
...

RECONOS: AN OPERATING SYSTEM
APPROACH FOR RECONFIGURABLE

COMPUTING
...

THE RECONOS OPERATING SYSTEM FOR RECONFIGURABLE COMPUTING OFFERS A UNIFIED

MULTITHREADED PROGRAMMING MODEL AND OS SERVICES FOR THREADS EXECUTING IN

SOFTWARE AND THREADS MAPPED TO RECONFIGURABLE HARDWARE. BY SEMANTICALLY

INTEGRATING HARDWARE ACCELERATORS INTO A STANDARD OS ENVIRONMENT,

RECONOS ALLOWS FOR RAPID DESIGN-SPACE EXPLORATION, SUPPORTS A STRUCTURED

APPLICATION DEVELOPMENT PROCESS, AND IMPROVES THE PORTABILITY OF APPLICATIONS

BETWEEN DIFFERENT RECONFIGURABLE COMPUTING SYSTEMS.

......Today’s high-density field-
programmable gate arrays (FPGAs) allow for
implementing very complex circuits. Still,
reconfigurable computing applications are
rarely mapped exclusively to the FPGA accel-
erator. Application parts amenable to parallel
execution, customization, and deep pipelin-
ing are often implemented as custom hard-
ware to improve performance or energy
efficiency. Other parts, especially code that is
highly sequential or difficult to implement as
custom hardware, are executed in software
mapped to a CPU. This decomposition of
applications into separate, communicating
parts that require synchronization among
them is also widely used in pure software sys-
tems in order to separate concerns and
achieve concurrent or asynchronous process-
ing. In software systems, the operating system
(OS) standardizes these communication and
synchronization mechanisms and provides
abstractions for encapsulating the execution

units (processes and threads), communica-
tion, and synchronization.

Reconfigurable computing systems still
lack an established OS foundation that covers
both software and hardware parts. Instead,
communication and synchronization are usu-
ally handled in a highly system- and applica-
tion-specific way, which tends to be error
prone, limit the designer’s productivity, and
prevent portability of applications between
different reconfigurable computing systems.

The ReconOS operating system, pro-
gramming model, and system architecture
offers unified OS services for functions exe-
cuting in software and hardware and a stand-
ardized interface for integrating custom
hardware accelerators. ReconOS leverages the
well-established multithreading program-
ming model and extends a host OS with
hardware thread support. These extensions
let the hardware threads interact with soft-
ware threads using the same standardized OS

Andreas Agne

University of Paderborn

Markus Happe

Ariane Keller

ETH Zürich

Enno Lübbers

Intel Labs Europe

Bernhard Plattner

ETH Zürich

Marco Platzner

Christian Plessl

University of Paderborn

...

60 Published by the IEEE Computer Society 0272-1732/14/$31.00�c 2014 IEEE

mechanisms—for example, semaphores,
mutexes, condition variables, and message
queues. From the perspective of an applica-
tion, it is thus completely transparent
whether a thread is executing in software or
hardware. The availability of an OS layer
providing symmetry between software and
hardware threads provides the following ben-
efits for reconfigurable computing systems:

• The application development process
can be structured in a step-by-step
fashion with an all-in-software imple-
mentation as a starting point. Per-
formance-critical application parts
can then be turned into hardware
threads one by one to successively
explore the hardware/software design
space.

• The portability of applications be-
tween different reconfigurable com-
puting systems is improved by using
defined OS interfaces for communica-
tion and synchronization instead of
low-level platform-specific interfaces.

• The unified appearance of hardware
and software threads from the applica-
tion’s perspective allows functions to
move between software and hardware
during runtime, which supports the
design of adaptive computing systems
that exploit partial reconfiguration.

We discuss the evolution of operating sys-
tems for reconfigurable computing and how
ReconOS relates to this heritage in the
“Operating Systems for Reconfigurable
Computing” sidebar.

Programming model
The key idea of ReconOS is to extend the

multithreading programming model across
the hardware/software interface. In multi-
threaded programming, applications are com-
posed of objects such as threads, message
queues, and semaphores, each of which has a
strictly defined interface and purpose. The
application’s functionality is partitioned into
threads, which in our case can be either blocks
of sequential software or parallel hardware
modules. Threads communicate and syn-
chronize using one or more of the program-
ming model’s objects; for example, they can

pass data using message queues or mailboxes,
explicitly coordinate execution through bar-
riers or semaphores, or implicitly synchronize
access to shared resources by locking and
unlocking mutually exclusive locks (mutexes).
These objects and their interactions are widely
used in well-established APIs for program-
ming multithreaded software applications. A
major advantage that developers can draw
from the ReconOS approach is that these
abstractions can be used not only for software
threads, but also for optimized hardware
implementations of data-parallel functions—
the hardware threads—without sacrificing the
expressiveness and portability of the applica-
tion description.

