
Mapping Applications to Tiled Multiprocessor Embedded Systems

Lothar Thiele Iuliana Bacivarov Wolfgang Haid Kai Huang
Swiss Federal Institute of Technology Zurich

Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland
{thiele, bacivarov, haid, huang}@tik.ee.ethz.ch

Abstract

Modern multiprocessor embedded systems execute a
large number of tasks on shared processors and handle
their complex communications on shared communication
networks. Traditional methods from the HW/SW codesign
or general purpose computing domain cannot be applied
any more to cope with this new class of complex systems. To
overcome this problem, a framework called Distributed Op-
eration Layer (DOL) is proposed that enables the efficient
execution of parallel applications on multiprocessor plat-
forms. Two main services are offered by the DOL: system-
level performance analysis and multi-objective algorithm-
architecture mapping. This paper presents the basic prin-
ciples of the DOL, the specification mechanisms for appli-
cations, platform and mapping as well as its internal ana-
lytic performance evaluation framework. To illustrate the
presented concepts, an MPEG-2 decoder case study is pre-
sented.

1 Introduction

The complexity of applications found in modern embed-
ded systems is steadily increasing. Video and audio codecs,
modems for wireless communication, and other kinds of
digital signal processing applications have performance re-
quirements that cannot be satisfied by single processor ar-
chitectures any more. The focus in embedded system design
is moving away from single processor implementations to-
wards heterogeneous multiprocessor system-on-chip (Mp-
SoC) architectures.

While offering high scale integration, high computing
power and low power consumption, MpSoC designs also
face challenges:

• The intrinsic computational power of an MpSoC system
should not only be used efficiently, but the time and ef-
fort to design a system containing both hardware and
software must also remain acceptable. System design
methods implementing applications with the latest mul-

tiprocessor architecture must harness exponential hard-
ware resource growth in a scalable and modular way.

• MpSoC systems need to be flexible enough that the de-
sign can be re-used for different product variants or ver-
sions, and easily modified in response to market needs,
user requirements, and product updates during the de-
sign and product life cycle.

• MpSoC systems are characterized by a large design
space as there is a large degree of freedom in the par-
titioning of parallel application tasks, the allocation of
concurrent hardware components, their binding to appli-
cation processes, and the choice of appropriate resource
allocation schemes. It is well acknowledged that the
design of such complex systems requires performance
evaluation and validation techniques during the whole
design trajectory. Because of the overall system com-
plexity, fast evaluation methods in an early design stage
are critical for making profound design decisions.

• Embedded systems are very often real-time systems in
which timeliness of the task execution is as important
as the function of the task. Usually, timeliness can be
easily achieved by over-dimensioning the hardware re-
sources or reducing the application performance. But
the challenge is to deliver timing guarantees without
such forms of overprovisioning.
It is questionable whether the established design method-

ologies and tools for single processor systems are appropri-
ate to meet these challenges. Without a disciplined design
methodology, however, system designers will have to resort
to ad-hoc techniques to implement concurrent applications
on complex multiprocessor platforms, which is a doubtful
proposition. We believe that new design methodologies and
engineering practices are necessary for the design of com-
plex MpSoC systems to achieve the productivity and effi-
ciency that has been reached for single processor systems.

In this paper, we present the Distributed Operation Layer
(DOL) as a system-level framework for solving some the
above mentioned challenges. The key elements of the DOL
are a programming model, a communication interface, a
tailored hardware abstraction, a design space exploration



strategy, and a system-level performance analysis, which
seamlessly integrates into a complete development environ-
ment for multiprocessor system design. We define a consis-
tent interface which can be designed once and used for the
whole design life cycle, e.g. application development, func-
tional simulation, hardware-dependent software generation,
cycle-true simulation and final implementation.

The contributions of this paper can be summarized as
follows:

• We define abstraction models and the corresponding
programming paradigms for the application and archi-
tecture, as well as a format for the mapping specifica-
tion.

• We show how an analytic performance analysis strategy
is integrated into the DOL framework, alleviating the
designer from the difficult task to model and analyze the
MpSoC system using other methods.

• For design-space exploration, we integrate a multi-
objective optimization tool leveraging evolutionary al-
gorithms.

