
1632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

Optimizing the NoC Slack Through Voltage and
Frequency Scaling in Hard Real-Time

Embedded Systems
Jia Zhan, Student Member, IEEE, Nikolay Stoimenov, Member, IEEE, Jin Ouyang, Lothar Thiele, Member, IEEE,

Vijaykrishnan Narayanan, Fellow, IEEE, and Yuan Xie, Senior Member, IEEE

Abstract—Hard real-time embedded systems impose a strict
latency requirement on interconnection subsystems. In the case of
network-on-chip (NoC), this means each packet of a traffic stream
has to be delivered within a time interval. In addition, with the
increasing complexity of NoC, it consumes a significant portion of
total chip power, which boosts the power footprint of such chips.
In this paper, we propose a methodology to minimize the energy
consumption of NoC without violating the prespecified latency
deadlines of real-time applications. First, we develop a formal
approach based on network calculus to obtain the worst-case
delay bound of all packets, from which we derive a safe estimate
of the number of cycles that a packet can be further delayed in
the network without violating its deadline—the worst-case slack.
With this information, we then develop an optimization algorithm
that trades the slacks for lower NoC energy. Our algorithm rec-
ognizes the distribution of slacks for different traffic streams, and
assigns different voltages and frequencies to different routers to
achieve NoC energy-efficiency, while meeting the deadlines for
all packets. Furthermore, we design a feedback-control strategy
to enable dynamic frequency and voltage scaling on the network
routers in conjunction with the energy optimization algorithm. It
can flexibly improve the energy-efficiency of the overall network
in response to sporadic traffic patterns at runtime.

Index Terms—Dynamic voltage and frequency scaling (DVFS),
network calculus, network-on-chip (NoC), slack, worst-case delay
analysis.

I. INTRODUCTION

CONTEMPORARY embedded systems and SoCs feature
an increasing number of processing elements (PE) and

other components, a sign that interconnection will play a more
vital role in these chips. Network-on-chip (NoC) is a promis-
ing design paradigm for future many-core chips as found by
many previous researches [1], [7]. However, the fundamental

Manuscript received January 12, 2014; revised June 11, 2014; accepted
July 8, 2014. Date of current version October 16, 2014. This paper was
recommended by Associate Editor N. Wong.

J. Zhan and V. Narayanan are with the Department of Computer Science
and Engineering, Pennsylvania State University, University Park, PA 16803
USA (e-mail: juz145@cse.psu.edu; vijay@cse.psu.edu).

Y. Xie is with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106 USA (e-mail:
yuanxie@ece.ucsb.edu).

N. Stoimenov and L. Thiele are with the Computer Engineering and
Networks Laboratory, ETH Zurich, Zurich 8092, Switzerland (e-mail:
stoimenov@tik.ee.ethz.ch; thiele@tik.ee.ethz.ch).

J. Ouyang is with NVIDIA, Santa Clara, CA 95050 USA (e-mail:
jouyang@nvidia.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2014.2347921

challenge of using NoCs in many-core embedded systems
is that these systems often have very limited resources and
stringent processing latency requirements, which places very
different constraints than general-purpose processors on NoC
design. There are two major differences between embedded
systems and general-purpose processors.

1) General-purpose processors are often designed to
achieve a high aggregate throughput, and therefore the
NoCs for them are allocated sufficient resources to
sustain the peak performance. In contrast, embedded
systems are designed to provide just enough perfor-
mance to accommodate specific tasks. Thrift is a virtue
in designing NoC for those systems, in order for power
and area reduction.

2) General-purpose processors care about the overall
progress of all tasks running on all cores. In con-
trast, embedded systems often provide certain guarantees
for individual tasks’ progress. In the so-called hard
real-time embedded systems, to provide certain quality-
of-service (QoS), each task has an associated maximum
allowed communication delay. Reflected on NoC, each
network packet needs to be delivered to the destination
before a deadline; otherwise the corresponding task may
not be able to deliver the required QoS, and even causes
catastrophic outcomes.

One way to address the conflicting requirements of energy
and latency is to leverage the inherent heterogeneity in
NoC traffics, and use voltage frequency scaling (VFS) to
improve the energy-efficiency of NoC. A lot of previous
work [23], [34], [42] have adopted dynamic voltage and fre-
quency scaling (DVFS) to reduce the energy consumption of
NoC while still providing high throughput. Heterogeneity can
also be utilized to improve the efficiency of NoC. Das et al. [9]
were the first to propose the idea of network slack, which
refers to the number of cycles that a packet can be delayed in
the network without affecting execution time. In their work,
packets with smaller slacks (those more likely to impact
execution time) are prioritized. This slack-based approach
improves the throughput of all running tasks. However, the
above researches are still focused on designing NoC for
general-purpose processors, and aimed at improving the over-
all throughput. For example, the estimated slack proposed by
Das et al. [9] does not consider precise deadlines on individ-
ual packets and only serves as a hint in assigning priorities

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHAN et al.: OPTIMIZING THE NOC SLACK THROUGH VOLTAGE AND FREQUENCY SCALING 1633

to packets. There is no guarantee that a packet will arrive
in time before it is needed. Therefore, these approaches can-
not be applied to NoC in embedded systems where violating
deadlines could be disastrous.

Unlike previous work, we focus on improving NoC energy-
efficiency in hard real-time embedded systems by leveraging
the heterogeneity of network routers to serve NoC traffics. We
propose a design methodology that provides just enough power
to NoC in order to meet the latency requirements (deadlines)
of all traffic streams. Inspired by Das et al.’s work [9], we
first calculate the worst-case slacks for packets of different
streams. Then an energy optimization algorithm is proposed
that leverages the slacks to allocate differentiated resources
(energy) to different portions of the network. Different from
their work, the slack calculation must be precise and conser-
vative in order to guarantee the timing-correctness of real-time
systems. To solve this problem, we adopt network calcu-
lus [3], [20] to predict the worst-case latency of different
packets, from which the worst-case slacks can be obtained.
Leveraging these slacks, we can progressively reduce the volt-
ages and frequencies of individual routers in the network to
reduce energy consumption while still meeting all deadlines.
To this end, our framework is able to compute the opti-
mal voltage and frequency configurations given a fixed traffic
pattern. However, during runtime, there may be changes of
network traffic that would possibly cause deadlines misses.
These changes include phase transitions in a single applica-
tion or arrival/departure of new/old applications. Therefore,
we design a feedback-control system to monitor the traffic
changes and dynamically adapt the voltage/frequency lev-
els of individual routers for the best power efficiency at all
time. To summarize, the contributions of this paper are as
follows.

1) We develop a formal method based on network calcu-
lus to obtain the worst-case slacks of packets in the
NoC for hard real-time embedded systems. We improve
over previous work [30] by taking virtual channels and
heterogeneous router frequencies into consideration.

