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Abstract
In this work we consider a real-world environmental mon-

itoring scenario that requires uninterrupted system operation
over time periods on the order of multiple years. To achieve
this goal, we propose a novel approach to dynamically ad-
just the system’s performance level such that energy neutral
operation, and thus long-term uninterrupted operation can be
achieved. We first consider the annual dynamics of the en-
ergy source to design an appropriate power subsystem (i.e.,
solar panel size and energy store capacity), and then dynam-
ically compute the long-term sustainable performance level
at runtime. We show through trace-driven simulations us-
ing eleven years of real-world data that our approach outper-
forms existing predictive, e.g., EWMA, WCMA, and reac-
tive, e.g., ENO-MAX, approaches in terms of average per-
formance level by up to 177%, while reducing duty-cycle
variance by up to three orders of magnitude. We further
demonstrate the benefits of the dynamic power management
scheme using a wireless sensor system deployed for environ-
mental monitoring in a remote, high-alpine environment as
a case study. A performance evaluation over two years re-
veals that the dynamic power management scheme achieves
a two-fold improvement in system utility when compared to
only applying appropriate capacity planning.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies, model-

ing techniques

General Terms
Algorithms, design, experimentation

Keywords
Energy neutral operation, solar energy harvesting, wire-

less sensor networks
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1 Introduction
The performance level achievable by an embedded sys-

tem is ultimately limited by the energy available to operate
the device. Due to the predominantly remote deployment lo-
cations of Wireless Sensor Networks (WSNs) and the lack of
dependable power sources, the motes comprising these net-
works generally rely on batteries for delivering the energy to
fulfill their intended task. However, due to the finite capac-
ity of the energy storage element, i.e., battery, the motes are
highly energy constrained and suffer from a severely con-
strained lifetime. To improve the system’s achievable per-
formance level and extend the lifetime, ambient energy har-
vesting, particularly in the form of solar energy harvesting,
has been established as a feasible alternative to purely battery
powered devices in outdoor WSN applications [20].

Using a real-world application scenario [3], which re-
quires high system availability, and relies on sensing technol-
ogy characterized by high energy demands, we investigate
if the two conflicting goals, i.e., high system performance
and lifetime on the order of multiple years, can be simul-
taneously achieved with solar energy harvesting systems. A
broad range of application scenarios, e.g., [9,11,22,24], ben-
efit from a minimum supported performance level that can be
sustained over time periods on the order of multiple years. A
system enhanced with energy harvesting capabilities can –
in theory – operate indefinitely as the energy store can be re-
plenished periodically. Experience has shown, however, that
enhancing a battery operated device with energy harvesting
capabilities will by itself neither provide a lower bound on
the expected sustainable performance level, nor guarantee
uninterrupted long-term operation [21]. The reason for this
is the dependence on an uncontrollable energy source [15],
i.e., the sun, which exhibits high short-term fluctuations due
to meteorological conditions that are hard to model [8] and
difficult to predict [13].

Contemporary power management techniques deal with
the highly variable energy harvesting opportunities by dy-
namically adapting the system’s performance level at run-
time such that Energy Neutral Operation (ENO) [15] may be
achieved. Informally, a system is said to operate in an en-
ergy neutral mode if the energy consumed over a given time
period δ is less than or equal to the energy harvested during
the same time period. Due to practical limitations, ENO is
generally interpreted such that the battery fill-level B f ill at



the end of period δ must be greater than or equal to that at
the beginning, i.e., B f ill(t +δ)≥ B f ill(t) [15, 18, 23].

Given ENO as the fundamental bound of energy harvest-
ing systems, numerous methods that attempt to achieve this
objective have been proposed, e.g., [15–18,23]. These can be
classified as (i) predictive, and (ii) reactive approaches. Pre-
dictive approaches, e.g., [15, 18], attempt to satisfy ENO by
predicting the harvestable energy during a future time slot,
and adapt the performance level accordingly. However, pre-
dicting future meteorological conditions is highly complex
and may be computationally prohibitive [8]. Therefore, ac-
ceptable prediction accuracy with the limited computational
resources available on contemporary motes has so far only
been possible for short prediction windows, i.e., δ on the or-
der of minutes to hours.

Reactive approaches, on the other hand, attempt to sat-
isfy energy neutrality by scheduling the performance level
in response to changes in the source. This can be done
by measuring the energy generation directly, or, as is com-
monly done, through monitoring the battery fill-level [23], or
super-capacitor voltage [16]. The performance of a storage-
reactive approach strongly relies on the accuracy of the bat-
tery State-of-Charge indication.

Current implementations of the above two classes adapt
the system duty-cycle in response to, or expectation of, short-
term variations of the energy source, and thus tend to suffer
from high duty-cycle variance. Duty-cycle variance is an
important consideration, e.g., for surveillance applications,
where the system should be available with equal probability
at any given point in time [12].

In this work we turn our attention to enabling long-term
energy neutral operation for solar energy harvesting systems.
Rather than predicting or reacting to the source’s short-term
variations, we argue that the source’s long-term dynamics
must be considered both for dimensioning the power subsys-
tem and devising the dynamic energy management scheme.
We leverage the approach discussed in [7] to provision the
power subsystem, i.e., battery and solar panel, such that
short-term fluctuations can be absorbed. We further devise
a long-term energy-predictive dynamic power management
technique that can compute the long-term sustainable per-
formance level at runtime.

The contributions of this work are as follows. First, we
present an end-to-end solution for enabling Long-Term En-
ergy Neutral Operation (LT-ENO) for solar energy harvest-
ing systems. Our approach encompasses (i) a power sub-
system capacity planning algorithm based on an astronom-
ical solar radiation model, and (ii) a dynamic energy man-
agement scheme, which is based on the same astronomical
model, and that can enable uninterrupted operation with very
low duty-cycle variance. Second, through simulation with
eleven years of data at three different geographical locations,
we show that our algorithm outperforms the State-of-the-
Art in energy-predictive [15, 18], and battery-reactive [23]
performance scaling approaches in terms of average sustain-
able performance level by up to 177%, energy efficiency by
up to 184%, and duty-cycle stability by up to three orders
of magnitude, while incurring zero downtime, i.e., system
availability of 100%. Finally, we exemplify the benefits of

our approach using an X-SENSE environmental monitoring
system [3] deployed over two years in a high-alpine envi-
ronment, and demonstrate that significant improvements in
system utility can be achieved without risking downtime due
to power outages.

The rest of this paper is structured as follows. Sec. 2 re-
views the State-of-the-Art in power subsystem capacity plan-
ning, energy prediction schemes, and harvesting aware dy-
namic performance scaling techniques. Sec. 3 reviews the
power subsystem capacity planning approach. The dynamic
power management technique for LT-ENO is discussed in
detail in Sec. 4. In Sec. 5 the proposed technique is evaluated
through simulation with eleven years of data for three dif-
ferent locations, while Sec. 6 provides performance results
obtained with a system deployed over a period of two years.
Sec. 7 concludes this work with a summary of key findings.

2 Related Work
Capacity Planning. The importance of proper capacity
planning for solar energy harvesting systems has been in-
troduced in [15], and a systematic technique was proposed.
The approach relies on the availability of a representative en-
ergy generation profile and the known system consumption
to compute the battery capacity. The limitations of this ap-
proach are two-fold. First, the input trace, i.e., energy profile,
must be representative of the conditions at the intended de-
ployment site, and cover at least one full annual solar cycle
to yield a suitable battery capacity. Second, the panel size
is not considered a design parameter, thus preventing the de-
signer from optimizing the power subsystem with respect to
cost, physical form-factor, etc.

A recently proposed approach [7] mitigates the afore-
mentioned shortcomings. The authors propose a capacity
planning algorithm that relies on an astronomical model to
approximate the energy profile at the intended deployment
site. With this approach, the designer can vary all impor-
tant design parameters to obtain the specifications of a suit-
able power subsystem for a given application without the
need for extensive trace data. Through simulation with ten
years of trace data, it was shown that the power subsystem
obtained enables uninterrupted operation if the actual total
energy generation is at least 80% of the modeled expecta-
tions. In this work we develop a dynamic power management
scheme that builds upon this capacity planning technique.
Energy Management. In the seminal work on energy har-
vesting theory [15], the first dynamic duty-cycling scheme
for solar energy harvesting systems was proposed within a
theoretical framework that defines Energy Neutral Operation
(ENO) as the fundamental limit of energy harvesting sys-
tems. ENO is achieved if the system never consumes more
energy than what it can harvest over a given time period δ,
i.e., the battery fill-level B f ill(t + δ) is greater than or equal
to B f ill(t). With their approach, a day is discretized into slots
of equal duration δ, and the expected energy input for each
slot is learned with an Exponentially Weighted Moving Aver-
age (EWMA) filter. Each slot’s respective duty-cycle is then
computed by considering the mismatch between expected
and actual energy input. However, due to limited correlation
between past and future weather conditions, this approach
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Figure 1: Process flow for long-term solar energy harvesting capacity planning and dynamic power management. Dashed boxes and arrows represent user
inputs. The offline capacity planning algorithm computes the achievable duty-cycle and required battery capacity for the given input parameter set, and the
dynamic power management algorithm adjusts the system performance level at runtime according to the observed conditions.

achieves acceptable prediction accuracy only for prediction
windows on the order of hours.

