Expandable Process Networks to Efficiently Specify and
Explore Task, Data, and Pipeline Parallelism

Lars Schor, Hoeseok Yang, luliana Bacivarov, and Lothar Thiele
Computer Engineering and Networks Laboratory
_ETH Zurich, 8092 Zurich, Switzerland
firstname.lastname@tik.ee.ethz.ch

ABSTRACT

Running each application of a many-core system on an iso-
lated (virtual) guest machine is a widely considered solution
for performance and reliability issues. When a new applica-
tion is started, the guest machine is assigned with an amount
of computing resources that depends on the overall workload
of the system and is not known to the designer at specifica-
tion time. For instance, the computing resources might con-
sist of many slow or a few fast processing elements. If the
application is statically specified, as, for example, with Kahn
process networks, the number of processing elements usable
by an application is upper bounded by its number of pro-
cesses. Similarly, the inter-process communication overhead
might limit the maximum performance if the number of pro-
cessing elements is significantly smaller than the number of
processes. In this paper, we propose a formal extension for
streaming programming models called expandable process
networks (EPNs) that tackles this challenge by abstracting
several possible granularities in a single specification. This
enables the automatic exploration of task, data, and pipeline
parallelism by two basic design transformation techniques,
namely replication and unfolding. Then, the EPN semantics
facilitates the synthesis of multiple design implementations
that are all derived from one high-level specification. At
runtime, the best fitting implementation for the given com-
puting resources is selected to maximize the performance.
Finally, we demonstrate the effectiveness of the proposed
model on Intel’s 48-core SCC processor.

1. INTRODUCTION

Current trends show that the next generation of multi/
many-core systems will incorporate tens of cores on a single
die [11, 26]. Such systems will provide a tremendous amount
of processing power enabling multiple applications to share
the same system at the same time. However, multiple ap-
plications sharing the same system can cause reliability or
performance issues due to interference between applications.
For example, the performance of one application might be
affected by another application so that quality of service re-
quirements cannot be met anymore. A widely considered
solution is to separate these applications by running each
application on an isolated (virtual) guest machine [7, 22].

Typically, a hypervisor is in charge to distribute the avail-
able computing resources at runtime. When a new applica-
tion is started, the hypervisor assigns to the corresponding
guest machine an amount of computing resources that de-
pends on the overall system workload. For instance, the
set of computing resources might contain many slow or a

few fast processing elements. A drawback of this solution is
that the system designer does not know anymore the avail-
able computing resources at specification time.

This challenge can be tackled by considering the paral-
lelism provided by the application. However, if the appli-
cation is statically specified, the maximum number of cores
that can be utilized is limited to the number of parallel pro-
cesses. On the other hand, having too many parallel pro-
cesses might result in inefficient implementations of the ap-
plication due to overheads in scheduling and inter-process
communication. Thus, the optimal degree of parallelism
for maximum performance often depends on the available
computing resources. Another approach is to have multiple
(different) specifications for the same application that are
all synthesized. At runtime, the implementation leading to
the best performance is selected depending on the available
computing resources.

In this paper, we argue that for a certain class of appli-
cations, namely applications that are specified as process
networks, the application can be specified in a manner that
enables automatic exploration of task, data, and pipeline
parallelism [9]. Task parallelism is achieved by executing
different processes on different processing elements. In con-
trast, data parallelism refers to creating multiple instances
of a process that perform the same task on different pieces
of distributed data. Finally, pipeline parallelism is achieved
by splitting a process into stages and assigning each stage
to a different processing element.

We call the proposed model of computation (MoC) ez-
pandable process networks (EPNs). EPNs extend conven-
tional streaming programming models by abstracting several
possible granularities in a single specification. This enables
the automatic exploration of task, data, and pipeline par-
allelism by two design transformations, namely replication
and unfolding. Replicating processes increases data paral-
lelism and structural unfolding of a process increases the
task and pipeline parallelism by hierarchically instantiating
more processes in the process network. Furthermore, as re-
cursive algorithms are commonly used in mathematical [1]
and multimedia [2] applications, we study the recursive de-
scription of processes as a structural unfolding method.

For illustration purpose, we apply the proposed seman-
tics of EPNs to Kahn process networks (KPNs) [12]. We
will show that an EPN specification can be used to auto-
matically synthesize multiple instances of the same applica-
tion, each optimized for a different set of available comput-
ing resources. Experimental results on Intel’s 48-core SCC
processor show that having an abstract application specifi-



cation outperforms a static specification when the available
computing resources are not known at design time.
The contributions of this paper are summarized as follows:

e The proposed semantics of EPNs is formally described.

e We detail the concepts of replication and unfolding,
and show that these two methods enable the auto-
matic exploration of the application’s task, data, and
pipeline parallelism.

e The Y-chart design approach [13] is extended by the
proposed semantics.

e An analytical performance model to analyze applica-
tions specified as EPNs is proposed and employed to
explore different degrees of parallelism.

The remainder of this paper is organized as follows. We
review related work in the next section. In Section 3, the
proposed concepts are integrated into system design. In Sec-
tion 4, the proposed EPN semantics is formally described.
In Section 5, the concepts of replication and unfolding are
detailed. Section 6 formulates the optimization problem for
parallelizing and mapping EPNs. Finally, the results of the
performed experiments are presented in Section 7.

2. RELATED WORK

Process networks and dataflow models are popular for
specifying signal processing and streaming multimedia appli-
cations. Thus, in the last few years, various MoCs have been
proposed that have different characteristics. Kahn process
network (KPN) [12] programs, for instance, are determinate,
provide asynchronous execution, and are capable to describe
data-dependent behavior. The synchronous dataflow (SDF)
model [16] restricts each process to produce and consume
a fixed number of tokens in every iteration so that the ap-
plication is amenable to compile-time scheduling techniques.
Process networks might be automatically generated from se-
quential programs, e.g., the Compaan tool [14] transforms a
nested loop program into a KPN.

As the SDF model has limited expressiveness, several ex-
tensions have been proposed that offer flexible and dynamic
behavior and still preserve the capability to statically an-
alyze the program. For instance, the synchronous piggy-
backed dataflow (SPDF) [19] enables i f —else and for clau-
ses in SDFs. Hierarchical representations of process net-
works are allowed in some design frameworks, e.g., [3], but
they are semantically equivalent to basic process networks,
as they can be flattened at design time. However, none of
these extensions brings any benefit in terms of parallelism,
as they keep the process network topology unchanged. Dy-
namic representations such as reactive process networks [8]
or scenario-based MoCs [24] offer the possibility to capture
runtime topology changes by (de-)activating independent
process networks. Even if the topology of active process
networks is no longer static, the degree of parallelism is still
statically determined at specification level.