• We present a case study to testify the developed method-
ology.
The rest of this paper is organized as follows. After in-

vestigating the related work in Section 2, the DOL frame-
work is briefly introduced in Section 3, while in Section 4,
the DOL programming model, the mapping and architecture
specifications are presented in detail. The mapping explo-
ration loop is described in Section 5. Section 6 presents the
performance evaluation strategy while experimental results
are illustrated in Section 7.

2 Related work

Application modeling: In the literature, a variety of models
of computation and associated specification languages have
been proposed. Prominent examples are for instance, Co-
design Finite State Machine (CFSM) from the Polis project
[1], Metropolis Meta-Model (MMM) language from the
Metropolis project [2], the StreamIt language [8], the Tiny-
SHIM [6], and Statecharts [9].

A widely used model for application modeling at the
process-level is the class of Kahn process networks (KPN)
[11] because of their simple communication and synchro-
nization mechanisms. A well-known property of KPNs is
that they are determinate, i.e., the functional input/output
relation is independent of the timing of the processes, com-
munication and synchronization. Several, more restrictive
models have been derived from KPNs. One of these mod-
els is Synchronous Data Flow (SDF) [14, 16] and its ram-
ifications, in which the processes of a KPN are replaced
by atomic actors that can be fired when input data is avail-
able. Once an actor has been fired, it cannot stall. Another

recent variation of KPN is SW/HW integration medium
(SHIM) [6], the communication of which is synchronous
in the sense that both sending and receiving processes must
agree when data are to be transferred.

We adopt process networks as our application model,
not restricting ourselves to any of the models mentioned
above. We only define the semantics of the communica-
tion as point-to-point first-in first-out (FIFO) channels, and
leave the implementation open for later refinements in the
mapping stage. Therefore, specialized process networks se-
mantics, such as KPN, SDF, and SHIM, can be obtained by
imposing additional restrictions or semantics onto the pro-
cess network.
Model specification: The syntactic specification of the ap-
plication model and architecture model is also a major con-
cern of our work. In our framework, we do not intend to
create a new modeling language for the process network
model. We argument that designing a new language is not
the best idea, since most of existing applications are writ-
ten in imperative languages like C/C++. However, we de-
couple the behavior of the processes from the structure of
the process network. In particular, we propose an XML
Schema to specify the process network, similar to Y-chart
Modeling Language (YML) [18] proposed by Artemis and
MoML [15] proposed in Ptolemy. Therefore, different lev-
els of potential parallelism are clearly separated such as
inter-process parallelism, i.e. thread-level or instruction-
level, and intra-process concurrency.

An innovative spark of our XML Schema is the intro-
duction of aniterator element which is used to describe
complex repetitive models, as well in the underlying hard-
ware platform (e.g. a massively parallel computer architec-
ture consisting of regular tiles and repetitive communication
channels) and in the application (e.g. iterated processes and
communication links). In the literature, only YML [18] re-
ports a built-in scripting support that is similar to the pro-
posed approach.
Simulation-based approaches: Simulation-based tech-
niques are the major approaches to validate the functionality
of multiprocessor embedded systems during the design cy-
cle and to perform a system-wide performance estimation.
Polis [1] is a framework targeting control-dominated sys-
tems whose implementation is based on a micro-controller
for tasks to be implemented in software and ASICs for tasks
to be implemented in hardware. The Ptolemy [4] project is
a flexible environment for the simulation and prototyping of
heterogeneous systems, which supplies different models of
computation within a single system simulations. Metropolis
[2], a follow-up to the Polis project, provides a meta-model
and a unified structure for simulation of multiple computa-
tion models. There are also industrial simulation tools avail-
able, such as VCC from Cadence [23] and Seamless from
Mentor Graphics [19]. All these academic and industrial



simulation frameworks have in common that they allow the
modeling of systems at any level of detail. However, they
suffer from long run times and from a high set-up effort for
each new architecture and mapping. Worst-case bounds of
system properties like throughput and end-to-end delay are
difficult to obtain because corner cases of the execution are
difficult to identify due to the overall complexity of today’s
systems.