2) We propose an effective algorithm that trades slacks
for energy-efficiency of NoC, and thus minimizes the
total communication energy while still maintaining
timing-correctness. This algorithm adjusts energy and
performance by assigning the optimum voltage and
frequency configurations to individual routers in the
network.

3) We propose a feedback-control strategy to monitor real-
time performance of network flows and conduct DVFS
on individual routers to provide the optimal network
power efficiency during runtime.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes how
to derive network slacks through worst-case delay analysis.
Leveraging this analysis approach, Section IV proposes sev-
eral energy optimization algorithms that trade slacks for energy
savings. Section V proposes dynamical voltage and frequency
scaling based on the proposed static optimization schemes.
Experiments are conducted in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

A. Voltage and Frequency Scaling

Network-on-Chip consumes a significant portion of total
chip power for multicore systems. Some recent research pro-
totypes [15], [22], [38] have validated the percentage to be
10%–36%. Therefore, NoC power reduction becomes a criti-
cal issue in designing multicore systems, especially in the dark
silicon age [11], [14], [32], [37], [39] when power budget is
the primary design constraint. One way to tackle the power
concern is through DVFS. Several studies have proposed
DVFS for general purpose systems [18], [33] and real-time
embedded systems [40], [41]. However, these results focus
on either processor or cache power optimization. Recently,
DVFS on NoCs are proposed to further reduce the intercon-
nect power dissipation. Some prior work proposes similar
techniques on NoCs [5], [16], [23], [34], [42] by scal-
ing the voltage/frequency of individual routers, links, or the
whole network. In the mean time, there are some prior stud-
ies [24], [26], [27] on static voltage and frequency assignment
for NoC components through voltage island partitioning and
optimization. However, these results are still focused on the
general-purpose domain, whereas in hard real-time systems
the requirement for NoC DVFS becomes more challenging.

B. Worst-Case Analysis of NoC

There are some prior works [21], [28] on providing QoS
guarantees in NoC design for general purpose systems. In
hard real-time systems, each network packet in a certain flow
needs to be delivered to the destination within a fixed dead-
line. Such deadlines cannot be violated, otherwise the QoS
would be severely degraded. Therefore, in order to safely
conduct DVFS on NoC for such systems, an accurate pre-
diction of the worst-case packet delay should be provided. In
wormhole networks, this becomes more complicated due to the
existence of credit-based flow control as well as the network
contention for shared resources. Network calculus [3], [20]
is a theory of deterministic queuing systems for communi-
cation networks. Some recent work [29], [31] has validated
the effectiveness of using network calculus for worst-case
delay prediction on NoC-based systems, although the state-
of-the-art virtual-channel based NoC is not modeled. In this
paper, we adopt network calculus in modeling VC-based
NoC systems and integrate it with our energy optimization
techniques.

III. WORST-CASE DELAY ANALYSIS

A. Router Architecture

Most of the state-of-the-art NoC researches assume a base-
line wormhole router that achieves high energy-efficiency [7].
To provide guaranteed services in NoC, researchers extended
the baseline router architecture to either preallocate switching
time slots for critical packets [12], [13], or preserve a virtual
channel for each traffic stream [2], [35]. Preallocating switch-
ing time slots eliminates run-time contentions altogether, while
preserving virtual channels only prevents head-of-line block-
ing and still needs proper arbitration schemes for performance
guarantee.

1634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

TABLE I
SYMBOLS USED FOR MODELING AND ANALYSIS

In this paper, we assume a baseline wormhole router architec-
ture with five router stages: 1) BW: buffer write; 2) RC: routing
computation; 3) VA: virtual channel allocation; 4) SA: switch
allocation; and 5) ST: switch traversal. Recently NoC router
architectures with fewer stages were also proposed. However,
changing the number of router stages affects only the initial
latency in our analysis (refer to details below), and therefore
our approach can be applied to router architectures with fewer
pipeline stages. In addition, we assume that each traffic stream
uses a dedicated virtual channel throughout the network, which
is in line with the designs proposed by [2] and [35]. We do not
opt for preallocating time-slots for each packet [12], [13],
because this approach eliminates the flexibility of scaling
voltage and frequency to reduce energy consumption.

Consequently, there are two types of pipeline stalls to be
addressed for this kind of router.

1) With credit-based flow control, packet will stall when
there are no available credits which indicates the down-
stream VC that they are writing into is full.

2) Packet stall may happen in SA stage due to switch
contention, when packets from different input ports or
different VCs at the same input port may not only com-
pete for the same switch input port but also the same
output port.

In this section, the detailed analytic models for the two
types of router pipeline stalls are presented, and the worst-
case packet delay bound is derived from these models. Table I
summarizes symbols used in our modeling and analysis.

B. Principles of Network Calculus

Network calculus [20] is a theory of deterministic queu-
ing systems for communication networks. In particular, this
approach is based on three important concepts.

1) Arrival Curve: If A[s, t) denotes the number of pack-
ets (here, we define a packet as a fixed-length basic unit in
network traffics; variable-length packets can be viewed as a
sequence of fixed-length packets) that arrive in the time inter-
val [s, t), then we say the flow A is constrained by an arrival
curve α if and only if for all s < t

A[s, t) ≤ α(t − s). (1)

(a) (b)

(d)(c)

Fig. 1. Delay bound from network calculus. (a) Single router. (b) Delay
bound for a router. (c) Multiple flows. (d) Delay bound for a flow.

2) Service Curve: If C[s, t) denotes the number of packets
that can be processed by a router or a whole network over the
time interval [s, t), and C is bounded by a service curve β if
and only if for all s < t

C[s, t) ≥ β(t − s). (2)

3) Delay Bound: Assume a packet stream, constrained by
an arrival curve α, traverse a system that offers a service
curve β. Then the worst-case packet delay dworst can be
bounded as

dworst ≤ sup
t≥0
{inf{τ ≥ 0:α(t) ≤ β(t + τ)}} (3)

where inf{} and sup{} stand for infimum and supremum,
respectively. An example is shown in Fig. 1(a) and (b) for
a single router, where we show an affine arrival curve αr,b,
defined by: αr,b(t) = rt + b for t > 0, and αr,b = 0
otherwise, and a rate-latency service curve βλ,T , defined by:
βλ,T(t) = λ[t − T]+ = λ(t − T) for t > T , and βλ,T = 0
otherwise. The arrival curve αr,b implies that the source can
send at most b packets at once, but no more than r pack-
ets/cycle in the long run, while the service curve βλ,T implies
a pipeline delay T for a packet to traverse a router and an aver-
age service rate of λ packets/cycle. As shown in Fig. 1(b), the
worst-case delay bound d is the maximum horizontal distance
between arrival curve and service curve.