Formal design and program transformation is considered
to be an efficient approach to optimize an application to-
wards the final architecture. A survey of existing transfor-
mation methods for functional programs is given, e.g., in [20].
The above discussed MoCs have in common that they spec-
ify the application in a high abstraction level, suitable for

design transformation methods. However, due to the sim-
plicity, most transformation methods focus on SDF graphs.
In [17], successive iterations of an SDF graph are consid-
ered as a block enabling the concurrent execution of mul-
tiple instances of a single process. Our approach, in con-
trast, uses replication to concurrently execute multiple in-
stances of a single process. In [21], a clustering technique
for SDF graphs is proposed that first completely unfolds
the graph, and then uses clustering techniques to reduce
the number of actors per processing element to optimize the
scheduling. On the other hand, our technique only unfolds
a graph if a performance gain is achieved by the additional
parallelism. Moreover, various transformation rules to bal-
ance a network are presented in the context of the ForSyDe
methodology [23], a synchronous computational model. In
contrast, our technique is based on KPNs and by applying
the proposed semantics to individual processes, a finer gran-
ularity is achieved.

Another SDF transformation technique is proposed in [9]
in the context of the Streamlt language [28]. It uses so-called
fusion and fission operators at the mapping stage to incor-
porate architecture-dependent profiling information. For ef-
ficient data parallel execution, Streamlt coarsens the SDF
granularity to increase the computation to communication
ratio by fusion, while fission is used to distribute data par-
allel tasks to multiple cores. In contrast to our approach,
Streamlt transformations are restricted to data parallelism
and structural expansions are not considered. Therefore,
the maximum degree of task and pipeline parallelism is still
upper bounded by the number of processes.

Recursion is the procedure that repeatedly calls itself, and
is typically used in programming to divide a problem into
multiple subproblems with the same (repeated) behavior. In
case that a huge amount of independent data needs to be
processed in a similar manner, recursive implementations
are of practical use due to their simplicity. There is a wide
range of mathematical algorithms that can be implemented
recursively [6] and even multimedia applications, such as
ray-tracing [2], can be specified as a recursive algorithm. In
summary, conventional process networks or dataflow models
are too static and monolithic to explore different application
structures at design time. Moreover, they cannot represent
recursive dependencies necessary to effectively describe cer-
tain classes of applications. The proposed EPN semantics
extends conventional MoCs and enables the exploration of
an efficient application structure by exploiting task, data,
and pipeline parallelism.

3. SYSTEM DESIGN

To include the proposed concepts in the system design, we
extend the current Y-chart design practice [13] with an ad-
ditional design step called design transformation, see Fig. 1.

The inputs to the system design flow are an application
specified as EPN and a high-level specification of the tar-
get architecture. In a first step, possible sub-architectures
are identified. A sub-architecture contains only a subset of
all processing elements of the target architecture. It is used
to represent the fact that a hypervisor might not assign all
available processing elements to an application, but only a
subset of them. The set of sub-architectures generated for
a given architecture should cover the variety of processing
element subsets that a hypervisor can assign to an applica-
tion. For a homogeneous platform as Intel’s SCC proces-



application architecture
(as EPN)

possible sub -

L architectures

design
transformation

application opt.
mapping opt.

pn
performance
analysis

Figure 1: Modified Y-chart design flow for applica-
tions specified as EPNs.

optimization (repeated
for every sub-arch.)

sub-architecture

mapping &

implementation
database

sor [11], which has 48 identical cores, each sub-architecture
might just differ in the number of processing cores. In case
that the target architecture is heterogeneous, the number of
possible sub-architectures might be larger. However, the
number can be reduced by considering the symmetry of
the architecture, or only selecting a subset of all possible
sub-architectures and ignoring sub-architectures with sim-
ilar computing power. Even more, the set of valid sub-
architectures might be reduced if the application has spe-
cific performance requirements that can only be met if the
sub-architecture provides a minimum amount of computing
power.

The application and the mapping of the application is op-
timized separately for each sub-architecture, aiming to max-
imize the throughput of the application. The optimization
stage consists of the design transformation, the mapping,
and the performance analysis. In the design transformation
step, replication and unfolding are used to explore the par-
allelism. We will detail these concepts later in Section 5.
Afterwards, a mapping is calculated and the throughput of
the application is evaluated. The design transformation and
mapping optimization steps are repeated until a degree of
parallelism is found that fulfills the performance require-
ments of the system. Based on the information obtained in
the optimization steps, a concrete (replicated and unfolded)
implementation of the application is generated during syn-
thesis. Finally, the description of the sub-architecture is
stored in a database together with the implementation and
the respective mapping information. Later, at runtime, the
hypervisor uses the database to select an optimized imple-
mentation based on the available computing resources.

4. EXPANDABLE PROCESS NETWORKS

In this section, the semantics of expandable process net-
works (EPNs) is formally described. EPNs extend conven-
tional streaming programming models by abstracting several
possible granularities in a single specification.

The proposed semantics is applied to the KPN [12] MoC.
A KPN consists of autonomous processes that can commu-
nicate through unbounded point-to-point FIFO channels. In
the KPN model, a process is a monotonic and determinate
mapping F of one or more input streams to one or more out-
put streams. Furthermore, a process might have an internal
state that affects its behavior.

Formally, a process network p = (V, C) consists of a set of
processes V and a set of channels C' C V' x V. Each process
v € V is characterized by a tuple (name, type, replicable, in,
out), where name is a unique string identifier, type € {behav,
struct} describes the type of the instantiated process, repli-
cable € {false,true} indicates if a process can be replicated,
and in/out C C' denotes the set of incoming/outgoing chan-
nels of process v. A channel ¢ = (v1,v2) € C represents
a directed communication from process v1 to v2. Except
the elements type and replicable, the proposed process net-
work description is identical to an ordinary specification of
a KPN. The type identifier reveals that some processes do
not only have a behavioral, but also a structural description.
The type struct specifies that the process has a behavioral as
well as a structural description, while the type behav speci-
fies that the process has only a behavioral description.