To achieve shorter run-times for simulation-based meth-
ods, approaches that combine simulation and analysis have
been proposed. Lahiri et al., proposed a hybrid trace-based
simulation methodology [13] for on-chip communication
exploration. K̈unzli et al., developed a technique [12] that
embedded an analytic perfromance evaluation method [22]
into the SystemC based MPARM simulation tool [20], [17].
The Artemis [18] project proposed a trace-driven hardware-
software cosimulation. Although these mixed methodolo-
gies can help to shorten the run-time of simulations, the
problem of insufficient corner case coverage still remains.
Analysis-based approaches:In order to evaluate different
platform-mapping combinations for the purpose of design
space exploration, the applied methods should be modu-
lar, they should support a large variety of different resource
types and resource sharing disciplines. In comparison to
simulation-based methods, analytic approaches can guaran-
tee system properties and they are characterized by a small
run-time, i.e. they well scale to large MPSoC. On the other
hand, the obtained bounds may be far away from the ac-
tual worst case, especially if the chosen abstractions do
not cover the essential system properties. In addition to
the Modular Performance Analysis (MPA), see e.g. [24],
[5], that is based on Real-Time Calculus [22] there are two
other prominent analytic approaches for the analysis of dis-
tributed embedded systems, namely MAST [7] and Symta/S
[10]. They are both based on extensions to classical real-
time scheduling theory. In this paper, we will use the MPA
framework whose abstractions are adapted to the complex
stream patterns as occurring in MPSoC systems, thereby
having a higher accuracy of analysis results.

3 Basic Principles

Our main goal is the efficient execution of parallelized
applications on a heterogeneous MpSoC architecture. More
specifically, the task is to generate an optimal mapping of
a parallelized application onto a MpSoC architecture in an
automated manner. The most challenging question related
to this task is how to obtain the data on which the opti-
mization is based and how to evaluate the performance of
specific mappings. We regard traditional HW/SW cosimu-
lation, be it at register-transfer level, cycle accurate, or in-
struction accurate level, as too slow to be included in an
iterative performance optimization process. The integration

of fast performance evaluation methods not relying on sim-
ulation into the design flow is the biggest challenge in real-
izing our goal. Leveraging an appropriate application model
is the key to achieve our goal. In particular, we have identi-
fied the following requirements of the applications and the
way they are developed:

• Parallelization: The automatic parallelization of se-
quential program code is still an open research topic and
it will not be addressed in this paper. Therefore, the
application programmer is required to manually paral-
lelize the algorithm based on the knowledge about the
algorithm.

• Software Refinement and Retargetability:Developing,
testing, and maintaining program code is a major ef-
fort in embedded systems design. It is crucial that the
platform-independent code basis can be reused without
any modification when the hardware platform or single
resources are changed. Usually, the platform-dependent
code is generated automatically. This requires the appli-
cation code to be amenable for refinement in different
environments and tool-chains.

• Scalability:Often, applications are available in different
sizes or configurations. Scaling and reconfiguration of
an application needs to be supported in a simple way.

• Mapping: Usually, there are many ways to map an ap-
plication onto a given hardware architecture. Mapping
an application in different ways should not require any
change of the application code but only of the platform-
dependent code.

• Performance Analysis:Obtaining performance data at
the highest possible level of abstraction is one basis for
fast mapping optimization. Applications should be writ-
ten such that certain performance data can be already
obtained at application level without the need to change
the code.
The Distributed Operation Layer (DOL) can be consid-

ered as a framework tailored towards this requirements and
that actually implements the mapping optimization. It con-
sists of basically four parts, as shown in Fig. 1. First,
the DOL defines how to specify and program applica-
tions which is the basis for the automation of the software
flow. Applications written according to this definition are
amenable for automated refinement with respect to the hard-
ware and the operating system. Second, the DOL defines
how to specify the (abstracted) MpSoC hardware architec-
ture. Third, a purely functional simulation can be automati-
cally generated based on the application specification. This
simulation can be used for debugging and testing as well
as for obtaining mapping relevant parameters at the appli-
cation level. Fourth, the DOL implements a tool for map-
ping optimization which itself relies on a tightly coupled
tool for performance analysis. Performance analysis some-
times needs to rely on simulation, for instance, to obtain the



actual execution time of code segments. Besides the high-
level functional simulation, an external low-level simulation
framework is therefore loosely coupled with the mapping
optimization tool.
The output of the DOL is a mapping specification which is
used together with the application and architecture descrip-
tion as input for the further software refinement.

application
specification

architecture
specification

mapping
optimization

performance
evaluation

software
refinement

simulation
framework

DOL

functional
simulation

Figure 1. Overview over the DOL framework.

