement algorithm. Re-
cently, a placer was described by Bazargan et al. [1] that
finds a feasible placement for a task in O(n) time, where n
is the number of already placed tasks. In comparison, the
contributions of this paper are the development of

� a hash matrix approach that finds a feasible placement
in constant time, and

� partitioning methods which improve the placement
quality by up to 70% compared to [1]

Section 2 reviews related work. Section 3 states the problem
modeling. The Sections 4 and 5 discuss the free space par-
titioning and the fast task placement, respectively. Section
6 presents simulation results.

2 Related Work
Current research dealing with the task placement problem
can be subdivided into two categories: offline and online
placement. In an offline scenario, one can afford to spend
time to derive optimal or near-optimal solutions. A substan-
tial body of work has been done in offline optimization. For
example, [2] presents the 3D placement of tasks in time and
space dimensions for partially reconfigurable devices.

For online placement, the main reference is [1]. The au-
thors investigated efficient data structures and algorithms
for fast online task placement and conducted simulation ex-
periments for variants of first fit, best fit and bottom left

CPU

FPGA

Scheduler

Loader

State of

FPGA

OS

T
1

T
2

T
3

T
4

T
7

T
6

T
5 PlacerTasks

Queue

FPGA

Figure 1. System model and OS modules

bin-packing algorithms. In [3] [4], a different approach is
taken to tackle the fragmentation problem on partially re-
configurable FPGAs. Task rearrangements are performed
by techniques denoted as local repacking and ordered com-
paction. In [5] it is proposed to place non-rectangular tasks
such that a given fragmentation metrics is minimized. Fur-
thermore, a task’s shape may be changed – according to
well-defined rules – in order to facilitate task placement.
A one-dimensional task placement problem is discussed in
[6]. Task relocations and transforms to reduce fragmenta-
tion are also proposed in [7]. Task transforms consist of
a series of rotation and flip operations. The authors also
propose a novel FPGA architecture that supports efficient
row-wise relocation.

3 Problem Modeling

This section describes the system, task, and FPGA models
assumed in this paper. The assumptions and simplifications
made are in accordance with related work in this area [3]
[1] [2].

3.1 System Model
We consider the system shown in Figure 1, consisting of a
CPU and a partially reconfigurable FPGA. The FPGA pro-
vides reconfigurable logic resources, organized in a two-
dimensional array of configurable logic blocks (CLBs). The
CPU runs operating system functions that manage the re-
configurable system resources.

Arriving tasks are stored in a queue until they get placed
and executed on the FPGA. The scheduler decides which of
the queued tasks should be loaded and executed next and
calls the placer to find a feasible location. The placer man-
ages the free space on the FPGA and tries to find feasible
placements for tasks. To that end, the placer module has to
maintain the FPGA state. Whenever the placer finds a fea-
sible location for a task, the loader conducts all steps neces-
sary for configuring the task onto the FPGA and starting its
execution. On task completion, all reconfigurable resources
occupied by the task are freed.

In this work, the following system characteristics hold:

� Application models: The system runs applications that
may consist of an arbitrary number of tasks. There
are no precedence constraints between the tasks. The
execution times of the tasks are a-priori unknown. This
reflects a general-purpose application scenario.

� Online scenario: This work deals with online scenar-
ios, i.e., the operating system does not know in ad-
vance at what time tasks arrive and what their proper-
ties will be. When a task arrives, the operating system
sees the task area and shape but not the task execution
time.

� No preemption: We assume that tasks cannot be pre-
empted. Once a task is loaded onto the FPGA it runs
to completion.

This paper focuses on the placer module of the operating
system. Due to the system characteristics, the used sched-
uler is rather simple. Whenever a new task arrives or an
executing one terminates, the scheduler tries to place, load,
and execute another task from the queue.

3.2 Task Model

A task is a circuit executable on the FPGA and is described
by the following characteristics:

� Function: The function captures a task’s behavior
which is not visible to the operating system.