A behavioral description specifies the functionality of a
process in a high-level programming language. A structural
description defines the functionality as another process net-
work, i.e., as a set of processes and channels. Both the be-
havioral and structural description have to be functionally
equivalent in the sense that, for a given sequence of input
tokens, they produce the same sequence of output tokens.
In case the functionality of a process is only given by either
a behavioral or a structural description, one might obtain
the other description by a transformation. For instance,
a behavioral description can be obtained from a structural
one by implementing the channels as shared variables. Con-
versely, one might use the techniques described in [14, 29]
to obtain a structural description out of a behavioral one.

An EPN is defined as a tuple e = (P, u,l, porg), where P
is a set of process networks, u and [ are transformation func-
tions, and porg is the top-level process network from which
processes may be further replicated or structurally unfolded.
The top-level process network is the most coarsened process
network abstraction of the application; it might even consist
of only one process. In order to specify functions u and [, we
define the set of all processes of the EPN e as V° =J,p V
and the set of all channels of the EPN e as C¢ = UpEP C.
Function u : V¢ — P maps a process v to a corresponding
process network p = u(v). Thus, u(v) represents the struc-
tural specification of process v. Function [ : C° — C° maps
a channel ¢ to a corresponding channel I(c) representing the
match between the input and output channels of a process v
and the input and output channels of the structural specifi-
cation u(v) of v.

FEzample 1. Consider the example specification shown in
Fig. 2. The EPN e = ({Porg, Pvs }, 1, U, Porg) has the top-
level process network porg = ({v1,v2,v3}, {c1,c2}). v1 =
(‘v1’, behav, false, D, {c1}) and vs = (‘v3’, behav, false,{ca},
() are ordinary processes which have no further unfolding ca-
pabilities. vo = (‘v2’, struct, true, {c1}, {c2}) is a process of
type struct, which has both a behavioral and a structural de-
scription. The structural description of vs is another process
network pu, = ({v2,vs,vs,v6}, {cs,c4,C5,c6,c7,c8}). Note
that process vz appears in both p,r4 and p,, enabling recur-
sive unfolding. As wvs is the only process of type struct, u
returns null for all inputs except vz, i.e., u(v2) = pu,. Sim-
ilarly, function [ returns null for all inputs except the input
and output channels of v2. However, as v2 occurs in both
Porg and p.,, function ! contains four assignments, namely
l(c1) = es3, l(c2) = cs, l(ca) = c3, and (cs) = cs.



° CI CZ °

(a) Top-level process net- (b) Structural description of
work porg. process va.

Figure 2: EPN specification example.

S. EXPLOITING TASK, DATA, AND PIPE-
LINE PARALLELISM

EPNSs enable an efficient architecture independent specifi-
cation of process networks. However, as shown in Section 3,
an additional design step is required in the Y-chart design
practice to include the concepts into the system design. In
the following, we will detail the design transformation step
that, by applying the replication and unfolding concepts, ex-
ploits the different kinds of parallelism and transforms the
EPN e = (P, u,l,porg) into the KPN p, = (Vy,Cg). The
section continues with the concepts of replication and un-
folding. Afterwards, we show that the correctness of the
top-level process network is not affected by the proposed
transformation methods. Finally, we propose a high-level
application programming interface (API) for EPNs.

5.1 Replication

Handling parallelism inside a process is typically difficult
as a process is mapped as a whole onto a single processing
unit. Artificially parallelizing the process later using con-
ventional parallel processing APIs [4, 18] is undesirable as
the implicit parallelism makes design-time analysis impossi-
ble. Exposing this information at the process network level
is more beneficial as it results in higher predictability and
better mapping decisions.

In the EPN semantics, the step of handling parallelism
inside a process is called replication. Replication is particu-
larly applicable to algorithms that have a high data level
parallelism, as it is often the case with algorithms opti-
mized for single instruction, multiple data (SIMD) proces-
sors. Typical examples are deinterlacing algorithms used to
convert, interlaced videos, image noise reduction algorithms,
or video (de)compression algorithms. Consider, for example,
a video decoder that uses intraframe-compression. As there
is no relation between the frames, multiple frames might be
processed in parallel on different processing elements. Fur-
thermore, various video compression algorithms support the
segmentation of a frame into macroblocks and these mac-
roblocks can individually be processed.

The concept of replication has already been widely used to
improve the performance of process networks [9, 27]. Typi-
cally, the bottleneck process has been replicated to improve
the overall performance. However, in contrast to all these
concepts, we do not statically define the number of repli-
cations at specification level, but argue that it is the task
of the optimizer to find a good degree of parallelism that
maximizes the performance.

Algorithm 1 illustrates the steps to modify the topol-
ogy of process network p = (V,C) so that process v =
(name, type, replicable, in, out) is x times replicated. First,
it removes process v and adds replicated clones, where v; =
(name{i},type,false,w,@). Then, each incoming channel
¢ = (Vsre,v) of v is replaced by a set of replicated chan-

Algorithm 1 Replicate v € V in p = (V,C) x times.

1 V+«V—{v} >remove process v
2: fori=1— x do >generate a replicated process
3: vi + (name' type, false, 0, )
4: V<« Vu {1)7,}
5: end for
>for each incoming channel
6: for all ¢ = (Vsre,Vast) S.t. Vst = v and vsre <> v do
7 C+ C—{c} >remove channel ¢
8: fori=1— x do
9: Cci — (UST-Q Vi >add a replicated channel
10: C+ CU{q
11: in of v; + in of v; U{c;i}
12: end for
13: end for
>for each outgoing channel
14: for all c = (vsrc7 Udst) S.b. Vsre = v and vgsr <> v do
15: replace ¢ with the set of replicated channels
16: end for

>for each self-loop channel

17: for all ¢ = (Vsre, Vast) S.t. Vsre = v and vgse = v do

18: C <+ C—{c} >remove channel c
19: fori=1— x do

20: ci + (vs, V{(i+1) modx}> >circular connection
21: C+CuU {Cl}

22: out of v; + out of v; U {c;}

23: in of V{(i+1) mod x} in of V{(i+1) mod x} Y {CZ}
24: end for

25: end for

nels with ¢; = <v57«c71}¢>. Similarly, all outgoing channels

of v are also replaced by a set of replicated channels. Self-
loop channels, i.e., channels that connect v with itself, are
handled last. For each self-loop channel, a new chain of
channels is introduced with one channel connecting v; with
vi+1. As such a chain of channels introduces a circular de-
pendency between the processes, it typically limits the max-
imum speed-up that can be obtained by replication. For in-
stance, no speed-up can be achieved if v is reading from the
self-loop channel at the beginning of the iteration and writ-
ing to it at the end of the iteration. In all other situations,
the replicated copies of the process can still partly overlap
their execution so that the system will achieve a speed-up
higher than one.