4 Application, Platform and Mapping

4.1 Programming Model and Application
Specification

The requirements concerning the programming model
have already been listed in the previous section. It turns
out that theprocess network modelof computation fulfills
the best our specification needs.

In terms ofparallelization, the process network model
clearly separates two layers of abstraction, namely inter-
process concurrency which can be used for distribution,
parallelization and pipelining as well as intra-process paral-
lelism which can be exploited using thread-based process-
ing or instruction-level parallelism.

Concerning software refinement and retargetability,
tasks can be written in conventional C/C++ and we can rely
on state-of-the-art compiler technology for the conversion
of program code into machine code. In addition, the pro-
cess network strictly separates computation from commu-
nication, such that the creation of code for a new mapping
merely requires a new implementation of the communica-
tion routines.

Scalability is supported because of the inherent hierar-
chical nature of process networks (see above) and the use of
iterated processes and communication links.

In terms ofmapping, there is a clear separation between
the structure of the application (defined by the structure of
the process network) and the behavior of the application
(defined by the code of the processes). This separation con-
siderably simplifies the mapping compared to monolithic
applications whose structure is often defined implicitly.

Concerning performance analysis, the separation of
computation and communication as well as the separation
of structure from behavior yields an application that can be
broken down into blocks of manageable complexity. These
blocks can be analyzed in a structured way, for instance us-
ing hierarchical, component based analysis methods.
Structural Specification. The structure of an application
is defined by the structure of the process network. With re-
spect to the structure, a process network is a directed graph
whose nodes represent the processes and whose directed
edges represent the communication channels between the
processes. In the DOL, process networks are syntactically
represented in an XML format. The main elements are
process elements,software channel elements, and
connection elements, as shown in Fig. 2. The concept
of a process and software channel is not restricted to se-
quential programs running on computation resources and
FIFO-ordered queues. Instead, a process could also be a
memory that is accessed via specific software channels to
enable random access.

To enable the definition of scalable structures, we
use aniterator element which is comparable to the
generate statement in VHDL. The iterator element al-
lows to replicate single elements, but also entire structures.
In the example in Fig. 2, for instance, an iterator element
is used to create the four connections between the producer
and the consumer process.

The structural XML specification also contains applica-
tion specific information, such as the minimum required
size of the channels, and can be annotated with additional
data, such as the runtimes of the processes.

producer

fifo_0

fifo_1

fifo_2

fifo_3

ack
consumer

output port

input port

process

sw_channel

iterated structure

connection

Figure 2. A simple process network with iter-
ated software channels.

Functional Specification.The functionality of an applica-
tion is defined by the function of the processes. To program
the processes, plain C/C++ is used whereby a set of coding
rules needs to be respected. In particular, a process consists
of an init and afire procedure. Theinit procedure



is called once during initialization of the application. After-
wards, thefire procedure is called repeatedly. For inter-
process communication, dedicated communication primi-
tives have been defined that can be used withininit and
fire .

Note that the specification allows to define applications
according toany process network semantics. Specialized
process network semantics, such as Kahn process network
or (synchronous) data flow, can be obtained by imposing ad-
ditional restrictions or semantics onto the elements. When
all processes in a process network are structured in the way
shown in Algorithm 1, the application has a (synchronous)
data flow semantics, for instance.

Algorithm 1 Process Model
1: procedure INIT (DOLProcessp) . initialization
2: initialize local data structures
3: end procedure

4: procedure FIRE(DOLProcessp) . execution
5: DOL read(INPUT, size, buf) . blocking read
6: manipulate
7: DOL write(OUTPUT, size, buf) . blocking write
8: end procedure

4.2 Platform Specification

The platform specification captures the information
about the underlying platform that is relevant for the map-
ping. Since the DOL is used for mapping optimization at
the system level, the platform does not need to be modeled
in every detail but an abstracted model can be used. In par-
ticular, the DOL platform specification models the architec-
ture including the hardware abstraction layer (or hardware
dependent software (HdS)).