� Size / Shape: Tasks have a certain area requirement,
given by the number of CLBs, and a shape. We assume
that all tasks have a rectangular shape.

� Relocatability: We assume relocatable tasks that can
be placed to arbitrary locations on the FPGA. Con-
sequently, a task must not include position-variant re-
sources that restrict the placement.

� Required cycles: A task requires a certain number of
clock cycles to execute. The actual execution time is
determined by the number of cycles and the clock fre-
quency at which the task runs.

3.3 FPGA Model

We make the following assumptions concerning the FPGA:

� Surface uniformity: The surface of the FPGA is as-
sumed to be homogeneous. Special resources such as
block RAMs are not considered in this work.

� Routing: Generally, tasks require intertask communi-
cation and I/O. We do not address these issues here but
assume that whenever a free area of sufficient size ex-
ists enough routing resources are available to fulfill the
needs of the placed tasks.

2

� Timing: We do not consider the timing of intertask
communication and task I/O routes.

� Partial reconfigurability: Arbitrary rectangular subar-
eas of the FPGA can be reconfigured during runtime
without affecting other running tasks. That is, we have
several tasks on the FPGA executing in parallel.

3.4 Goals

We want to develop placer algorithms and data structures
that satisfy two requirements. First, we want to achieve a
high placement quality. The quality of a placement is ex-
pressed by the total execution time and average waiting time
of a task set. Formally, a task arrives at time ai, starts to ex-
ecute at time si and finishes at time fi. A task’s waiting
time is given by wi = si � ai. The objectives are:

� If n tasks belong to the same application, we want to
minimize the total execution time ttot of the task set:

ttot = max
i

(fi)�min
i

(ai)

� For n unrelated tasks which come from different appli-
cations, we want to minimize the average waiting time
w:

w =
1

n

nX

i=1

wi

Second, as we consider online scenarios we are interested
in a fast placer that shows both a low worst-case runtime
complexity and an efficient implementation.

4 Partitioning the Free Space
In an online scenario tasks may arrive and finish execution
at any time, leading to complex allocation situations on the
FPGA. In order to be able to decide where a newly arrived
task can be placed the state of the FPGA, i.e., the free area,
must be managed. A straightforward way of managing the
free area is to mark each CLB as free or used and to check
all possible locations for an arriving task. For an FPGA of
size H � W CLBs, there may be no more than H � W

possible placements.
To reduce this potentially large number of possible loca-

tions and increase placement efficiency, Bazargan et al. [1]
proposed to base the placement on keeping rectangular ar-
eas of free FPGA space. They presented two placement
methods. The first method keeps all maximal free rectan-
gles, i.e., rectangles that are not contained in other rectan-
gles. Keeping all maximal free rectangles is optimal in the
sense that a feasible location can be found if one exists. On
the other hand, the method has to manage O(n2) rectangles
for n placed tasks and task insertion and deletion are dif-
ficult to implement. Bazargan’s second method sacrifices

Placer

Partitioner

Free Rectangle
Manager

1) Which free rectangles are managed?

2) How are the free rectangles managed?

3) Which fitting strategy is used?

Figure 2. Decomposition of the placer

optimality but is much more efficient as it keeps O(n) non-
overlapping rectangles.

We can identify three main questions when developing
rectangle-based placement algorithms:

1. Which free rectangles are managed? We have to de-
cide which set of free rectangles is managed and how
the operations task start and task termination are im-
plemented over this set.

2. How are the free rectangles managed? We have to
choose a data structure that allows for efficient task op-
erations.

3. What kind of fitting strategy is used? Generally, there
will be more than one possible location for a task. The
fitting strategy decides on which one to choose.

We divide the placer module into two submodules as shown
in Figure 2. The partitioner deals with question 1) and is
described in the remainder of this section. The free rectan-
gle manager deals with questions 2) and 3) an is elaborated
on in Section 5.

