
Resource Adaptations with Servers
for Hard Real-Time Systems

TIK-Report No. 320

April 2010

Nikolay Stoimenov and Lothar Thiele
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

{stoimenov,thiele}@tik.ee.ethz.ch

Luca Santinelli and Giorgio Buttazzo
RetisLab

SSSA Pisa
56124 Pisa, Italy

{l.santinelli,giorgio}@sssup.it

Abstract

Many real-time applications are designed to work in different operating modes each characterized by different
functionality and resource demands. With each mode change, resource demands of applications change, and static
resource reservations may not be feasible anymore. Dynamic environments where applications may be added and
removed online also need to adapt their resource reservations. In such scenarios, resource reconfigurations are
needed for changing the resource reservations during runtime and achieve better resource allocations. There are
a lot of results in the scientific literature of how to find the optimal amount of resources needed by an application
in the different operating modes, or how an application can perform safe mode transitions. However, the problem
of resource reconfigurations for systems with reservations has not been addressed. A resource scheduler should be
reconfigured online in such a way that it still guarantees a certain amount of resources during the reconfiguration
process, otherwise applications may miss deadlines. The paper proposes a framework for scheduling real-time ap-
plications through scheduling servers that provide resource reservations, and algorithms for changing the resource
reservations online while still guaranteeing the feasibility of the system and the schedulability of applications. The
framework analysis is integrated into a well-known modular performance analysis paradigm based on Real-Time
Calculus. The results are illustrated with examples and a case study.

1 Introduction

The server architecture paradigm has been seriously considered in the past years for its ability to separate the
scheduling concerns between the system and the application levels.

A server mechanism is strictly connected with the resource partition idea [21, 28] where a shared resource,
e.g. CPU computation time, is used by several applications. Servers are used to isolate the temporal behavior
of real-time tasks through resource reservations [23]. Abeni and Buttazzo [4] introduced a bandwidth reservation
mechanism (the Constant Bandwidth Server - CBS) that allows real-time tasks to execute in dynamic environments
under a temporal protection mechanism, so that the server never exceeds a predefined bandwidth, independently
of the actual requests of the tasks served by the server.

Server models can be classified into event-driven servers: the servers are driven by the application requirements.
The CBS [1] and sporadic server [29] are typical examples. And time-triggered servers: the server resource
supply is driven by a predefined timing pattern that depends only on the server properties. An example is the
Time Division Multiple Access (TDMA) server where the resource is periodically partitioned [37]. In particular,
a TDMA server assigns time slots to its applications that repeat each cycle.

Nowadays, dynamic real-time applications ask for real-time systems that can adapt their behavior at run-time
by changing their operating mode: the computing environment and the available resource of a system may change
over time. For example, adding a new task into the system at runtime may result in a reduction of the computing
resources being allocated to the existing tasks. Moreover a change in the operating mode of an application, e.g.,
from start-up to normal, or from normal to shut-down, may also demand re-allocation of the computing resources
among the tasks. That and many other scenarios require flexible workload management and resource allocation.

Whereas a server manages an application by supplying the resource it requires [12], adaptive applications must
rely on adaptive servers to meet their changing resource requirements. Servers need to be reconfigured dynamically
to adapt the resource reservations and reflect the changes in the system or its environment. Such reconfigurations
need to be performed online without jeopardizing schedulability. It is therefore essential to develop appropriate
resource reconfiguration criteria and algorithms to manage the criticality of the reconfiguration phase.

1.1 Related Work

To cope with applications in which the computational demand is highly variable, fixed reservations could not be
appropriate to achieve the desired performance, hence adaptive scheduling schemes need to be adopted. Buttazzo
et al. [7] proposed an elastic scheduling methodology for adapting the rates of a periodic task set to different work-
load scenarios, without affecting the system schedulability. Abeni et al. [2] presented a framework for dynamically
allocating the CPU resource to tasks whose execution times are not known a priori. Adaptive reservation tech-
niques based on feedback scheduling have also been investigated by the authors in [3]. All of these frameworks
are only suitable for soft real-time systems.

There are also systems in which the application is characterized by multiple execution modes, each consisting of
a specific task set and workload requirement. For these systems, the feasibility of the schedule has to be guaranteed
not only within each individual mode, but also during mode transitions. This problem has been deeply investigated
in the real-time literature [8, 24, 27, 31, 34]. Crespo et al. [25] presented a survey of mode change protocols for
uniprocessor systems under fixed-priority scheduling and proposed a new protocol along with its schedulability
analysis. Guangming [15] computed the earliest time at which a new task can be safely added to the system
scheduled by the Earliest Deadline First (EDF), without jeopardizing the feasibility of the task set. All of these
results address the problem of performing mode transitions in applications without violating their schedulability.
None of them considers how to change resource reservations online without violating applications schedulability
which is the goal of this paper.

In real-time operating systems, servers are a specific scheduling mechanism that handles aperiodic requests

2

as soon as possible while preserving hard periodic tasks from missing their deadlines. Another classification
distinguishes between fixed priority and dynamic priority servers, depending on the scheduling policy used to
schedule them. Among fixed priority servers, deferrable server [20,32] and sporadic server [29] are the most well-
known techniques that preserve their capacity when no request is pending upon the invocation of a server. Spuri et
al. [30] presented a survey of dynamic priority servers that can efficiently work under EDF. It is also notable that
time-triggered architectures play an increasingly important role in large distributed embedded systems as described
in [16, 18, 37]. Mainly, time-triggered servers offer high predictability with enormous benefits to the analysis of
real-time systems.

However, classical server paradigms and models do not allow adaptations to changing conditions. To the best
of our knowledge, none of the schedulers that provide isolation and real-time guarantees have mechanisms for
online reconfiguration that can provide guarantees during the reconfiguration process. It may be possible to wait
for an idle time in the system in order to reconfigure the scheduler as in [11], however, it is highly unlikely that
idle times occur at the same time for all applications.

Several papers have tried to face and cope with this lack. Fohler [14] investigated the problem of mode changes
in both the applications and the scheduler in the context of pre run-time scheduled hard real-time systems. Ap-
plications are specified with periodically activated graphs with precedence constraints for which safe switching
points are pre-computed using heuristic search techniques. The FRESCOR project [17] has proposed a mode
change protocol for a system with virtual resources based on the sporadic server and periodic tasks where bud-
gets may change. Both frameworks are not as general as the results presented in this paper which can deal with
hierarchically scheduled systems with mixed schedulers and complex task activation schemes.

New mechanisms have been proposed to dynamically change server models at run-time. de Olivera et al. [13]
addressed the problem of finding optimal CBS parameters and dynamically reconfiguring the servers, offering
support for multi-mode adaptive real-time applications. Valls et al. [35] presented an adaptation protocol based
on the definition of a contract model for filtering peaks in resource demands where applications are modeled with
periodic, continuous, and imprecise tasks. However, in both frameworks there are no algorithms and analysis of
applications schedulability for the proposed online resource reconfigurations.

Brandt et al. [6] propose the rate-based earliest deadline (RBED) scheduler where servers are periodic tasks
scheduled with EDF. The paper gives system schedulability conditions for adaptations in the periods and utiliza-
tions of the servers. However, the paper does not go neither into characterizing the service provided by the servers
during reconfigurations, nor into algorithms for how to control this service.

Craciunas et al. [9] propose the variable-bandwidth server (VBS) which is based on CBS but allows for adapta-
tions. Applications are specified as sequences of actions which execute on a VBS. Activations of actions change
the parameters of the VBS, and schedulability is based on the maximum utilization from all actions of an appli-
cation. Our framework is more general as server reconfigurations may happen at any time, are independent of
application model, and can take advantage of application operating modes.

Contributions: We tackle the problem of scheduler adaptations in resource partitioned architectures, mainly
from the perspective of adaptive servers that provide real-time guarantees. We develop a scheduling server frame-
work based on the TDMA partitioning paradigm. We establish criteria that need to be met during a reconfiguration
of the framework, classify the possible reconfiguration scenarios, introduce algorithms for performing them while
meeting real-time constraints, and present schedulability analysis for the reconfigurations based on Real-Time
Calculus [33].

Organization of the paper: Section 2 classifies the problems that may occur during reconfigurations of some
common servers with examples. Section 3 describes the proposed Adaptive Server with Guarantees, and defines
the service guarantees that it provides during operation and reconfiguration. Section 4 classifies the possible
reconfiguration scenarios and analyzes schedulability for each of them. Section 5 illustrates the algorithms with a
case study. Finally, Section 6 concludes this paper.

3

t

Old Mode New Mode

t

t

t

SA: Slot 1 ms SB: Slot 5 ms SC: Slot 1 ms

 Cycle 10 ms

SA: Slot 3 ms SB: Slot 6 ms SC: Slot 1 ms

Cycle 12 msτA:
Period 20 ms

WCET 2 ms

Old Mode
WCRT = 7 ms

Transition
WCRT = 9 ms

New Mode
WCRT = 8 ms

Transition
WCRT = 13 ms

τB:
Period 5 ms
WCET 2 ms

τC:
Period 16 ms

WCET 1 ms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Figure 1. TDMA servers reconfigured at t = 20ms (dashed line) causes longer WCRTs for tasks τB
and τC .

2 Motivational Examples

To illustrate the different problems that may occur during reconfigurations, we have chosen three examples of
systems with TDMA servers [37], static polling servers [26], and CBSs [4]. Similar examples can be derived
with other kinds of servers and show that a naive online change of parameters is not able to guarantee the system
schedulability in hard real-time scenarios.

Example 2.1. Consider Figure 1. Three TDMA servers, SA, SB , and SC can operate in two modes, denoted as
Old Mode and New Mode. We suppose that given an operating mode, all TDMA servers operate with the same
period which equals the cycle of the TDMA. When there is a mode change, the allocated slots in the TDMA and
the cycle of the TDMA may change. When a server slot becomes available, it is available regardless of whether
there is workload to use it.

Server SA serves a single task τA with worst-case execution time (WCET) of 2ms and period of 20ms which
we will denote as (2, 20). In Old Mode, server SA has a reserved slot of 1ms in a TDMA cycle of 10ms denoted
as (1, 10). In New Mode, server SA has parameters (3, 12). Server SB serves a single task τB with parameters
(2, 5). The server in Old Mode has parameters (5, 10) and in New Mode (6, 12). Server SC serves a single task
τC with parameters (1, 16). The server in Old Mode has parameters (1, 10) and in New Mode (1, 12).