When extended to multiple interconnected components, as
shown in Fig. 1(c), the end-to-end packet delay becomes more
unpredictable. Fig. 1(d) is the worst-case delay analysis for one
flow f2. As we can see, arrival curve α remains as the given
injection pattern, while service curve is now the concatenation
of all the routers that f2 traverses from source to destination,
which can be calculated through server concatenation [20]. For
instance, the concatenation of two routers with service curves
βR1 and βR2 is

βR{1,2} = βR1 ⊗ βR2 = inf0≤s≤t{βR1(s)+ βR2(t − s)}. (4)

ZHAN et al.: OPTIMIZING THE NOC SLACK THROUGH VOLTAGE AND FREQUENCY SCALING 1635

Fig. 2. Analysis of credit-based flow control.

So far we only consider the case where routers with infinite
buffers provide service to a single flow. In reality, the router is
designed with a finite buffer size that exerts back-pressure, and
many flows may share routers in NoC experiencing reduced
service quality. Both factors introduce additional stalls (flow-
control stall and switch-contention stall). In the rest of this
section, we consider the additional stalls resulted from back-
pressure and resource sharing in the worst-case delay analysis.

C. Flow-Control Stall

With credit-based flow control [8], the upstream router
keeps a count of the number of free buffers in each virtual
channel downstream. No packets will be forwarded if their
intended buffers are full, until the downstream buffer forwards
a packet and sends a credit back to the upstream router. Here
we adapt Chang’s work [4] to derive the worst-case latency
bound under the back-pressure of credit-based flow control.
For simplicity, we consider two adjacent routers R1 and R2 in
our demonstration, and the results can be easily applied to the
case when more routers are involved. Fig. 2 shows a graphical
view of the two-router case.

Let αin be the generic input process to router R1 while α

be the effective input process to the internal crossbar of the
router, which is the outcome of both αin and back-pressure.
αout is the output process of router R2. Suppose the overall
service curve βR2 of R2 seen by R1 is known, and the ideal

service curve (without back-pressure) of R1 is βR
′
1 (provided

by the crossbar as defined in Section III-B), then according
to [4], the overall service curve βR1 of R1 considering back-
pressure is given as

βR1 = βR
′
1 ⊗ (IB ⊗ (βR

′
1 ⊗ βR2)) (5)

where B is the buffer size, and IB is defined as IB(t) = ∞ for
t > 0 and IB(0) = B. The horizontal bar is the operation for
sub-additive closure. In this way, we can derive the service
curve of each router and then recursively concatenate them
based on (4) from destination to source to get the concatenated
service curve for all routers along a flow’s path.

D. Switch-Contention Stall

Packet stall can happen at switch allocation stage, when
all front packets in different virtual channels compete for the
same crossbar input or output port. Here we model a generic
switch arbiter that allocates time slots to different input ports
according to their priorities. In Fig. 3(a), we show an example
where two flows arrive at a router and compete for the same
output link to illustrate service curves experienced by each
flow.

The length of individual slot si(i = 1, 2) assigned for
flow fi is proportional to the relevant priorities (arrival rates) of

(a) (b)

Fig. 3. Analysis of switch contention. (a) Two flows competing for the same.
(b) Partial service curve for each flow switch input.

incoming flows and should only take values that are multiples
of a cycle length, and the corresponding total cycle length is
s = ∑

i si. Assume the full ideal service curve of the router

is βR
′
1 , then the partial ideal service curve for fi, as shown in

Fig. 3(b), is proportional to the slot distribution

β
R
′
1

i =
si

s
βR
′
1 ⊗ δs−si (6)

where δs−si is the delay bound when stream fi just missed its
slots in the worst case and has to wait for the next round.

As for stream fi, (5) can be rewritten as

β
R1
i = β

R
′
1

i ⊗
(

IB ⊗
(

β
R
′
1

i ⊗ β
R2
i

))

. (7)

Then by plugging (6) into (7) we can derive the allocated
service curve for a specific stream at each router it traversed,
and the concatenated service curve for the entire path according
to (4). Finally, the worst-case delay bound can be obtained by
applying the principles of network calculus, essentially by (3).
In this paper, we assume a round-robin arbiter for every router
in the network, which implies that the priorities of each flow
are proportional to their arrival rates to a specific router. While
not considered here, such results can be obtained in a similar
way for other scheduling policies like fixed priority (FP), rate
monotonic (RM), and earliest deadline first (EDF).

IV. SLACK OPTIMIZATION FOR SAVING ENERGY

Applying the methodology in the previous section, we are
able to bound the worst-case packet delay for individual appli-
cation streams, hence obtaining worst-case slack—the time
interval between the delay bound and its prespecified trans-
mission deadline, which indicates the number of cycles that a
packet can be further delayed in the network. Based on this
idea, we propose to optimize network energy-efficiency under
deadline constraints through voltage and frequency scaling.

A. Frequency and Voltage Scaling

The existence of packet slack implies that we can still
achieve the required performance while lowering the operating
frequency of some routers instead of making them run at a
homogeneous high speed. The supply voltage, in the meantime,
can be reduced together with the frequency to reduce energy.

Voltage-frequency islands (VFI) [19] have been adopted for
achieving fine-grain system-level power management. A fine
granularity partitioning could assume that each module in the
design belongs to a different island [25] for best flexibility,
or find the optimum partitioning via island merging [27] for
energy savings. Here we are doing static voltage-frequency

1636 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

assignment and model these routers to be able to run at its own
voltage and frequency. For completeness, we also explore the
energy gain of operating all routers at homogeneous voltage
and frequency.

In order for the network routers to operate at different
frequencies, they should communicate in a globally asyn-
chronous locally synchronous (GALS) mechanism. To address
synchronization latency, we adopt the fast synchronizer pro-
posed by Dally and Tell [6] which adds only half cycle of
synchronization delay that can be well absorbed in the buffer
write stage.

Note that if we assign a lower frequency to a router, its
service curve is affected accordingly. Specifically, the packet
service rate will decrease and the time it takes to traverse a
router will increase. For example, for a router Rk with rate-
latency service curve β

Rk
λ,T(t) = λ[t − T]+ as discussed in

Section III, when its operating frequency is scaled by a fac-
tor η, the service rate will scale accordingly, whereas the initial
delay remains the same. Its new service curve is modeled as

β
Rk
ηλ,T/η(t) = ηλ[t − T/η]+. (8)

Then the worst-case packet delay should be updated to
check if there is remaining slack time for further optimization.
Our energy optimization algorithms are described below in
detail.

B. Straightforward Solutions

There are two straightforward ways to trade slack for energy
savings. One is to simply scale down all the routers simul-
taneously by the same factor, which will keep them running
at homogeneous frequency and voltage. The other is through
exhaustive search to find out the optimum assignment. However,
the former approach is not flexible enough for adjustment and
results in performance bottleneck in the network, because the
degree to which the network speed can be reduced will be limited
by the packet flow with minimum slack. The latter way enu-
merates all combinations of voltage/frequency pair for different
routers. Therefore, it is time-consuming and not scalable for a
large network with many possible voltage-frequency levels.