The platform specification contains three kinds of data:
structural, performance, andparametric data. The struc-
ture is defined by the platform’s resources, such as proces-
sors, memories, hardware channels, and their interconnec-
tions, as shown in Fig. 3. Note that instead of specifying
local connections and allowing any communication enabled
by these connections, end-to-endcommunication pathswith
nodes on the affected resources are used. This way, Net-
works on Chip (NoC) can faithfully be modeled. In system-
wide performance analysis we are more interested in the
performance data of end-to-end connections than in the per-
formance data of the single segments involved. In the exam-
ple platform in Fig. 3, the two processors can communicate
over three different paths, for instance: through the system
bus, through the FIFO link and through the memory, via the
system bus.

Performance data such as the throughput of buses, the
delay of a communication path, processor and bus clock fre-
quencies and overheads of the hardware dependent software

layer (device drivers, resource sharing mechanisms) are an-
notated to the corresponding elements. Parametric data
such as memory sizes, supported resource sharing meth-
ods (such as FIFO, fixed priority, static scheduling or time
triggered architecture), and operating system parameters are
annotated to the corresponding elements, too. Like the pro-
cess network specification of the application, the platform
specification is kept in an XML format. In a similar way to
the application structure, scalability is supported by using
iterators that can be used to specify large platforms with a
regular structure.

processorA processorBmemA

systembus

processor

memory

hw_channel

connectionpath node

port

fifolink

Figure 3. A simple platform specification.

4.3 Mapping Specification
The mapping defines where and how the components of

an application are executed on a distributed hardware plat-
form. Mapping needs to be done in the spatial domain,
which is referred to as binding, and in the temporal do-
main, which is referred to as scheduling. In our framework,
the binding specification defines a mapping of processes to
processors and software channels to communication paths.
The scheduling specification defines the scheduling policy
on each resource and the according parameters, e.g. time-
division multiple access scheme and the associated slot
length, fixed priority scheduling and the associated priori-
ties, or static scheduling and the associated ordering.

Again, XML is used as the format for mapping specifica-
tions. Besides the possibility to specify iterated mappings,
compliant to the algorithm and platform specification, addi-
tional mapping parameters, such as the required memory for
channels, partitionings of memories, or device driver con-
figuration data, can be specified.

5 Design Space Exploration Cycle

The DOL mapping optimization is an automatic design
space exploration process that finally provides an optimized
mapping of the application onto the target platform. The
iterative design space exploration loop includes two main



phases: performance evaluation (simulation or analysis)
and optimization, see Fig. 4.

The decisions during the mapping optimization are based
on model data which are are not only collected from system-
level simulation or analysis but also from other sorts of
platform and application profiling: (a) benchmarking and
profiling the hardware platform (e.g. bus peak data rate,
communication bandwidth of NoC, available memory), (b)
functional simulation of the application software (e.g. the
amount of data communicated between processes, the num-
ber of process invocations, process dependencies and acti-
vation patterns), and (c) the combination thereof (e.g. the
run-time of a process on a target processor).

During the design space exploration, the DOL must
be able to consider various combinations of (a) processes
running on different processors (b) communication links
through available communication paths and (c) resource
sharing disciplines on these resources. The resulting sys-
tem performance indicators should be evaluated for each
inspected solution. Therefore, there is a need of high-level,
fast performance evaluation strategies.

Fig. 4 represents the exploration-estimation cycle. In a
first, high-level iteration, the estimation is done using a fast
and possibly less accurate analytic performance evaluation
method, i.e. an analytic model. This performance evalua-
tion strategy is fast and therefore, it is typically used during
early design space exploration.

The second, lower-level iteration utilizes a more detailed
simulation in order to collect more accurate performance
figures. They can be either used for later stages of the map-
ping process where a high accuracy is necessary or they can
be used to calibrate the parameters of the analytic model,
e.g. to determine run-time of processes on computing re-
sources and estimating the scheduling overhead, e.g. con-
text switch costs.

The optimization objectives are a priori fixed by the de-
signer. The DOL optimization can deal with multiple, often
conflicting objectives. In addition, it is necessary to take
into account constraints on feasible mappings, e.g. in terms
of available local memory and fixed locations of some of the
processes, e.g. for input/ouput of data. In the current imple-
mentation of the DOL, the mapping optimization is based
on evolutionary algorithms [27] and the PISA interface [3].
We have considered a two-dimensional optimization space,
following two optimization criteria: computation time op-
timization and communication time optimization, see Sec-
tions 6 and 7.