Figure 1 shows a server reconfiguration performed at time t = 20ms. For task τB this means that it suffers
longer worst-case response time (WCRT) of 9ms during the reconfiguration whereas its WCRT is 7ms in Old Mode
and 8ms in New Mode. Similarly task τC has a longer WCRT during the reconfiguration equal to 13ms, whereas
in Old Mode it is 10ms, and in New Mode 12ms.

Hence, a reconfiguration of TDMA servers may cause several tasks to miss deadlines.

Example 2.2. Consider Figure 2. Two polling servers, SA and SB , are scheduled with the fixed priority policy.
Server SA has higher priority. It can operate in two modes. In Old Mode it has a budget of 2ms and a period of
7ms, denoted as (2, 7). It serves a single task τA with WCET of 2ms and deadline equal to period of 7ms, denoted
as (2, 7). In New Mode SA and τA have parameters (6, 24) and (6, 24), respectively. Server SB and its task τB
operate in a single mode and their parameters are (40, 59) and (40, 59), respectively. The system is schedulable
separately in both modes.

4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

τA

τB

SA

SB

Figure 2. Polling server SA reconfigured at t = 28ms (dashed line) causes a deadline miss for task
τB and a capacity miss for server SB .

Figure 2 shows a server reconfiguration without a proper transition algorithm. Server SA and task τA simulta-
neously enter Mode II at time t = 28ms which leads to a capacity miss for server SB and a deadline miss for task
τB at time t = 59ms even though the mode change was performed at the end of the periods for server SA and task
τA.

The example illustrates that reconfiguration of a server may cause other servers to not be able to deliver their
guaranteed budgets.

Example 2.3. Consider Figure 3. CBS SA can operate in two modes. In Old Mode it has a budget of 4ms with
a period of 5ms denoted as (4, 5). It serves a single task τA with WCET of 8ms and deadline equal to period of
10ms denoted as (8, 10). In New Mode, the parameters for SA are (8, 10) and τA is unchanged. CBS SB serves
a single task τB with parameters (2, 10) and (2, 10), respectively. The system is schedulable when server SA is
either in Old Mode or in New Mode as U = USA

+ USB
= 1.

Figure 3 shows a reconfiguration for server SA at the end of a server deadline at time t = 15ms which leads to
a missed deadline for task τA at time t = 20ms.

The example illustrates that reconfiguration of a server may cause the application that it serves to miss dead-
lines.

In summary, the problems observed during online reconfiguration of servers fall in two classes:

1. Isolation violation: a reconfiguration of one server may cause other servers to not be able to deliver their
guaranteed capacities.

2. Deadline violation: a reconfiguration of a server may affect the application that it serves by making it miss
deadlines.

Safe reconfiguration algorithms will have to address both problems in order to be suitable for hard real-time
systems.

3 Framework for Adaptive Servers with Guarantees

In this section, we give an overview of a framework with adaptive resource reservations. There are many
scenarios for the use of such a framework and many different ways to realize it. We focus on the scheduling

5

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τA

τB

SA

SB

Figure 3. CBS SA reconfigured at t = 15ms (dashed line) causes a missed deadline for task τA.

servers and their properties. In our framework, applications share a common processor using servers and we
refer to them as Adaptive Servers with Guarantees (ASG) as they guarantee resource reservations and can be
reconfigured dynamically while still providing a guarantee even during the reconfiguration.

We consider a uniprocessor system that runs a set of applications. Each application is scheduled on an individual
ASG. The servers provide resource reservations and guarantee isolation between applications. Applications can be
of arbitrary complexity and they may even have their own schedulers, as in hierarchically scheduled systems [36].
An ASG is only concerned with guaranteeing a minimum service supply to its application. The system has a
single Server Manager that can control the parameters of all servers (such as their budgets and period) and is able
to communicate with the applications in order to accommodate their changing resource requirements.

The overall system framework is illustrated in Figure 4.

3.1 The Adaptive Server with Guarantees

Servers are scheduled statically by a TDMA scheme. For each server a slot of fixed size Q called budget is
reserved in the TDMA time-wheel. A server is activated, i.e., its budget becomes available, when the slot of the
server arrives in the TDMA time-wheel. All servers in the system are activated periodically with the same period
P which equals to the cycle of the TDMA. Servers can have different budgets but always a common period. An
ASG is denoted with the tuple (Q,P). A schedule of four ASGs is illustrated in Figure 5.

Budgets are always given to applications regardless of whether they use them or not, like in a traditional TDMA

ASG 1 ASG 2 ASG N

APPL. 1 APPL. 2 APPL. N
EDF FPFIFO

CPU

Server Manager

. . .

Figure 4. Overview of a system where the CPU is shared by applications through multiple ASGs.

6

ASG 1 ASG 2 ASG 3 ASG 4 unused ASG 1 ASG 2 ASG 3 ASG 4 unused ASG 1

t

period P
budget for server ASG 1

Q1

free budget
QF

Figure 5. Schedule for four ASGs.

schedule. In the following discussion, we assume that context switch overheads take negligible time but they can
be trivially added to our analysis. The description of an ASG can be summarized in the following definition.

Definition 3.1. An ASG (Q,P) guarantees to an application access to a shared resource for Q > 0 time units
every P > 0 time units, where Q ≤ P .

The total utilization for a system with N ASGs is defined as:

U =

∑N
i=1Qi

P
,

which is the sum of the single server utilizations Qi/P . Such a system is schedulable when the total utilization is
smaller or equal to 1:

U ≤ 1. (1)

When the total utilization is less than 1, there is some unused budget in the system, QF , called the free budget.
We suppose that all ASGs are scheduled from the beginning of every period one after the other, and the free
budget is always at the end, as illustrated in Figure 5. The free budget may be given to non real-time applications
on the basis that it can always be reclaimed by the system. The free budget is essential in our framework during
reconfigurations as it will be shown in Section 4.

3.2 Resource Supply of an ASG

An ASG (Q,P) may not have access to the CPU for a time interval Δ that is upper bounded by P − Q.
After this interval, the server will have guaranteed access to the resource for Q time units. Therefore, an ASG
cannot guarantee resource access for any interval of size 0 ≤ Δ ≤ P − Q. However, it guarantees service of
S(Δ − (P −Q)), in any interval (P −Q) ≤ Δ ≤ P , where S is CPU speed, e.g. cycles per time unit. Without
loss of generality, we assume that S = 1, as all parameters in the system can be normalized according to this
speed. Then the minimum resource supply of an ASG (Q,P) in any time interval Δ can be lower bounded by the
following function:

βQ,P (Δ) = max

(⌊
Δ

P

⌋
Q,Δ−

⌈
Δ

P

⌉
(P −Q)

)
,

or more compactly as:

βQ,P (Δ) = sup
0≤λ≤Δ

{
λ−

⌈
λ

P

⌉
(P −Q)

}
. (2)

The minimum resource supply for an ASG (Q,P) is illustrated in Figure 6.
The minimum resource supply function in (2) is actually a lower service curve as known from Network and

Real-Time Calculus [10, 19, 33]. Service curves are abstract representations for the availability of processing and
communication resources. A service curve β(Δ) gives a lower bound on the available service in any time interval
of length Δ > 0 where for Δ ≤ 0, β(Δ) = 0. The service is usually expressed in a suitable workload unit such as
number of cycles for computing resources or bits for communication resources.

7

ASG(Q,P)

t

period
P

budget
Q

QP - Q
βQ,P

Δ

p

ro
ce

ss
o

r
cy

cl
es

ASG(Q,P) ASG(Q,P)

Figure 6. Resource supply of an ASG (Q,P).

3.3 Performance Analysis

Application tasks are activated by the arrivals of events. The timing characteristics of event arrivals are described
abstractly with arrival curves as known from Network and Real-Time Calculus. The arrival curve α(Δ) denotes
an upper bound on the number of events that arrive in any time interval of length Δ > 0 where for Δ ≤ 0,
α(Δ) = 0. Arrival curves substantially generalize traditional event stream models such as periodic, periodic with
jitter, and sporadic. Often the domain of arrival curves are workload units. Event-based arrival curves can be
converted to workload-based arrival curves by scaling with the best-case/worst-case execution demands of events.
The units of the arrival and service curves used in an analysis need to be the same. In this paper, we will use the
workload-based interpretation and assume that each event has a fixed execution demand. More general concepts
for characterization of these units are discussed in [22].

Now given the minimum resource supply of an ASG and a characterization of the activation stream of a task,
we can compute the worst-case response time (WCRT) for the task. To this end, we use results from Network
and Real-Time Calculus where for a resource supply characterized with a service curve β and an input stream
characterized with an arrival curve α, the WCRT of an event from the stream is the maximum horizontal distance
between the arrival and the service curves computed as follows:

sup
λ≥0

{inf{τ ≥ 0 : α(λ) ≤ β(λ+ τ)}} � Del(α, β). (3)

Example 3.2. To illustrate this let us consider Example 2.1 from Section 2. Consider server SB in Old Mode

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

Δ [ms]

p

ro
ce

ss
o

r c
yc

le
s

τ
B

 : α

S
B

 : β
5,10

WCRT = 7 ms

Figure 7. Server SB and task τB WCRT analysis.

8

which is an ASG with budget Q = 5ms and a period P = 10ms. The respective service curve can be computed
with equation (2). It serves a single periodic task τB with a period of 5ms and WCET of 2ms. The WCRT of the
task computed with equation (3) is shown in Figure 7. The computed WCRT is equal to the one observed on the
trace in Figure 1.

3.4 Schedulability of Applications

An application is schedulable if its real-time requirements are satisfied by the system. If we consider the case of
a single task, we may have the requirement that all activations are processed within a relative deadline D. Given
(3), this is expressed as Del(α, β) ≤ D. Inverting it w.r.t. β, we can compute a lower bound on the minimum
resource demand required to meet the deadline requirement. This is expressed as follows:

β(Δ) ≥ α(Δ−D) ∀Δ ∈ R
≥0. (4)

In other words, the minimum resource demand has a lower service curve that equals to β(Δ) = α(Δ−D).
By using previous results on demand bound functions by Baruah et al. [5] and interface-based design by Wan-

deler and Thiele [36] such a task is schedulable if a resource can supply service that is larger or equal to the
demanded one. For an ASG (Q,P), schedulability would mean that:

βQ,P (Δ) ≥ β(Δ) ∀Δ ∈ R
≥0 (5)

where βQ,P is computed with (2).
In the case of task τB from Example 2.1, it is schedulable with a relative deadline D = 7ms by server SB with

Old Mode parameters (5, 10). This can be seen in Figure 8 where the service curve of server SB is above the
shifted arrival curve of task τB which expresses the resource demand of the task.