4.1 Bazargan’s Partitioner

Bazargan’s efficient partitioner [1] keeps a number of free
rectangles linear in the number of placed tasks. Figure 3
shows the insert procedure of Bazargan’s partitioner. The
placer configures a task T1 in the bottom-left corner of a
free rectangle. The free space splits into two smaller rect-
angles either vertically or horizontally as shown in Figures
3(b) and 3(c), respectively. To decide on which of the two
splits should be performed, Bazargan et al. proposed sev-
eral heuristics. Because a free rectangle can split into two
new rectangles at most, a binary tree is used to represent the
FPGA state. The currently free rectangles are the leaves of
the tree.

The merge step after the deletion of a task basically con-
sists of reverting to the state before the task was inserted.
Figure 4 illustrates this. Task T2 is inserted into rectangle
A which splits the residual free space of A into C and D.
After the ensuing deletion of task T2, rectangles C and D
are deleted and rectangle A is marked as free again.

3

(c) Horizontal split(b) Vertical split(a) Free rectangle

1T1T

Figure 3. Bazargan’s splitting decisions

(a) Initial situation

B

A

(b) After insertion of

B

B

D

D

C

X

(c) deleted, not yet merged

A

C

(d) After the merge

B

T

T1

1 1

2

T

T

1T

2

T

T2

Figure 4. Example of a merge step

4.2 Bazargan’s Approach Enhanced

We have developed an enhanced version of Bazargan’s
partitioner with the same efficiency but improved place-
ment quality. Our enhanced method delays the basic verti-
cal/horizontal split decision and manages overlapping rect-
angles in a restricted form.

Bazargan et al. use several heuristics to decide whether
a free rectangle is split vertically or horizontally on a task
insertion. No matter how good such a heuristic is, there is
always the possibility of conducting the wrong split. That
is, the next task cannot be placed in one of the resulting
rectangles due to wrong split decision.

The decisive observation is that the split decision can
be delayed: whenever a task is inserted into a rectangle,
two overlapping children rectangles are created as shown in
Figure 5(a). The split decision is not made until the next
task for one of the two children, A or B, arrives. If the
next task is inserted into rectangle A the height of rectan-
gle B is resized such that A and B do not overlap any more.
Vice versa, an insertion into B leads to the correction of A’s
width. Delaying the split decision corresponds to a perfect
heuristics: the split decision is taken at a point in time when
it is known into which one of the two child rectangles a task
is inserted.

Our enhancement of Bazargan’s method requires only
minor changes in the algorithm. If a task is inserted into
rectangle R, we have to check whether R overlaps with
its brother rectangle in the binary tree. In such a case
we have to resize the width or height of R’s brother, re-

(b) (c)

AA

(a)

B

A

T
2T1 1T 1T

2T

Figure 5. Overlapping child rectangles / moti-
vation for OTF partitioning

B
(a)

A

(b)
B

T1 1

3T

T 2T
T

2

Figure 6. Resizing of brother rectangles

spectively. The task deletion procedure is identical to
Bazargan’s method.

4.3 On-the-fly (OTF) Partitioning

Our OTF partitioner defers the split decision even further.
Consider the example shown in Figure 5. Task T1 has
been inserted and two overlapping child rectangles A and
B have been created according to our enhanced version of
Bazargan’s partitioner. (Figure 5(a)). Now task T2 arrives
and is to be placed in rectangle B. The enhanced Bazargan
partitioner resizes rectangle A which is shown in Figure
5(b). However, task T2 does not overlap with rectangle A.
Therefore, one can leave rectangle A at its original size, get-
ting a better partition of the free space (Figure 5(c)).

The price to be paid is that it might be necessary to resize
several rectangles after inserting a new task. Figure 6 illus-
trates this by extending the example of Figure 5(c). Figure
5(b) shows the result of inserting a task T3 into rectangle A
which overlaps B. The whole subtree of rectangles rooted at
B has to be resized, i.e., the height of the rectangles in the
subtree is corrected. The implementation of the OTF parti-
tioner differs from the enhanced Bazargan partitioner only
in that all rectangles of a subtree might be resized at a later
point in time.