Consider the example software thread
sketched in Figure 1. The thread receives
packets streaming in via ingress mailbox
mbox_in, processes them in a user-defined
way, sends the processed packets to egress
mailbox mbox_out, and updates a packet
counter stored in a shared variable protected
by the lock count_mutex. Using standard
APIs for message passing and synchroniza-
tion, the software thread accesses OS services
in an expressive, straightforward, and port-
able way. As an additional benefit, such a
thread description manages to clearly sepa-
rate thread-specific processing from OS calls.

Figure 2 shows a ReconOS hardware
implementation of the same thread, parti-
tioned into similar thread-specific logic and
OS interactions. While the thread-specific
user logic contains the hardware thread’s
datapath and is limited only by available
FPGA resources, the OS interactions of a
hardware thread are captured by the OS syn-
chronization finite state machine (OSFSM).
Together with the OS interface (OSIF), this
state machine enables seamless OS calls from
within hardware modules. The developer
specifies the OSFSM using a standard
VHDL state machine description, as shown
in Figure 3. For accessing OS functions in
this state machine, ReconOS provides a
VHDL library that wraps all OS calls with
VHDL procedures. The OSFSM’s transi-
tions are guarded by an OS-controlled sig-
nal done (line 47), so that blocking OS
calls—such as mutex_lock()—can
temporarily inhibit the execution of a hard-
ware thread.

...

JANUARY/FEBRUARY 2014 61

Consequently, the OSFSM in VHDL
closely mimics the sequence of OS calls
within the equivalent software thread: it reads
a packet from a mailbox, passes it to a sepa-
rate module to be processed, writes the proc-
essed packet back to another mailbox, and
increments a thread-safe counter. The
description of the actual user logic, however,
may well differ from the software realization,
as this is the area where the fine-grained par-
allel execution of an FPGA-optimized imple-
mentation can realize its strengths—
unhindered by the necessarily sequential exe-
cution of OS calls.

ReconOS architecture
The ReconOS runtime system architec-

ture provides the structural foundation to

support the multithreading programming
model and its execution on CPU/FPGA plat-
forms. Figure 4 shows a conceptual view of a
typical system that is decomposed into the
application software, OS kernel, and hard-
ware architecture. The application’s software
threads are usually executed on the main
CPU alongside the host OS kernel that
encapsulates APIs, libraries, and all program-
ming model objects, as well as lower-level
functions such as memory management and
device drivers. The ReconOS runtime envi-
ronment consists of hardware components
that provide interfaces, communication
channels, and other functionality, such as
memory access and address translation to the
hardware threads. Additionally, the runtime
system comprises software components in
the form of libraries and kernel modules that

...

Operating Systems for Reconfigurable Computing
The introduction of the partially reconfigurable Xilinx XC6200 FPGA

series in the mid 1990s and, later on, the JBits software library for

bitstream manipulation, inspired researchers to investigate dynamic

resource management for reconfigurable hardware. Early works

drew an analogy between tasks in software and so-called “virtual”

or “swappable” hardware modules and studied fundamental opera-

tions such as scheduling; placement, relocation and defragmenta-

tion; slot-based device partitioning and reconfiguration schemes;

and intermodule routing.1-3 Although these works suggested cen-

tralizing resource management in a runtime layer for convenience,

integration with a software operating system (OS) was not a pre-

dominant design goal. The few projects that resulted in implemen-

tations used first-in, first-out (FIFO) interconnects or shared memory

to interface reconfigurable hardware modules with other parts of

an application running in software. However, the nature of these

hardware modules was still that of a passive coprocessor, which

was fed with data from software tasks.

After the development of more sophisticated prototypes, such

as a multimedia appliance using multitasking in hardware,4 several

researchers concurrently pushed the idea of treating hardware

tasks as independent execution units5-7 equipped with similar

access to OS functions as their software peers. Around 2004, these

projects fundamentally changed the concept of reconfigurable hard-

ware operating systems because the emerging prototypes turned

hardware modules into threads or processes and offered them a set

of OS functions for intertask communication and synchronization.

These approaches can be considered the first operating systems

directly dedicated to reconfigurable computing.