The same schedulability condition applies not only for single tasks, but even for complex applications as we
can compute the minimum resource demand of an application as a single service curve β, for details see [36].

3.5 Schedulability during a Reconfiguration

A reconfiguration may change the server parameters such as their budgets and period from one mode to another.
We consider a single reconfiguration. For a system with N ASGs before a reconfiguration they operate with
parameters (QO

i , P
O), 1 ≤ i ≤ N , (for Old Mode), and after the reconfiguration with parameters (QN

i , PN),

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

Δ [ms]

p

ro
ce

ss
o

r c
yc

le
s

S
B

 : β
5,10

τ
B

 : α(Δ−D)
D = 7 ms

Figure 8. Server SB and task τB schedulability condition.

9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

Δ [ms]

p

ro
ce

ss
o

r c
yc

le
s

β
5,10

β = min{ β
5,10

,β
6,12

}
WCRT = 8 ms

β
6,12

τ
B

: α
~

Figure 9. Condition (6) can guarantee a WCRT of 8ms for task τB during the reconfiguration in
Example 2.1.

1 ≤ i ≤ N , (for New Mode). We assume that the system is schedulable in Old Mode and New Mode separately,
i.e., condition (5) is satisfied by assumption for all servers in Old Mode:

βQO
i ,PO(Δ) ≥ βi(Δ) ∀Δ ∈ R

≥0 ∀i,

and for all servers in New Mode:

βQN
i ,PN (Δ) ≥ βi(Δ) ∀Δ ∈ R

≥0 ∀i.

During a reconfiguration or the changing from one set of server parameters to another, the system should not
suffer a degraded performance. Let us consider the two problems described in Section 2. To prevent isolation
violations, each server should be able to guarantee a service curve during a reconfiguration. To prevent deadline
violations, each server should be able to guarantee a service curve that is sufficiently large during a reconfiguration.

Let us denote as β̃i(Δ) the service provided by an ASG during time intervals Δ that span Old Mode, the
Reconfiguration, and New Mode. In order to prevent a degraded performance during a reconfiguration we need to
have for all servers that:

β̃i(Δ) ≥ min{βQO
i ,PO(Δ), βQN

i ,PN (Δ)} ∀Δ ∈ R
≥0 ∀i. (6)

The above condition ensures that each server guarantees during a reconfiguration at least the minimum of the
services guaranteed in Old and New Modes. This implies that each application served by an ASG during a
reconfiguration is guaranteed that it will not violate the larger of the deadlines from Old and New Modes.

Example 3.3. To illustrate this, consider server SB from Example 2.1. During the transition from Old Mode to
New Mode, if the server was able to meet condition (6), then the WCRT of task τB would have been at most the
maximum of the WCRTs from the two modes which is 8ms, and it would not have experienced the WCRT of 9ms.
This is illustrated in Figure 9.

4 Algorithms and Analysis

In this section, we classify the scenarios for feasible resource reconfigurations and provide schedulability analy-
sis for each of them to show that they meet condition (6). The proposed algorithms are implemented in the Server

10

Table 1. Reconfiguration Scenarios
Remove a server

Decrease of a budget
PO = PN Add a server

Increase of a budget
Increase of period PO < PN

PO �= PN Decrease of period PO > PN

Manager and executed by it. Initiation of a reconfiguration can be done by an application in order to request a dif-
ferent resource reservation, or by the Server Manager in order to achieve better resource allocation. The proposed
algorithms work regardless of what the reason for reconfiguration is.

We differentiate between reconfigurations that do not change the period of the servers, i.e., PO = PN , and
those that do, i.e., PO �= PN . The possible reconfiguration scenarios are summarized in Table 1.

Reconfigurations that do not require change of period have simple feasibility conditions, and they do not require
any pre-computed information except budgets and period as the decision for performing them can be made online.
For the case of changing periods, conditions are much more involved as we will see, and some parameters need to
be pre-computed and stored in the Server Manager to be used online.

4.1 Notation

The time of the k-th activation of server (Qi, P) is denoted as si,k. The time when the free budget starts is sF,k.
An activation frame k contains the k-th activations of all servers and the free budget. The time when activation
frame k starts is the activation time of the first scheduled server (Q1, P) denoted as s1,k and it ends when the same
server is scheduled again s1,k+1. When we would like to differentiate between any of the parameters and indicate
that they belong to the Old Mode or the New Mode, we will add the superscripts O or N , respectively. In the Old
Mode, all activation frames have the same length which equals to the period, PO = sO1,k+1 − sO1,k for frames k in
the Old Mode, unless otherwise stated. Similarly for the New Mode.

Algorithms that change the period of servers will require an intermediate phase called Reconfiguration where
budgets and period will be different than the ones in Old and New Modes. Parameters belonging to the Reconfig-
uration will carry the superscript R when necessary. The notation is illustrated in Figure 10.

For the proofs of some theorems we will need the definition of the Min-plus convolution operator ⊗ and some
of its properties which can be found in the Appendix. We will also need the facts that the Old Mode service curve
of an ASG server can be expressed as:

βQO,PO(Δ) = (βQO,PO ⊗ βQO,PO)(Δ + PO −QO), (7)

and the New Mode service curve as:

βQN ,PN (Δ) = (βQN ,PN ⊗ βQN ,PN)(Δ + PN −QN), (8)

which can be easily proven.

4.2 No Change of Period

Here for brevity we do not differentiate between PO and PN but refer to the period as P . In these scenarios the
last activation frame of the Old Mode which we denote as k is followed immediately by the first activation frame
of the New Mode denoted as k + 1.

11

t

PO
Old Mode

PR
Reconfiguration

QN
F

sN
1,k+2

New Mode

sN
i,k+2 sN

F,k+2

QN
iQR

i

sR
F,k+1sR

i,k+1sR
1,k+1

QR
FQO

FQO
i

sO
1,k sO

i,k sO
F,k

PN

......

Figure 10. Notation. Three activation frames where activation frame k belongs to the Old Mode, frame
k + 1 to the Reconfiguration, and frame k + 2 to the New Mode.

4.2.1 Removing an Existing ASG

Removing a server from the schedule means that in the Old Mode, it has budget QO > 0, and in the New
Mode, its budget is QN = 0. The budgets of all other servers are unchanged. This is an operation that can
always be performed since it decreases the utilization of the system by QO/P , and increases the free budget,
QN

F = QO
F +QO.

Algorithm 1 describes removing server (QO
i , P) from a schedule with N servers. When the server is removed,

activations of all preceding servers are unchanged while activations of succeeding servers are shifted earlier by the
removed budget. This is illustrated in Figure 11.

Theorem 4.1. Removing server (QO
i , P) from a schedule of N servers using Algorithm 1 satisfies condition (6)

for all other servers in the system as each of them gets at least a guaranteed service during the reconfiguration of
β̃j ≥ βQj ,P , 1 ≤ j ≤ N, j �= i.

Proof. For all servers except the removed one we have that βQO
j ,P = βQN

j ,P which we denote as βQj ,P .

The algorithm does not change the schedule of servers (Q1, P), . . . , (Qi−1, P). Then we have β̃j = βQj ,P for
1 ≤ j ≤ i− 1 and condition (6) follows from this.

We need to show that condition (6) holds for the servers with shifted activation times, i.e., (Qi+1, P), . . . ,
(QN , P). We will do this for server (Qi+1, P) but the proof is the same for all of them.

Let us consider a time interval [l, h) where h > l and Δ = h− l. There are three cases for the position of this

Algorithm 1 Removing an ASG

Input: sOj,k, 1 ≤ j ≤ N � Schedule in the last frame (k) of Old Mode
Input: P � Current period
Input: (QO

i , P) � Server to be removed
Output: sNj,k+1, 1 ≤ j ≤ N, j �= i � Schedule in the first frame (k + 1) of New Mode

1: for j ← 1 to N do
2: if j < i then

3: sNj,k+1 ← sOj,k + P
4: else if j > i then

5: sNj,k+1 ← sOj,k + P −QO
i

6: end if
7: end for

12

Q1
t

QO
2 Q3 Q4 QO

F Q1 Q3 Q4 QN
F Q1

Q3 Q4

QO
2Old Mode New Mode

Figure 11. Removing server (QO
2 , P) from a schedule of four ASGs. The activation times of servers

(QN
3 , P) and (QN

4 , P) have been shifted to the left by QO
2 in New Mode, and QO

2 has been used to
increase the free budget. The dashed boxes show where servers (QO

3 , P) and (QO
4 , P) would have

been scheduled if there were no reconfiguration.

Qi-1

t

QO
i Qi+1 Qi-1 Qi+1

P - Qi+1 - QOi {{ {Case 1 Case 2

Case 3

P - Qi-1

Figure 12. Cases in the proof of Theorem 4.1.

interval with respect to time t = sOi+1,k + Qi+1 which is the end of the last activation of server (Qi+1, P) in Old
Mode. Cases are illustrated in Figure 12.

Case 1: h ≤ t. Up to time t, server (Qi+1, P) is scheduled without changes with Old Mode parameters. Then
we have β̃i+1 ≥ βQi+1,P .

Case 2: t ≤ l. After time t, server (Qi+1, P) is scheduled with New Mode parameters which are the same as
for the Old Mode. By construction because of the shift of the starting time, the first activation of the server after
time t comes at most after P − QO

i − Qi+1 time units which is smaller than the maximum distance between the
end of an activation and the start of the next activation in New Mode, P − Qi+1. Afterwards, in the New Mode,
the start of each activation is separated by P time units. Therefore we have that β̃i+1 ≥ βQi+1,P .

Case 3: l < t < h. Denote the service supplied by the server in interval [l, t) as C[l, t). We know that the end
of the last activation of the server was at time t which means that in Old Mode, the next activation of the server will
not happen until time t+P−Qi+1. Then it follows that the service provided in interval [l, t) can be lower bounded
with the service curve for interval [l, t+P −Qi+1). Therefore, we have that C[l, t) ≥ βQi+1,P (t+P −Qi+1− l).