Weather Conditioned Moving Average (WCMA), pro-
posed in [18], improves upon EWMA’s prediction accuracy.
The authors not only consider the harvested energy in the
same time slot during previous days, but also incorporate
current weather conditions to obtain the expected energy in-
put in the current slot. While achieving an almost three-fold
improvement in prediction accuracy over EWMA, it is not
clear if and how this improvement translates into increased
system performance and/or energy neutrality. This approach
is also constrained by short prediction windows.

More recently, the use of professional weather forecast
services have been considered to predict the disposable en-
ergy [19]. The authors formulate a model to translate
weather forecasts into solar or wind energy harvesting pre-
dictions. While it is unclear what baseline is used, the au-
thors conclude that their energy predictions are more accu-
rate than those based on past local observations.

In [16] and [23], model-free approaches to dynamic per-
formance scaling are presented. In [23], a technique from
adaptive control theory, i.e., Linear-Quadratic Tracking, is
used to dynamically adapt the system’s duty-cycle based
on the battery State-of-Charge and so ensure ENO. For the
datasets evaluated, the authors report between 6 and 32% im-
provement in mean duty-cycle, and between 6 and 69% re-
duction in duty-cycle variance when compared to EWMA.
Similarly, in [16] a Proportional-Integral-Derivative (PID)
controller monitors the energy storage element, and the duty-
cycle is adapted such that an expected voltage level of the
storage element (a super-capacitor in this case) is main-
tained. While presenting low-complexity solutions, both of
these approaches suffer from high duty-cycle variability, and
rely on a well performing battery State-of-Charge approxi-
mation algorithm. The PID approach additionally requires
parameter tuning, for which solutions exist in the literature.

3 Capacity Planning for Long-Term Energy
Neutral Operation

Rather than modeling the energy source’s highly vari-
able short-term dynamics and adjust the performance level
accordingly, we propose a long-term energy neutral power
management scheme for solar energy harvesting systems.
Our approach, illustrated in Figure 1, first invokes a design-
time power subsystem capacity planning algorithm to deter-

mine the required battery capacity given a set of input pa-
rameters that characterize the system and its environment.
The intricate trade-offs between battery capacity, and the
system and environmental parameters are discussed in [7].
This algorithm uses an astronomical model to estimate the
long-term energy availability based on the annual solar cycle.
Then, at runtime, the proposed algorithm dynamically com-
putes the performance level, i.e., duty-cycle, based on an ad-
justed energy availability model such that long-term energy
neutrality can be sustained. The energy model and the capac-
ity planning approach follow [7] and are briefly reviewed in
this section. The novel dynamic power management scheme
is discussed in detail in Sec. 4, and evaluated in Sec. 5 and 6.

3.1 System Architecture, Load Model, and
System Utility

In this work we assume a harvest-store-use architecture,
as described in [20], in which the energy to operate the sys-
tem is always supplied by the battery. We further assume that
the power Psys dissipated from the battery includes all con-
sumers present in the system, e.g., power conditioning and
other supervisory circuitry. Further considering that contem-
porary embedded systems can operate in sleep modes with
ultra-low power dissipation, we ignore its contribution and
define the total daily energy Eout(d) necessary to sustain a
required performance level DCsys(d) on calendar day d as
given in (1), where γ = 24 hours. Note that we ignore battery
leakage here, but it can be integrated into the load model.

Eout(d) = γ ·DCsys(d) ·Psys, ∀d ∈ Z+ (1)

For now, we assume a one-to-one relationship between
performance level DCsys(d) and utility of the system U , i.e.,
U(DCsys(d)) = DCsys(d) [9]. We revisit this topic in Sec. 6,
where we refine the definition of system utility in the context
of a real system. Note that we are not concerned with how
the energy is scheduled and consumed over the course of the
day, but rather provide information about disposable energy
to an application specific task scheduler. Details on local
scheduling of the available energy, and network-wide bal-
ancing of the energy budget by changing the communication
and/or sensing patterns are beyond the scope of this paper, as
they are highly application specific. For example, a sched-
uler’s primary focus may be planning the available energy
such that a minimum level of operation may be sustained.
Any excess energy may then be used to improve sensing,
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Figure 2: Solar energy profile for a particular geographical location and
energy harvesting setup. Surplus energy generated by the panel is indicated
with the hatched area; the energy deficit is shown by the cross-hatched area.

processing or communication.
3.2 Harvesting Conditioned Energy Availabil-

ity Model
A crucial step in capacity planning consists of estimat-

ing the theoretically harvestable energy at a specific point
in space and time. Figure 2 illustrates the amount of solar
energy harvested at a particular geographical location and
given harvesting configuration. The figure shows the total
daily energy input Ereal(d) at the end of each calendar day
d, and illustrates the high short-term (day-to-day) variabil-
ity and long-term periodicity (year-to-year) of the source.
Also shown is the modeled total expected harvestable energy
Ein(d) on calendar day d such that true energy conditions are
closely approximated, i.e., (2) holds where N is the number
of days.

N

∑
d=1

Ein(d)∼=
N

∑
d=1

Ereal(d), N >> 1 (2)

The method to compute Ein(d) is based on a simplified as-
tronomical model to estimate the theoretical solar radiation
Eastro(t,d,L,θp,φp,Ω). It is parameterized by the time t in
hours of calendar day d, the intended deployment site’s lati-
tude L, and the panel’s orientation and inclination angles φp
and θp, respectively. Finally, the environmental parameter Ω

represents the expected average meteorological conditions.
This is the only unknown input parameter, and can be ap-
proximated as described in [7]. Although not absolutely nec-
essary, the availability of solar maps or solar energy traces
can improve the approximation of the parameter Ω.

Since we are concerned with electrical, as opposed to
solar energy, the output of Eastro(·) must be conditioned
by the technology parameters in Figure 1. These specify
the panel’s surface area Apv, conversion efficiency ηpv, and
self-consumption and efficiency factors for supervisory and
power conditioning circuitry, e.g., battery charge controller
efficiency ηcc, and consumption Pcc. The maximum rated
power output of the panel Ppv is used to evaluate the maxi-
mum energy Epv generated during one hour. Then, with the
above parameters specified, the total electrical energy that
can be harvested on calendar day d is approximated with (3).

Ein(d) = Apvηccηpv

24

∑
t=1

min(Epv,Eastro(t,d, ...)) (3)

While the astronomical energy model Eastro(·) may yield
any resolution t, for the purpose of long-term energy neutral
operation discussed in this work, daily sums are sufficient.

3.3 Power Subsystem Dimensioning
In this section we review the process of computing

the power subsystem capacity using the energy availability
model such that energy neutral operation over the source’s
seasonal cycle, i.e., one year, can be achieved. At this point
we assume a perfect battery, i.e., no inefficiencies. For a dis-
cussion including various battery inefficiencies, the reader is
referred to [7].

For the purpose of power subsystem capacity planning we
assume a constant daily energy demand Eout(d) that must be
met. Note that we explicitly keep the dependence on calen-
dar day d, since the energy consumption at runtime varies
with the dynamically chosen daily duty-cycle (see Sec. 4).
Referring to Figure 2, we observe that the intersections be-
tween the energy consumption Eout(d) and approximated en-
ergy input Ein(d) partition the annual solar cycle into time re-
gions of energy surplus, i.e., Ein(d) > Eout(d) ∀d ∈ [d0,d1),
and energy deficit, i.e., Ein(d)< Eout(d) ∀d ∈ [d1,d2).