Soon after these first operating systems were developed,

designers found that promoting hardware tasks to peers of

software threads while carrying over a manually managed local

memory architecture was too restrictive. Thus, researchers began

studying how hardware tasks can autonomously access the main

memory. For reconfigurable operating systems that build on a gen-

eral-purpose OS, such as Linux, this meant that virtual memory had

to be supported. The first approaches solve this challenge by creat-

ing a transparently managed local copy of the main memory and

modifying the host OS to handle page misses on the CPU.8,9 To

improve the efficiency of accessing main memory, especially for

nonlinear data access patterns, ReconOS later pioneered a hard-

ware memory management unit for hardware modules that trans-

lates virtual addresses without the CPU.10

Current research projects on operating systems for reconfigura-

ble computing differ mainly with respect to whether a hardware

module is turned into a process, a thread, or a kernel module, and

in the richness of OS services made available to reconfigurable

hardware. While projects such as BORPH choose UNIX processes,11

Hthreads12 and ReconOS use a lightweight threading model to rep-

resent hardware modules. More recently, SPREAD began integrat-

ing multithreading and streaming paradigms,13 while FUSE focuses

on a closer, more efficient kernel integration of hardware

accelerators.14

Compared to other approaches leveraging the threading

model—especially Hthreads, which focuses on low-jitter hardware

implementations of OS services—ReconOS, with its unified hard-

ware/software interfaces, lets us offer an essentially identical and

rich set of OS services to both software and hardware threads.

ReconOS doesn’t require any change to the host OS, which leads to

three key benefits: a comparatively simple tool flow for building

applications, improved portability and interoperability through

..

RECONFIGURABLE COMPUTING

..

62 IEEE MICRO

offer an interface to the hardware, the OS,
and the application’s software threads.

A key component for multithreading
across the hardware/software boundary is the
delegate thread, a lightweight software thread
that interfaces between the hardware thread
and the OS. When a hardware thread needs
to execute an OS function, it relays this
request through the OSIF to the delegate
thread using platform-specific (but applica-
tion-independent) communication interfa-
ces. The delegate thread then executes the
desired OS functions on behalf of its associ-
ated hardware thread. Hence, from the OS
kernel’s point of view, only software threads
exist and interact, while the hardware threads
are completely hidden behind their respective
delegate threads. From the application pro-
grammer’s point of view, however, the

delegate threads are hidden by the ReconOS
runtime environment, and only the applica-
tion’s hardware and software threads exist.
This delegate mechanism together with the
unified thread interfaces gives ReconOS
exceptional transparency regarding a thread’s
execution mode—that is, whether it runs in
software or hardware. While the delegate
mechanism causes a certain overhead for exe-
cuting OS calls, the resulting simplicity of
switching thread implementations between
software and hardware greatly facilitates sys-
tem generation and design space exploration.

The ReconOS concept is rather general
and has been ported to several FPGA families,
main CPU architectures, and host operating
systems (see the “ReconOS Versions and
Availability” sidebar). For the rest of this
article, we describe the implementation of

standard OS kernels, and a step-by-step design process starting

with a fully functional software prototype on a desktop.

References
1. G. Brebner, “A Virtual Hardware Operating System for the

Xilinx XC6200,” Proc. Int’l Workshop Field-Programmable

Logic and Applications (FPL 96), LNCS 1142, 1996, pp.

327-336.

2. K. Compton et al., “Configuration Relocation and Defrag-

mentation for Reconfigurable Computing,” Proc. Int’l

Symp. Field-Programmable Custom Computing Machines

(FCCM), 2000, pp. 279-280.

3. K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Tem-

plate Placement for Reconfigurable Computing Systems,”

IEEE Design and Test of Computers, vol. 17, no. 1, 2000,

pp. 68-83.

4. V. Nollet et al., “Designing an Operating System for a Het-

erogeneous Reconfigurable SoC,” Proc. 17th Int’l Symp.

Parallel and Distributed Processing, 2003, doi:10.1109/

IPDPS.2003.1213320.

5. D. Andrews et al., “Programming Models for Hybrid

FPGA-CPU Computational Components: A Missing Link,”

IEEE Micro, vol. 24, no. 4, 2004, pp. 42-53.

6. C. Steiger, H. Walder, and M. Platzner, “Operating Sys-

tems for Reconfigurable Embedded Platforms: Online

Scheduling of Real-Time Tasks,” IEEE Trans. Computers,

vol. 53, no. 11, 2004, pp. 1392-1407.

7. N.W. Bergmann et al., “A Process Model for Hardware

Modules in Reconfigurable System-on-Chip,” Proc. 19th

Int’l Conf. Architecture of Computing Systems, LNCS, vol.

81, no. 3894, 2006, pp. 205-214.

8. M. Vuletic, L. Pozzi, and P. Ienne, “Seamless Hardware-

Software Integration in Reconfigurable Computing Sys-

tems,” IEEE Design & Test of Computers, vol. 22, no. 2,

2005, pp. 102-113.

9. P. Garcia and K. Compton, “A Reconfigurable Hardware

Interface for a Modern Computing System,” Proc. Int’l

Symp. Field-Programmable Custom Computing Machines

(FCCM 07), 2007, pp. 73-84.