6 Analytic Performance Estimation

In the following, we will describe two possible schemes
for evaluating the system-level performance of an imple-
mentation, i.e. an application mapped to a hardware plat-

platform
specification optimization

application
specification

functional
simulation

model
data

data
extraction

analysis

simulation

performance
queries

estimation
results

platform
benchmarks

mapping

Figure 4. Exploration-estimation cycle.

form.

6.1 Static Model

The first model is static in the sense that it does not take
into account (dynamic) resource sharing at all. Therefore,
it is close to conventional ’back-of-the-envelope’ methods.
On the other hand, the conditions under which the results
are of reasonable accuracy match typical streaming appli-
cations if specified using a process network:

• There is enough inter- and intra-process parallelism
available such that the resources do not stall because
of blocking, e.g. by missing input data or waiting for
memory transfer.

• Overhead for context switching (as for latency hiding)
and communication set-up is negligible.

• Communication is smooth, i.e. bursts can be abstracted
away for the overall system behavior.
The basic concept of the model is to balance the com-

putation as well as the communication load, i.e. there are
two distinct optimization goals. Load balancing avoids
overloading certain resources which would lead to exces-
sive packet delays in terms of the communication paths and
excessive processing delays at computation resources [25].
Under the above mentioned assumptions, one can also ne-
glect the influence of resource sharing methods as the in-
fluence on delay gets significant only when working at the
resource limits.

Before determining the objectives for each mapping,
some basic quantities need to be determined:

• The whole application is executed using the functional
simulation, see Fig. 4, for a set of typical input data. The
resulting quantities are for each processp ∈ P the num-
ber of invocations of the fire-methodn(p) and the total



amount of Bytesb(s) communicated on each software
channels ∈ S.

• Using the simulation component in the exploration cycle
in Fig. 4, the runtimer(p, c) of the fire-method of each
processp ∈ P on each allocatable computation resource
c ∈ C is determined, using the input traces determined
during the functional simulation.

• Using the platform benchmarking, we also determine
the maximal throughputt(g) for each segmentg ∈ G
of the communication paths in the hardware platform.
Given a mapping, the two objectives (to be minimized)

can be determined.

obj 1 = max
c∈C





∑

∀p mapped to c

n(p) · r(p, c)



 (1)

obj 2 = max
g∈G





∑

∀s mapped onto g

b(s)
t(g)



 (2)

Here,obj 1 orobj 2 estimate the runtime if constrained by
the maximally loaded computation resource or segment of
a communication path, respectively. In the multi-objective
evolutionary optimization, we not only consider these two
objectives but also additional constraints such as dedicated
mappings of processes to processors and delay-sensitive
software channels to appropriate hardware channels.

6.2 Dynamic Modular Analysis

The above analysis method is static in the sense that it
neglects resource sharing schemes and supposes smooth op-
eration and communication patterns, i.e. without bursts,
blocking and synchronization. Recently, there have been
major breakthroughs in terms of analysis frameworks that
(a) allow system-level performance analysis of distributed
embedded systems, (b) are modular in terms of algorithms
and hardware components and (c) allow for worst-case anal-
ysis of timing behavior. As a prominent example, let us de-
scribe the Modular Performance Analysis (MPA), see e.g.
[24], [5], that is based on Real-Time Calculus [22], in more
detail.

In contrast to other methods, not only properties of traf-
fic streams (flowing through the software/hardware chan-
nels) are described in detail but also the capabilities of the
used resources. The notion of arrival and service curves
captures not only periodic behavior but all kinds of bursti-
ness as well. In particular, for each internal and external
stream we define asR(s, t) the number of events in time in-
terval [s, t), t > s and the associated tuple of arrival curves
α = [αl, αu]

αl(t− s) ≤ R(s, t) ≤ αu(t− s) (3)

In a similar way, one can define the available resource units
(e.g. in terms of processing cycles or communicated Bytes)
in [s, t), t > s asC(s, t) and the associated tuple of service
curvesβ = [βl, βu]

βl(t− s) ≤ C(s, t) ≤ βu(t− s) (4)

Using the exploration-estimation cycle in Fig. 4, one can
determine the characterizations of the input streams using
the application specification, e.g. by performing a simula-
tion of the environment and determining the arrival curves
of the input streams by using the associated traces and ap-
plying (3). In a similar, way, the resource capabilities can
be determined using the platform specification and the def-
inition in (4).