C. Interference-Aware List-Based Algorithm

As illustrated above, it is not flexible enough to treat
routers homogeneously while conducting voltage and frequency
scaling. The best power-efficient methods should explore the
internal heterogeneity of the network. One way to learn about the
heterogeneity for such flow-based network is through analyzing
the network interference of individual router.

Noticing that even though any routers in the network can be
a candidate for frequency and voltage scaling, their impacts
on end-to-end packet latency vary. Because routers with more
contentions are likely to have greater impact on end-to-end
delay, we propose to conservatively start scaling with the ones
that have less interfering streams, expecting they would cause
less extra delay with the same amount of energy reduction,
and therefore safely leave more space for slack optimization.
Specifically, we propose to sort individual active routers in the
ascending order of contentions, and store the results into a pri-
ority list. Algorithm 1 describes our interference-aware priority

Algorithm 1: Interference-Aware Search Algorithm for
Priority Assignment

Result: Priority list for router frequency and voltage
scaling

for every active router Ri do
if Ri has m streams passing by then

put Ri in Cluster Cm;
end

end
Sort Cluster Cm(m = 1, 2, . . .) in ascending order of m;
for every Cluster Cm(m = 1, 2, . . .) do

for every router Ri do
if Ri has n (0 ≤ n ≤ m) streams interfering then

put Ri in List Ln;
end

end
Sort List Ln(n = 1, 2, . . .) in ascending order of n;
for every router in list Ln do

if Ri and Rj belongs to the same stream then
sort the routers in Ln in ascending order of
their distance to destination;

else
Priorities: PRi = PRj ;

end
end

end

TABLE II
PRIORITY LIST FOR FIG. 1(C)

assignment mechanism in detail. It firstly groups the routers
into different clusters, where every element in a cluster has
the same number (m) of flows passing through. These clus-
ters are then sorted in ascending order of the number of m.
Within each cluster, the routers are further categorized into
different lists by analyzing the actual number of contention
flows (n, (0 ≤ n ≤ m)), and the lists are also sorted in ascend-
ing order of n. Note that interfering flows refers to those that
are actually contending for a switch port in a router, and thus
may be a subset of the total number of streams that are flowing
through. At last, within each list, routers are sorted in ascend-
ing order of their distance to the destination if they belong to
the same flow, otherwise they have the same priority and can
be randomly picked for scaling.

We greedily ramp down the frequency of the router at the
head of this list until no more energy reduction is possible
without violating deadlines. Then we pop the head of the list
and start to work on the next router.

Taking Fig. 1(c) as an example, we can obtain the priority
list as show in Table II. Note order of R5, R2, and R0 are
randomly selected.

With this result, we scale down network routers according to
the priority list and redo worst-case delay analysis presented in
Section II to check if there is any deadline miss. Hence we can
continuously choose routers for frequency and voltage scaling

ZHAN et al.: OPTIMIZING THE NOC SLACK THROUGH VOLTAGE AND FREQUENCY SCALING 1637

as long as there is remaining slack time, leading to an energy-
efficient NoC design for hard real-time embedded systems.

D. Energy-Aware Heuristic Search Algorithm

The previous list-based algorithm proposes to conduct
voltage and frequency scaling based on the network traffic
flows, but it lacks an accurate model to capture the network
contention. Additionally, the list-based algorithm would ramp
down the voltage/frequency level of routers through one itera-
tion of the list, i.e., reducing the voltage/frequency of a router
to the maximum degree before turning into the next router,
whereas a more fine-grained and effective approach is to select
among all routers during each step of scaling.

Therefore, we propose an energy-aware heuristic
search (EHS) algorithm, which can find an efficient
solution leveraging network heterogeneity and avoiding
exhaustive search at the same time. Specifically, we abstract
a NoC energy model and integrate it into our worst-case
delay analysis framework to automatically generate the
frequency-voltage assignments.

1) Energy Models: The set of nodes in the network is denoted
by T = {0, 1 . . . N − 1}. The supply voltage-frequency pairs of
each node i ∈ T are given by (Vi, fi). Then the sum of dynamic
and static energy consumption associated with node i is

E(Vi, fi) = Ed(Vi, fi)+ Es(Vi, fi). (9)

The dynamic energy part can be calculated through

Ed(Vi, fi) = Mi ∗ Ep(Vi, fi) (10)

where Mi is the total number of packets that traverse node i
during execution, and Ep(Vi, fi) is the energy consumption
when a packet traverses node i

Ep(Vi, fi) = Ebuffer + Eswitch + Elink (11)

where Ebuffer, Eswitch, and Elink represent the energy dissipated
at input buffers, switch and link and are found experimentally
using DSENT [36].

The static energy Es(Vi, fi) part is defined as

Es(Vi, fi) = Ps(Vi, fi) ∗ t (12)

where t is the system execution time, while Ps(Vi, fi) is static
power for node i and can be obtained as

Ps(Vi, fi) = Ii
static ∗ Vi (13)

where Ii
static is the leakage current for node i and can also be

extracted from DSENT [36].
Thus, combining (9), (10), and (12), the total NoC energy

consumption for an application can be expressed as

E =
N−1∑

i=0

(Mi ∗ Ep(Vi, fi)+ Ps(Vi, fi) ∗ t). (14)

2) Algorithm Description: If node i is scaled from the cur-
rent voltage-frequency level (Vk

i , f k
i) to the next lower level

(Vk+1
i , f k+1

i), then energy reduction can be expressed as

�Ei =
N∑

i=1

(Mi ∗ (Ep(V
k
i , f k

i)− Ep(V
k+1
i , f k+1

i))

+ Ps(V
k
i , f k

i) ∗ tk − Ps(V
k+1
i , f k+1

i) ∗ tk+1). (15)

Algorithm 2: Energy-Aware Heuristic Search Algorithm
Result: Frequency-voltage assignment for all nodes
Initialize: Flag = 0;
while Flag == 0 do

Flag = 1;
for i← 0 to N − 1 do

if fi is at its lowest level then
continue;

else
/* worst-case delay analysis

*/
Calculate dsj(∀sj ∈ S), �di and �Ei if scaling
down fi by one level, and insert them into a
list L as one element;

end
end
Sort L in ascending order of �di/�Ei, associated
with the original index i;
for each entry in the list L do

if dsj < Dsj(∀sj ∈ S) then
Scale down fi by one level; Flag = 0; break;

end
end

end

Under deterministic routing, the only undetermined variable
is the system execution time tk. Assume the set of application
streams is denoted by S = {s1 . . . sm}. The number of packets
injected by sj is MSj with average injection rate rsj . Then tk

can be approximated from the slowest stream

t = max
sj∈S

{
Msj/rsj

}
. (16)

This is because the end-to-end packet delay is negligible
compared to t, especially when the packet number is large.