According to the model assumptions, the minimum bat-
tery capacity B required to support the system during periods
of energy deficit is indicated with the cross-hatched area in
Figure 2, and formally stated in (4). The first term on the
left-hand side defines the amount of energy that is necessary
to support the system operation, while the second term rep-
resents the expected energy input. The difference is then the
minimum required battery capacity.

d2

∑
d1

(Eout(d)−Ein(d))≤ B (4)

In order to achieve uninterrupted operation over multiple
years, it is not sufficient to only provision the battery for the
period of deficit. The panel must be able to generate enough
energy to recharge the battery in addition to the energy re-
quired to sustain operation during periods of energy surplus,
i.e., d ∈ [d0,d1). The constraint on energy generation by the
panel is given in (5).

d1

∑
d0

(Ein(d)−Eout(d))≥ B (5)

The required battery capacity B can then be obtained by
varying the performance level (i.e., DCsys(d)) and/or the
panel area Apv and finding the intersections d0, d1, and d2
between Ein(d) and Eout(d) such that (4) and (5) hold.
4 Dynamic Power Management for Long-

Term Energy Neutral Operation
In the previous section we described the design-time

energy availability model and power subsystem capacity
planning based on the long-term characteristics of the en-
ergy source. Assuming that the design-time model reflects
the conditions at the deployment location to within some
bounds, the system will be able to run at the performance
level for which the power subsystem was designed [7]. How-
ever, in practice significant deviations from the model must
be expected. Such deviations may be caused by transient
phenomena, e.g., snow cover and foliage, or persistent oc-
clusions due to trees and buildings. In this section we pro-
pose a dynamic power management scheme that can adapt



to deviations from the modeled assumptions by dynamically
scaling the system performance level, and by doing so enable
Long-Term Energy Neutral Operation (LT-ENO).

4.1 Dynamic Performance Scaling
As discussed in Sec. 3.3, in order to achieve long-term

energy neutrality, the two constraints from (4) and (5) must
be satisfied. The constraint in (4) states that the battery must
be able to supply the difference in energy consumption and
generation during periods of energy deficit, i.e., d ∈ [d1,d2)
(as shown in Figure 2). The second constraint states that, in
order to ensure that the battery can be fully recharged dur-
ing periods of energy surplus (d ∈ [d0,d1)), the panel must
generate energy in excess of what is required to sustain short-
term operation. To satisfy these two constraints, we leverage
the offline energy model to determine the sustainable system
performance level.

To exemplify our approach we consider a concrete exam-
ple as illustrated in Figure 3. Without loss of generality, we
assume that the design-time model Ein(d), which was used
to obtain the battery capacity B given panel size Apv, over-
estimates the actual energy conditions Ereal(d). For simplic-
ity we ignore battery inefficiencies in this discussion, but
note that Algorithm 1 and the evaluation in Sec. 5 account
for these effects. In the following we consider the end of day
d and wish to compute the duty-cycle for the entire day d+1
such that long-term energy neutrality may be achieved.

To react to deviations from the modeled energy expecta-
tion, we first need to adjust the design-time energy model
Ein(d) at runtime according to observed conditions. For this
purpose, we define the model adjustment factor α in (6) to
scale Ein(d), i.e., Êin(d) = αEin(d), ∀d. The adjustment fac-
tor depends on the history window size W in days, which is
used to tune the duty-cycle stability. The choice of W has
a direct impact on the system’s responsiveness to variations
in the energy profile, and therefore imposes a system trade-
off between duty-cycle stability and achievable performance
level. The effects of the choice of the history window size W
are discussed in Sec. 5.3.3.

α =
∑

d
d−W Ereal(d)

∑
d
d−W Ein(d)

, 0 <W ≤ d (6)

Then, referring to Figure 3, it is evident that, given B and
the adjusted energy model Êin(d), the modeled consumption
Eout(d) may not be sustained. For example, a battery capac-
ity dimensioned for d∗1 , and d∗2 instead of d1 and d2 would
be necessary to support Eout(d) in Figure 3. Therefore, to
fully, but safely leverage the available battery capacity given
Êin(d)< Ein(d) ∀d, we need to find the energy consumption
Êout(d) = DC(d) ·Psys · γ, where γ = 24 hours such that the
battery and panel constraints in (7) hold.

d′2

∑
d′1

(
Êout(d)− Êin(d)

)
≤ B≤

d′1

∑
d′0

(
Êin(d)− Êout(d)

)
(7)

α =
∑

d
d−w Ereal(d)

∑
d
d−w Ein(d)

;

Êin = α ·ηcc ·Ein;
d′1 = d1; d′2 = d2; d′0 = d0;

surplus = ∑
d′1
d′0

Êin(d)−
(

Êin(d′1) · (d′1−d′0 +1)
)

;

de f icit =
(

Êin(d′1) · (d′2−d′1 +1)
)
−∑

d′2
d′1

Êin(d);

while ((de f icit ≤ surplus) && (surplus≤ Bnom)) do
if α < 1 then

d′0 = d′0 +1; d′1 = d′1−1; d′2 = d′2 +1;
else

d′0 = d′0−1; d′1 = d′1 +1; d′2 = d′2−1;
end
surplus, de f icit = calculate as above;
if (surplus < de f icit) then

d′0, d′1, d′2 = previous d′0, d′1, d′2;
surplus = calculate as above;
break;

end
end

DC(d +1) =
min(B,surplus)+∑

d′2
d′1

Êin(d)

Psys·24·(d′2−d′1+1) ;

Algorithm 1: Computation of the duty-cycle for day d +1 performed at
end of day d. In this example we use a daily resolution, which can be
adapted to other time steps. Note that battery charge (ηcc) and discharge
efficiencies (ηout ) are incorporated, and nominal capacity Bnom = B/ηout .

The limits of summation in (7) are unknown and depend
on Êout(d), the quantity we wish to find. However, since the
modeled limits are known, or can be computed at runtime,
d′0, d′1, and d′2 can be found iteratively in discrete time steps,
e.g., days, starting with intervals Ds = [d0,d1], Dd = [d1,d2],
which represent the surplus and deficit regions respectively,
and adjusting them according to Algorithm 1 until (8) eval-
uates true. D0

s and D0
d in (8) denote the first elements in the

intervals Ds and Dd respectively.

|Dd |Êin(D0
d)−

Dd

∑ Êin(d)≤
Ds

∑ Êin(d)−|Ds|Êin(D0
s )≤B (8)

The relation in (8) is obtained from (7) by noting that,
under our model assumptions, the energy generation at the
start of the deficit period is equal to the consumption on that
day (see Figure 3). Since we assume a constant energy con-
sumption (i.e., a stable duty-cycle) is desirable, we substitute
Êin(D0

d) and Êin(D0
d) respectively, for Êout(d) in (7), and re-

place the summations by multiplications.
Note that the maximum battery size that can be sup-

ported given the observed energy conditions is limited by
the energy that can be harvested during the surplus pe-
riod, i.e., B≤ Esurplus =

(
∑

Ds Êin(d)
)
− Êin(d′1) · |Ds|. Tak-

ing this limitation into consideration, we can use (9) to com-
pute the sustainable performance level for day d + 1 at the
end of day d. Note, γ = 24 hours.

DC(d +1) =
min(B,Esurplus)+∑

Dd Êin(d)
Psys · γ · |Dd |

(9)

In summary, with the adjusted energy model we can ap-
proximate the expected energy input over the annual solar
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cycle according to recent conditions. This information is
used to continually adjust the long-term sustainable perfor-
mance supported by the power subsystem. In other words,
to ensure that the battery can be replenished during periods
of surplus, and adequately used during periods of deficit, the
performance level is computed by considering a full annual
solar cycle. Note, in the above discussion we assumed that
the design-time model overestimates true conditions. How-
ever, the approach, as shown in Algorithm 1 is equally appli-
cable to model underestimation.

4.2 Practical Considerations and Limitations
In this section we discuss implementation specific consid-

erations and limitations of the proposed approach.

4.2.1 Measurement Support
The proposed dynamic power management scheme re-

quires that the system can measure or approximate the to-
tal daily harvested energy. This can be accomplished by
measuring the power output by the panel, or inferring the
harvested energy through battery State-of-Charge informa-
tion. The former is the preferred choice, but incurs additional
overhead in terms of measurement circuitry and continual
processing. The advantage of a State-of-Charge approach,
e.g., [6] is that it may not require special purpose hardware,
and needs to be performed only once a day. In Sec. 6, we
show that it is indeed possible to use the technique discussed
herein, even when the energy generated by the solar panel
can not be measured directly.

4.2.2 Global Time Knowledge
Clearly, the proposed technique requires knowledge of

global time in order to determine the current calendar day
d. Considering that our approach achieves long-term energy
neutrality, and may therefore operate without interruption
(see Sec. 5.2 and 6.2), this is not considered a limitation.