For interval [t, h), let the service supplied by the server be C[t, h). With the reconfiguration algorithm we have
shifted earlier the activation times of server (Qi+1, P) by the budget of the removed server QO

i , then the service
supplied in interval [t, h) can be lower bounded with the service curve for interval [t − QO

i , h). Then we have
C[t, h) ≥ βQi+1,P (h− t+QO

i).

13

Now, we can compute the service for interval Δ = (h− l) and get a lower bound for β̃i+1(Δ) as follows:

C[l, h) = C[l, t) + C[t, h)

≥ βQi+1,P (t+ P −Qi+1 − l) + βQi+1,P (h− t+QO
i)

Substitute: λ = h− t+QO
i , where 0 ≤ λ ≤ (h− l)

= βQi+1,P (h− λ+QO
i + P −Qi+1 − l) + βQi+1,P (λ)

= βQi+1,P (Δ− λ+ P −Qi+1 +QO
i) + βQi+1,P (λ)

≥ inf
0≤λ≤Δ

{βQi+1,P (Δ− λ+ P −Qi+1 +QO
i) + βQi+1,P (λ)}

= (βQi+1,P ⊗ βQi+1,P)(Δ + P −Qi+1 +QO
i) (9)

For the definition of ⊗ see the Appendix.
Combining cases 1, 2, and 3, we get the following lower bound for β̃i+1(Δ):

β̃i+1(Δ) ≥ min{βQi+1,P (Δ), (βQi+1,P ⊗ βQi+1,P)(Δ + P −Qi+1 +QO
i)}

Since, the service curve βQi+1,P is a wide-sense increasing function (see Appendix), we have that (9) is greater
or equal to (7), and from this condition (6) follows.

4.2.2 Decreasing the Budget of an Existing ASG

Decreasing the budget of a server means that in Old Mode, the server has budget QO > 0, and in New Mode, its
budget is 0 < QN < QO. The budgets of all other servers are unchanged. This is an operation that can always
be performed since it decreases the utilization of the system by (QO − QN)/P , and increases the free budget,
QN

F = QO
F + (QO −QN).

Algorithm 2 describes decreasing the budget of server (Qi, P) from QO
i in Old Mode to QN

i in New Mode in
a schedule of N servers. In the first frame when the budget is decreased, activations of all preceding servers are
unchanged while activations of succeeding servers are shifted earlier by the amount of decrease of budget. This is
illustrated in Figure 13.

Algorithm 2 Decreasing the budget of an ASG

Input: sOj,k, 1 ≤ j ≤ N � Schedule in the last frame (k) of Old Mode
Input: P � Current period
Input: (QO

i , P) � Server to be modified with Old Mode parameters
Input: (QN

i , P) � Server to be modified with New Mode parameters
Output: sNj,k+1, 1 ≤ j ≤ N � Schedule in the first frame (k + 1) of New Mode

1: for j ← 1 to N do
2: if j ≤ i then

3: sNj,k+1 ← sOj,k + P
4: else if j > i then

5: sNj,k+1 ← sOj,k + P − (QO
i −QN

i)
6: end if
7: end for

14

Q1
t

QO
2 Q3 Q4 QO

F Q1 Q3 Q4 QN
F Q1

Q3 Q4

QO
2 - QN

2Old Mode New Mode

QN
2

Figure 13. Decreasing the budget from QO
2 to QN

2 in a schedule of four ASGs. The activation times of
servers (Q3, P) and (Q4, P) have been shifted earlier in New Mode by (QO

2 −QN
2), and (QO

2 −QN
2) has

been used to increase the free budget. The dashed boxes show where servers (Q3, P) and (Q4, P)
would have been scheduled if there were no reconfiguration.

Theorem 4.2. Decreasing the budget of a server from (QO
i , P) to (QN

i , P) in a schedule of N servers using
Algorithm 2 satisfies condition (6) for all servers in the system. Unchanged servers get at least a guaranteed
service during the reconfiguration of β̃j ≥ βQj ,P , 1 ≤ j ≤ N, j �= i. For the decreased server, this is β̃i ≥ βQN

i ,P .

Proof. Similarly to removing a server, the schedule of servers (Q1, P), . . . , (Qi−1, P) does not change. Then we
have that β̃j = βQj ,P for 1 ≤ j ≤ i− 1 and condition (6) follows from this.

We need to show that condition (6) holds for the servers with shifted activation times (Qi+1, P), . . . , (QN , P).
For each of them we have that:

β̃j(Δ) ≥ min{βQj ,P (Δ), (βQj ,P ⊗ βQj ,P)(Δ + P −Qj +QO
i −QN

i)} ∀j ∈ [i+ 1, N]

Following the same argument as for the removal of a server we can show that condition (6) is satisfied. The
complete proof is omitted here.

We also need to show that condition (6) holds for the server with decreased budget (Qi, P). Let us consider a
time interval [l, h) where h > l and Δ = h− l. There are three cases for the position of this interval with respect to
time t = sOi,k +QO

i which is the end of the last activation of server (QO
i , P) in the Old Mode. Cases are illustrated

in Figure 14.
Case 1: h ≤ t. Up to time t server (QO

i , P) is scheduled without changes with Old Mode parameters. Then we
have β̃i ≥ βQO

i ,P .

Qi-1 QO
i Qi+1 Qi-1 Qi+1QN

i

P - (QOi - QNi) - Qi+1

P - QOi

{ { {Case 1 Case 2

Case 3

t

P - Qi-1

Figure 14. Cases in the proof of Theorem 4.2.

15

Case 2: t ≤ l. After time t server (QN
i , P) is scheduled with New Mode parameters. By construction, the first

activation of the server after time t comes after P − QO
i time units which is smaller than the maximum distance

between the end of an activation and the start of the next activation in New Mode, P − QN
i . Afterwards, the

distance between the starts of all subsequent activations of the server is equal to P . This means that β̃i ≥ βQN
i ,P .

Case 3: l < t < h. Server (Qi, P) is scheduled with budget QO
i before time t and with budget QN

i after time t.
Denote the service supplied by the server in interval [l, t) as C[l, t). We know that the end of the last activation

of the server was at time t which means that in Old Mode, the next activation of the server will not happen until
time t + P − QO

i . From which it follows that the service provided in interval [l, t) is lower bounded by the Old
Mode service curve for interval [l, t+ P −QO

i). Therefore, we have that C[l, t) ≥ βQO
i ,P (t+ P −QO

i − l).
Now consider interval [t, h) where the service supplied is C[t, h). After time t the next activation comes after

P −QO
i time units which is smaller than the expected one for the New Mode, P −QN

i . We have a difference of
(QO

i − QN
i). Therefore we can bound the actual service in interval [t, h) using the New Mode service curve for

interval (h− t+ (QO
i −QN

i)) as C[t, h) ≥ βQN
i ,P (h− t+ (QO

i −QN
i)).

Now, we can compute the service for interval Δ = (h− l) and get a lower bound for β̃i(Δ) as follows:

C[l, h) = C[l, t) + C[t, h)

≥ βQO
i ,P (t+ P −QO

i − l) + βQN
i ,P (h− t+ (QO

i −QN
i))

Substitute: λ = h− t+ (QO
i −QN

i), where 0 ≤ λ ≤ (h− l)

= βQO
i ,P (h− λ+QO

i −QN
i + P −QO

i − l) + βQN
i ,P (λ)

= βQO
i ,P (Δ− λ−QN

i + P) + βQN
i ,P (λ)

≥ inf
0≤λ≤Δ

{βQO
i ,P (Δ− λ+ P −QN

i) + βQN
i ,P (λ)}

= (βQO
i ,P ⊗ βQN

i ,P)(Δ + P −QN
i) (10)

Combining cases 1, 2, and 3, we get the following lower bound for β̃i(Δ):

β̃i(Δ) ≥ min{βQO
i ,P (Δ), βQN

i ,P (Δ), (βQO
i ,P ⊗ βQN

i ,P)(Δ + P −QN
i)}

Since we have that βQO
i ,P (Δ) ≥ βQN

i ,P (Δ) for ∀Δ ∈ R
≥0 and from the isotonicity of the min-plus convolution

operator (see Appendix), it follows that (10) is greater or equal to (8), and from this condition (6) follows.

4.2.3 Adding a New ASG

Adding a server to the schedule means that in Old Mode, it has budget QO = 0, while in New Mode, its budget
is QN > 0. Budgets of all other servers are unchanged. From condition (1), this is an operation that is feasible if
there is sufficient free budget in the system:

QN ≤ QO
F .

The reconfiguration decreases the free budget in the system, QN
F = QO

F − QN , and increases the utilization by
QN/P .

Algorithm 3 describes adding server (QN
N+1, P) to a schedule of N servers. In the first frame where the server

is added, it is scheduled at the beginning of the free budget slot. This is illustrated in Figure 15.

Theorem 4.3. Adding server (QN
N+1, P) to a schedule of N servers using Algorithm 3 satisfies condition (6) for

all other servers in the system as each of them gets at least a guaranteed service during the reconfiguration of
β̃j = βQj ,P , 1 ≤ j ≤ N .

16

Algorithm 3 Adding an ASG

Input: sOj,k, 1 ≤ j ≤ N � Schedule in the last frame (k) of Old Mode

Input: sOF,k � Start of free budget in frame (k) in Old Mode
Input: P � Current period
Input: QO

F � Free budget in Old Mode
Input: (QN

N+1, P) � Server to be added in New Mode
Require: QN

N+1 ≤ QO
F

Output: sNj,k+1, 1 ≤ j ≤ N + 1 � Schedule in the first frame (k + 1) of New Mode

1: for j ← 1 to N do
2: sNj,k+1 ← sOj,k + P
3: end for
4: sNN+1,k+1 ← sOF,k + P

Q1
t

Q2 Q3 Q4 QO
F Q1 Q3 Q4 QN

F Q1

Old Mode New Mode

Q2 QN
5

QO
F

Figure 15. Addition of server (Q5, P) to a schedule of four ASGs. Activation times of existing servers
do not change as the added server is scheduled after all other servers in New Mode. Free budget
has been decreased by the budget of the server, QN

F = QO
F −QN

5 . The dashed box shows where the
free budget QO

F would have been if there were no reconfiguration.

Proof. In this scenario, proving condition (6) is trivial, as addition of server (QN
N+1, P) does not affect the sched-

ule of any other server in the system, i.e., β̃j = βQj ,P for 1 ≤ j ≤ N .

4.2.4 Increasing the Budget of an Existing ASG

Increasing the budget of a server means that in Old Mode it has budget QO > 0, and in New Mode it has budget
QN > QO. Budgets of all other servers are unchanged. From condition (1), this is an operation that is feasible if
there is sufficient free budget in the system:

QN −QO ≤ QO
F .