At the same time, the service curve βRi is modified based
on (8) if scaling i and the new stream delay dsj is calculated via
the worst-case delay analysis in Section II. The accumulated
slack cost after scaling is represented as

�di =
∑

sj∈S

�dsj (17)

where �dsj is the reduced slack for stream sj.
Our heuristic search algorithm uses �di/�Ei as a measure

of the slack cost and the energy gain if we adjust the voltage-
frequency level of a router i. The pseudo-code below outlines
this algorithm. Specifically, the algorithm iterates through all
routers in the network. At each iteration, it generates a list
containing the slack costs and the energy gains for all routers
in the network, picks the router i with lowest �di/�Ei with-
out causing deadline violations, and steps down the router’s
voltage and frequency. Finally, the algorithm terminates when
there is no router in the network of which the voltage and
the frequency can be further reduced without causing timing
violations.

1638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

Fig. 4. Feedback control system for dynamic voltage and frequency scaling
of network routers.

TABLE III
SIMULATION PARAMETERS

For an N-node NoC with k voltage-frequency levels for
each node, the algorithm complexity of our EHS algorithm
is (k− 1) ∗ N2logN, compared to kN for exhaustive search.

V. DYNAMIC VOLTAGE AND FREQUENCY SCALING

The optimization approaches presented in the previous sec-
tion depend on nominal traffic parameters known at design
time. The proposed framework can statically assign fre-
quencies and voltages to individual routers based on fixed
patterns of network flows. However, during runtime, there
may be changes of network traffic that would possibly cause
deadline misses. On the one hand, a single network flow
may experience different phases of transmission with differ-
ent arrival rates, apart from traffic bursts that have already
been accounted in our model. On the other hand, applications
may come and go during runtime, which indicates the num-
ber of flows and the mapping of flows will change as well.
In these scenarios, it is inappropriate to fix the network con-
figuration at design time, which may either hurt the network
power efficiency or cause packet deadline misses. Therefore,
in this section, we design a feedback control system such
that the voltages and frequencies of individual routers can be
dynamically adjusted according to the traffic characteristics.

Fig. 4 depicts the feedback-control system. Specifically,
the input application characteristics include the arrival
rates, bursts, and prespecified deadlines of all the network
flows. The DVFS controller takes into account these input
parameters and computes the optimum voltage and frequency
assignments using the methods in Section III. As a result, the
NoC serves the network flows under such configurations. In
the mean time, the end-to-end packet delays are checked and
the longest delay for each flow during a period is recorded
for comparing with application deadlines. Subsequently, the

Fig. 5. Case study: Three video streams. (a) Mapping of application streams.
(b) Resource sharing analysis.

Fig. 6. Delay bounds for three flows.

(a) (b)

Fig. 7. Calculated (Cal.) versus simulated (Sim.) delay bound. (a) Delay
comparison for three streams. (b) Average difference for three, five, and eight
streams.

DVFS controller reconfigures the NoC routers once it senses
changes of network traffic from the differentiator. Also, par-
titions of different application phases should be carefully
conducted to avoid frequent frequency/voltage reconfiguration.

Calculating the optimum voltage and frequency assignment,
and transmitting control and feedback information over the
network for reconfiguration requires a nonnegligible amount
of time. Therefore, the DVFS controller needs to be activated
long enough (denoted as T) to perform these operations. After
this time interval, the worst-case end-to-end packet delays will
be reset in the recorder. This allows the recorder to capture the
new worst-case delays of individual flows in order to check if
there is any new traffic change.

The outcomes generated from the differentiator are twofold.
If negative slack is detected, it indicates the network is oper-
ated too slow to prevent deadline misses. This may result
from the increase of arrival rates of some existing flows or
the generation of new flows. If positive slack is detected, the
network is working safely, guaranteeing all packet flows can
reach their destinations within the deadlines. However, there
may be chance that the network is over-designed, due to the
decrease of arrival rates or even departure of some flows.

ZHAN et al.: OPTIMIZING THE NOC SLACK THROUGH VOLTAGE AND FREQUENCY SCALING 1639

(a) (b) (c)

Fig. 8. Worst-case delay bound after frequency scaling for three, five, and eight streams. (a) Delay bounds for three streams. (b) Delay bounds for five
streams. (c) Delay bounds for eight streams.

Therefore, in both cases, the DVFS controller will be triggered
to calculated the optimum frequency and voltages assignments
for individual routers. Note that, although we use a conserva-
tive model based on network calculus to predict worst-case
packet latencies, deadlines misses are inevitable in case of
significant abrupt traffic fluctuations.

VI. EXPERIMENTS

A. Experimental Setup

We implemented a cycle-accurate network simulator based
on the booksim 2.0 simulator [17], with dynamic and leakage
power numbers extracted from DSENT [36].

We also analyze the timing behavior of some video appli-
cations and characterize the arrival curves for packet streams.
Table III shows the simulator and benchmark configurations.

1) Motion-JPEG (MJPEG) Decoder: The MJPEG decoder
is a video codec in which each video frame is compressed as a
JPEG image. The video of 352×240 pixels is spilt into JPEG
image size of 8 Kb. The maximum throughput is 307.2 KB
per invocation with a period of 90 000 cycles.

2) Picture-in-Picture (PiP): We use two sets of video
clips: regular clips with moderate to high motion content and
clips displaying still images. These two sets characterize the
two streams high-resolution (HR) and low-resolution (LR).
Incoming streams have the same frame resolution of
704× 576 pixels but will be down-scaled for LR, and each
frame consists of 1584 macroblocks. Frames are read at a
constant rate of 25 frames/s for HR and 12.5 frames/s for LR.
The service offered by a PE is 226.57 macroblocks/ms.

A JPEG image or a macroblock is treated as a packet, and
we derive arrival curves for the three packet streams based on
their throughput and frame rates

MJPEG stream f1: α1 (t) = 0.218t + 3.0 (18a)

PiP HR stream f2: α2 (t) = 0.175t + 13.109 (18b)

PiP LR stream f3: α3 (t) = 0.086t + 4.37. (18c)

And the baseline service curve is shown in (19) for a generic
wormhole NoC router that can process one packet per cycle
with a total pipeline length of five cycles

Baseline router: β (t) = [1.0× t − 5]+. (19)

As a case study, we consider that the three application
streams are mapped in a 4× 4 mesh network shown in

Fig. 9. Comparisons of energy consumption under different optimization
schemes.

Fig. 10. Energy savings when slack varies.

Fig. 5(a) with deterministic routing. Fig. 5 shows the resource
sharing, including feedback loops in stream f1 as an example.
A detailed network configuration is shown in Table III.