10. A. Agne, M. Platzner, and E. Lübbers, “Memory Virtualiza-

tion for Multithreaded Reconfigurable Hardware,” Proc.

Int’l Conf. Field Programmable Logic and Applications

(FPL 11), 2011, pp. 185-188.

11. H.K.-H. So and R. Brodersen, “A Unified Hardware/Soft-

ware Runtime Environment for FPGA-based Reconfigura-

ble Computers Using BORPH,” ACM Trans. Embedded

Computing Systems, vol. 7, no. 2, 2008, article 14.

12. D. Andrews et al., “Achieving Programming Model

Abstractions for Reconfigurable Computing,” IEEE Trans.

Very Large Scale Integration Systems, vol. 16, no. 1, 2008,

pp. 34-44.

13. Y. Wang et al., “A Partially Reconfigurable Architecture

Supporting Hardware Threads,” Proc. Int’l Conf. Field-Pro-

grammable Technology (FPT 12), 2012, pp. 269-276.

14. A. Ismail and L. Shannon, “FUSE: Front-End User Frame-

work for O/S Abstraction of Hardware Accelerators,”

Proc. IEEE 19th Ann. Int’l Symp. Field-Programmable

Custom Computing Machines (FCCM 11), 2011, pp. 170-

177.

...

JANUARY/FEBRUARY 2014 63

1 extern mutex_t *count_mutex; // mutex protecting packet counter

2 extern mqd_t mbox_in, // ingress packets

3 mbox_out; // egress packets

4

5 void *thread_a_entry(void *count_ptr) {

6 data_t buf; // buffer for packet processing

7

8 while (true) {

9 buf = mbox_get (mbox_in); // receive new packet

10 process (buf); // process packet

11 mbox_put (mbox_out, buf); // send processed packet

12 mutex_lock (count_mutex); // acquire lock

13 ((count_t) *count_ptr)++; // update counter

14 mutex_unlock(count_mutex); // release lock

15 }

16 }

Figure 1. Example of a stream processing software thread using operating system services.

The software thread accesses OS services in an expressive, straightforward, and portable way.

Hardware thread

i_osif
GET_DATA

/ mbox_get
(MBOX_IN, data_in)

/ mutex_unlock
(COUNT_MUTEX)

/mbox_put
(MBOX_OUT, data_out)

ready = ‘0’ /

ready = ‘1’ /

/ write (count + 1)

/ mutex_lock
(COUNT_MUTEX)

Transitions
occur only
when OS

interface is
ready

/ read (count)

run <= ‘1’
run

ready

data_in

data_out

In
g

re
ss

m
em

or
y

E
g

re
ss

m
em

or
y

run <= ‘0’

UNLOCK

WRITE

LOCK

READ

PUT_DATA

PROCESS

o_osif

i_memif

o_memif

OS synchronization finite state machine (OSFSM)

O
S

 in
er

fa
ce

(O
S

IF
)

M
em

o
ry

 in
te

rf
ac

e
(M

E
M

IF
)

User logic (custom datapath)

Figure 2. A ReconOS hardware thread comprises the OS synchronization finite state machine and the user logic

implementing the datapath. Together with the OS interface (OSIF), the OS synchronization finite state machine enables

seamless OS calls from within the hardware thread. The memory interface (MEMIF) provides the hardware thread with

access to the ReconOS memory subsystem.

..

RECONFIGURABLE COMPUTING

..

64 IEEE MICRO

ReconOS v3, which is the most recent version
of ReconOS targeting Xilinx Virtex-6 FPGAs
and using a MicroBlaze/Linux environment.

To assist developers with creating the
OSFSM for a hardware thread, ReconOS

provides a library that wraps convenient
VHDL procedures around the OS call signal-
ing, such as mutex_lock() in Figure 3.

Technically, the VHDL procedures imple-
ment further state machines that are nested

1 OSFSM: process (clk, reset)
2 variable ack: boolean;
3 begin
4
5 if reset = ‘1’ then
6 state <= GET_DATA;
7 run <= ‘0’;
8 osif_reset (o_osif , i_osif);
9 memif_reset (o_memif, i_memif);
10 elsif rising_edge (clk) then
11
12 case state is
13
14 when GET_DATA =>
15 mbox_get (o_osif,i_osif,MB_IN,data_in,done);
16 next_state <= COMPUTE;
17
18 when COMPUTE =>
19 run <= ‘1’; -- process packet
20 if ready = ‘1’ then
21 run <= ‘0’;
22 next_state <= PUT_DATA;
23 end if;
24
25 when PUT_DATA =>
26 mbox_put (o_osif,i_osif,MB_OUT,data_out,done);
27 next_state <= LOCK;
28
29 when LOCK =>
30 mutex_lock (o_osif,i_osif,CNT_MUTEX,done);

next_state <= READ;31
32
33 when READ =>
34 read (o_memif,i_memif,addr,count,done);
35 next_state <= WRITE
36
37 when WRITE =>
38 write (o_memif,i_memif,addr,count + 1,done);

next_state <= UNLOCK;39
40
41 when UNLOCK =>
42 mutex_unlock (o_osif,i_osif,CNT_MUTEX,done);

next_state <= GET_DATA;43
44
45 end case;
46
47 if done then state <= next_state; end if;