4.2.3 Battery Inefficiencies
Batteries are non-ideal storage elements, which suffer

from a variety of inefficiencies that are dependent on the
specific battery chemistry and load behavior [2]. In our
model, charging and discharging inefficiencies are incorpo-
rated through ηcc and ηout respectively specified by the sys-
tem designer (see Figure 1). Leakage power is ignored in this
discussion. Considering the periodically recurring recharg-
ing opportunities, accounting for leakage is not as crucial as
it is for purely battery operated devices. Temperature may

impact the battery’s apparent capacity [6]. Thus, for deploy-
ments that are exposed to low temperatures over extended
periods of time, it may be necessary to account for the tem-
porarily reduced battery capacity imposed by temperature ef-
fects. Finally, battery aging is not likely to be a problem,
since batteries are generally rated for a few hundred deep
discharge cycles [2]. With our approach, the battery experi-
ences only one deep discharge cycle per year, and is therefore
expected to outlast the lifetime of other system components,
e.g., electronics, mechanical parts, etc. Note that the solar
panel may also experience degradation. However, it has been
shown that this tends to be aesthetic in nature, and does not
significantly affect the panel’s efficiency [10].

4.2.4 Worst Case Energy Conditions
The proposed energy neutral dynamic power manage-

ment approach relies exclusively on the solar energy pro-
file. Under normal circumstances, this is not a problem,
as the duty-cycle is adapted according to the long-term dy-
namics of the source. However, in the case of a prolonged
lack of harvesting opportunities, e.g., due to snow cover,
the battery should be dimensioned such that this period can
be bridged. To the best of our knowledge, no other ap-
proach considers this scenario. In order to provision for such
conditions, the duration of the expected worst case period,
τ days, can be approximated at design-time, and the bat-
tery over-provisioned accordingly. For example, we might
over-provision the battery with ∑

τ (DCe(d) ·Psys ·24 hours),
and let the duty-cycle be an exponentially decaying func-
tion for those days that are below some threshold Et ,
i.e., DCe(d) = (DCmin)

d+1
τ ∀{d|Êin(d)< Et}, where DCmin

is the minimum acceptable duty-cycle.
Using our approach to capacity planning from Sec. 3.3,

enhanced with the above emergency provisioning, healthy
discharge cycles during normal operation can be achieved,
as the emergency store is only used in exceptional situations.

4.2.5 Algorithm Considerations
The proposed algorithm requires a constant amount of

non-volatile memory to maintain W values of Ereal(d),
which are necessary to compute α. Furthermore, the system
must be able to compute Ein(d) ∀d ∈ [1,365] at runtime, or
alternatively store 365 values representing Ein(d) as a look-
up table. The computation time is linear with respect to the
number of days for which Ein(d) is to be determined. Since
our approach considers the source’s long-term characteris-



tics, we are not concerned with sub-daily energy fluctuations.
Hence, the sustainable performance level, i.e., duty-cycle,
for the entire day d + 1 is computed only once at the end
of day d. Finally, note that the capacity planning algorithm
reviewed in Sec. 3.3 is computed offline and relies only on
one unknown parameter, i.e., Ω, which can be approximated
easily. Similarly, for the dynamic performance scaling algo-
rithm from Sec. 4.1, only the history window size W must
be determined (see Sec. 5.3.3). In Sec. 6 we demonstrate the
algorithm’s feasibility for implementation in a real system.

Note that the algorithm presented in Sec. 4.1 may be op-
timized. For example, rather than always starting with the
modeled limits d0, d1, and d2, we may store the limits ob-
tained on day d and use those as initial conditions on day
d+1. However, in the proof-of-concept implementation dis-
cussed herein, we are not concerned with the most efficient
way to find the intersection of the two functions.
5 Experimental Evaluation

In this section we use extensive trace-driven simula-
tions to compare the proposed dynamic power management
scheme against several State-of-the-Art approaches. We
show that the proposed algorithm achieves uninterrupted
long-term operation, while outperforming the baseline ap-
proaches over a range of performance metrics. In Sec. 6 we
further exemplify the proposed technique’s performance us-
ing a real-world energy harvesting wireless sensing system.
5.1 Experimental Setup
5.1.1 Baseline Algorithms

We compare our approach through simulation against
State-of-the-Art (SotA) implementations of energy-
predictive and battery-reactive approaches. Specifically, we
implement the predictive duty-cycling scheme from [15]
with two different energy predictors, i.e., EWMA [15]
and WCMA [18], and one reactive approach, i.e., ENO-
MAX [23]. Note that [18] only provides an energy
prediction algorithm but does not discuss dynamic perfor-
mance scaling, hence we use the scaling algorithm from [15]
to compute the duty-cycle.

We have selected these particular algorithms for the fol-
lowing reasons. The technique in [15] achieves very good
performance with minimal overhead, and is commonly used
as a baseline for comparative analysis, e.g., [18, 23]. It
is also one of the few techniques that combines prediction
and scheduling for solar harvesting systems. The technique
in [18] has been shown to improve the prediction accuracy,
but it has not been investigated if the improvement translates
into increased system performance. Finally, the technique
in [23] is a very well-performing representative of the class
of battery-reactive approaches.
5.1.2 Methodology and Simulation Input Data

To evaluate and compare the performance of the proposed
solution, we simulate a solar energy harvesting system with
the power management schemes introduced in Sec. 5.1.1 and
the trace data discussed in the following.

For the simulation input data, we resort to the National
Solar Radiation Database1 (NSRD) to obtain a twelve year
dataset containing hourly solar radiation measurements at a

1http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010

Table 1: Name, time-period, and location of NSRD1 datasets used for eval-
uation of the proposed approach. Maximum, mean, minimum and variance
of solar radiation are given in Wh for a panel with surface area Apv = 15cm2.

Name Time Period Lat [◦] Long [◦] Max Avg Min Var
CA 1/98 – 12/09 34.05 -117.95 10.37 7.03 0.92 5.62
MI 1/98 – 12/09 42.05 -86.05 10.55 5.34 0.53 9.05
ON 1/98 – 12/09 48.05 -87.65 10.98 5.07 0.44 11.24

single observation point in California (CA), Michigan (MI),
and Ontario (ON). The data for the first year of each dataset
is used for calibration of the State-of-the-Art approach, and
the remaining eleven years are used for simulation input data.
The data traces (see Table 1) from the National Solar Radia-
tion Database are given in Wh ·m−2 of solar energy incident
on a flat surface with zero inclination. Hence, to account
for smaller panel sizes, inefficiencies of individual compo-
nents, and losses in energy storage during simulation, the
data is conditioned with a typical efficiency of a midrange so-
lar panel ηpv = 10%, orientation angle φp = 180◦, and incli-
nation angle θp = 0◦. We evaluated different panel sizes, but
the results are comparable, hence we only show and discuss
results for a panel with Apv = 5cm2. Finally, we consider
battery charging and discharging efficiencies with ηcc = 0.9
and ηout = 0.7 which are reasonable efficiency factors.

5.1.3 Simulation Details
The capacity planning technique from [15] is used to ob-

tain the battery capacity B and supported power level Psys at
full performance (i.e., DC = 100%) using one year of cali-
bration data for each of the three datasets. We do the same
with the capacity planning algorithm from Sec. 3.3, but do
not provision for emergency situations (see Sec. 4.2). The
results are shown in Table 2, and discussed in Sec. 5.2.

For each of the baseline implementations we use the au-
thors’ recommended parameters, i.e., K = 3, D = 4, α = 0.3
for WCMA [18], and α = 0.5 for EWMA [15]. For ENO-
MAX [23], we use α = 1/24, and β = 0.25. The authors
suggest values between 0.25 and 0.75 for β, with lower val-
ues improving the duty-cycle stability at the cost of perfor-
mance. We experimented with different values and noted
negligible improvements in performance but noticeable in-
crease in duty-cycle variance with increasing values for β.
Finally, due to the hourly values given by the National Solar
Radiation Database, we use Nw = 24 instead of 48 daily up-
date slots for EWMA, WCMA, and ENO-MAX. This results
in a slight penalty in prediction accuracy, but significantly
reduces computation complexity. Recall that our approach
performs only one update per day, i.e., Nw = 1.

We assume the battery to be fully charged at the start of
the simulation, and simulate a low-power disconnect hys-
teresis of 60%, as commonly enforced by modern charge
controllers [6]. This means that, if at any time the battery
is fully depleted, the load will only be reconnected once the
battery has been recharged to 60% of its capacity.