The reconfiguration decreases the free budget in the system, QN
F = QO

F −(QN−QO), and increases the utilization
of the system by (QN −QO)/P .

Algorithm 4 shows increasing the budget of a server from (QO
i , P) to (QN

i , P) in a schedule of N servers. In
the first frame where the budget is increased, all preceding servers are activated earlier in the free budget of the
previous frame by the amount of the increase of budget, and all succeeding servers are activated without change.
This is illustrated in Figure 16.

Theorem 4.4. Increasing the budget of a server from (QO
i , P) to (QN

i , P) in a schedule of N servers using
Algorithm 4 satisfies condition (6) for all servers in the system. Unchanged servers get at least a guaranteed
service during the reconfiguration of β̃j ≥ βQj ,P , 1 ≤ j ≤ N, j �= i. For the increased server this is β̃i ≥ βQO

i ,P .

17

Algorithm 4 Increasing the budget of an ASG

Input: sOj,k, 1 ≤ j ≤ N � Schedule in the last frame (k) of Old Mode
Input: P � Current period
Input: QO

F � Free budget in Old Mode
Input: (QO

i , P) � Server to be modified with Old Mode parameters
Input: (QN

i , P) � Server to be modified with New Mode parameters
Require: QN

i −QO
i ≤ QO

F

Output: sNj,k+1, 1 ≤ j ≤ N � Schedule in the first frame (k + 1) of New Mode

1: for j ← 1 to N do
2: if j ≤ i then

3: sNj,k+1 ← sOj,k + P − (QN
i −QO

i)
4: else if j > i then

5: sNj,k+1 ← sOj,k + P
6: end if
7: end for

Proof. Showing schedulability for servers (Qi+1, P), . . . , (QN , P) is trivial as their schedule is not affected by
the algorithm, i.e., β̃j = βQj ,P for i+ 1 ≤ j ≤ N .

The shifting of activation times for servers (Q1, P), . . . , (Qi−1, P) is exactly the same operation as in the
scenario of removing a server, therefore the proof will be omitted here. The service provided by each of them in
the transition is lower bounded by:

β̃j(Δ) ≥ min{βQj ,P (Δ), (βQj ,P ⊗ βQj ,P)(Δ + P −Qj +QN
i −QO

i)} ∀j ∈ [1, i− 1],

which meets condition (6).
We need to show the schedulability for the server with increased budget (Qi, P). Let us consider a time interval

[l, h) where h > l and Δ = h − l. There are three cases for the position of this interval with respect to time
t = sOi,k + QO

i which is the end of the last activation of server (QO
i , P) in the Old Mode. Cases are illustrated in

Figure 17.

QO
FQ3

Q1
t

QO
2 Q3 QO

F Q1 Q3

Old Mode New Mode

QO
2

Q1

Q1 QN
2 Q3QN

F QN
F

QO
2

Q1

P - QN
2 + QO

2

Figure 16. Increasing the budget of server (QO
2 , P) to QN

2 in a schedule of three ASGs. Last frame of
Old Mode has a decreased length, P −QN

2 +QO
2 . This causes the activation times of server (Q1, P)

to be shifted earlier. Activation times of server (Q3, P) do not change as the shorter activation frame
cancels with the increased budget for all New Mode activations. Free budget has been decreased
by the increase of server budget, QN

F = QO
F − QN

2 + QO
2 . The dashed boxes show where the

activations of servers (Q1, P), (Q2, P), (Q3, P) and the free budget QF would have been if there
were no reconfiguration.

18

Qi-1 Qi+1QO
i Qi-1 QN

i Qi+1

P - Qi-1 - (QN
i - QO

i)

P - QO
i - (QN

i - QO
i)

P - Qi+1

t{ { {Case 1 Case 2

Case 3

Figure 17. Cases in the proof of Theorem 4.4.

Case 1: h ≤ t. Up to time t server (QO
i , P) is scheduled without changes using only Old Mode parameters.

This implies that β̃i ≥ βQO
i ,P .

Case 2: t ≤ l. After time t server (QN
i , P) is scheduled with New Mode parameters. By construction, the first

activation of the server after time t comes after P −QN
i time units which equals the maximum distance between

the end of an activation and the start of the next activation in the New Mode, P − QN
i . Afterwards, the distance

between the starts of all subsequent activations of the server is equal to P . This means that β̃i(Δ) ≥ βQN
i ,P (Δ).

Case 3: l < t < h. Server (Qi, P) is scheduled with budget QO
i before time t and with budget QN

i after time t.
Denote the service supplied by the server in interval [l, t) as C[l, t). We know that the end of the last activation

of the server was at time t which means that in Old Mode, the next activation of the server will not happen until
time t+ P −QO

i . Then the service provided in interval [l, t) is lower bounded by the Old Mode service curve for
interval [l, t+ P −QO

i). Therefore, we have that C[l, t) ≥ βQO
i ,P (t+ P −QO

i − l).
Now consider interval [t, h) where the service supplied is C[t, h). After time t, the next activation of the server

comes after P −QN
i time units which equals the maximum distance between the end of an activation and the start

of the next activation in the New Mode. Afterwards, the distance between the starts of all subsequent activations of
the server is equal to P . Therefore we can bound the actual service in interval [t, h) using the New Mode service
curve as C[t, h) ≥ βQN

i ,P (h− t).

Now, we can compute the service for interval Δ = (h− l) and get a lower bound for β̃i(Δ) as follows:

C[l, h) = C[l, t) + C[t, h)

≥ βQO
i ,P (t+ P −QO

i − l) + βQN
i ,P (h− t)

Substitute: λ = h− t, where 0 ≤ λ ≤ (h− l)

= βQO
i ,P (h− λ+ P −QO

i − l) + βQN
i ,P (λ)

= βQO
i ,P (Δ− λ+ P −QO

i) + βQN
i ,P (λ)

≥ inf
0≤λ≤Δ

{βQO
i ,P (Δ− λ+ P −QO

i) + βQN
i ,P (λ)}

= (βQO
i ,P ⊗ βQN

i ,P)(Δ + P −QO
i) (11)

Combining cases 1, 2, and 3, we get the following lower bound for β̃i(Δ):

β̃i(Δ) ≥ min{βQO
i ,P (Δ), βQN

i ,P (Δ), (βQO
i ,P ⊗ βQN

i ,P)(Δ + P −QO
i)}

19

Since we have that βQN
i ,P (Δ) ≥ βQO

i ,P (Δ) for ∀Δ ∈ R
≥0 and the isotonicity of the min-plus convolution

operator (see Appendix), we have that (11) is greater or equal to (7), and from this condition (6) follows.

4.3 Change of Period

We perform analysis given the configurations of the system (such as budgets and periods) in Old and New
Modes. The results of the analysis are whether a transition is feasible with the given configurations, and in the
case of feasibility with what parameters it can be executed online.

4.3.1 Increase of Period

We suppose that there are N servers in the system. In the Old Mode they operate with parameters (QO
i , P

O),
1 ≤ i ≤ N , and in the New Mode with (QN

i , PN), 1 ≤ i ≤ N , where PO < PN . Assume that for every server
we have that QO

i ≤ QN
i . If this is not the case, namely there is a server that requires a smaller budget in the bigger

period, QO
i > QN

i , we can reduce its budget first by using the algorithms proposed in Section 4.2 as we can be
sure that schedulability is satisfied with the new budget in the smaller period, and then perform the reconfiguration
involving increase of period.

Algorithm 5 Increase of Period

Input: sOj,k, 1 ≤ j ≤ N � Schedule in the last frame (k) of Old Mode

Input: PO � Old Mode period
Input: PN � New Mode period
Input: (QO

i , P
O), 1 ≤ i ≤ N � Servers in Old Mode

Input: (QN
i , PN), 1 ≤ i ≤ N � Servers in New Mode

Input: K � Number of activation frames during the Reconfiguration
Require:

∑N
i=1Q

N
i ≤ PO

Output: sNj,k+p, 1 ≤ j ≤ N, 1 ≤ p ≤ K � Schedule in all frames during the Reconfiguration

Output: sNj,k+K+1, 1 ≤ j ≤ N � Schedule in the first frame (k +K + 1) of New Mode

(* First frame of Reconfiguration - increase budgets *)
1: sR1,k+1 ← sO1,k + PO −

∑N
i=1(Q

N
i −QO

i)
2: for j ← 2 to N do
3: sRj,k+1 ← sRj−1,k+1 +QN

j−1

4: end for

(* All subsequent frames of Reconfiguration *)
5: for p ← 2 to K do
6: for j ← 1 to N do
7: sRj,k+p ← sRj,k+p−1 + PO

8: end for
9: end for

(* First frame of New Mode - increase period *)
10: for j ← 1 to N do
11: sNj,k+K+1 ← sRj,k+K + PN

12: end for

20

QO
1

t

QO
2 QO

F

Reconfiguration (K=2)

PN

QO
1 QO

2 QN
1 QN

2 QN
F

PO

PO - ∑(QN
i-QO

i)

≤ PO
condition

QN
1 QN

2 QN
1 QN

2

POPO

New ModeOld Mode

Figure 18. Increase of period with K = 2.

The proposed reconfiguration algorithm is subject to the feasibility condition that the sum of all New Mode
server budgets is smaller than the Old Mode period which is expressed as follows:

N∑
i=1

QN
i ≤ PO. (12)

The condition ensures that the increase of budgets does not lead to service guarantee violations in intervals of time
beginning PO time units before the reconfiguration and ending PO time units after the reconfiguration. It can be
related to the feasibility condition from Section 4.2.4,

∑N
i=1(Q

N
i −QO

i) ≤ QO
F .

Assume that condition (12) is satisfied. Consider the last server in the schedule, (QO
N , PO) and suppose that the

reconfiguration starts immediately when it finishes executing. In the first activation frame when the budgets of all
servers are increased, the last server will not receive any service for at most

∑N−1
i=1 QN

i time units. Just before this
waiting time however, the server was scheduled with budget QO

N . Then the server will receive a budget of QO
N in a

time interval of PO +
∑N−1

i=1 QN
i . From (12), we have that

∑N−1
i=1 QN

i ≤ PO −QO
N , and this will satisfy the Old

Mode service guarantee βQO
N ,PO . Similarly, the New Mode service guarantee βQN

N ,PN is satisfied as the waiting

time before the server is given budget QN
N , is

∑N−1
i=1 QN

i time units which is upper bounded by PN − QN
N . We

have shown that condition (12) is a sufficient condition which ensures that condition (6) holds for the time interval
beginning PO time units before the reconfiguration and ending PO time units after the reconfiguration. However,
to do this for bigger time intervals we need to develop a more involved reconfiguration algorithm and analysis.