48
49 end if;
50 end process;

-- receive new packet

-- send processed packet

-- acquire lock

-- update counter

-- release lock

Figure 3. OS synchronization finite state machine (OSFSM) for a stream processing hardware

thread. In order to simplify coding the OSFSM, ReconOS provides a VHDL library with

procedures that wrap OS calls.

...

JANUARY/FEBRUARY 2014 65

within the OSFSM and access the OSIF
through the two first-in, first-out (FIFO)
buffers, i_soif and o_osif. Figure 5
outlines the relationship between the
OSFSM, the nested state machine imple-
menting the mutex_lock procedure, and
the two FIFO buffers. Synchronization
between the nested state machines and the
OSFSM is controlled via the handshaking
signal done. For communicating with the
delegate thread, we use a protocol that enco-
des an OS request as a sequence of words
comprising a function identifier and a call-
specific number of parameters. The encoded
request is written to the outgoing FIFO
o_osif. For a hardware thread, a function
call is completed when the delegate thread
has sent an acknowledgement and, option-
ally, a return value has been read from the
incoming FIFO i_osif.

Hardware threads reside in reconfigurable
slots, which are predefined areas of reconfig-
urable logic equipped with the necessary
communication interfaces. Figure 6 shows an
instance of a ReconOS hardware architecture
with a CPU, two reconfigurable slots, the

memory subsystem, and various peripherals.
Besides communicating with the OS kernel
on the host CPU, hardware threads residing
in reconfigurable slots can also access the sys-
tem memory. To that end, a hardware thread
uses its memory interface (MEMIF), shown
in Figure 2, to connect to the ReconOS
memory subsystem. The memory subsystem
arbitrates and aligns the hardware threads’
memory requests and can handle single-word
as well as burst accesses. To support Linux
with virtual addressing as host OS, ReconOS
implements a full-featured memory manage-
ment unit (MMU), including a translation
look-aside buffer, which can autonomously
translate addresses using the Linux kernel’s
page tables.1 Hardware threads use FIFO
buffers to communicate with the memory
subsystem; one outgoing and one incoming
FIFO buffer per hardware thread. Requests
for memory transactions are encoded and
written to the outgoing FIFO buffer, fol-
lowed by data in the case of a write request.
In the case of a read request, data become
available on the incoming FIFO buffer upon
completion of the memory transfer. Similar
to the communication with the OS, we pro-
vide a library of VHDL procedures to con-
veniently handle memory operations. These
procedures encode the requests, synchronize
with the memory FIFO buffers, and auto-
matically transfer data to and from local
memory elements within the hardware
thread.

Application development with ReconOS
Over the years, ReconOS has been used to

implement several applications on hybrid
CPU/FPGA systems. These experiences have
confirmed that the hybrid multithreading
approach offered by ReconOS simplifies the
development process, which is typically struc-
tured in three steps. First, the developer pro-
totypes the application’s functionality in
multithreaded software using, for example,
the Pthreads library on Linux. This first soft-
ware-based implementation allows for func-
tional testing. Second, the multithreaded
software is ported to the embedded CPU on
the targeted platform FPGA, such as a
MicroBlaze running Linux. The developer
can then use profiling to identify the

SW
thread

A
p

p
lic

at
io

n
so

ft
w

ar
e

O
S

 k
er

n
el

H
ar

d
w

ar
e

POSIX API

Scheduler Mutexes Semaphores

DriversDynamic memory management

Main
memory

Peripherals

HW
thread

OSIF OSIF

HW
thread

...

Other libraries (networking,
math, etc.)

SW
thread

Delegate
thread

Delegate
thread

Figure 4. Conceptual overview of the ReconOS system architecture.

Software threads interact directly with the OS kernel, while hardware

threads connect through an OS interface (OSIF) and delegate threads.

..

RECONFIGURABLE COMPUTING

..

66 IEEE MICRO

application’s potential for parallel execu-
tion—that is, those threads that could benefit
from the fine-grained parallelism of a hard-
ware realization, and those code segments
that are amenable to a coarser-grained paral-
lel implementation with multiple threads.
The third step includes creating the hardware
threads and the ReconOS system architec-
ture. At this point, ReconOS easily lets the
developer evaluate different mappings of
threads to hardware and software and to
quickly assess the overall performance on the
target system.