B. Experimental Results

We use the methodology in Section II to analyze the worst-
case latency in our case study. Results are shown in Fig. 6.

At the same time, we run simulation to get the maximum
packet latency for individual streams. A comparison between
the calculated worst-case delay bound (solid lines) and the
simulated maximum packet latency (dashed lines) when vary-
ing virtual channel buffer size B is shown in Fig. 7(a). We can
see that the calculated delay bounds are fairly tight.

Apart from the case study with three applications streams,
we duplicate each of the three sample streams to generate more
streams and map them on the NoC platform to form different
traffic scenarios. The whole process is conducted randomly.
Here we consider running another five streams (two MJPEG,
two PiP HR, one PiP LR) and eight streams (three MJPEG,

1640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

(a) (b)

Fig. 11. Application task graphs and mapping. (a) Application task graphs for consumer benchmark. (b) Mapping results of the consumer benchmark.

(a) (b) (c) (d)

Fig. 12. Runtime execution phases of the applications. (a) Phase 1. (b) Phase 2. (c) Phase 3. (d) Phase 4.

three PiP HR, two PiP LR). Similarly, we do worst-case delay
analysis to derive the delay bound and run simulation to get
the maximum packet latency. Due to space limitation, we only
show the differences between calculated delay bounds and
simulated results as the ratio with respect to simulated results,
when buffer size varies from 3 to 7, as shown in Fig. 7(b).

We find that the average difference is 17.2% while the
ratio is generally decreasing as VC size increases. This is
because with a small VC size, the effect of back-pressure
is more salient and the results from our analytical model is
more pessimistic. With VC size increased, the effect of back-
pressure is smoothed out, resulting in a tighter delay estimate
that converges with the simulation results.

Furthermore, we perform the proposed EHS algorithm
to reduce the energy of routers, assuming that three dis-
crete frequencies are available (1.0, 1.5, and 2.0 GHz), and
the minimum required voltage is 0.8, 1.2, and 1.5 volts in
45nm CMOS, respectively. As a comparison, we also evaluate
homogeneous scaling (Homo) in which case the frequency-
voltage level of the routers in the whole network is scaled
together. In addition, we compare EHS with another simple
algorithm proposed in Section IV-C. It starts scaling routers
with the ones that have less interfering streams. We call it
ColdSpot here. Results of the worst-case delay bounds are
shown in Fig. 8, where we refer to the jth duplicate of the ith
sample stream as f j

i . In addition, the normalized total network
energy consumption are shown in Fig. 9.

As we can see from Fig. 8(a)–(c), there is no deadline
miss using any of these scaling mechanisms. We define slack
utilization as the amount of slack scavenged by the algo-
rithm to save energy, divided by the amount of initial slack
under baseline configuration. Our proposed EHS algorithm
has effectively exploited individual stream slack, making the
completion time (delay) close to the deadline with a slack
utilization of 80.7% on average. In contrast, Homo only has
a slack utilization of 53.9% on average, and ColdSpot has a
slack utilization of 60.8%.

As for energy optimization, shown by Fig. 9, our pro-
posed EHS mechanism significantly outperforms Homo and
ColdSpot. On average, EHS achieves 42.7% energy reduction,
while Homo saves 22.0% and ColdSpot saves 27.2%. These
results confirm the effectiveness of our energy optimization
algorithm. EHS can efficiently utilize the available slack of
individual application streams for energy optimization, while
for Homo case, it cannot exploit slack in fine granular-
ity and therefore leads to relatively poor energy savings.
ColdSpot achieves better energy saving but fails to capture
the interference of flows accurately.

In addition, for sensitivity evaluation, we apply the proposed
EHS algorithm with different slack ratios available. Slack ratio
is the amount of slack over baseline worst-case latency. As
shown in Fig. 10, Our EHS algorithm works well under dif-
ferent slack ratios, saving energy by 23.1%, 31.1%, 38.4%,
52.0%, and 59.7%, respectively.

ZHAN et al.: OPTIMIZING THE NOC SLACK THROUGH VOLTAGE AND FREQUENCY SCALING 1641

(a) (b)

(d)(c)

Fig. 13. Packet delays at different phases. (a) Phase 1. (b) Phase 2. (c) Phase 3. (d) Phase 4.

C. Evaluation on DVFS

In this section, we illustrate the operation of DVFS with
our feedback-control strategy. Specifically, we take two appli-
cations from the consumer benchmark in the E3S benchmark
suite [10] and analyze the effect of DVFS on their delay
patterns. Fig. 11(a) shows the task graphs for these two
applications, where each circle represents a task and the arc
between two circles represents the communication. Each arc
is labeled with the total quantity of communication. The total
hard deadlines associated with each leaf of the application task
graphs are also displayed.

For evaluation purposes, we partition the application graphs
into different phases and distribute the total deadline into these
phases in proportional to their communication volumes. For
example, in Application 2, src→djpeg is Phase 1 with a dead-
line of 0.033, djpeg→display and djpeg→rgb-cymk are in
Phase 2 with a deadline of 0.017 for each, and rgb-cmk→print
belongs to Phase 3 with a deadline of 0.02. Note that the dead-
lines shown here are the final deadlines for transmitting the
designated amount of messages as labeled in the communi-
cation task graph. We calculate the worst-case average arrival
rates based on the deadlines and communication volumes asso-
ciated with each arc. For example, the worst-case arrival rate
for src→djpeg in Application 2 is 0.06 flit/cycle. The indi-
vidual packet deadline of a flow are obtained by multiplying
the best-case delay (based on the application mapping) by a

constant factor. We run these two applications concurrently
and assume tasks are randomly mapped onto the network, as
shown in Fig. 11(b). In this case, not only a single applica-
tion will change phases during execution, different applications
will influence each other at runtime. For clarity, the application
flows for each phase are presented in Fig. 12.

We conservatively set the control interval to be T =
100 μs [27] in our feedback controller. This duration is suf-
ficient enough to change the operating voltage/frequency and
exchange feedback and control signals over the network. We
apply our DVFS scheme on these two applications and report
the worst-case packet delays at every 10μs. Results are shown
in Fig. 13 where the dashed horizontal lines mark the dead-
lines. Initially at the beginning of Phase 1, the network routers
are operated at their highest voltages and frequencies. Then
after an interval T, the system reconfigures and operates indi-
vidual routers at the optimum frequency and voltage levels,
while still guarantees no deadline violations. Subsequently at
the beginning of Phase 2, the network is still operating at
the old frequency/voltage levels as in Phase 1 even through
new flows are generated. As a result, some flows fail to meet
their deadline constraints. In response, the system reacts to
such traffic change and ramps down the frequencies/voltages
of some network routers to the new optimum configurations
after an interval of T. Therefore, by tracking the slacks of
each flow, our feedback-control system can dynamically adjust

1642 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2014

Fig. 14. Energy consumption at different phases.

the frequency/voltage levels of individual routers to achieve
the optimum energy efficiency. It ramps down the frequen-
cies/voltages of some routers when there is enough slack, as
shown in Phases 1 & 3. Correspondingly, it raises the fre-
quencies/voltages of some routers as long as deadline misses
happen, as shown in Phases 2 & 4.