The next step is to determine a network of performance
analysis components given a mapping according to Fig. 4.
The principle of this approach can best be described by a
simple example. To this end, Fig. 5 contains an example of
such a network. In this case, we have 5 distinct resources,
namely 4 CPUs and one BUS. In the network, these re-
sources are represented as sources of the corresponding ser-
vice curvesβ. We have one input streamIN that is rep-
resented by its arrival curveα. In this simplified MPEG-
decoder example, the input stream is partitioned into three
streams atCPU1 in processV I which are communicated
to CPU3 ... CPU4 via a TDMA-scheduled bus. After pro-
cessing , these streams are communicated back via the bus
and combined inCPU1 using taskV O.

T2

T1

In VI

CPU1 CPU

DQV

CPU2BUS

T3

TDMA

T4

T5

T6

CPU

CPU

DQV

CPU3

CPU

DQV

CPU4
VOOut

Figure 5. Example of a Modular Performance
Analysis network.

The network follows this structure: besides the re-
sources, it contains components that split the available ser-
vice among the tasks (see e.g. the block TDMA) and perfor-
mance components (see e.g. VI, VO, T1 ... T6, DOV) that
model the use of resources by computation and communi-
cation processes. The computations on the arrival curves
(flowing horizontally in Fig. 5) and service curves (flowing
vertically in Fig. 5) are done using Real-Time Calculus, see



e.g. [24], [5] and [22]. These computations need input from
the simulations of processes on the individual resources, see
also Section 6.1. This input is needed to relate the events to
be communicated or processed and the associated use of re-
sources, e.g. in terms of workload curves.

Based on such a network, one can now determine im-
portant performance and memory figures such as end-to-
end delays, maximal utilization and the maximal backlog
of events. In contrast to the method described in Section
6.1, the MPA allows a much higher accuracy.

7 Case Study — Implementation of an
MPEG-2 Decoder

To demonstrate the capabilities of the DOL, we present
the implementation of an MPEG-2 video decoder and de-
scribe how this decoder is mapped onto a heterogeneous
architecture using the static model for performance evalua-
tion.

7.1 MPEG-2 Implementation

Concerning the implementation of the decoder, the main
question is how to parallelize the decoding algorithm.
The process network in Fig. 6 shows how we exploit the
available data parallelism and functional parallelism in the
MPEG-2 decoder. Variable length decoding (VLD), inverse
scan (IS) and inverse quantization (IQ) are performed on
the macroblock level. The inverse discrete cosine transform
(IDCT) is performed on the block level, and motion com-
pensation (MC) is again performed on the macroblock level.
Additionally, groups of pictures (GOP) can be decoded in
parallel.
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Figure 6. Kahn process network implementa-
tion of an MPEG-2 video decoder.

The process network has been implemented as a Kahn
process network. It uses only blocking read and write se-
mantics. Bounding the FIFO sizes has been simple since the
size of the communicated data structures is known. Also,

deadlocks due to the boundedness of the FIFOs can be eas-
ily avoided because the process network has a feed-forward
structure without cycles. Note that the communication be-
tween any two processes is handled via a single FIFO and
no global control process or picture buffer exists, leading to
a highly parallelized implementation. The process network
itself has been defined usingiterators. Different structures
of the process network can be obtained by merely changing
the three parameters that define how many outputs eachdis-
patch gop, dispatch macroblock, anddispatch blockprocess
has.

7.2 Mapping Optimization

We map the MPEG-2 decoder in the configuration shown
in Fig. 8 onto the multiprocessor architecture shown in
Fig. 7. The processors in the depicted architecture have
a clock frequency of 400MHz, the throughput of the
buses is 150MByte/s, and the throughput of the NoC is
100MByte/s. The mapping is computed for MPEG streams
with a bit rate of 8 Mbps. The video resolution is704 ×
576 pixels, and the frame rate is 25 frames per second.