ReconOS tool flow
Figure 7 captures the ReconOS v3 tool

flow. The required sources comprise the soft-
ware threads, the hardware threads, and the

specification of the ReconOS hardware archi-
tecture. We code software threads in C and
hardware threads in VHDL, using the
ReconOS-provided VHDL libraries for OS
communication and memory access. An
automatic synthesis of hardware threads is
not part of the ReconOS project; developers
are, however, free to use any hardware
description language or high-level synthesis
tool to create hardware threads. ReconOS
extends the process for building a reconfigur-
able system on a chip using standard vendor
tools. On the software side, the delegate
threads and device drivers for transparent
communication with hardware threads are
linked into the application executable and
the kernel image, respectively. On the hard-
ware side, components such as the OS and

...

ReconOS Versions and Availability
ReconOS has been actively developed since its inception in 2006.

Since then, it has gone through three major revisions and has been

ported to several operating systems and hardware platforms. The

first version of ReconOS used the eCos OS running on PowerPC

CPUs embedded in Xilinx Virtex-2 Pro and Virtex-4 FPGAs. Version 2

improved on the original by providing first-in, first-out (FIFO) inter-

connects between hardware threads; adding support for the Linux

OS; and offering a common virtual address space between

hardware and software threads. Version 3, which was released in

early 2013, is a major overhaul that streamlines the hardware archi-

tecture toward a more lightweight and modular design. It brings

ReconOS to the Microblaze/Linux and Microblaze/Xilkernel archi-

tectures and has been used extensively on Virtex-6 FPGAs. A port to

the new Xilinx Zynq platform will be released in early 2014. Recon-

OS is open source; the source code and further information is avail-

able at http://www.reconos.de.

/done <= ‘1’

done = ‘1’

mutex_lock

OSFSM Procedure mutex_lock OSIF CPU

Read
reply

Leave
procedure

Write
command

Wait
for reply

Write
mutex id

/done <= ‘0’

Ready

Ready

FIFO to OS

OS
kernel

Software
thread

Software
thread

Software
thread

Delegate
thread

FIFO from OS

Valid

Valid

Data

Data

Figure 5. A finite state machine nested within the operating system’s synchronization finite state machine handles the

communication between the hardware thread and the OS (via the OSIF and delegate thread). The OSIF contains two first-in,

first-out (FIFO) buffers that connect the hardware thread with the CPU. The OS relays the hardware thread’s request to the

respective delegate thread, where the request is carried out.

...

JANUARY/FEBRUARY 2014 67

memory interfaces, as well as support logic
for hardware threads, are integrated into the
tool flow. The ReconOS System Builder
assembles the base system design and the
hardware threads into a reference design and
automatically connects bus interfaces, inter-
rupts, and I/O. The build process then cre-
ates an FPGA configuration bitstream for the
reference design using conventional synthesis
and implementation tools.

During design-space exploration, the
developer will create both hardware and soft-
ware implementations for some of the
threads. Switching between these imple-
mentations is a matter of replacing a single
thread instantiation statement—for example,
using rthread_create() instead of
pthread_create(). Such a decision for
software or hardware can even be made dur-
ing runtime (see the “Applications of
ReconOS” sidebar).

Case study: Video object tracker
To illustrate the benefits of the ReconOS

approach, we present a particle-filter-based
video object tracker for continuous estima-
tion of an object’s position and size in a video
sequence.2 A particle filter is a robust techni-
que for video object tracking because it main-
tains several estimates (particles) for the
position and size of the tracked object. The
filter iterates over video frames and processes
the particles in three consecutive stages:

1. Sampling estimates where the object
might have been moved.

2. Importance weights all estimated
particles by comparison with the
observed next video frame.

3. Resampling eliminates low-weighted
particles and duplicates high-
weighted ones to create the particle
set for the next filter iteration.

CPU

Software
thread

ReconOS
Linux

OSIF

Reconfigurable slot 0

Reconfigurable slot 1

Hardware
thread

MEMIF Arbiter

Memory
subsystem

MMU

Burst
generator

MEMIFHardware
thread

OSFSM

OSFSM

OSIF

Delegate
thread

Delegate
thread

System bus

Memory ICAP Ethernet
Other

peripherals
(USB, UART,...)

Figure 6. Example of a ReconOS hardware architecture with a CPU, two reconfigurable hardware slots, a memory

subsystem, and various peripherals. Hardware threads reside in reconfigurable hardware slots and can access the OS kernel

on the CPU via the OSIF and system memory via the MEMIF.

..

RECONFIGURABLE COMPUTING

..