4.4 Enhanced OTF Partitioning

The OTF partitioner can further be improved which results
in the enhanced OTF method. We have implemented two
enhancements:

1. Resizing rectangles only if necessary: In the OTF algo-
rithm all rectangles in a subtree are resized if a newly

4

AAA
B

C

B

C

B

C

D

(b) (c)(a)

22T

1
T1 3T 3T

2T

1T

T

T

Figure 7. Enhanced OTF: selective resizing

(OTF partitioner)
(c) State after deleting(b) State after inserting (d) Proposed enhancement:

A regains its initial size
(a) Initial situation

A

B

A

B

A

B

A

T11T 1T

2T2T

2T
1T

Figure 8. Enhanced OTF: resizing upon dele-
tion

placed task overlaps with the root rectangle of the sub-
tree. It might happen that rectangles are resized which
do not overlap with the task. An example is shown in
Figure 7. Figure 7(a) displays the initial situation oc-
curring when the OTF partitioner inserts the first two
tasks T1 and T2. Now a new task T3 is inserted into
rectangle D, which leads to the resizing of all rectan-
gles rooted in A. The result of the resizing process is
shown in Figure 7(b). Note that rectangle B was re-
sized even though it did not overlap with T3. Figure
7(c) shows the resulting partition of the free space if B
was not resized.

2. Resizing rectangles upon task deletion: The OTF par-
titioner resizes rectangles when new tasks are inserted.
If the task which triggered such a resizing is deleted,
the resized rectangles do not regain their original size.
The enhanced OTF partitioner re-resizes rectangles
back to their original size if tasks are deleted. See Fig-
ure 8 for an example.

5 Fast Task Placement
Figure 9(a) shows the steps that need to be done when a
task arrives. First, the placer has to find a location on the
FPGA where the task fits in. Second, the placer has to
update the data structure representing the FPGA state. Fi-
nally, the loader configures the task onto the FPGA. Since
we consider an online scenario, we want to minimize the
time it takes to execute the task on the FPGA. The loading
time depends on the size of the task and the bandwidth of
the FPGA’s configuration port. The placement time, how-
ever, is largely dependent on the placer’s data structures and

task arrival

t

finding a
placement

updating internal
data structures loading task

executing task

CPU

FPGA

start of task execution

Placer Loader

task arrival

t

finding a
placement

updating internal
data structuresloading task

executing task

CPU

FPGA

start of task execution

Placer I Loader Placer II

(a)

(b)

a
i

s
i

a
i

s
i

Figure 9. Runtime task placement

algorithms. In Bazargan’s approach [1] the free rectangles
are located at the leaves of the binary tree that represents the
FPGA surface. Given a new task, the placer has to search
this list for a suitable free rectangle. The updating step in-
volves operations on the binary tree, as described in the pre-
vious section.

An important observation shown in Figure 9(b) is that we
can start loading a task immediately after finding a feasible
placement. The update of the placer’s data structure can be
delayed and done in parallel to the task execution on the
FPGA. In this context, two questions need to be answered:

1. How can we quickly find a suitable free rectangle?

2. Which rectangle should we select if there is more than
one suitable?

We have developed placers that maintain a hash matrix ad-
ditionally to the binary tree. The hash matrix allows to find
a suitable rectangle in constant time. Compared to Bazargan
et al. we provide the fastest possible method to find a loca-
tion. The price paid is that we have to spend time for the
update of this data structure.

5.1 Hashing

Hashing is a process during which data items are stored in
a data structure called hash table. A hash function maps a
key to the entry in the hash table that holds the data item
referenced to by the key (see Figure 10).