Moreover, we collect the overall network energy consump-
tion under our DVFS scheme. The baseline design does not
employ the DVFS scheme, i.e., the network configurations
remain the same even though network traffic changes after
entering the new phase. As we can see from Fig. 14, our
DVFS scheme saves 30.1% and 20.9% of energy by cutting
down the slacks, respectively in Phases 1 & 3. However, it
incurs 19.8% and 26.3% of energy increase in Phases 2 & 4.
As explained with Fig. 13, this is because the network must
increase the voltage/frequency levels to avoid deadline misses.
Nevertheless, the overall energy consumption of four phases
is still reduced by 12.2%.

VII. CONCLUSION

In this paper, a formal analysis based on network calculus
is adopted to obtain the worst-case slacks of packets in the
NoC for hard real-time embedded systems, and used to trade
slacks for energy savings by applying different voltages and
frequencies to individual routers. Experimental results show
that our worst-case delay analysis can derive an upper bound
for packet latency, and our energy-aware heuristic search algo-
rithm can effectively find the frequency-voltage assignment
that can reduce network energy significantly under variable
slack ratios. Additionally, our feedback-control strategy suc-
cessfully adjusts the voltage/frequency levels of individual
routers dynamically for the optimal energy-efficiency during
runtime.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks on chips: A new SoC
paradigm,” IEEE Comput., vol. 35, no. 1, pp. 70–78, Jan. 2002.

[2] T. Bjerregaard and J. Sparso, “A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-chip,”
in Proc. Des. Autom. Test Eur., 2005, pp. 1226–1231.

[3] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework
for analysing system properties in platform-based embedded system
designs,” in Proc. Des. Autom. Test Eur., Munich, Germany, 2003,
pp. 190–195.

[4] C.-S. Chang, Performance Guarantees in Communication Networks.
Berlin, Germany: Springer, 2000.

[5] X. Chen et al., “Dynamic voltage and frequency scaling for
shared resources in multicore processor designs,” in Proc. 50th
ACM/EDAC/IEEE Des. Autom. Conf., Austin, TX, USA, May/Jun. 2013,
p. 114.

[6] W. Dally and S. Tell, “The even/odd synchronizer: A fast, all-digital,
periodic synchronizer,” in Proc. IEEE Symp. Asynchronous Circuits
Syst. (ASYNC), Grenoble, France, 2010, pp. 75–84.

[7] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. Des. Autom. Conf., 2001, pp. 684–689.

[8] W. J. Dally and B. Towles, Eds., Principles and Pracitices of
Interconnection Networks. San Francisco, CA, USA: Morgan Kaufmann,
2003, pp. 245–247.

[9] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Aergia: Exploiting
packet latency slack in on-chip networks,” in Proc. Int. Symp. Comput.
Archit., 2010, pp. 106–116.

[10] R. Dick. (2008). “Embedded System Synthesis Benchmarks Suite (E3S),”
[Online]. Available: http://ziyang.eecs.umich.edu/~dickrp/e3s/

[11] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proc.
Int. Symp. Comput. Archit., 2011, pp. 365–376.

[12] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on chip:
Concepts, architectures, and implementations,” IEEE Des. Test Comput.,
vol. 22, no. 5, pp. 414–421, Sep./Oct. 2005.

[13] K. Goossens and A. Hansson, “The Æthereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proc. Des. Autom. Conf.,
2010, pp. 306–311.

[14] N. Goulding et al., “Greendroid: A mobile application processor for a
future of dark silicon,” Hot Chips, vol. 22, Aug. 2010.

[15] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep./Oct. 2007.

[16] Y.-C. Huang, K.-K. Chou, and C.-T. King, “Application-driven end-to-
end traffic predictions for low power NoC design,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 21, no. 2, pp. 229–238, Feb. 2013.

[17] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally,
BookSim 2.0 User’s Guide. Palo Alto, CA, USA: Standford Univ. Press,
2010.

[18] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core DVFS using on-chip switching regulators,” in Proc. Int.
Symp. High-Perform. Comput. Arch., Salt Lake City, UT, USA, 2008,
pp. 123–134.

[19] D. Lackey et al., “Managing power and performance for system-on-chip
designs using voltage islands,” in Proc. Int. Conf. Comput.-Aided Des.,
2002, pp. 195–202.

[20] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet (Lecture Notes in
Computer Science), vol. 2050. Berlin, Germany: Springer, 2001.

[21] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-synchronized frames
for guaranteed quality-of-service in on-chip networks,” in Proc. Int.
Symp. Comput. Arch., Beijing, China, 2008, pp. 89–100.

[22] T. G. Mattson et al., “The 48-core SCC processor: The programmer’s
view,” in Proc. Int. Conf. High Perform. Comput. Netw. Stor. Anal.,
New Orleans, LA, USA, Nov. 2010, pp. 1–11.

[23] A. K. Mishra et al., “A case for dynamic frequency tuning in on-chip
networks,” in Proc. Int. Symp. Microarchit., New York, NY, USA, 2009,
pp. 292–303.

[24] K. Niyogi and D. Marculescu, “Speed and voltage selection for GALS
systems based on voltage/frequency islands,” in Proc. Asia South Pac.
Des. Autom. Conf., 2005, pp. 292–297.

[25] K. Niyogi and D. Marculescu, “Speed and voltage selection for GALS
systems based on voltage/frequency islands,” in Proc. Asia South Pac.
Des. Autom. Conf., 2005, pp. 292–297.

[26] U. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu, “Voltage-
frequency island partitioning for GALS-based networks-on-chip,” in
Proc. Des. Autom. Conf., 2007, pp. 110–115.

[27] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung, “Design
and management of voltage-frequency island partitioned networks-on-
chip,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 3,
pp. 330–341, Mar. 2009.

[28] J. Ouyang and Y. Xie, “LOFT: A high performance network-on-chip
providing quality-of-service support,” in Proc. Int. Symp. Microarchit.,
Atlanta, GA, USA, 2010, pp. 409–420.

[29] Y. Qian, Z. Lu, and W. Dou, “Analysis of communication delay bounds
for network on chips,” in Proc. Asia South Pac. Des. Autom. Conf.,
Yokohama, Japan, 2009, pp. 7–12.

[30] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for
best-effort communication in wormhole networks on chip,” in Proc. 3rd
ACM/IEEE Int. Symp. Netw. Chip (NOCS), San Diego, CA, USA, 2009,
pp. 44–53.