68 IEEE MICRO

C Source code

Base system design

VHDL Source code

SoC
specifi-
cation

Hardware
thread

Hardware
thread

Sources

IP-cores
Target

platform
specifi-
cation

Software
thread

Software
thread

ReconOS
runtime
libraries

Compile &
link

Configure &
Build

Root file system

Executable

Kernel image

Kernel modules

Bitstream

System
libraries

Root
file system

Linux kernel

ReconOS
device
drivers

Vendor IP

ReconOS
hardware

components
Build process

ReconOS
VHDL

package
Binaries

Hardware
synthesis

ReconOS
system builder

Figure 7. Tool flow for assembling a ReconOS system on a Linux target. ReconOS-specific steps are colored gray.

...

Applications of ReconOS
ReconOS defines a standardized interface for hardware threads, which

simplifies exchanging them, not only at design time but also during

runtime using dynamic partial reconfiguration. DPR allows for exploit-

ing FPGA resources in unconventional ways—for example, by loading

hardware threads on demand, moving functionality between software

and hardware, or even multitasking hardware slots by time-multiplexing.

ReconOS supports DPR by dividing the architecture into a static part and

a dynamic part. The static part contains the processor, the memory sub-

system, OS interfaces, memory interfaces, and peripherals. The dynamic

part is reserved for hardware threads, which can be reconfigured

into the hardware slots. Our DPR tool flow builds on Xilinx PlanA-

head and creates the static subsystem and partial bitstreams for

each desired hardware thread/slot combination. Time-multiplexing

of hardware slots is supported through cooperative multitasking.1

We use ReconOS to implement adaptive network architectures

that continuously optimize the network protocol stack on a per-

application basis to cope with varying transmission characteristics,

security requirements, and computational resources availability. The

developed architecture2 autonomously adapts itself by offloading

performance-critical network processing tasks to hardware threads,

which are loaded at runtime using dynamic partial reconfiguration.

Another line of research also leverages the unified software/

hardware interface and partial reconfiguration to create self-adap-

tive and self-aware computing systems that autonomously optimize

performance goals under varying workloads. For example, we cre-

ated self-adaptive implementations of the particle filter presented

in the main article that start and stop additional threads on worker

CPUs and in reconfigurable hardware slots to keep the resulting

frame rate for the video object tracker within a predefined band. In

the EPiCS project funded by the European Commission, we even

advance the autonomy of computing systems and enable them to

optimize for diverse goals such as performance, energy consump-

tion, and chip temperature on the basis of the current quality-of-

service requirements, workload characteristics, and system state.

So far, ReconOS has been used in embedded systems where

the CPU and the hardware cores are implemented in Xilinx platform

FPGAs. The general approach of ReconOS is equally attractive in a

high-performance computing context. For example, ReconOS is cur-

rently being evaluated for use in high-speed data acquisition and

particle physics applications. In current work, we also are studying

how ReconOS can be ported to x86-based server systems that

attach FPGA accelerator cards via PCI Express.

References
1. E. Lübbers and M. Platzner, “Cooperative Multithreading in

Dynamically Reconfigurable Systems,” Proc. Int’l Conf.

Field Programmable Logic and Applications (FPL 09), 2009,

pp. 551-554.

2. A. Keller et al., “Reconfigurable Nodes for Future Net-

works,” Proc. Workshop Network of the Future, 2010, pp.

372-376.

...

JANUARY/FEBRUARY 2014 69

For our implementation, we start with an
existing video object tracker implemented in
C.3 First, we transform the monolithic code
into a multithreaded implementation on a
desktop using Posix Pthreads under Linux.
Each filter stage can be naturally turned into
a software thread, and the particles, grouped
into chunks, are forwarded between the filter
stages via message boxes. Because the particles
are independent and thus can be processed in
parallel, each stage is represented by multiple
thread instances exploiting data parallelism.
Second, we port our multithreaded software
implementation from the desktop to the
CPU embedded in a Xilinx FPGA. Video
data is streamed from the desktop to the
FPGA via Ethernet. Overall, this step
requires little effort because both platforms
offer the same OS and APIs. Third, we pro-
file the execution times of all filter stages and
confirm that the execution times strongly
depend on the input data because the filter
computes color histograms in variable-sized
regions of interest, in which the tracked
object is searched. We identify two functions
that are typically performance-critical—color
histogram computation (observation, o) and

color histogram comparison (importance,
i)—and implement hardware thread versions
for both functions.

Using the hardware threads for observa-
tion and importance as well as the multi-
threaded software implementation, we
perform a swift design-space exploration
measuring the required computational effort
for a given video sequence using hardware/
software mappings with different resource
requirements. Figure 8 shows the required
computational effort in execution time per
frame of various mappings for tracking a soc-
cer player. The tracker that achieves the high-
est performance is the one that employs four
hardware threads, two for observation and
two for importance (mapping hwooii).
Clearly, the required effort decreases when
the object moves into the background. There,
mapping hwi with a single hardware thread
for importance achieves comparable per-
formance results.