Replicating processes with an internal state is supported
by adding a self-loop channel representing the state of the
process. Replicating two consecutive processes in a row is
not allowed to prohibit complex communication behavior. If
consecutive replication is needed for optimized performance,
two consecutive processes should be specified as a structural
process, and then replicated together.

5.2 Unfolding

The EPN specification abstracts several possible granular-
ities in a single specification. The step of exploring different
task and pipeline parallelisms by hierarchically instantiating
more processes is called unfolding and is explained next.

Given an application specified as EPN, a process of type
struct can be unfolded by exposing internal parallelism at
process network level. In other words, unfolding merely re-
places the behavioral description of process v with its struc-
tural description u(v). In addition, unfolding enables re-
cursion as the structural representation wu(v) of process v
may have v as an internal process. In contrast to all pre-
viously proposed models, the maximum number of tasks is



Algorithm 2 Unfold v € V in p = (V,C) with p, =
Vo, Cu).

1: for all v; € V,, do >prefiz v to all names of v; € Vy
2: V;.name <— v.name + v;.name
3: end for

>prefiz v to all names of ¢; € Cy
4: for all ¢; = (src;, dst;) € C, do
5: sre; — v.name + src;
6: dst; <+ v.name + dst;
7: end for
8 V+ (V—-{v})UV, premove v, add unfolded processes
9: C+CUC, >add unfolded channels

>for each incoming channel
10: for all ¢ = (sre, dst) s.t. dst = v do
11: for all ¢; = (src¢;,dst;) € C,, do

12: if I(c) = ¢; then >find a match
13: sre; 4 c.src >adjust src of ¢;
14: C=C-—{c} >remove the unused channel
15: break

16: end if

17: end for

18: end for

>for each outgoing channel
19: for all ¢ = (src,dst) s.t. src=wv do
20: remove all outgoing channels of v
21: end for

not statically determined. General instructions to unfold a
process v € V in process network p = (V, C') with network
Py are given in Algorithm 2. The algorithm first prefixes the
name of process v to all unfolded processes and channels to
keep them unique after design transformation. Afterwards,
it removes process v and adds the cloned copy of the un-
folded network p,. Finally, it replaces each incoming and
outgoing channel of v by the corresponding match in C,.

Ezample 2. Consider the EPN outlined in Fig. 2. wvs is
of type struct, which means that it has a behavioral and a
structural description. By recursively unfolding ve, it will
repetitively be replaced by p.,. Figure 3 illustrates the pro-
cess network if process v2 has been unfolded twice.

Typically, the input of a process network limits the amount
of times that a process can recursively be instantiated. For
instance, if recursively unfolding means that an array is split
into two smaller arrays, the maximum recursion depth is de-
fined by the length of the input array. In order to avoid dead-
locks, the designer has either to specify a termination condi-
tion for recursively unfolding (e.g., by knowing the minimum
length of the array in the previous example) or to guaran-
tee that the application is not blocked if the input prohibits
further recursion. The later might be achieved by forward-
ing either the result or a predefined ‘empty’ string. If the
maximum recursion depth is known, the unfolding method
can use this information to avoid blocking.

o@%n%-’e,@o

Figure 3: A transformed process network of the
EPN specified in Fig. 2.

In summary, starting with the top-level process network,
which is the most coarsened process network abstraction,
all possible abstractions can be explored by applying the
concepts of replication and unfolding.

5.3 Correctness

We will show that the proposed transformation meth-
ods preserve the correctness of the underlying programming
model if certain conditions, which we will define later, are
fulfilled. Formally, the design transformation step trans-
forms the EPN e = (P, u,l, porg) into the KPN p, = (V7, C5)
with V7 the set of processes of p, and C¢ the corresponding
set of channels. A transformation method preserves correct-
ness if, for a given input sequence, the transformed process
network p, produces the same output sequence as the top-
level process network porg. Clearly, a first requirement for
the correctness is that each process network p € P is a valid
KPN in the sense that it does not cause deadlocks.

We suppose to have the top-level network porg = ({1}17 va,
vz}, {c1, c2}) shown in Fig. 2a. To show that replication pre-
serves correctness, process va = (v2, behav, true,{c1}, {c2})
is replicated during design transformation. Thus, channel
c1 is replaced by a set of channels cix}7 and channel ¢y is

replaced by a set of channels céz}. If v3 reads the incoming

}

x . . oy
channels cé in the same order as v; is writing to the chan-

nels ciz}, the concatenation of all incoming tokens of vz is
the same for the transformed process network p, and for the
top-level process network porg. Thus, replication preserves
the correctness under the described condition.

The correctness of unfolding is shown by considering EPN
e = (P,u,l,porg). We first suppose that function ! contains
all possible channel matches and that all structural exten-
sions defined by function w preserve the input/output re-
lation. In other words, suppose that function u defines the
structural extension u(v) = p of process v with p € P. Then,
process v has the same amount of input and output channels
as process network p and applying the same input sequence
to v and p produces the same output sequence. As unfold-
ing merely replaces certain processes v with their structural
description u(v), the transformed process network has still
the same input/output behavior.

5.4 Application Specification

After describing the basic concepts of EPNs and defining
the conditions when replication and unfolding preserve the
correctness, we are able to come up with a high-level API to
specify EPNs. A high-level API for process networks con-
sists of two elements, namely the specification of the func-
tionality of the individual processes and the topology of the
network. In the following, we will discuss how an API for
KPNs can be extended to support the semantics of EPNs.

The topology specification of an EPN is composed of the
topology of multiple process networks, each specified as a
KPN. The process element is extended with the attributes
type and replicable as defined in Section 4. In addition to the
specification of the networks, the transformation functions u
and [ have to be defined within the topology specification.