Given an FPGA of size H �W CLBs, we define a hash
matrix as an array ar of size H �W elements (see Figure
11). A free rectangle of size a � b is associated with the
entry ar [a; b] of this array. Every entry consists of a pointer
to a list of free rectangles of the corresponding size and a
so-called free pointer. All free rectangles are stored in the

5

Task

W

Free
rectangleHash matrixH f()h,w

Hash
function

Figure 10. Hashing approach

1 2 3 b W

1

2

3

a

H

struct ENTRY {
list of free rectangles (a x b);
Rectangle* free_pointer;

}

ENTRY hash_matrix[H][W];

Figure 11. The hash matrix

hash matrix. The following invariant for the free pointer of
every entry shall hold:

Invariant The free pointer of entry ar [a; b] points to a free
rectangle R with R:height � a and R:width � b

according to the fitting strategy.

If the invariant is enforced, finding a free rectangle for a
new task is very efficient. Assuming that a newly arrived
task has width b and height a, retrieving the suitable free
rectangle takes one line of code:

return hash_matrix[a][b].free_pointer;

This code is executed by the placer module whenever the
scheduler asks for a placement. The hashing approach
therefore clearly fulfills the timing requirement for an on-
line scenario.

This efficiency comes at the price that all free pointers in
the matrix must be kept consistent. Whenever a new task is
inserted or deleted, free pointers of some entries need to be
updated. Figure 12 shows an example to illustrate this. Ini-
tially, 12(a), the hash matrix holds one empty rectangle R 1,
reflecting an empty FPGA surface. If a task of size 5 � 3
is placed, the previously empty rectangle R1 is deleted and
two new free rectanglesR2 andR3 are inserted into the hash
matrix. During this process, all free pointers need to be up-
dated, such that entries belonging to rectangles with sizes
up to 7� 5 point to R2 and those with heights 1 � H � 2
and widths 6 � W � 8 point to R3. All other entries point
to NULL as displayed in Figure 12(b). After task comple-
tion, R2 and R3 are deleted and R1 inserted again. At this
point of time, the initial situation is re-established (Figure
12(c)).

5.2 Fitting Strategies for the Hashing Approach

If a newly arrived task fits into more than one free rect-
angle, a fitting strategy is used to choose a rectangle.

1 2 3

1

2

3

4 5 6 7 8

4

5

6

7 R1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

1

2

3

4

5

6

7R2

R3

R1

a) b) c)

free rectangle

X free pointer == NULL

Rx free pointers pointing to
R ,1 R , R ,respectively2 3

Figure 12. Updating the free pointers

� Best fit (BF): BF chooses the free rectangle with the
smallest size that can accommodate the task. Intu-
itively, this strategy tries to keep big rectangles.

� Worst fit (WF): WF chooses the free rectangle with the
biggest size that can accommodate the task.

� Best fit with exact fit (BFEF): Among all rectangles
which can accommodate the task, BFEF chooses the
smallest rectangle which has exactly the same width
or exactly the same height as the task. If no such rect-
angle is found, the task is placed according to BF.

� Worst fit with exact fit (WFEF): Among all rectangles
which can accommodate the task, WFEF chooses the
biggest rectangle which has exactly the same width or
exactly the same height as the task. If no such rectan-
gle is found, the task is placed according to WF.

Figure 13 shows the result of applying the different fitting
strategies to an example with rectangles of sizes 3�3, 3�7,
6 � 2, and 6 � 5. Entries with the same gray value hold
identical free pointers; entries marked with an X contain
empty lists of free rectangles.

6 Simulations
In order to evaluate the developed algorithms, we have con-
structed a discrete time simulation framework which allows
to measure the system parameters for randomly generated
task sets. All the simulations were conducted for an FPGA
with a CLB array of size 96 � 64, corresponding to Xil-
inx’s Virtex XCV-1000. We have generated task sets in six
different classes, varying in the task size. The classes are
denoted by Ci and contain tasks of equally distributed size
in the interval [50; i] CLBs. The classes are C100, C300,
C500, C900, C1600 and C2700. These classes have been cho-
sen taking into consideration the area of typical FPGA cores
[5]. For every Ci, 50 task sets have been generated with
100 (200 for C100) randomly generated tasks each. Sim-
ulation results have been averaged over these 50 task sets.