A mong the existing OS approaches for
reconfigurable computers, ReconOS

stands out by providing a deep semantic inte-
gration of hardware accelerators into an OS
environment while leveraging standard OS
kernels. Hardware threads can access a rich
set of OS functions, making them essentially
identical to software threads with respect to
OS interaction. Consequently, hardware
threads can easily be exchanged for software
threads and vice versa, which allows for rapid
design space exploration at design time and
even migration of functions across the hard-
ware/software border at runtime. The use of
standard OS kernels in ReconOS leads to a
structured design process starting with a (pos-
sibly monolithic) software implementation,
as well as to improved portability. Our ex-
perience shows that these features can sig-
nificantly lower the entry barrier for
reconfigurable computing technology. MICRO

Acknowledgments
This work was partially supported by the

German Research Foundation (DFG)
within the Collaborative Research Centre
“On-The-Fly Computing” (SFB 901), the
International Graduate School of Dynamic
Intelligent Systems, and the European

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200 250 300 350 400

M
ill

io
n

cl
oc

k
cy

cl
es

/fr
am

e

Frame

sw
hwo

hwoo
hwi
hwii
hwoi

hwooi
hwooii

Figure 8. Design-space exploration for a video object tracker: The graph

shows the computational effort for tracking versus time in video frames for

a specific video (taken from Hess3). The individual curves represent

ReconOS implementations with different hardware/software mappings,

where “sw” denotes an all-in-software system, and curves labeled “hw”

denote systems with one to four threads of type observation (o) and

importance (i) running in reconfigurable hardware.

..

RECONFIGURABLE COMPUTING

..

70 IEEE MICRO

Union Seventh Framework Programme
under grant agreement 257906 (EPiCS).

..
References
1. A. Agne, M. Platzner, and E. Lübbers,

“Memory Virtualization for Multithreaded

Reconfigurable Hardware,” Proc. Int’l Conf.

Field Programmable Logic and Applications

(FPL 11), 2011, pp. 185-188.

2. M. Happe, E. Lübbers, and M. Platzner, “A

Self-Adaptive Heterogeneous Multi-core

Architecture for Embedded Real-Time Video

Object Tracking,” J. Real-Time Image Proc-

essing, vol. 8, no. 1, 2013, pp. 95-110.

3. R. Hess, “Particle Filter Object Tracking,”

blog, May 2013, http://blogs.oregonstate.

edu/hess/code/particles.

Andreas Agne is a PhD student in the Com-
puter Engineering Group at the University
of Paderborn. His research interests include
reconfigurable computing and operating
systems for heterogeneous multicore archi-
tectures. Agne has a Diploma in computer
science from the University of Paderborn.

Markus Happe is a senior researcher at the
Communication Systems Group at ETH
Zürich. His research interests include net-
working architectures, self-adaptation strat-
egies, and reconfigurable systems. Happe
has a PhD in computer science from the
University of Paderborn.

Ariane Keller is a PhD student in the Com-
munication Systems Group at ETH Zürich.
Her research interests include computer
architectures for self-organizing networks.
Keller has a Diploma in electrical engineer-
ing from ETH Zürich.

Enno Lübbers is a senior researcher at the
Intel Open Lab in Munich, which is part of

Intel Labs Europe. His research interests
include adaptive systems and heterogeneous
architectures for high-performance, em-
bedded, and safety-critical applications.
Lübbers has a PhD in computer engineering
from the University of Paderborn.

Bernhard Plattner is a full professor of
computer engineering in the Department of
Information Technology and Electrical
Engineering at ETH Zürich, where he leads
the Communication Systems Group. His
research interests include self-organizing
networks, mobile and opportunistic net-
working, and practical aspects of infor-
mation security. Plattner has a PhD in
computer engineering from ETH Zürich.

Marco Platzner is professor of computer
engineering in the Department of Computer
Science at the University of Paderborn.
His research interests include reconfigurable
computing, hardware-software codesign, and
parallel architectures. Platzner has a PhD in tel-
ematics from Graz University of Technology.

Christian Plessl is assistant professor of
custom computing in the Department of
Computer Science at the University of Pader-
born. His research interests include parallel
and reconfigurable computer architectures,
high-performance computing, and adaptive
computing systems. Plessl has a PhD in com-
puter engineering from ETH Zürich.

Direct questions and comments about this
article to Christian Plessl, University of Pader-
born, Department of Computer Science,
Warburger Str. 100, 33098 Paderborn,
Germany; christian.plessl@uni-paderborn.de.

...

JANUARY/FEBRUARY 2014 71

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