We suppose that the functionality of the individual pro-
cesses is described in separate description files written in a
high-level language like C/C++. As the structural exten-
sion of a process with a process network does not change the
external interface, i.e., the incoming and outgoing channels,



Listing 1: Pseudo code of a process sending data to
a replicated channel to illustrate the proposed high-
level API. The fire method specifies the functional-
ity of a process and is executed once per iteration.

o1 int FIRE(ProcessState state)
02

03 String channel_basename = “c1”;

04 channel = CREATECHANNEL (channel_basename,
state —>channelCounter) ;

05 WRITE (channel , buffer, size);

06 state —>channelCounter = (state—>

channelCounter + 1) % REPLICATIONS_C1;
07

08 }

the structural extension is completely transparent towards
the functionality of the other processes. However, in case of
replication, the actual processes and channels are not known
at specification time. Thus, the source and sink processes
of a replicated process have to write/read data to/from a
channel that is not known at specification time. In this case,
we propose the API outlined in Listing 1 to iterate over all
possible channels. The basic idea is that, per iteration, the
source/sink process still writes/reads to/from one instance
of the replicated process. We propose that the channels are
addressed by their basename, i.e., the name of the chan-
nel before replicating, and a counter, which is stored in the
state of the process. The number of replications per channel
can be obtained from a global variable that is automatically
set during synthesis. In Listing 1, the synthesizer sets the
variable REPLICATIONS_C1 to the number of replications of
channel “c1”. Practically, the code shown in Listing 1 might
be created by an automated source-to-source code transfor-
mation during software synthesis.

FEzample 3. Consider again the process network outlined
in Fig. 2a, but now, process vz is replicated resulting in the
process network shown in Fig. 4. At specification time, pro-
cess v1 writes to channel c¢1, which does not anymore exist
in the transformed process network. Instead, vi has three
output channels ci1}7 ci2}7 and cig}. The API outlined in
Listing 1 hides the transformation details from the program-
mer that can still use channel c;.

6. APPLICATION AND MAPPING OPTIMI-
ZATION

In this section, we introduce a novel performance analysis
model for applications specified as EPNs and show how the
performance model can be used to optimize the parallelism
and the mapping. The aim of the optimization is to identify
which abstraction of the EPN leads to the highest through-
put on a given (sub-)architecture. To this end, we minimize

Figure 4: The process network shown in Fig. 2a after
replicating process v2 three times.

Table 1: List of parameters that are used in the
performance model (with process network p, process
v, and core d).

Param. Description

I'(v,d) assignment function (1 if and only if v is
mapped onto d, otherwise 0)

9 cycle time on d

ng’ number of computation cycles of v

number of cycles to read/write from/to
channel i/0 for communication mode A
N total number of cycles per iteration of v

ﬁf relative execution rate of v in p

abs absolute execution rate of v
n;¢ / mg”  number of readings/writings from/to chan-
nel i/o per iteration

re wr
23N / Mo X

Yd context overhead per time instance on d
TSomt context switch time on d
vy relative number of computation cycles of v

when it is recursively unfolded

relative number of cycles that v has to read/
write from/to channel i/o when v is recur-
sively unfolded

v v

the maximum core utilization for a given invocation interval
of the source process. The invocation interval is then ad-
justed so that the maximum core utilization becomes 100 %.
Finally, the new invocation interval is used to calculate the
maximum throughput of the EPN.

Note that the performance analysis model is not restricted
to the maximization of the throughput, but can also be ap-
plied to optimize other performance metrics as, for instance,
the energy consumption. In this case, the invocation interval
might be fixed and the utilization of the individual cores is
used to calculate the average expected energy consumption
of the system.

6.1 Preliminaries and Notation

A sub-architecture consists of a set of cores D that are
connected by a communication network, e.g., a bus or a
network-on-chip. A core d € D is characterized by the cycle
time 3.

Suppose that the EPN e = (P, u,l, porg) is transformed
into the KPN p, = (V7, C5). The mapping of p, is defined
by the assignment function I'(v,d) € {0,1} that is 1 if and
only if process v € V; is mapped onto core d. In order to
guarantee that each task is assigned to exactly one core, the
following equation has to be fulfilled for all processes v € V;:

|D|
> I(wd)=1 YoeVy. (1)

=1

Table 1 summaries the most important parameters that
are used in the following.

6.2 Performance Model

Next, we describe a novel performance model that is used
in the design space exploration to analyze a candidate net-
work po = (V;7,Cs). The performance model aims to pro-
vide a metric for the average utilization of a core so that the
maximum average core utilization can be minimized.

The iterative execution of a behavioral process v is char-
acterized (per iteration) by a number of computation cy-



cles ny°, a number of read cycles n;% per input channel
i € in, and a number of write cycles ny 3 per output chan-
nel o € out. The number of read and write cycles depends
on the data-volume, thus the (average) size of the packets
and the number of packets that are read or written per itera-
tion. The factor A indicates the dependencies of the read and
write instructions on the location of channel ¢ or 0. For sim-
plicity, we just differ between inter-core and intra-core com-
munication, thus A € {inter-core,intra-core}. Note that
the concept can be extended to more complex communica-
tion topologies, e.g., by differentiating between the number
of hops that a packet experiences. The average number of
cycles that a process v performs in one iteration is therefore:

Ny = ny’ + Z ny + Z Mo 5 (2)

i€in o€out

The average utilization of a core also depends on the av-
erage execution rates of all processes v € V7. First, we note
that the absolute execution rate of a process v cannot be
specified in advance as it depends on the execution rate of
its parent processes. However, the later might be known
only after the design transformation. Second, we note that
a process can occur in multiple process networks and that its
execution rate might be different for every process network p.
Thus, at specification time, we characterize a process v by
a set of relative execution rates f;epl with one execution rate
per process network p that v can occur in. In addition, a
single process ¥ of the top-level process network porg is char-
acterized by an absolute execution rate f2%. This enables
us to calculate the absolute execution rates f&*° of all pro-
cesses v € V7 after the design transformation step. Later,
we use these absolute execution rates to calculate the aver-
age utilization of a core. The absolute execution rates can be
calculated in a top-down approach following the performed
design transformations. The algorithm starts with process o
and executes the following rules for any process v:

1. If v belongs to porg, then f2% = Zepl . fabs

2. If v belongs to p € {P \ porg} and replaces process 9,
then fobs = frel. fabe.

3. If v is instantiated by replicating © x times, then f2%¢ =
1. gabs
X v

If multiple processes share the same resource, the syn-
chronization and scheduling overhead might affect the over-
all performance. In this paper, we differ between event-
triggered and time-triggered scheduling policies. Time-trig-
gered scheduling policies typical cause a constant overhead,
while the overhead caused by an event-triggered scheduling
policy depends on the workload. Suppose that multiple pro-
cesses v = (name,type,replicable,in, out) share the same
core. A process can become blocked when reading from an
empty input FIFO i € in or writing to a full output FIFO
o € out. A pessimistic assumption for a non-preemptive
scheduling policy is that the process is always blocked when
reading/writing from/to a FIFO channel. Thus, the total
average context overhead per time instance on core d is given
by:

= [ rea ( nzwzn?) T,
1€in

veVeE o€out
(3)

where T)5°™ is the context switch time on core d, n7¢ is the

average number of readings per iteration from channel i,
and ny" is the average number of writings per iteration to
channel o. Clearly, if only one process is mapped onto core d,
there is no context overhead and g4 = 0.