RISC 1 DSP 1 RISC 2 DSP 2

BUS 1 BUS 2NoC

tile 1 tile 2

Figure 7. Target architecture in which two
identical tiles consisting of a RISC processor
and a DSP are connected by a NoC.

1 2 297000 891000 297000 594000 2

15.0 519.4 421.4 421.4 975.6 228.2

number of
activations

transferred
data (in MByte)

Figure 8. Parameters relevant to mapping as
obtained using the functional simulation.

The quantities for the static model, as described in Sec-
tion 6.1, are summarized in Fig. 8 and Table 1. The number
of process invocationsn(p) and the total amount of bytes
communicated over each software channel are shown in
Fig. 8. The runtimes of the processes are listed in Table 1.



Process
Runtime Runtime
on RISC on DSP

dispatch gop 0.13 0.20
dispatch macroblock 6.68 8.52
dispatch block 0.06 0.04
transform block 2.00 1.25
collect block 0.05 0.04
collect macroblock 12.33 8.51
collect gop 0.18 0.30

Table 1. Accumulated runtimes n(p) · r(p, c) of
processes for processing a video clip with a
duration of 15s.

For the mapping optimization, evolutionary algorithms
are used, as already mentioned. Evolutionary algorithms try
to find solutions to a given problem by iterating three steps:
(a) the evaluation of candidate solutions, (b) the selection of
promising candidates based on this evaluation, and (c) the
generation of new candidates by variation of these selected
candidates. We use the frameworks of EXPO [21] and PISA
[3] that implement the iteration shown in Fig. 4 and use
the Strength Pareto Evolutionary Algorithm (SPEA) [26] as
the underlying multi-objective search algorithm. Using that
approach, one only needs to implement parts (a) and (c) of
the mapping optimization as (b) is independent of the actual
optimization problem and is handled inside SPEA. In the
case of EXPO, this is done in three Java classes:

• Specification: In theSpecificationclass, the static com-
ponents of the problem are modeled, such as the process
network or the architecture.

• Gene: In theGeneclass, a single candidate mapping is
represented. In addition the variation methodscrossover
andmutateare implemented in this class.

• Analyzer: In the Analyzerclass, the objective values
obj1 andobj2, see (1, 2), of a single candidate mapping
are computed.

Note that these three classes are generated automatically
based on the application specification, the architecture spec-
ification, and the mapping parameters described above.

7.3 Results

Fig. 9 and Fig. 10 show the result of the mapping op-
timization. The plots in Fig. 9 show mappings arranged in
two dimensions according to their objective valuesobj1 and
obj2. Implementations that are located in the shaded region
can decode in real-time the15s video used to obtain the per-
formance data. Since a video with a typical workload has
been chosen, we can conclude thatanyvideo with the same
parameters could be decoded by these implementations.

Finally, Fig. 10 shows two concrete implementations that
achieve the best balance with respect to the computation
load (left) and the communication load (right) in the fea-
sible region. Both implementations, however, might be a

Figure 9. Initial population (left) and optimal
mappings (right) obtained after 40 rounds.
The x-axis corresponds to obj1 and the y-axis
to obj2.

bad choice for an actual implementation since small vari-
ations of the workload can move them out of the feasible
region. In contrast, the mapping corresponding to point
C in Fig. 9 might be a good choice because by minimiz-
ing min(obj1, obj2) it is the mapping that is most robust to
workload variations.
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98.9%

83.6%

27.1%
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45.4%
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Figure 10. Two optimal mappings corre-
sponding to point A (left) and point B (right).
Each resource is annotated with its load, i.e.
the ratio between the time it is busy and the
totally available time (15s).

8 Conclusions

In this paper, we introduced the Distributed Operation
Layer as a framework for specifying and mapping parallel
applications onto heterogeneous multiprocessor platforms.
We showed how we specify applications based on the pro-
cess network model of computation and the platform. A
component-based approach is used in both specifications
which enables the optimization and analysis of mappings by
means of analytic performance evaluation. A static model
and a dynamic model for analytic performance evaluation
have been considered in detail. Finally, we presented a case
study in which we used the Distributed Operation Layer for
mapping an MPEG-2 video decoder onto a distributed ar-
chitecture based on the static model.
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