When condition (12) is not satisfied, i.e. staying in the most pessimistic configuration is not feasible, the recon-
figuration algorithm would need to go through one or more intermediate modes (budgets and periods) where for
each successive pair of them condition (12) holds. We will not discuss this further and assume that the feasibility
condition is met.

The algorithm for performing safely the increase of period can be summarized in three steps: (1) Increase to
New Mode budgets following Algorithm 4. (2) Schedule the ASG servers for K ≥ 1 activation frames using the
New Mode budgets and Old Mode period. (3) Increase to New Mode period by increasing free budget. The second
step of the algorithm we denote as the Reconfiguration phase which is K activation frames long. We suppose that
it has Old Mode period but it can actually have a shorter period which would require a small modification in the
analysis. At the moment we assume that K is given as input to the algorithm, later we will show how to compute
it. Algorithm 5 describes the details for performing the increase of period. It is illustrated in Figure 18.

The following theorem gives a lower bound for the guaranteed resource supply of an ASG server during an
increase of period reconfiguration.

Theorem 4.5. Reconfiguring a server from (QO
i , P

O) to (QN
i , PN) in a schedule of N servers using Algorithm 5

21

provides at least a guaranteed service of:

β̃i(Δ) = min
{
βQO

i ,PO(Δ), βQN
i ,PN (Δ),

(βQO
i ,PO ⊗ βQN

i ,PN)(Δ−K · PO + PO −QO
i) (13)

+ βQN
i ,PO(K · PO)

}
(14)

which satisfies condition (6) when K ≥ 1 is found as:

K = max
1≤i≤N

{
min

{
κ | ∀Δ ∈ R

≥0, κ ∈ Z
+,

(βQO
i ,PO ⊗ βQN

i ,PN)(Δ− κ · PO + PO −QO
i) + βQN

i ,PO(κ · PO) ≥ min{βQO
i ,PO(Δ), βQN

i ,PN (Δ)}
}}

See the Appendix for the definition of the Min-plus convolution operator ⊗.
The guaranteed service in the above theorem can be explained informally as follows. It is computed as the

minimum of the services from Old Mode, New Mode, and an expression which describes the service in time
intervals that span Old Mode, Reconfiguration, and New Mode. The last one consists of two subexpressions.
Expression (13) lower bounds the service guaranteed in the time window part that is outside of the Reconfiguration
time window and hence the service curve depends only on the Old and the New Modes parameters, and it is ’shifted
to the right’ by the size of the Reconfiguration time window which is at most K · PO time units. Expression (14)
lower bounds the service guaranteed only in the Reconfiguration time window which uses New Mode budgets
with Old Mode period, and the service is defined for a fixed length interval of size K · PO.

In expressions (13) and (14), we can increase the size of the Reconfiguration phase by increasing the number of
activation frames in it K. In order to meet condition (6) for each server, we have to find the minimum K that will
make the guaranteed service β̃i greater or equal to the minimum of the Old and New Modes services. After doing
this for all servers, we have to take the maximum K which will make the reconfiguration feasible for the whole
system.

We can find the minimum K for a server efficiently by starting with an initial value of K = 1. If this is not
feasible, we choose successive values of K by using a binary search until the smallest one is found that is feasible.
With bigger K we are increasing the service guaranteed in the Reconfiguration which is service greater than Old
Mode and New Mode services (it has the larger New Mode budget and the smaller Old Mode period), therefore
we are guaranteed to find a finite value for K which will make condition (6) satisfied.

Example 4.6. We can illustrate this by considering server SB from Example 2.1. It will need K = 3 to perform a
safe reconfiguration from (5, 10) to (6, 12). This is illustrated in Figure 19 as well as the violations of condition
(6) for K = {1, 2}. The trace showing the violation for K = 2 for server SB is in Figure 20.

Proof. Let us analyze the service guaranteed by an ASG server (Qi, P) during the reconfiguration performed with
Algorithm 5. The Reconfiguration phase is K frames long.

Consider a time interval [l, h) where h > l and Δ = h − l. There are six cases for the position of this interval
with respect to time t1 = sOi,k +QO

i which is the end of the last activation of the server in the Old Mode, and time

t2 = sRi,k+K +QN
i which is the end of the last activation of the server in the Reconfiguration. Cases are illustrated

in Figure 21.
Case 1: h ≤ t1. Up to time t1 server (QO

i , P
O) is scheduled without changes using only Old Mode parameters.

This implies that β̃i ≥ βQO
i ,PO .

Case 2: t2 ≤ l. After time t2 server (QN
i , PN) is scheduled with New Mode parameters. By construction, the

first activation of the server after time t2 comes at most after PN − QN
i time units which equals the maximum

distance between the end of an activation and the start of the next activation in the New Mode. Afterwards, the

22

0 10 20 30 40 50 60 70
0

10

20

30

40

Δ [ms]

p

ro
ce

ss
o

r c
yc

le
s

min { β
5,10

, β
6,12

 }

~
β for K=1

β for K=2
~

~
β for K=3

Figure 19. Effect of K = {1, 2, 3} for server SB from Example 2.1. Only K = 3 is feasible.

t

Old Mode New Mode

Violation: Interval of 60 msec, server SB delivers budget of 29 msec when Old Mode guarantees 30 msec and New Mode guarantees 30 msec.

SB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

Reconfiguration K = 2

Figure 20. Violation of condition (6) when increasing period with K = 2 for server SB from Exam-
ple 2.1.

QO
i

PN

QO
i QN

i

≤ PO

QN
i QN

i

≤ POPO

QN
i. . .

≤ K . PO
t1 t2{ { {{ {{Case 1 Case 2Case 3

Case 4

Case 5

Case 6

Figure 21. Cases for the proof of Theorem 4.5.

distance between the starts of all subsequent activations of the server is equal to PN . This means that β̃i ≥
βQN

i ,PN .

Case 3: t1 ≤ l < h ≤ t2. Between times t1 and t2, the server is scheduled with New Mode budget QN
i during

a period PR =
∑N

j=1Q
N
j which is upper bounded by PO from feasibility condition (12). Therefore the service

guaranteed by the ASG server is β̃i ≥ βQN
i ,PO which is greater or equal to βQO

i ,PO as we have that QN
i ≥ QO

i ,

and greater or equal to βQN
i ,PN as we have that PO < PN (all functions are wide-sense increasing).

Case 4: l < t1 < h ≤ t2. Consider the service provided in interval [l, t1) and denote it as C[l, t1). Before
time t1 the server is scheduled with Old Mode budget and period. Since t1 is the end of the last activation,

23

the server should not be scheduled for PO − QO
i time units. Therefore we can bound the service provided in

interval [l, t1) with the Old Mode service curve for interval [l, t1 +PO −QO
i). Therefore, we have that C[l, t1) ≥

βQO
i ,PO(t1 + PO −QO

i − l).
Consider the service provided in interval [t1, h) and denote it as C[t1, h). The server is activated after at most

PO −QN
i time units with New Mode budget QN

i , and then repeatedly every PO time units. Therefore we have a
lower bound for the service here with the service curve βQN ,PO(h− t1).

Now for the service guaranteed in this case β̃i(h− l) we get a lower bound as follows:

C[l, h) = C[l, t1) + C[t1, h)

≥ βQO
i ,PO(t1 + PO −QO

i − l) + βQN
i ,PO(h− t1)

Substitute: λ = h− t1, where 0 ≤ λ ≤ (h− l)

= βQO
i ,PO(h− λ+ PO −QO

i − l) + βQN
i ,PO(λ)

= βQO
i ,PO(Δ− λ+ PO −QO

i) + βQN
i ,PO(λ)

≥ inf
0≤λ≤Δ

{βQO
i ,PO(Δ− λ+ PO −QO

i) + βQN
i ,PO(λ)}

= (βQO
i ,PO ⊗ βQN

i ,PO)(Δ + PO −QO
i)

Case 5: t1 ≤ l < t2 < h. Consider the service provided in interval [l, t2) and denote it as C[l, t2). The server
is activated after at most PO − QN

i time units with New Mode budget and then repeatedly every PO time units.
Since t2 is the end of the last activation of the server during the Reconfiguration, the server should not receive
any service for PO − QN

i time units. Therefore we have that the service provided in interval [l, t2) can be lower
bounded with a service curve for interval [l, t2 + PO −QN

i) which is βQN ,PO(t2 + PO −QN
i − l).

Consider the service provided in interval [t2, h) and denote it as C[t2, h). The server is activated after at most
PN − QN

i time units, and afterwards every PN time units. It is activated with New Mode budget and period,
therefore the actual service is lower bounded by βQN ,PN (h− t2).

Now for the service guaranteed in this case β̃i(h− l) we get a lower bound as follows:

C[l, h) = C[l, t2) + C[t2, h)

≥ βQN
i ,PO(t2 + PO −QN

i − l) + βQN
i ,PN (h− t2)

Substitute: λ = h− t2, where 0 ≤ λ ≤ (h− l)

= βQN
i ,PO(h− λ+ PO −QN

i − l) + βQN
i ,PN (λ)

= βQN
i ,PO(Δ− λ+ PO −QN

i) + βQN
i ,PN (λ)

≥ inf
0≤λ≤Δ

{βQN
i ,PO(Δ− λ+ PO −QN

i) + βQN
i ,PN (λ)}

= (βQN
i ,PO ⊗ βQN

i ,PN)(Δ + PO −QN
i)

Case 6: l < t1 < t2 < h. Consider the service provided in interval [l, t1) and denote it as C[l, t1). Since t1 is
the end of the last activation, the server will not get any service in interval of PO −QO

i time units. Therefore we
can bound the service in interval [l, t1) with the Old Mode service curve for interval [l, t1 + PO −QO

i). Then we
have that C[l, t1) ≥ βQO

i ,PO(t1 + PO −QO
i − l).

Consider interval [t1, t2). The length of the interval is upper bounded by K · PO. Let the service provided in
this interval be denoted as C[t1, t2). As the server is provided New Mode budget QN

i during Old Mode period
PO, the service is lower bounded by βQN

i ,PO(t2 − t1) = βQN
i ,PO(K · PO).