For the history window size used by the proposed algo-
rithm, we assume W = 63 days for all three datasets. The
effects of this parameter are further discussed in Sec. 5.3.
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Figure 4: Mean power level, minimum power level, energy efficiency, and duty-cycle variance with energy input scaled (in increments of 10%) from 50% to
150% of original magnitude for each dataset and DCmin = 50%.

Table 2: Battery capacities and supported power levels obtained with the
SotA capacity planning approach and our proposed approach for the three
datasets MI, ON, and CA (see Table 1), and a panel size Apv = 5cm2, and
simulation results with fixed performance level, i.e., DC(d) = 100% ∀d.

MI ON CA

SotA LT-CP SotA LT-CP SotA LT-CP

B [Wh] 42.51 93.6 61.48 98.61 56.96 88.96
Psys [mW ] 55.73 57 56.75 47.5 73.17 83

Offline [%] 28.13 0 33.4 0 24.66 0
Pmean [mW ] 40.04 57 37.79 47.5 55.11 83
Pmin [mW ] 0 57 0 47.5 0 83
DC Variance [ 1

mW2 ] 53.98 0 62.8 0 31.83 0

5.1.4 Performance Metrics
Each of the algorithms are evaluated according to the fol-

lowing five performance metrics:
Percent Time Offline. For each experiment we report the
percentage of the total simulation time during which the sys-
tem was offline due to a depleted battery.
Mean Power Level. According to Sec. 3.1, the sys-
tem utility is defined by the achievable duty-cycle. How-
ever, since the methods evaluated yield different sustainable
power levels (see Table 2), we can not use the duty-cycle
alone as a performance metric. Rather, we report the aver-
age power level achieved over all simulation time steps (in-
cluding overriding zeros due to low-power disconnects), i.e.,
Pmean = mean(DC(d)) ·Psys.
Minimum Power Level. Achieving a minimum perfor-
mance level can be crucial in certain application scenarios,
e.g., safety-critical systems. We therefore report the mini-
mum power level that the evaluated approaches achieve.
Duty-Cycle Variance. We report the duty-cycle variance,
normalized by the variance of Ereal(d) over all simulation
time steps.

Energy Efficiency. To compare the energy efficiency of
the algorithms, we report the percentage of total energy that
went unused because the battery was full.
5.2 Experimental Results
5.2.1 Capacity Planning

The State-of-the-Art (SotA) capacity planning algorithm
discussed in [15] yields the required battery capacity B and
sustainable power level Psys, given an energy input trace rep-
resentative of the conditions at the intended deployment site.
Here, we investigate if Psys can indeed be supported over
long time periods by simulating the system equipped with
a battery of capacity B, and running at a fixed, full perfor-
mance power level Psys, i.e., DC(d) = 100% ∀d, as obtained
with the SotA capacity planning algorithm. The results in Ta-
ble 2 show that the SotA approach does not always support
the expected power level Psys. The long-term energy neu-
tral capacity planning (LT-CP) approach from Sec. 3, on the
other hand, can sustain the expected performance level over
the entire eleven years of simulation time, without relying on
extensive trace data to calibrate the model.
5.2.2 Dynamic Power Management

According to [15], if the calibration data is representative
of the actual conditions, the power level Psys obtained with
the SotA capacity planning technique should be supported at
all times. However, the previous experiment showed that this
may not always be the case, clearly demonstrating the need
for dynamic power management. We thus evaluate and com-
pare the dynamic power management approach proposed in
this work against the performance of the power management
techniques from [15] with EWMA and WCMA [18] pre-
dictors, and ENO-MAX [23]. For these algorithms we as-
sume the power subsystem from SotA capacity planning [15],
while our approach (LT-ENO) uses the capacity planning
(LT-CP) reviewed in Sec. 3.3. We also analyze the scenario
in which the baseline algorithms use batteries obtained with
the LT-CP approach.



Table 3: Simulation results averaged over all simulation runs shown in Fig-
ure 4 for the three datasets, i.e., MI, ON, CA, and the parameters listed in
Table 2. Note: Static refers to capacity planning alone, i.e., no DPM is used.

Algorithm

Static EWMA WCMA ENO-MAX LT-ENO

M
I

Offline [%] 5.75 0.12 0.26 0.54 0
Pmean [mW ] 53.71 33.22 32.42 48.63 52.77
Pmin [mW ] 36.27 25.33 25.33 25.33 49.49
DC Var. [ 1

mW2 ] 0.0001 2.5 2.29 5.35 0.0016
Efficiency [%] 71.6 42.82 41.68 62.87 69.68

O
N

Offline [%] 4.8 0.57 0.66 2.16 0
Pmean [mW ] 45.21 32.65 31.66 45.45 45.25
Pmin [mW ] 30.22 25.79 25.79 23.22 41.97
DC Var. [ 1

mW2 ] 0.0005 2.47 2.06 8.25 0.001
Efficiency [%] 64.6 45.3 43.82 62.58 64.4

C
A

Offline [%] 6.29 0 0 0 0
Pmean [mW ] 77.85 44.79 42.75 68.94 75.45
Pmin [mW ] 52.81 36.59 36.59 46.56 69.01
DC Var. [ 1

mW2 ] 0.0009 1.86 1.33 1.88 0.002
Efficiency [%] 75.74 41.5 39.39 64.9 72.4

For simulation we fix the minimum acceptable duty-cycle
at DCmin = 50%. While this may seem like an unusually high
duty-cycle, it is a reasonable lower bound considering that
the power subsystem is designed such that a power level cor-
responding to DC = 100% can be supported. We then sim-
ulate the different approaches with the energy input traces
scaled from 50% to 150% to artificially cause model devia-
tions. The results are shown in Figure 4, and Table 3 lists the
performance results averaged over all simulation runs.

It is evident that the proposed approach (LT-ENO) out-
performs the baseline algorithms in all respects, except for a
few instances where the performance is comparable to that
achieved by ENO-MAX. It is particularly noteworthy that
the achieved mean power level is bounded closely by the
minimum and maximum power levels respectively, illustrat-
ing a low duty-cycle variance. For the baseline algorithms,
the achieved minimum power level is at most equal to the
minimum acceptable power level, i.e., Pmin = Psys ·DCmin.
This means that for the baseline approaches, the minimum
achieved power level follows the user defined minimum ac-
ceptable duty-cycle. With the proposed approach, however,
the minimum achievable duty-cycle follows the long-term
dynamics of the observed energy profile. Furthermore, con-
sidering long-term instead of short-term dynamics has a di-
rect impact on duty-cycle variance. From Figure 4 and Ta-
ble 3 it is evident that the duty-cycle variance is orders of
magnitude lower than that obtained with any of the baseline
algorithms. Achieving high duty-cycle stability over long
time periods can be a strong requirement in a broad range of
application scenarios, e.g., [9, 22, 24].

From Figure 4 and Table 3 we further note that, while
our approach achieves 100% availability in all simulation
runs, the baseline algorithms suffer from depleted batteries
for two of the three datasets. In the worst case, this re-
sults in system unavailability for up to 620 days (ENO-MAX
with ON dataset scaled by 0.5). This behavior is expected
since the baseline algorithms are battery agnostic and, as
has been shown in Sec. 5.2.1, the power subsystem is under-
dimensioned. In order to perform a fair analysis, and de-
termine if these algorithms could do better, we evaluate the

baseline algorithms with a power subsystem from Sec. 3.
The only significant difference to the results discussed

above is with respect to the system’s availability, i.e., the
percentage time offline metric. The baseline algorithms now
achieve 100% availability, i.e., 0% offline, for all datasets.
The little improvement in the other performance metrics is
attributed to the battery agnostic nature of the baseline al-
gorithms. In the case of the two predictive approaches, i.e.,
EWMA and WCMA, an appropriately dimensioned battery
only helps to overcome fundamental limitations of the ap-
proach, i.e., short-term prediction. The reactive approach,
i.e., ENO-MAX, could benefit substantially from an appro-
priate battery if the setpoint required by this algorithm is
computed dynamically according to an expected discharge
profile that takes the battery capacity into consideration.