If a process v is recursively instantiated, the execution
time might be reduced with every recursion step. In or-
der to model this reduction in the performance model, a
recursive process v is also annotated by a relative number of
computation cycles v;°, a relative number of read cycles v; ©
per input channel i € in, and a relative number of write
cycles v)" per output channel o € out. Suppose, for in-
stance, that v has to perform ng° computation cycles (when
belonging to porg). If v is recursively unfolded, its number
of computation cycles is reduced to v* - ng° in every recur-
sion step. Similarly, if the execution time does not change,
v’ =1.

6.3 Optimization Problem

The goal of the optimization step is to find a set of de-
sign transformations and a mapping that minimize the max-
imum core utilization. The objective function can formally
be stated as:

. v,Pa 0
min § max q a + ;a C(v,d) - f2Pe - ny - t9 ,  (4)

where 4 is defined as in (3), I'(v,d) has to fulfill the con-
straint specified by (1), and pa = (V7, C5) is a valid design
transformation of EPN e.

Thus, the overall optimization problem involving applica-
tion and mapping exploration can be stated as:

Given an EPN e that is mapped onto a sub-archi-
tecture with a set of cores D. Then, the goal is to
find a KPN p, = (V¢,Cg) that is a valid design
transformation of e and an assignment function
I'(v,d) with v € Vi and d € D that minimize
the mazimum average core utilization as stated
in (4) and fulfills the constraint specified by (1).

The EPN semantics can be applied to a wide variety of
optimization techniques. Optimizing an application speci-
fied as an EPN for a given (sub-)architecture involves two
steps. First, the transformation methods proposed in the
last section are applied to obtain a KPN p, = (V7,C5). Af-
terwards, the mapping of a candidate p, is optimized. In
order to reduce the time for design space exploration, the
two steps can be combined into one optimization problem
and the design transformations can be considered as an ad-
ditional degree of freedom when optimizing the mapping.

7. EXPERIMENTAL RESULTS

In this section, we present case studies demonstrating the
effectiveness of the EPN semantics targeting Intel’s SCC
processor. We consider three benchmarks, namely a ray-
tracing application, a video decoder, and an array sorting
application. As applications are running in isolated guest
machines, the effectiveness can be studied individually for
each application.

7.1 Experimental Setup

In order to test the effectiveness of the EPN semantics,
we implemented a concrete runtime-system and software



IXeo
core Q)
myeel
col(XD©)
EEee

©
E¥ee)

core 3 @

core 1
core 1

©
kcore 2 G:»—) = core@@ =9

core 3 @

5
b
B

(DO (DG

core 2 GE—)P’ core 2 @P

001e3@

b.
N
g
g0
A e
=
gl8

@ generator process @ intersection process

(multiple instances possible )

core 3 @
core l@@
geoe

)
2
8

summation process

core 1

©
co@)@ ™ |core 2 @ 4

@)

(a) Mapping and replication scenarios. “G” refers to the
“generator” process, “S” to the “summation” process, and
“I” to an instance of the “intersection” process.

80 +

60

40

execution time [s]

20

execution scenario

[l performance model [ execution on Intel SCC

(b) Execution time calculated with the performance anal-

ysis model described in Section 6 vs. the measured execu-
tion time on Intel’s SCC processor.

Figure 5: Execution time of the ray-tracing application outlined in Fig. 6 for different mapping and replication

scenarios. The target platform are three cores of Intel’s

synthesis tool chain for applications specified either as an
EPN or a KPN targeting Intel’s SCC processor [11]. The
SCC processor is an experimental prototype of an on-chip
many-core system with 24 tiles each containing a pair of
P54C cores. Each core is clocked at 533 MHz and is host-
ing a Linux operating system with kernel 2.6.32. In all ex-
periments, the compiler is 1cCc 8.1 with optimization level
-O2. The runtime-system runs on top of Linux and uses
the POSIX library to execute multiple processes in a quasi-
parallel fashion, see [25] for more details about the runtime-
system. Ring buffers in private memory are used for intra-
core communication and inter-core communication is real-
ized by the RCKMPI library [5]. When an application is
started, a runtime-manager assigns to the application an
amount of cores that depends on the overall workload and
the application’s performance requirements.

The software synthesis tool chain follows the Y-chart de-
sign approach outlined in Fig. 1. First, the performance
parameters listed in Table 1 are obtained by running some
benchmark configurations on Intel’s SCC processor. After-
wards, simulated annealing [15] is used to solve the opti-
mization problem stated in Section 6.3. When selecting a
new neighboring state, the algorithm randomly modifies ei-
ther the set of design transformations or the mapping of the
current implementation onto the architecture.

When reporting measurements from Intel’s SCC proces-
sor, the values are the average of ten repetitions.

7.2 The Optimal Degree of Parallelism

The first case study considers a ray-tracing application to
study the effect of parallelism on the execution time. We
compare the execution time of different application trans-
formations and mappings both when it is estimated with
the performance model introduced in Section 6 and when
the time is measured on Intel’s SCC processor.

Figure 6 illustrates the process network of the ray-tracing
application. It can have multiple “intersection” processes to
concurrently analyze multiple rays. In addition, the “genera-
tor” process generates the rays and the “summation” process
merges the rays into a single image.

The ray-tracing application is running on three cores of
the SCC. Figure 5a outlines 10 different mapping and repli-
cation scenarios of the application. For example, a “G”
bubble on core 1 indicates that the “generator” process is

SCC processor.

mtersecuon (l)

generator (G) “@

intersection (I)

Figure 6: EPN specification of the ray-tracing ap-
plication that supports replication.

mapped onto core 1. When measuring the execution time
on Intel’s SCC processor, each core has been selected from a
different tile to reduce timing variations due to the network.