24

Consider the service provided in interval [t2, h) and denote it as C[t2, h). The server is activated after at most
PN −QN

i time units, and then repeatedly every PN time units. It is activated with New Mode budget and period,
therefore the service is lower bounded by βQN ,PN (h− t2).

Now for the service guaranteed in this case β̃i(h− l) we get a lower bound as follows:

C[l, h) = C[l, t1) + C[t1, t2) + C[t2, h)

≥ βQO
i ,PO(t1 + PO −QO

i − l) + βQN
i ,PO(K · PO) + βQN

i ,PN (h− t2)

Substitute: λ = h− t2 = h− t1 −K · PO

where 0 ≤ λ ≤ (h− l)

= βQO
i ,PO(h− λ−K · PO + PO −QO

i − l) + βQN
i ,PN (λ) + βQN

i ,PO(K · PO)

= βQO
i ,PO(Δ− λ−K · PO + PO −QO

i) + βQN
i ,PN (λ) + βQN

i ,PO(K · PO)

≥ inf
0≤λ≤Δ

{βQO
i ,PO(Δ− λ−K · PO + PO −QO

i) + βQN
i ,PN (λ)}+ βQN

i ,PO(K · PO)

= (βQO
i ,PO ⊗ βQN

i ,PN)(Δ−K · PO + PO −QO
i) + βQN

i ,PO(K · PO)

Combining cases 1, 2, 3, 4, 5, and 6, we get as a lower bound for β̃i(Δ) the following expression:

β̃i(Δ) ≥ min
{
βQO

i ,PO(Δ), (15)

βQN
i ,PN (Δ), (16)

βQN
i ,PO(Δ), (17)

(βQO
i ,PO ⊗ βQN

i ,PO)(Δ + PO −QO
i), (18)

(βQN
i ,PO ⊗ βQN

i ,PN)(Δ + PO −QN
i), (19)

(βQO
i ,PO ⊗ βQN

i ,PN)(Δ−K · PO + PO −QO
i) + βQN

i ,PO(K · PO)
}

(20)

For expressions (15) and (16), which correspond to cases 1 and 2, respectively, condition (6) holds trivially.
For expression (17) corresponding to case 3, we have that βQN

i ,PO(Δ) ≥ βQO
i ,PO(Δ) for ∀Δ ∈ R

≥0, as we

have QN
i ≥ QO

i , and βQN
i ,PO(Δ) ≥ βQN

i ,PN (Δ) for ∀Δ ∈ R
≥0, as we have PO < PN (all functions are

wide-sense increasing, see Appendix). From these, condition (6) follows.
For expression (18) corresponding to case 4, we have that βQN

i ,PO(Δ) ≥ βQO
i ,PO(Δ) for ∀Δ ∈ R

≥0, as we

have QN
i ≥ QO

i . From this and the isotonicity of the min-plus convolution (see Appendix), it follows that (18) is
greater or equal to (7), and condition (6) follows.

For expression (19) corresponding to case 5, we have that βQN
i ,PO(Δ+PO−QN

i) ≥ βQN
i ,PN (Δ+PN −QN

i)

for ∀Δ ∈ R
≥0 as PO < PN . From this and the isotonicity of the min-plus convolution operator (see Appendix),

we have that (19) is greater or equal to (8), and condition (6) follows.
For expression (20) corresponding to case 6, we cannot prove that it meets condition (6) because this depends

on parameter K which is the length of the Reconfiguration phase. Therefore we have to find a sufficiently large
K that will make (20) greater or equal to (6). We can be sure that such a K exists as for the service in the
Reconfiguration phase we know that βQN

i ,PO(Δ) ≥ βQO
i ,PO(Δ) for ∀Δ ∈ R

≥0, as we have QN
i ≥ QO

i , and

βQN
i ,PO(Δ) ≥ βQN

i ,PN (Δ) for ∀Δ ∈ R
≥0, as we have PO < PN , i.e., with increasing K we are providing a

service that is larger than both of the services in the Old and the New Modes.

25

Therefore, K is found as:

K = min
{
κ | ∀Δ ∈ R

≥0, κ ∈ Z
+,

(βQO
i ,PO ⊗ βQN

i ,PN)(Δ− κ · PO + PO −QO
i) + βQN

i ,PO(κ · PO) ≥ min{βQO
i ,PO(Δ), βQN

i ,PN (Δ)}
}

4.3.2 Decrease of Period

This scenario is very similar to the one for increasing the period. In the Old Mode servers operate with parameters
(QO

i , P
O), 1 ≤ i ≤ N , and in the New Mode with (QN

i , PN), 1 ≤ i ≤ N , where PO > PN . We assume that for
each server we have that QO

i ≥ QN
i .

It is subject to the feasibility condition that the sum of Old Mode budgets is smaller than the New Mode period
which is expressed as:

N∑
i=1

QO
i ≤ PN .

The algorithm can be summarized in three steps: (1) Decrease to New Mode period by decreasing free budget.
(2) Schedule the ASG servers for K ≥ 1 activation frames using Old Mode budgets and New Mode period. (3)
Decrease budgets by using Algorithm 2. Algorithm 6 describes the details for performing the decrease of period.
It is illustrated in Figure 22.

Theorem 4.7. Reconfiguring a server from (QO
i , P

O) to (QN
i , PN) in a schedule of N servers using Algorithm 6

provides at least a guaranteed service of:

β̃i(Δ) = min
{
βQO

i ,PO(Δ), βQN
i ,PN (Δ), (βQO

i ,PO ⊗ βQN
i ,PN)(Δ−K · PN + PN −QN

i) + βQO
i ,PN (K · PN)

}

which satisfies condition (6) when K ≥ 1 is found as:

K = max
1≤i≤N

{
min

{
κ | ∀Δ ∈ R

≥0, κ ∈ Z
+,

(βQO
i ,PO ⊗ βQN

i ,PN)(Δ− κ · PN + PN −QN
i) + βQO

i ,PN (κ · PN) ≥ min{βQO
i ,PO(Δ), βQN

i ,PN (Δ)}
}}

Proof. Proof is analogous to the one for Theorem 4.5.

QN
1

t

QN
2 QN

F

Reconfiguration (K=2)

QO
1 QO

2

PN

≤ PN
condition

QO
1 QO

2

PNPN

New ModeOld Mode

QO
1 QO

2 QO
F

PO

Figure 22. Decrease of period with K = 2.

26

Algorithm 6 Decrease of Period

Input: sOj,k, 1 ≤ j ≤ N � Schedule in the last frame (k) of Old Mode

Input: PO � Old Mode period
Input: PN � New Mode period
Input: (QO

i , P
O), 1 ≤ i ≤ N � Servers in Old Mode

Input: (QN
i , PN), 1 ≤ i ≤ N � Servers in New Mode

Input: K � Number of activation frames during the Reconfiguration
Require:

∑N
i=1Q

O
i ≤ PN

Output: sNj,k+p, 1 ≤ j ≤ N, 1 ≤ p ≤ K � Schedule in all frames during the Reconfiguration

Output: sNj,k+K+1, 1 ≤ j ≤ N � Schedule in the first frame (k +K + 1) of New Mode

(* First frame of Reconfiguration - with decreased period *)
1: for j ← 1 to N do
2: sRj,k+1 ← sOj,k + PO

3: end for

(* All subsequent frames of Reconfiguration *)
4: for p ← 2 to K do
5: for j ← 1 to N do
6: sRj,k+p ← sRj,k+p−1 + PN

7: end for
8: end for

(* First frame of New Mode - decrease budgets *)
9: sN1,k+K+1 ← sR1,k+K + PN

10: for j ← 2 to N do
11: sNj,k+K+1 ← sNj−1,k+K+1 +QN

j−1

12: end for

5 Case Study

Here, we consider a multi-mode real-time system that executes two applications. Application 1 can run in two
modes denoted as mode 1 and mode 2. In mode 1, there is a single task which processes a single event stream
described by a period p = 5ms, jitter j = 10ms, and minimum interarrival time between two events d = 1ms.
Each event has a worst-case execution time of c = 2ms, and it needs to be processed within a relative deadline of
D = 9ms. Similarly, in mode 2 there is a single task but it processes an event stream with parameters p = 40ms,
j = 20ms, d = 20ms, c = 7ms, and D = 25ms. Application 2 is a single mode application, it has a single task
that processes one event stream with parameters p = 20ms, j = 15ms, d = 5ms, c = 1ms, and D = 30ms.
The system schedules the two applications using two servers (Q1, P) and (Q2, P). We suppose that each context
switch takes 0.3ms. The utilization of the system, U , can be computed as U = (Q1 + 0.3 +Q2 + 0.3)/P .

The designer of this system needs to select the configuration parameters of the ASG schedule such as the
minimum required budgets that make the two applications schedulable, and the size of the servers period. The
design objective is to minimize utilization because other soft real-time applications use the unused resources while
guaranteeing the real-time requirements. Then the solution depends on the mode that application 1 is currently in.
Figure 23 shows the total utilization of the system as a function of the period of the servers considering the two
modes of application 1, where the period varies from 1ms to 50ms. When application 1 is in mode 1, the system

27

5 10 15 20 25 30 35 40 45 50

0.4

0.6

0.8

1

1.2

1.4

Period P [ms]

to
ta

l u
ti

liz
at

io
n

: U

Application 1 in mode 1
Application 1 in mode 2

Figure 23. Total utilization for period varying from 1ms up-to 50ms considering the two different
modes of application 1. The circles on the graphs denote the points of minimum utilization.

has the minimum utilization (U = 0.768) with servers period P = 12.5ms, and allocated budgets for application
1 and application 2, Q1 = 8ms and Q2 = 1ms, respectively. When application 1 is in mode 2, however, the
system has the minimum utilization (U = 0.427) achieved for period P = 22.5ms, and budgets Q1 = 7ms and
Q2 = 2ms.

Since the mode of application 1 changes dynamically during runtime, it is not possible to fix the parameters of
the scheduler at design time. If the parameters are set to the optimal ones for mode 1, when operating in mode
2 the system would have a 15% utilization overhead. Similarly fixing the parameters optimally for mode 2, the
utilization overhead would be 14% when the system is in mode 1.