In this section, we have shown through simulation that
our approach excels in all five performance metrics as de-
fined in Sec. 5.1.4. The proposed dynamic power manage-
ment scheme achieves 100% system availability in simula-
tion with eleven years of trace data for different locations.
We have shown that the minimum and mean expected per-
formance level can be achieved even when there are devi-
ations from the design-time model assumptions. Since our
algorithm leverages the source’s long-term dynamics, an ex-
tremely low duty-cycle variance can be maintained while
still achieving highly efficient energy usage.
5.2.3 Benefits of Dynamic Power Management

In the previous section we have shown that the pro-
posed approach, which combines appropriate power subsys-
tem capacity planning and a dynamic power management
(DPM) scheme, yields considerable performance and relia-
bility improvements when compared to the State-of-the-Art
approaches proposed in literature. In this section we discuss
the benefits of using our DPM algorithm over relying only
on capacity planning.

For this purpose, we performed the same simulation dis-
cussed in the previous section, but set a static duty-cycle, as
obtained from capacity planning. The results, averaged over
all simulation runs are shown in the first column of Table 3.
As is evident, the mean achievable duty-cycle without DPM
support is approximately equal to the duty-cycle achieved by
LT-ENO. However, if we consider the minimum achievable
duty-cycle, the static approach performs significantly worse
than LT-ENO. This is because the static approach can not ad-
just the performance level in response to deviations from the
model, and experiences battery depletions when true condi-
tions are below some percentage of the expected conditions.

For example, Figure 5 shows the minimum and mean
duty-cycle achieved with the combination of capacity plan-
ning (for an expected duty-cycle DCsys = 70%) and the pro-
posed DPM algorithm over a range of scaling factors by
which the energy input was scaled. The same is shown for
capacity planning alone, i.e., the static approach. Note that
in region (a), i.e., for scaling factors 0.5 to 0.9, the static
approach was unable to sustain a non-zero minimum duty-
cycle, inferring that the system suffered power outages. In
this region, the DPM approach achieves a performance level
roughly proportional to the expected duty-cycle scaled by the
energy input scaling factor. In other words, the DPM ap-
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Figure 5: Benefits of dynamic power management (DPM). Comparison of
mean and minimum achievable duty-cycle with and without DPM.

proach trades off performance for ensuring continuous op-
eration at an adjusted minimum expected duty-cycle that is
dependent only on the energy input. This feature is a clear
benefit for systems that require continuous operation.

Region (b) in Figure 5, i.e., between 0.9 and 1.2 in this
case, is a transition region where the static approach per-
forms equivalently to DPM. Nevertheless, it is evident that
the DPM enabled system is able to improve the performance
level in response to increased energy availability. The lower
bound of this region depends on the degree of overestimat-
ing true conditions, i.e., an effect of capacity planning, while
the upper bound of this region is dependent on the reactivity
of the DPM algorithm, and therefore related to the history
window size W (see Sec. 5.3.3). Finally, region (c) shows
the full potential of DPM. The dynamic approach continues
to adapt to the surplus energy and increases the performance
level accordingly.

In summary, in this section we have shown that, unless
the expected conditions at the intended deployment site can
be very closely approximated, our DPM scheme provides
two clear benefits. First, it allows reliable operation even
when the expected conditions were significantly overesti-
mated. Second, the algorithm can adapt to surplus energy,
and safely increase the performance level accordingly.
5.3 Sensitivity Analysis
5.3.1 Energy Profile Periodicity

The proposed dynamic power management scheme as-
sumes a certain periodicity and sinusoidal behavior of the
energy source. This is a valid assumption, since the tilt in
the earth’s axis of rotation will cause different incident an-
gles depending on the annual solar cycle, which has a direct
impact on the harvestable energy [7]. Despite assuming a
stationary solar harvesting setup (i.e., no tracking capabili-
ties) it is nevertheless possible that the expected sinusoidal
behavior fails to appear. For example, a natural, or man-
made structure may shade the panel over the course of the
year such that the typical peaks and troughs are obscured.
Occurrences of these environmental effects are considered
extenuating circumstances, and therefore not considered in
this work. Nevertheless, in the following, we briefly investi-
gate a similar effect due to the panel inclination angle.
5.3.2 Panel Inclination and Orientation

The proposed approach builds upon an energy availabil-
ity model with deployment specific input parameters. Here
we briefly discuss the effects of orientation angle φp and in-
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Figure 6: Achievable maximum, mean, and minimum duty-cycle (top), and
duty-cycle variance (bottom) with inclination angle φp ranging from 0◦ to
90◦ for the CA dataset.

clination angle θp of the solar panel. First, the effect of φp
has been considered in Sec. 5.2, where it was shown that
the approach can handle significant deviations from the ex-
pected conditions. The inclination angle, however, changes
the shape of the annual solar energy profile. Hence, to evalu-
ate this effect, we simulate the system with the battery provi-
sioned as before, i.e., θp = 0◦ for the CA dataset, but vary the
panel inclination angle θp from 0◦ to 90◦ for the simulation.
Figure 6 shows the maximum, mean, and minimum achiev-
able duty-cycle for this modified CA dataset. Note that the
minimum allowable duty-cycle is fixed at 1%. The results
clearly show that the proposed dynamic power management
scheme can adapt to unexpected energy profiles, while main-
taining very low duty-cycle variance.

5.3.3 History Window Size
When applying a large history window size W , the scaling

factor α contains information about environmental condi-
tions W days in the past. Large W values reduce the model’s
reactivity to significant variations in the present energy pro-
file, which has the potential to threaten uninterrupted oper-
ation. On the other hand, a short history window enables
reacting to short-term variations of the source, but at the cost
of increased duty-cycle variance.

In order to find a suitable trade-off between achiev-
able performance level and duty-cycle stability, we evalu-
ate the adjusted model’s approximation accuracy with differ-
ent values for W . We define the performance metric given
in (10), which considers the model’s approximation accu-
racy through Mean Absolute Percentage Error (MAPE) [1],
scaled by the variance of α over a time period of N days.

σ =
var(α)

N

N

∑
i=1

(∣∣∣∣∣Ereal(di)− Êin(di)

Ereal(di)

∣∣∣∣∣
)

(10)

The result for W ∈ [7,140] days, and N = 365 days is il-
lustrated in Figure 7, which shows σ for the three different
datasets, normalized by the respective maximum value of σ.
As expected, with increasing W , the performance metric σ

approaches a value, past which there is diminishing improve-
ment in approximation accuracy or stability. Intuitively, the
optimal value for W is likely dependent on the source char-
acteristics, i.e., the variability of the energy profile, and on
the length of the deficit period that the battery must be able
to bridge. Based on the results in Figure 7, a history window
of W = 63 days for all three datasets is considered a suitable
parameterization.
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Figure 7: Evaluation of history window size W , normalized to maximum
value of σ for the respective dataset.

6 Case Study
In this section we demonstrate the feasibility for realiza-

tion of the theoretical models formulated in Sec. 3 and 4 in a
real-world system. In the context of a case study, we quan-
tify the benefit of the proposed dynamic power management
scheme in terms of increased application utility.

6.1 System Description
6.1.1 Motivation

The X-SENSE project’s [3] goal is to (i) apply WSN tech-
nology to enable geoscientific characterization and quan-
tification of cryosphere phenomena, and their transient re-
sponses to climate change, and (ii) investigate the feasibility
of WSN technology for an early-warning system against de-
structive events triggered by these phenomena. An integral
part of the geoscientific aspects of the project is the ability to
track movement on the order of a few centimeters per month.
This requires a system that can reliably, and autonomously
provide positioning with sub-centimeter accuracy over long
time periods, i.e., multiple years.

For this reason, a number of in-situ evaluation, and exper-
imentation platforms enhanced with commercially available
single-frequency GPS receivers are installed at the deploy-
ment site (see Figure 8b). The raw L1 GPS data collected
is differentially post-processed [5] to yield the positioning
accuracy required by the application [24]. Long sampling
intervals required for an acceptable solution accuracy (see
Sec. 6.1.3), coupled with the GPS receivers’ high power de-
mands [14], and the need for unattended operation over mul-
tiple years necessitate that an energy harvesting system is
employed to power the experimentation platform.

The project requirements and characteristics of the exper-
imentation platform present an ideal application scenario for
the validation of assumptions and models in Sec. 3 and 4, and
the evaluation of the dynamic power management scheme
under real-world conditions.
6.1.2 System Architecture

The system architecture is illustrated in Figure 8a and
a picture of a deployed X-SENSE system is shown in Fig-
ure 8b. It consists of the solar energy harvesting and energy
storage subsystems, collectively referred to as power sub-
system, and the load, i.e., wireless sensing platform, to be
supported.
Wireless Sensing Platform. To satisfy the project require-
ments from Sec. 6.1.1, we leverage a custom-built, feature-
rich hardware platform together with an extensible middle-
ware, introduced in [4]. With this platform we trade off sys-
tem flexibility, system observability, and accessibility for rel-

Table 4: Name, time-period, coordinates, and solar panel orientation (φp)
and inclination (θp) angles of the deployed systems used in the case study.