To study how replication affects the execution time, the
time to generate an image of 100 x 100 pixels with 10 sam-
ples per pixel has been measured for the scenarios outlined
in Fig. 5a. Figure 5b reports the time that was measured
when the scenarios have been executed on the SCC and the
time predicted by the performance model described in Sec-
tion 6. Out of all 10 scenarios, the execution time is re-
duced the most in scenario “h”, which balances the execu-
tion time best between the cores maximizing the speedup.
Thus, in this example, the optimal degree of parallelism is
achieved with five “intersection” processes. The longest ex-
ecution time is observed in scenario “a”, which has only two
instances of the intersection process. The execution time of
the ray-tracing application in scenario “h” is 29.5s on the
real platform, which corresponds to a speed-up of 2.43 com-
pared to scenario “a”, which has an execution time of 72.0s
on the real platform.

The average (absolute) difference between the prediction
based on the performance model and the measurement on
the real platform is 0.6s. This indicates that the perfor-
mance model is able to accurately predict the (average) ex-
ecution time if replication is used to improve the parallelism
of an application.

7.3 Replication and Unfolding

Next, a motion JPEG (MJPEG) decoder is used to mea-
sure the speed-up achieved with replication and unfolding.
Figure 7 depicts the EPN specification of the MJPEG de-
coder that supports both replication and unfolding. “split
stream” splits the stream into individual frames that are
forwarded to the “decode frame” process decoding a com-



decode
macroblock

Figure 7: EPN specification of the MJPEG decoder
that supports both unfolding and replication.

plete frame. Afterwards, “merge stream” merges the decoded
frames back into a frame. The “decode frame” process can
further be unfolded. Then, “split frame” splits a frame into
segments of 40 macroblocks that are individually decoded.
As the MJPEG decoder only applies intra-frame compres-
sion, multiple frames can be decoded in parallel without
having dependencies between the replicated processes.

In Fig. 8, the time to decode 5000 frames is compared for
a varying number of available cores. For brevity, we only
report the results for an exclusive set of sub-architectures;
however, the results for the other sub-architectures exhibit
similar trends. Motivated by the previous results for the ray-
tracing application, we use the optimization framework to
find a good level of parallelism and a good mapping for the
MJPEG application. Afterwards, we measure the execution
time of this implementation on Intel’s SCC processor, thus
the reported time is the measured execution time. First,
as a reference, we measure the execution time of a sequen-
tial implementation that consists of just one process. Then,
we look at two KPN implementations of the MJPEG de-
coder, both having a static replication degree of three. In
the coarse-grained implementation, a complete frame is de-
coded in the process “decode frame”. This process is further
unfolded in the fine-grained implementation. The mapping
of both KPN implementations has been optimized using the
optimization framework described in Section 7.1. Finally,
the execution time of the transformed and optimized EPN
implementation is measured. The EPN implementation is
based on the specification illustrated in Fig. 7. To improve
the performance of the EPN implementation, the degree of
parallelism and the mapping are optimized for every consid-
ered number of available cores.

The execution time of the EPN implementation is never
larger than the execution time of the fine-grained or coarse-
grained MJPEG implementation. As the coarse-grained im-
plementation has only five processes, the execution time
cannot anymore be improved if more than five cores are
available. The execution time of the fine-grained implemen-
tation is always larger than the coarse-grained implemen-
tation, which might be due to the additional inter-process
communication overhead. The fine-grained implementation
passes many small packets between the processes so that a
large amount of time is just spent to send and receive tokens.
If the number of processes is larger than the number of cores,
the inter-process communication overhead could further be
reduced by using specialized FIFO implementations as, for
instance, Windowed FIFOs [10]; however, the trend remains
the same. The selected abstraction of the EPN depends on
the number of available cores. Up to eight cores, the op-
timization framework allocates one “decode frame” process
and the “split stream” process together on one core, one

execution time [s]

number of cores

[l sequential M coarse-grained version [H fine-grained version [J EPN version

Figure 8: Execution time of the MJPEG decoder
application for a varying number of available cores.

“decode frame” process together with the “merge stream”
process on another core, and one “decode frame” process on
every other core. Afterwards, for 16 cores, it allocates on 15
cores one “decode frame” process and maps the “split stream”
and “merge stream” process together on one core. For even
more cores, it assigns the “split stream” and “merge stream”
processes to a dedicated core.

7.4 Speed-up due to Recursion

In the last case study, we evaluate the performance of
quicksort, a recursive array-sorting algorithm. The EPN
specification is illustrated in Fig. 9. Process “src¢” (“dest”)
generates (displays) the input (output) array, and process
“sort” sorts the elements in ascending order. As the quick-
sort algorithm recursively sorts the array, process “sort” can
be replaced by a structural description. “div” first partitions
the array into two groups: the first group contains the ele-
ments that are smaller than the median value and the second
group contains the remaining elements. The divided arrays
are individually sent to a different instance of the “sort” pro-
cess. Finally, the individually sorted sub-arrays are merged
into a single array. Thus, by recursively unfolding the “sort”
process, the original topology can be transformed to have
more tasks. As the length of the array that each “sort” pro-
cess has to sort is halved in each recursion step, the execution
time is reduced with each recursion step, as well.

In Fig. 10, the execution time to sort 5000 random arrays
with each 5000 elements is compared for a varying number
of available cores and different recursion depths. Similar to
the MJPEG decoder application, the optimization frame-
work has been used to optimize the final implementation,
but the reported numbers are obtained from running the fi-
nal implementation on the real platform. No unfolding refers
to the basic quicksort algorithm illustrated in Fig. 9a. z-
times unfolded refers to an implementation where the “sort”
process is x times recursively unfolded. Finally, the EPN
implementation leaves the task of unfolding to the optimiza-
tion framework. The evaluation shows that the optimization
framework selects a different unfolding degree depending on
the available number of cores. On the one hand, if the num-

(a) Top-level process net- (b) Structural description of
work of the quicksort algo- process “sort”.
rithm.

Figure 9: EPN specification of the quicksort algo-
rithm.



execution time [s]

4
number of cores
M I-times unfolded [ 2-times unfolded [ 3-times unfolded ~ [] EPN version

[ no unfolding

Figure 10: Execution time of quicksort for a varying
number of available cores.

ber of cores is small, a low recursion depth achieves best
performance as the switching and communication overhead
is low. On the other hand, if the number of cores is large,
a high recursion depth accomplishes a lower execution time
as the array is sorted in parallel.