We can solve the above problem by using the algorithms proposed in this paper. Let us consider two scenarios.
Scenario 1: When application 1 is in mode 1, we run the two ASG servers corresponding to the two applications

with parameters (8, 12.5) and (1, 12.5) which give us the lowest system utilization. When application 1 switches
to mode 2, it notifies the Server Manager (SM) and it requests a switch to the minimum budget for mode 2 of
(4.7, 12.5). The SM can grant this budget using Algorithm 2. Afterwards the SM can reconfigure the two ASG
servers and increase their period to the one which makes the system utilization the smallest. The SM can use
Algorithm 5 with K = 1 to reconfigure the system from (4.7, 12.5) and (1, 12.5) to (7, 22.5) and (2, 22.5).

Scenario 2: When application 1 has to switch back to mode 1, it first notifies the SM which by using Algo-
rithm 6 with K = 1 reconfigures the two servers from (7, 22.5) and (2, 22.5) back to (4.7, 12.5) and (1, 12.5).
Then the SM increases the budget for application 1 using Algorithm 4 from 4.7 to 8. Afterwards, application 1 is
notified and can safely switch to mode 1.

Note that the SM takes advantage of the fact that mode 1 is more heavily loaded than mode 2 for application
1. Therefore, the SM optimizes the server period when the application is in the lightly loaded mode. This means
that in Scenario 1, the application mode change is done before the resource optimization. And in Scenario 2, it is
done after the resource optimization. This is feasible with our algorithms as they are completely deterministic and
the time needed for a reconfiguration can be safely and accurately upper bounded in advance. It is also possible to
perform the resource optimization when the system is more heavily loaded however, the reconfiguration process
will take longer.

In summary, we can guarantee an optimal resource allocation in environments where applications are added
or removed dynamically, or perform mode-changes. With the proposed algorithms, the schedulability of the
applications is never compromised during the reconfiguration process.

Setup: The servers and applications have been modeled with the Matlab Real-Time Calculus Toolbox [38]. The

28

exploration of the minimum required budgets for different periods in Figure 23 has been done with the Real-Time
Interfaces methodology as described in [37]. The exploration took less than 15s to perform on a commodity laptop
considering discretization of the period with steps of 0.1ms. The feasibility check for the value of K took less
than 1s.

6 Conclusion

The paper considers the problem of adaptive resource reservations using servers in hard real-time systems. It
classifies the possible problems that may occur during online server reconfigurations and establishes conditions of
how to avoid them. It defines a statically TDMA scheduled adaptive server that provides resource guarantees not
only during operation, but also during reconfigurations. The paper identifies the possible reconfiguration scenarios
for such a server and provides algorithms and schedulability analysis for each of them. The analysis is based
on Real-Time Calculus which even for the simplest case of TDMA scheduled servers is not trivial. The future
direction of this work is to explore the problem for other kinds of servers such as the deferrable server and the
CBS, and establish similar algorithms and analysis for their online reconfigurations.

Appendix

The Min-plus algebra convolution operator ⊗ is defined as:

(a⊗ b)(s) = inf
0≤λ≤s

{a(s− λ) + b(λ)}.

Isotonicity for the Min-plus convolution operator means that:

If f ≤ g and f ′ ≤ g′ then f ⊗ f ′ ≤ g ⊗ g′.

A function f is wide-sense increasing iff f(s) ≤ f(t) for all s ≤ t, for details see [19].

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time systems. In Pro-
ceedings of the 19th IEEE Real-Time Systems Symposium, pages 4–13, 1998.

[2] Luca Abeni and Giorgio Buttazzo. Adaptive bandwidth reservation for multimedia computing. In Pro-
ceedings of the Sixth International Conference on Real-Time Computing Systems and Applications (RTCSA),
pages 70–77, 1999.

[3] Luca Abeni and Giorgio Buttazzo. Hierarchical QoS management for time sensitive applications. In Pro-
ceedings of the Seventh Real-Time Technology and Applications Symposium (RTAS), pages 63–72, 2001.

[4] Luca Abeni and Giorgio Buttazzo. Resource reservation in dynamic real-time systems. Real-Time Systems,
27(2):123–167, 2004.

[5] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe tasks. Real-Time Systems, 17(1):5–22,
1999.

[6] Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dynamic integrated scheduling of
hard real-time, soft real-time and non-real-time processes. In Proceedings of the 24th IEEE International
Real-Time Systems Symposium (RTSS), pages 396–407, 2003.

29

[7] G. Buttazzo and L. Abeni. Adaptive rate control through elastic scheduling. In Proceedings of the 39th IEEE
Conference on Decision and Control (CDC), volume 5, pages 4883–4888, 2000.

[8] G C. Buttazzo, G Lipari, M. Caccamo, and Abeni L. Elastic scheduling for flexible workload management.
IEEE Transactions on Computers, 51:289–302, 2002.

[9] S.S. Craciunas, C.M. Kirsch, H. Payer, H. Rock, and A. Sokolova. Programmable temporal isolation through
variable-bandwidth servers. In IEEE International Symposium on Industrial Embedded Systems (SIES),
pages 171 –180, 2009.

[10] R. Cruz. A calculus for network delay, Parts 1 & 2. IEEE Transactions on Information Theory, 37(1), 1991.

[11] Tommaso Cucinotta, Luigi Palopoli, and Giuseppe Lipari. FRESCOR Deliverable D-AQ2v2: control algo-
rithms for coordinated resource-level and application-level adaptation v2, 2008.

[12] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority pre-emptive systems. In Proceedings
of the 27th IEEE International Real-Time Systems Symposium (RTSS), pages 257–270, 2006.

[13] Augusto Born de Oliveira, Eduardo Camponogara, and George Lima. Dynamic reconfiguration in
reservation-based scheduling: An optimization approach. In 15th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 173–182, 2009.

[14] Gerhard Fohler. Changing operational modes in the context of pre run-time scheduling. IEICE Transactions
on Information and Systems, 76(11):1333–1340, 1993.

[15] Qian Guangming. An earlier time for inserting and/or accelerating tasks. Real-Time Systems, 41(3):181–194,
2009.

[16] Arne Hamann and Rolf Ernst. TDMA time slot and turn optimization with evolutionary search techniques.
In Proceedings of the conference on Design, Automation and Test in Europe (DATE), pages 312–317, 2005.

[17] Michael Gonzlez Harbour, Daniel Sangorrn, and Miguel Tellera de Esteban. FRESCOR Deliverable D-AT2:
schedulability analysis techniques for distributed systems, 2009.

[18] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: A time-triggered language
for embedded programming. In Proceedings of the First International Workshop on Embedded Software
(EMSOFT), pages 166–184, 2001.

[19] J. Y. Le Boudec and P. Thiran. Network calculus: A Theory of Deterministic Queuing Systems for the
Internet. Springer, 2001.

[20] John P. Lehoczky, Lui Sha, and Jay K. Strosnider. Enhanced aperiodic responsiveness in hard real-time
environments. In Proceedings of the IEEE Real-Time System Symposium (RTSS), pages 261–270, 1987.

[21] José L.. Lorente, Giuseppe Lipari, and Enrico Bini. A hierarchical scheduling model for component-based
real-time systems. In Proceedings of the 20th International Parallel and Distributed Processing Symposium
(IPDPS), pages 8–15, 2006.

[22] Alexander Maxiaguine, Simon Künzli, and Lothar Thiele. Workload characterization model for tasks with
variable execution demand. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE), volume 2, pages 1040–1045, 2004.

30

[23] C. Mercer, R. Rajkumar, and J. Zelenka. Temporal protection in real-time operating systems. In Proceedings
11th IEEE Workshop on Real-Time Operating Systems and Software (RTOSS), pages 79–83, 1994.

[24] P. Pedro and A. Burns. Schedulability analysis for mode changes in flexible real-time systems. In Proceedings
10th Euromicro Workshop on Real-Time Systems, pages 172–179, 1998.

[25] J. Real and A. Crespo. Mode change protocols for real-time systems: A survey and a new proposal. Real-
Time Systems, 26(2):161–197, 2004.

[26] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some practical problems in prioritized preemptive
scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages 181–191, 1986.

[27] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change protocols for priority-driven pre-
emptive scheduling. Real-Time Systems, 1(3):243–264, 1989.

[28] Insik Shin, Moris Behnam, Thomas Nolte, and Mikael Nolin. Synthesis of optimal interfaces for hierarchical
scheduling with resources. In Proceedings of the 2008 Real-Time Systems Symposium (RTSS), pages 209–
220, 2008.

[29] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task scheduling for hard real-time systems. Real-Time
Systems, 1(1):27–60, 1989.

[30] Marco Spuri and Giorgio Buttazzo. Scheduling aperiodic tasks in dynamic priority systems. Real-Time
Systems, 10(2):179–210, 1996.

[31] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable mode changes in real-time systems with fixed priority
or EDF scheduling. In Design, Automation Test in Europe Conference Exhibition (DATE), pages 99–104,
2009.

[32] Jay K. Strosnider, John P. Lehoczky, and Lui Sha. The deferrable server algorithm for enhanced aperiodic
responsiveness in hard real-time environments. IEEE Transactions on Computers, 44(1):73–91, 1995.

[33] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time systems. In
Proceedings of the 2000 IEEE International Symposium on Circuits and Systems (ISCAS), volume 4, pages
101–104, 2000.

[34] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority pre-emptively scheduled systems. In
Real-Time Systems Symposium (RTSS), pages 100–109, 1992.

[35] Marisol Garcia Valls, Alejandro Alonso, and Juan A. de la Puente. Mode change protocols for predictable
contract-based resource management in embedded multimedia systems. In Second International Conference
on Embedded Software and Systems, pages 221–230, 2009.

[36] E. Wandeler and L. Thiele. Interface-based design of real-time systems with hierarchical scheduling. In 12th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 243–252, 2006.

[37] E. Wandeler and L. Thiele. Optimal TDMA time slot and cycle length allocation. In Proceedings of the 2006
Asia and South Pacific Design Automation Conference (ASP-DAC), pages 479–484, 2006.

[38] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

31

	Introduction
	Related Work

	Motivational Examples
	Framework for Adaptive Servers with Guarantees
	The Adaptive Server with Guarantees
	Resource Supply of an ASG
	Performance Analysis
	Schedulability of Applications
	Schedulability during a Reconfiguration

	Algorithms and Analysis
	Notation
	No Change of Period
	Removing an Existing ASG
	Decreasing the Budget of an Existing ASG
	Adding a New ASG
	Increasing the Budget of an Existing ASG

	Change of Period
	Increase of Period
	Decrease of Period

	Case Study
	Conclusion