Name Time Period Lat [◦] Long [◦] φp [◦] θp [◦]
DH 02/01/12 – 03/22/14 46.1235531 7.82126695 195 57.5
GG 03/16/12 – 03/22/14 46.0901923 7.81339546 210 65

atively high power dissipation. Since the high load could not
be supported over extended periods of time with batteries
alone, the system is powered by the solar energy harvesting
system discussed below.

Although proven to be a very powerful and flexible tool
for in-situ experimentation, the evaluation platform has one
major limitation: it can not measure the current generated
by the panel Ipv, and only monitor the system input voltage
Vsys and current drawn Isys (see Figure 8a). However, as dis-
cussed in Sec. 4, an approximation of the generated energy
Ereal(d), which can be derived from Ipv, is necessary for the
DPM algorithm to function. Sec. 6.1.4 explains how we cir-
cumvent the lack of appropriate hardware support.
Power Subsystem. As illustrated in Figure 8a, and men-
tioned in Sec. 3.1, we assume a harvest-store-use architec-
ture [20], which is enforced by the employed charge con-
troller. This means that the energy to operate the system is
always supplied by the battery, even when the panel gener-
ates surplus energy, e.g., when the battery is full.

We consider two configurations that are identical with
respect to technology parameters (see Sec. 3): a 30 Watt
mono-crystalline solar panel (cleversolar CS-30) with a solar
cell area of 0.1725m2, a SunSaver SS-6L PWM charge con-
troller, a Lifeline AGM battery with a nominal capacity of
54Ah, and the wireless sensing system described above with
a power dissipation of approximately 6 Watt at full perfor-
mance. Table 4 lists the relevant deployment parameters that
differ between the two configurations.

Note that, according to our model in Sec. 3 and 4, nei-
ther of the two configurations is ideal with respect to the di-
mensioning of the energy harvesting power subsystem. The
panel and battery are poorly matched: the battery is under-
provisioned for the given load (the deployed battery is only
dimensioned for 10 days of operation at a duty-cycle of 30%,
and hence not large enough to bridge extended periods of
snow cover during winter), and the panel is over-provisioned
for the battery employed (resulting in available energy being
wasted during summer time). Nevertheless, using the capac-
ity planning algorithm from Sec. 3 and assuming Ω = 0.6,
we find that this harvesting configuration should be able to
support 7.5 hours (i.e., DC = 31.25%) of daily system opera-
tion for DH, and 6.7 hours for GG, as long as any one period
without harvesting opportunities does not exceed 10 days.
In order to reduce the likelihood of a low-power disconnect
due to an under-provisioned battery, we set the history win-
dow size W = 10 days (see Sec. 4.1 and 5.3.3) to match the
period that can be bridged by the battery.

6.1.3 System Utility
In Sec. 3.1 we defined the system utility to be directly

proportional to the duty-cycle that the system can achieve.
Here we refine it according to the aforementioned case study.



(a) (b)

Figure 8: (a) System block diagram partitioned into harvesting subsystem (solar panel), storage subsystem (battery and charge controller) and the load to be
supported (wireless sensing system). The flow of generated energy is indicated with dotted lines, while the dashed lines represent the energy consumed. (b)
Picture of an X-SENSE energy harvesting wireless sensing system installed at the high-alpine deployment site.

As introduced in Sec. 6.1.1, the application scenario [24]
relies on a differential GPS processing algorithm, whose ac-
ceptable error performance requires periodic sampling of the
GPS receiver (µ-blox LEA-6T) over at least two consecutive
hours per day. This is illustrated in the top graph in Fig-
ure 9, which shows the processing algorithm’s error perfor-
mance as a function of the measurement duty-cycle. From
the figure, it is evident that the minimum acceptable error,
i.e., e(DC)≤ 8mm, requires at least two hours of continuous
sampling [5], above which the error decreases exponentially.
Note that the error is undefined for duty-cycles lower than
approximately 8%, as this is below the minimum required
by the processing algorithm.

The application under consideration directly benefits
from increased temporal resolution, e.g., to characterize sub-
daily process variations, hence, sampling over longer time
intervals increases the system utility. Therefore, we define
the system utility, as shown on the bottom graph in Figure 9,
to be U(DC) = 1− enorm(DC), where enorm(DC) represents
the normalized error performance e(DC) shifted by an offset
to reach the maximum utility at a duty-cycle of 100%. This
is a realistic definition of system utility for many application
scenarios, e.g., [9, 11].

6.1.4 Implementation Details
In the following we discuss implementation aspects that

are relevant for the particular wireless sensing system under
consideration. By discussing two adaptations due to techni-
cal limitations of the system, we demonstrate the feasibility
for implementation even in systems that are not specifically
designed with our approach in mind.
Circumventing Limited Measurement Support. As al-
ready mentioned, for a number of reasons, the hardware plat-
form is not designed to provide measurements of the energy
generated by the solar panel, or the energy actually flow-
ing into the battery. However, the dynamic power manage-
ment scheme introduced in this work relies on an approx-
imation of the energy harvested over a given day. In or-
der to approximate the harvested energy without appropriate
hardware support, we leverage a recently proposed battery
State-of-Charge (SOC) algorithm [6]. At an absolute min-
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Figure 9: Error performance of processing algorithm versus duty-cycle
(top), and derived system utility versus duty-cycle (bottom). Note that the
error performance is undefined for a duty-cycle lower than 8%.

imum, this algorithm requires measurements of the system
input voltage Vsys and current discharge rate Isys (i.e., elec-
tric current drawn by the system) to approximate the battery
fill level, i.e., SOC. The State-of-Charge indication and the
length of daily charging cycles provided by this algorithm
are used to obtain an approximation of Ereal(d) as follows.

In the case when the power subsystem is not optimally
provisioned, the State-of-Charge alone is not sufficient to ap-
proximate the energy generated by the panel. For instance,
if the battery is full, any surplus energy generated by the
panel will be dissipated by the charge controller. This con-
dition will not be visible to the State-of-Charge algorithm
used herein. Therefore, we assume Tc(d) to be the dura-
tion of the daily charging cycle, i.e., the duration over which
the panel generated enough power to keep the charge con-
troller in charging mode, as given by the State-of-Charge al-
gorithm. Then, given the panel’s maximum power rating Ppv,
we can approximate the maximum energy Ĥmax that can be
harvested on a given calendar day d as Ĥmax(d) = Tc(d) ·Ppv.

Since we are interested in the energy actually generated
by the panel, and not its theoretical daily maximum, we scale
Ĥmax(d) by a factor ζ to approximate Ereal(d). The scaling
factor ζ accounts for the fact that, with the given configura-
tion, a certain fraction of the energy generated by the panel is
wasted. We approximate this scaling factor as shown in (11)
by considering only the days on which the State-of-Charge



(SOC) approximation is below 80%.

ζd = mean
(

ζd−1 +
G(d)

Ĥmax(d)

)
, i f SOC(d) ≤ 80%, ∀d

(11)
The quantity G(d) is the daily energy generation approxi-

mated using measurement of the system’s current drain, and
the State-of-Charge approximation, as given in (12). Note,
Vbat is the operating voltage, i.e., Vbat = 12V in our case, and
B is the battery capacity, i.e., B = ηout ·Bnom.

G(d) =
Êout(d)
ηin ·ηout

+
(SOC(d)−SOC(d−1)) ·B ·Vbat

ηin
(12)

DPM Algorithm Modification. The dynamic power man-
agement (DPM) algorithm discussed in Sec. 4.1 was de-
signed for enabling uninterrupted long-term operation as the
primary goal. The algorithm assumes an appropriately provi-
sioned battery and solar panel, as obtained with the capacity
planning from Sec. 3.3. However, as already discussed, the
configuration under consideration is suboptimal, hence we
make the following adjustment.

Since the panel is over-provisioned, it will likely be able
to generate significantly more energy during periods of sur-
plus than what can be stored in the battery, and used by the
system (see Sec. 3.2). Hence, during periods of surplus (i.e.,
on the interval [d0,d1)), we scale the duty-cycle computed by
the DPM algorithm by a factor ψ = 2. This value has been
selected based on experiments, which suggest that the exact
value for ψ depends on the ratio of energy consumption and
generation, but this must be investigated further. In order to
reduce excessive usage of the energy stored in the battery,
we introduce a guard time Tg of 30 days. This means that the
modification will only be used on day d, if and only if the
following inequality holds: d0 +Tg < d < d1−Tg.