6

R1 R4

Worst Fit Worst Fit with Exact Fit

1 2 3 5 6 7 84

1

2

3

4

5

6

7

1 2 3 5 6 7 84

1

2

3

4

5

6

7

2

R2 R3

R2R1

3

1

2

3

R4R3

7

6

5

4

3

Best Fit Best Fit with Exact Fit

1

4

6

5 6 7 84

7

3

2

5

1 2 5 6 7 84

1

Figure 13. Free pointers according to fitting
strategies

For all task classes, task computation times are equally dis-
tributed in [5,25] time units. Arrival times have been chosen
to be equally distributed in the ranges [1,15] to [1,800], de-
pending on the task class. Different arrival time ranges for
different Cis make sure that the waiting times of tasks and
the system’s task load stay within limits that allow a proper
analysis of the characteristics and effects of the different
placement techniques.

6.1 Evaluation of Partitioning Algorithms

We have simulated all partitioners, combined with all fitting
strategies described in previous sections. For each parti-
tioner and Ci, we have selected the fitting strategy yielding
the best performance. Figure 14 presents the performance
of our three new partitioners compared to the partitioner of
Bazargan et al. The figure shows the percentage of the to-
tal execution time and the average waiting time our methods
achieve compared to Bazargan’s method. The following ob-
servations can be made:

� Using our new partitioners, the total execution time
and the average waiting time can be reduced by up to
30% and 70%, respectively. The improvement in total
execution time is smaller because this metric depends
strongly on the arrival times of the tasks. Tasks with
late arrival times diminish any placement improve-
ments achieved before.

� The performance differences are biggest for medium-
sized tasks. For small tasks, Bazargan’s partitioner
splits the free area in a very large and in a very small

Enhanced Bazargan Enhanced OTFOTF

0

10

20

30

40

50

60

70

80

90

100

C100 C300 C500 C900 C1600 C2700 C4000

%

0

10

20

30

40

50

60

70

80

90

100

C100 C300 C500 C900 C1600 C2700 C4000

%

Fraction of of Bazargan’s partitioner [%]total execution time

Fraction of of Bazargan’s partitioner [%]average waiting time

Figure 14. Partitioner performance summary

rectangle. Improved partitioning methods are less ef-
fective here as the large rectangle is likely to accom-
modate any upcoming task. The placement of big tasks
leaves only very small rectangles. Placing the next task
is then often unsuccessful. Again, the difference be-
tween different partitioners is smaller.

6.2 Evaluation of Hash Matrix Operations

To evaluate the runtime complexity of the hash matrix, we
have investigated the overhead produced by updating the
free pointers. Figure 15 displays the average number of ma-
trix entries scanned per update operation (insertion or dele-
tion of a task) for each fitting strategy. The figure also com-
pares the number of potential scans with the number of real
scans.

If a free rectangle of size a � b is inserted or deleted
in or from the hash matrix, the number of potential scans
is a � b. In the worst case for the XCV-1000, as many as
96�64 = 6144 entries need to be scanned. As displayed in
Figure 15, even the potential scans are one order of magni-
tude smaller than the worst case. The fitters BF and BFEF
are less expensive than WF and WFEF.