ZHAN et al.: OPTIMIZING THE NOC SLACK THROUGH VOLTAGE AND FREQUENCY SCALING 1643

[31] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for
on-chip packet-switching networks,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 29, no. 5, pp. 802–815, May 2010.

[32] A. Raghavan et al., “Computational sprinting,” in Proc. Int. Symp.
High-Perform. Comput. Archit., 2012, pp. 1–12.

[33] G. Semeraro et al., “Energy-efficient processor design using multiple
clock domains with dynamic voltage and frequency scaling,” in Proc.
Int. Symp. High-Perform. Comput. Archit., 2002, pp. 29–40.

[34] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links
for power optimization of interconnection networks,” in Proc. 9th Int.
Symp. High-Perform. Comput. Archit., 2003, pp. 91–102.

[35] A. Sharifi, H. Zhao, and M. Kandemir, “Feedback control for providing
QoS in NoC based multicores,” in Proc. Des. Autom. Test Eur., Dresden,
Germany, 2010, pp. 1384–1389.

[36] C. Sun et al., “DSENT—A tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in Proc. 6th
IEEE/ACM Int. Symp. Netw. Chip (NoCS), 2012, pp. 201–210.

[37] M. B. Taylor, “Is dark silicon useful? Harnessing the four horsemen of
the coming dark silicon apocalypse,” in Proc. 49th ACM/EDAC/IEEE
Des. Autom. Conf., San Francisco, CA, USA, 2012, pp. 1131–1136.

[38] M. B. Taylor et al., “The Raw microprocessor: A computational fab-
ric for software circuits and general-purpose programs,” IEEE Micro,
vol. 22, no. 2, pp. 25–35, Mar./Apr. 2002.

[39] G. Venkatesh et al., “Conservation cores: Reducing the energy of mature
computations,” in Proc. 15th Edition ASPLOS Archit. Support Program.
Lang. Oper. Syst., vol. 38. 2010, pp. 205–218.

[40] W. Wang and P. Mishra, “PreDVS: Preemptive dynamic voltage scal-
ing for real-time systems using approximation scheme,” in Proc. 47th
ACM/IEEE Des. Autom. Conf. (DAC), Anaheim, CA, USA, Jun. 2010,
pp. 705–710.

[41] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration and
partitioning for energy optimization in real-time multi-core systems,” in
Proc. 48th ACM/EDAC/IEEE Des. Autom. Conf., New York, NY, USA,
2011, pp. 948–953.

[42] P. Zhou, J. Yin, A. Zhai, and S. S. Sapatnekar, “NoC frequency scaling
with flexible-pipeline routers,” in Proc. Int. Symp. Low Power Electron.
Des. (ISLPED), Fukuoka, Japan, 2011, pp. 403–408.

Jia Zhan (S’12) received the B.S. degree from the
Harbin Institute of Technology, Harbin, China, and
joined the Pennsylvania State University, University
Park, PA, USA, in 2011, where he is currently
pursuing the Ph.D. degree from the Department of
Computer Science and Engineering.

His current research interests include a broad
range of computer architecture, with an emphasis
on network-on-chip for many-core processors and
real-time embedded systems.

Nikolay Stoimenov (M’12) received the bachelor’s
and the Honours bachelor’s degrees in computer sci-
ence from the University of Adelaide, Adelaide, SA,
Australia, in 2004 and 2005, respectively, and the
Ph.D. degree in computer engineering from the ETH
Zurich, Zurich, Switzerland, in 2011.

He is currently a Senior Scientist with ETH
Zurich. His current research interests include mod-
els and methods for design of embedded real-time
systems.

Jin Ouyang received the B.S. degree in microelec-
tronics from Peking University, Beijing, China, in
2007, and the Ph.D. degree in computer engineering
from the Pennsylvania State University, University
Park, PA, USA, in 2012.

He is currently a Senior Engineer with NVIDIA
Corporation, Santa Clara, CA, USA. His current
research interests include computer architectures and
VLSI systems and circuits.

Lothar Thiele (M’86) received the Diplom-
ingenieur and the Dr.-Ing. degrees in electrical engi-
neering from the Technical University of Munich,
Munich, Germany, in 1981 and 1985, respectively.

He joined the Information Systems Laboratory at
Stanford University, Stanford, CA, USA, in 1987.
In 1988, he was the Chair of Microelectronics at
the Faculty of Engineering, University of Saarland,
Saarbrucken, Germany. He joined ETH Zurich,
Zurich, Switzerland, as a Full Professor of Computer
Engineering, in 1994. His current research interests

include models, methods, and software tools for the design of embedded sys-
tems, embedded software, and bioinspired optimization techniques.

Mr. Thiele was the recipient of the Dissertation Award of the Technical
University of Munich, in 1986, the Outstanding Young Author Award of
the IEEE Circuits and Systems Society, in 1987, the Browder J. Thompson
Memorial Award of the IEEE, in 1988, and the IBM Faculty Partnership
Award in 2000–2001. In 2004, he joined the German Academy of Sciences
Leopoldina. He was also the recipient of the Honorary Blaise Pascal
Chair of University Leiden, The Netherlands, in 2005. He is an Associate
Editor of the IEEE TRANSACTION ON INDUSTRIAL INFORMATICS, the
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, Journal of Real-
Time Systems, Journal of Signal Processing Systems, Journal of Systems
Architecture, and INTEGRATION, the VLSI Journal. Since 2009, he has been
a member of the Foundation Board of Hasler Foundation, Switzerland. Since
2010, he has been a member of the Academia Europaea. He joined the
National Research Council of the Swiss National Science Foundation, in 2013.

Vijaykrishnan Narayanan (F’11) received the
bachelor’s degree from the University of Madras,
Chennai, India, in 1993, and the Ph.D. degree from
the University of South Florida, Tampa, FL, USA,
in 1998, both in computer science and engineering.

He is a Professor of Computer Science and
Engineering and Electrical Engineering with
Pennsylvania State University, University Park,
PA, USA. His current research interests include
embedded systems, computer architecture, and
power-efficient system design.

Yuan Xie (SM’07) received the B.S. degree in
electronic engineering from Tsinghua University,
Beijing, China, in 1997, the M.S. and the Ph.D.
degrees in electrical engineering from Princeton
University, Princeton, NJ, USA, in 1999 and 2002,
respectively.

He is currently a Professor with the Department of
Electrical and Computer Engineering, University of
California at Santa Barbara (UCSB), Santa Barbara,
CA, USA. Before joining UCSB, he was a Professor
with Pennsylvania State University, University Park,

PA, USA, since 2003. He was also with IBM and AMD, from 2002 to 2003
and from 2012 to 2013, respectively. His current research interests include
VLSI design, computer architecture, embedded systems design, and electron-
ics design automation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