Even though the EPN specification tries to optimize both
the degree of parallelism and the mapping to minimize the
execution time, the speed-up is much lower than the optimal
speed-up. The speed-up is 2.3 when using eight cores instead
of one core and 4.1 when using sixteen cores instead of one
core. This might be because additional time is spent to first
partition the array into two groups and then to transmit the
intermediate results between the different cores.

8. CONCLUSION

In this paper, the semantics of expandable process net-
works (EPNs) is proposed. EPNs are an extension for stream-
ing programming models that enable the automatic explo-
ration of task, data, and pipeline parallelism by replication
and unfolding. The later enables the explicit specification of
recursion, commonly used in mathematical and multimedia
applications. To include the proposed concepts in the sys-
tem design, we extend the current Y-chart design practice
by an additional design step, which does not only optimize
the mapping, but also the application structure to match
the available target architecture. This is particularly useful
when the available computing resources are not known at
design time, as it is the case when a hypervisor distributes
the computing resources of a many-core system at runtime.
In this case, the EPN semantics enables the synthesis of
multiple design implementations that are all derived from
one high-level specification. At runtime, the hypervisor can
simply select the best-suited implementation depending on
the available computing resources. Finally, extensive exper-
iments have been carried out on a 48-core platform that
show the effectiveness of the EPN semantics compared to
conventional process networks.

In the future, we plan to extend the proposed formal-
ism to adapt the degree of parallelism at runtime when the
system’s state changes. We further intend to investigate
how the number of sub-architectures can be efficiently re-
duced, e.g., by studying the correlation between the number
of available processing elements and the performed design
transformation steps.

Acknowledgments

This work was supported by EU FP7 project EURETILE,
under grant numbers 247846. Lars Schor was also partially
supported by an Intel PhD Fellowship.

References

[1] B. Abali et al. Balanced Parallel Sort on Hypercube
Multiprocessors. IEEE T. Parall. Distr., 4(5):572-581, 1993.

[2] J. Bigler et al. Design for Parallel Interactive Ray Tracing
Systems. In Proc. Symp. on Interactive Ray Tracing, pages
187-196, 2006.

[3] C. Brooks et al. Ptolemy II - Heterogeneous Concurrent
Modeling and Design in Java. Technical report, University of
California at Berkeley, 2005.

[4] B. Chapman et al. Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press, 2007.

[5] I. Comprés Ureiia et al. RCKMPI — Lightweight MPI
Implementation for Intel’s Single-chip Cloud Computer (SCC).
In Recent Advances in the Message Passing Interface, volume
6960 of LNCS, pages 208-217. Springer, 2011.

[6] T. H. Cormen et al. Introduction to Algorithms. McGraw-Hill
Higher Education, 2nd edition, 2001.

[7] A. Fedorova et al. Cypress: A Scheduling Infrastructure for a
Many-Core Hypervisor. In Proc. MMCS, 2008.

[8] M. Geilen and T. Basten. Reactive Process Networks. In Proc.
EMSOFT, pages 137-146, 2004.

[9] M. I. Gordon et al. Exploiting Coarse-Grained Task, Data, and
Pipeline Parallelism in Stream Programs. SIGPLAN Not.,
41(11):151-162, 2006.

[10] W. Haid et al. Efficient Execution of Kahn Process Networks
on Multi-Processor Systems Using Protothreads and Windowed
FIFOs. In Proc. ESTIMedia, pages 35-44, 2009.

[11] J. Howard et al. A 48-Core IA-32 Message-Passing Processor
with DVFS in 45nm CMOS. In Proc. ISSCC, pages 108-109,
2010.

[12] G. Kahn. The Semantics of a Simple Language for Parallel
Programming. In Information Processing, pages 471-475, 1974.

[13] B. Kienhuis et al. An Approach for Quantitative Analysis of
Application-Specific Dataflow Architectures. In Proc. ASAP,
pages 338-349, 1997.

[14] B. Kienhuis et al. Compaan: Deriving Process Networks from
Matlab for Embedded Signal Processing Architectures. In Proc.
CODES, pages 13-17, 2000.

[15] S. Kirkpatrick et al. Optimization by Simulated Annealing.
Science, 220(4598):671-680, 1983.

[16] E. Lee and D. Messerschmitt. Synchronous Data Flow. Proc.
IEEE, 75(9):1235-1245, 1987.

[17] P. Murthy and E. Lee. On the Optimal Blocking Factor for
Blocked, Non-Overlapped Multiprocessor Schedules. In Proc.
of Asilomar Conf. on SSC, pages 1052-1057, 1994.

[18] P. S. Pacheco. Parallel Programming with MPI. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.

[19] C. Park et al. Extended Synchronous Dataflow for Efficient
DSP System Prototyping. Design Automation for Embedded
Systems, 6:295-322, 2002.

[20] A. Pettorossi and M. Proietti. Rules and Strategies for
Transforming Functional and Logic Programs. ACM Comput.
Surv. (CSUR), 28(2):360-414, June 1996.

[21] J. Pino and E. Lee. Hierarchical Static Scheduling of Dataflow
Graphs onto Multiple Processors. In Proc. ICASSP, volume 4,
pages 2643-2646, 1995.

[22] A. Polze and P. Tréger. Trends and Challenges in Operating
Systems — from Parallel Computing to Cloud Computing.
Concurrency and Computation: Practice and Experience,
24(7):676-686, 2012.

[23] I. Sander and A. Jantsch. System Modeling and
Transformational Design Refinement in ForSyDe. IEEE
TCAD, 23(1):17-32, 2004.

[24] L. Schor et al. Scenario-Based Design Flow for Mapping
Streaming Applications onto On-Chip Many-Core Systems. In
Proc. CASES, pages 71-80, 2012.

[25] L. Schor et al. Reliable and Efficient Execution of Multiple
Streaming Applications on Intels SCC Processor. In Proc.
ROME, 2013.

[26] L. Seiler et al. Larrabee: A Many-Core x86 Architecture for
Visual Computing. ACM Trans. Graph., 27(3):18:1-18:15,
2008.

[27] L. Thiele et al. Mapping Applications to Tiled Multiprocessor
Embedded Systems. In Proc. ACSD, pages 29-40, 2007.

[28] W. Thies et al. StreamIt: A Language for Streaming
Applications. In Proc. Int’l Conf. on Compiler Construction,
pages 179-196, 2001.

[29] S. Verdoolaege et al. pn: A Tool for Improved Derivation of
Process Networks. EURASIP J. Embedded Syst.,
2007(1):19:1-19:13, 2007.