We can observe a remarkable trade-off between the load
(number of tasks arriving per time unit) and the number of
entries changed in the hash matrix. The higher the load
is, the more tasks are on the FPGA and the smaller is the

7

0

100

200

300

400

500

600

Best Fit Best Fit W/H Worst Fit Worst Fit W/H

N
u

m
b

e
r

o
f

e
n

tr
ie

s
s

c
a

n
n

e
d

p
e

r
u

p
d

a
te

0

100

200

300

400

500

600

700

800

Best Fit Best Fit W/H Worst Fit Worst Fit W/H

N
u

m
b

e
r

o
f

e
n

tr
ie

s
s

c
a

n
n

e
d

p
e

r
u

p
d

a
te

C900

Potential scans Real scans

BF BFEF WF WFEF

BF BFEF WF WFEF

C300

Figure 15. Number of matrix entries scanned

number of matrix entries that have to be scanned. Fig-
ure 16 shows the average number of scanned entries per
update for different loads, measured for task class C500.
The figure displays a significant decrease in the number of
scanned entries for higher loads. Both, potential and real
scans decrease the same amount. This means that for highly
loaded systems where the partitioner is busy, the number of
scanned entries decreases and thus, updating the hash ma-
trix is rather cheap. If the load is low on the other hand, the
placer module has more time to conduct a more expensive
update of the hash matrix.

7 Conclusion and Further Work

In this paper, we presented three newly developed partition-
ing algorithms based on Bazargan’s [1] approach, dealing
with empty rectangles. We reported on simulations that
show an improvement of up to 70% of the placement quality
compared to [1]. We introduced a method based on 2D-
hashing to find a feasible task placement with a runtime
complexity of O(1), making it suitable for online environ-
ments. Further work includes:

� Repartitioning: The surface of the FPGA could be
repartitioned at some point of time to further improve
the placement quality.

0
200
400

600
800

1000
1200
1400
1600

1800
2000
2200
2400
2600
2800

3000
3200
3400

0 20 40 60 80

Load [tasks / 100 time units]

N
u

m
b

e
r

o
f

e
n

tr
ie

s
s
c
a
n

n
e
d

p
e
r

u
p

d
a
te

Best fit - potential scans

Best fit - real scans

Worst fit - potential scans

Worst fit - real scans

Figure 16. Average number of entries
scanned for different loads

� Relaxing modeling assumptions: The assumptions
made in Section 3 do not fully reflect the requirements
of some real-world applications and current FPGA
technologies. For example, the techniques presented
in this paper must be adapted to deal with task depen-
dencies or FPGA inhomogeneity.

8 Acknowledgements
This work was supported by the Swiss National Science
Foundation (SNF) under grant number 2100-59274.99.

References

[1] Kiarash Bazargan, Ryan Kastner, and Majid Sarrafzadeh. Fast Tem-
plate Placement for Reconfigurable Computing Systems. In IEEE De-
sign and Test of Computers, volume 17, pages 68–83, 2000.

[2] Sandor Fekete, Ekkehard Köhler, and Jürgen Teich. Optimal FPGA
Module Placement with Temporal Precedence Constraints. In Proc.
Design Automation and Test in Europe (DATE), pages 658–665, 2001.

[3] Oliver Diessel and Hossam ElGindy. On Scheduling Dynamic FPGA
Reconfigurations. In Proc. 5th Australasian Conference on Parallel
and Real-Time Systems (PART), pages 191–200, 1998.

[4] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt.
Dynamic scheduling of tasks on partially reconfigurable FPGAs. In
IEE Proceedings on Computers and Digital Techniques, volume 147,
pages 181–188, May 2000.

[5] Herbert Walder and Marco Platzner. Non-preemptive Multitasking on
FPGA: Task Placement and Footprint Transform. In Proceedings of
the 2nd International Conference on Engineering of Reconfigurable
Systems and Architectures (ERSA), pages 24–30. CSREA Press, June
2002.

[6] Gordon Brebner and Oliver Diessel. Chip-Based Reconfigurable Task
Management. In Proc. 11th Int’l Workshop on Field Programmable
Gate Arrays (FPL), pages 182–191, 2001.

[7] Katherine Compton, James Cooley, Stephen Knol, and Scott Hauck.
Configuration Relocation and Defragmentation for Reconfigurable
Computing. In Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM). IEEE CS Press, April 2001.

8