6.2 Performance Evaluation
This section presents and discusses the results obtained

from running the proposed dynamic power management al-
gorithm on the system introduced in Sec. 6.1. In order to
verify the simulation framework’s applicability for investi-
gating different algorithm parameterizations, we first briefly
discuss our validation methodology. We recorded traces2 of
battery State-of-Charge, harvested energy, and load of the
wireless sensor platform described in Sec. 6.1.2. We then set
the parameters of our simulation framework to represent this
system and compared the recorded State-of-Charge trace to
the output of the simulation framework. We observed a Mean
Absolute Percentage Error [1] between measured and simu-
lated battery State-of-Charge of 5.45% over the entire trace.
We therefore conclude that simulation with other algorithmic
parameterizations will exhibit similar low deviations.
Results. The graphs on top in Figure 10 show the daily en-
ergy Ereal(d) together with the modeled energy expectation
Ein(d) and the modeled energy consumption Eout(d) for each
system over almost 700 days. Recall that Ein(d) is derived
from the astronomical model at design-time, and, depending
on its parameterization can be an optimistic or pessimistic

2All datasets used in this work are available at http://data.permasense.ch

approximation. The bottom graphs show the static duty-
cycle expected (Staticexp) based on model assumptions, and
the dynamically computed duty-cycle LT−ENO∗, which in-
corporates the modification discussed in Sec. 6.1.4. For ref-
erence, we also show the computed duty-cycle if this modifi-
cation were to be disabled (referred to as LT−ENO), and the
static duty-cycle Staticmax that may actually be supported by
the respective energy harvesting configuration when no dy-
namic power management is employed. Note that for the lat-
ter, we assume that perfect knowledge of the true energy con-
ditions are available at design time. Finally, to investigate the
performance boundaries of our algorithm, the graphs show
the duty-cycle achieved by a clairvoyant energy-prediction
algorithm referred to as Clairvoyant. Note that, while this al-
gorithm has perfect knowledge of a time window of 30 days
into the future, it is not necessarily a perfect scheduler.

From the top graphs in Figure 10, we note that the ex-
pected harvesting opportunities were significantly overesti-
mated with the selection of the environmental parameter Ω=
0.6 (see Sec. 3.2). A more appropriate, and safer parameteri-
zation would be Ω = 0.83 for DH, and Ω = 0.8 for GG. This
results in a supported duty-cycle Staticmax = 12.9% for DH,
and Staticmax = 10.8% for GG, assuming all other parame-
ters are unchanged. From the bottom graphs it is evident that
LT −ENO stays between the expected duty-cycle based on
model assumptions Staticexp and the supported static duty-
cycle Staticmax for most of the time. This clearly shows the
proposed algorithm’s ability to dynamically adapt the per-
formance level in response to deviations from the modeled
expectations, without risking battery depletion. As is evi-
dent from Table 5, by using LT−ENO, power outages due to
overestimating actual conditions, as experienced by the static
approach, i.e., Staticexp can be eliminated while simultane-
ously improving both system utility and energy efficiency.

The results for GG in Table 5 show that, although the sys-
tem achieves zero downtime, the minimum achieved duty-
cycle is below the minimum duty-cycle required by the end-
user application. The resulting periods with zero utility (see
Sec. 6.1.3) are due to time periods with no harvesting oppor-
tunities that significantly exceed the time period the battery
can bridge. As discussed in Sec. 4.2.4, zero input conditions
trigger an emergency mechanism, which overrides the duty-
cycle computed by our algorithm due to lack of energy input
around days 105 and 690 on the bottom graph in Figure 10b.
Although experiencing days with zero energy input for DH
as well, these instances are not as prominent in the dataset.

Next we consider the modified approach represented by
LT −ENO∗, which differs from LT −ENO only during pe-
riods of energy surplus, i.e., summer. The effect of the mod-
ification discussed in Sec. 6.1.4 is clearly visible by the sud-
den step in duty-cycle around days 300, 400, and 670 for DH
in Figure 10a, and days 290, 430, and 650 for GG shown in
Figure 10b. We note that LT −ENO∗ approaches the perfor-
mance of the clairvoyant algorithm. In both cases, the duty-
cycle achieved by the clairvoyant algorithm tightly bounds
that of LT−ENO∗ during periods of energy deficit, i.e., win-
ter. On average over the entire period, LT −ENO∗ achieves
76.26% of the performance of the clairvoyant algorithm for
DH and 68.15% for GG.
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Figure 10: Uninterrupted operation over 700 days for two energy harvesting systems using the LT-ENO DPM approach. Note that Ein(d) refers to the offline
model, which, in this case, consistently overestimated the true conditions. In general, Ein(d) can be an optimistic or pessimistic approximation.

Table 5: Percent Offline, mean (DC) and minimum (bDCc) duty-cycle, duty-
cycle variance (σ2), mean utility (U), minimum utility (bUc), and energy
efficiency (η) for DH and GG shown in Figure 10.
Note: LT −ENO is the original DPM algorithm, LT −ENO∗ is the DPM
algorithm modified according to Sec. 6.1.4, Staticexp and Staticmax are ex-
pected static duty-cycle according to model assumptions.

Power Offline DC bDCc σ2 U bUc η

Management [%] [%] [%] [%] [%] [%]
Algorithm

D
H

LT −ENO∗ 0 35.8 8.3 0.0167 81.2 22.4 80.3
LT −ENO 0 20.6 8.3 0.0021 70.3 22.4 44.5
Staticexp 7.9 28.8 0 0.0004 68.9 0 62.5
Staticmax 0 12.9 12.9 0 49.0 49.0 26.7

G
G

LT −ENO∗ 0 34.79 1.43 0.0207 79.0 0 75.0
LT −ENO 0 21.7 1.43 0.0044 69.1 0 46.5
Staticexp 8.0 25.7 0 0.0004 69.2 0 54.6
Staticmax 0 10.8 10.8 0 38.6 38.6 21.7

The performance improvements due to efficient use of the
power subsystem are ultimately expected to translate into
high system utility for the end-user. Figure 11 shows the
histogram of system utility (defined in Sec. 6.1.3) achieved
by the four different approaches. The static approach with
Staticmax achieves a constant, but clearly the lowest utility.
As is to be expected, the overly optimistic Staticexp increases
the overall utility at the cost of a few days with zero utility.
Note that the system achieved 100% uptime, but not always
a sampling time of at least 2 hours, thus resulting in zero util-
ity. As discussed in Sec. 5.2.3, the two dynamic approaches,
i.e., LT −ENO and LT −ENO∗, trade-off performance for
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Figure 11: Histogram of utility for the static (Staticmax and Staticexp), and
dynamic approaches (LT −ENO and LT −ENO∗).

ensuring continuous operation. Significantly higher utility
can be achieved as a result of the system’s ability to react to
deviations from expected conditions and efficiently adjusting
the performance to safe levels.

In summary, we have shown that the proposed approach to
enabling long-term uninterrupted operation of solar energy
harvesting systems is very applicable even to systems with
limited hardware support. Using a real deployed sensing
system, we have demonstrated that the proposed approach
results in significant improvements in system utility.

7 Conclusions
In this work we have demonstrated that appropriate

design-time considerations, together with a novel dynamic



power management scheme can indeed enable energy neu-
tral operation of solar energy harvesting systems over time
periods on the order of multiple years. The proposed dy-
namic power management scheme leverages an astronomical
energy availability model that is also used to dimension the
energy harvesting power subsystem.

Rather than considering the energy source’s short-term
fluctuations, our approach uses the source’s known long-
term tendencies to compute the sustainable duty-cycle. This
allows the system to fully, but safely, leverage the power sub-
system and so achieve stable performance over long time pe-
riods without incurring downtime. Additionally, the system-
atic end-to-end solution enables efficient use of the power
subsystem, resulting in major savings in terms of system cost
and physical form factor.

When compared to the State-of-the-Art implementations,
the proposed approach achieves a reduction in duty-cycle
variance by up to three orders of magnitude without imped-
ing the achievable performance level. Trace-driven simu-
lation with eleven years of real-world data showed that the
achieved minimum, and mean duty-cycle improve upon ex-
isting techniques by up to 195% and 177% respectively. Fi-
nally, using a concrete case study, we have shown that the
proposed approach can significantly improve system util-
ity, while exhibiting robustness against variations in the ob-
served energy profile, irrespective of the source of model de-
viations, i.e., environmental and deployment variations.
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