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ABSTRACT
Opportunistic Networks are envisioned to complement infrastruc-
ture-based communication in overloaded cellular settings, in re-
mote areas, during and immediately after large scale disasters. On
account of their highly distributed and dynamic nature, as well as
of their dependence on the honest cooperation of nodes, Oppor-
tunistic Networks are particularly vulnerable to sybil attacks. In
a sybil attack, a node assumes multiple identities and attempts to
form many links to the rest of the network, with the aim of gaining
access to resources, influencing the network, circumventing detec-
tion of misbehavior (“spread the blame”), etc.

Sybil attacks have been studied extensively in the context of dis-
tributed systems and online social networks. However, the Op-
portunistic Networking setting brings new challenges, specific to
the network conditions: forming links may require significant re-
sources from the attacker (e.g. time, speed, multiple devices, etc),
and each link is ephemeral. In this paper, we study the types and
effectiveness of sybil attacks that are possible in Opportunistic Net-
works, under various resource constraints on the attacker. We eval-
uate each attack based on the influence the attacker can gain through
it. We find that sybil attacks, even with relatively unconstrained
resources, are much harder to implement in the Opportunistic Net-
working setting, due to the link establishment mechanisms using
mobility. We believe this is a very important first step towards un-
derstanding and defending against sybil attacks in such networks.

1. INTRODUCTION
In Opportunistic Networks (OppNets), mobile phone users may

cooperate to complement existing wireless communication services
(cellular, Wi-Fi) and to enable communication in case of failure or
lack of infrastructure (disaster, censorship, remote areas). Wire-
less peers communicate when they are in proximity (in contact),
forming an impromptu network, whose connectivity graph is highly
dynamic and only partly connected. Using redundancy (e.g., cod-
ing, replication) and smart mobility prediction schemes, data can
be transported over a sequence of such contacts, despite the lack of
end-to-end paths.

The feasibility of communication over an OppNet highly de-
pends on the honest cooperation of the nodes, by contributing re-
source to run the network instead of only receiving the commu-
nication service passively from the system. The issues of benign
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selfishness (non-cooperation) and of motivating users to cooperate
have already received a fair amount of attention from researchers:
there exist many studies on the effects of selfishness [1, 2], as well
as a number of incentive systems to ensure participation in the net-
work [3, 4]. However, the possibility of malicious users has hardly
been considered so far.

One of the most powerful and most versatile ways to disrupt
the incentive and/or security mechanisms of cooperative systems
is the sybil attack, in which the adversary creates many fake iden-
tities (sybils) and uses them to disrupt the system’s normal opera-
tion. Sybils can be used to obtain a large share of resources from
resource allocation algorithms, to bias recommendation or voting
systems, to intercept seemingly disjoint routing paths, to circum-
vent the detection of misbehavior by “spreading the blame”, etc.

Sybil attacks have been studied extensively in the context of dis-
tributed systems and online social networks [5, 6, 7, 8, 9, 10]. How-
ever, the OppNet setting brings both new possibilities as well as
new challenges, specific to the network conditions. On the one
hand, the highly distributed and dynamic nature of OppNets makes
them easy targets for sybil attacks (as it is practically impossible
to rely on a single centralized authority to certify legitimate users).
On the other hand, a sybil attack requires the establishment of a
number of connections (known as “attack edges”) between the ad-
versary’s identities and the rest of the network; in OppNets, where
links are by-products of node mobility, forming intentional links
may require significant effort, as the two connected peers must be
physically co-located for a significant amount of time.

Our goal in this paper is to explore and dissect the procedure of
carrying out sybil attacks in OppNets. We identify the two main
elements of a sybil attack (link creation, ID fabrication) and quan-
tify the amount of effort and resources an adversary needs to spend
on each of them. We also review the various tools at an adversary’s
disposal in an OppNet (interconnecting the fake IDs, linking via ly-
ing etc) and their impact on the strength of the attack. We show that,
despite the mostly disconnected state of an OppNet, sybil attacks
are much harder to implement here, even under generous resource
allowances. This is mainly due to the link formation mechanisms
via mobility, which demand continuous effort from an attacker.

The rest of the paper is organized as follows: In Sec. 2, we
present the state of the art in sybil defense mechanisms and dis-
cuss how and whether they apply to OppNets. Next, in Sec. 3, we
review the possible variations on how to implement each of the two
main elements (link creation, ID fabrication) of a sybil attack in the
OppNet context. Then, we show our methodology for assessing
and comparing the effect of each of these variations on the attack
strength in Sec. 4. In Sec. 5, we use two real traces and a mobility
model to quantify the strength of sybil attacks on OppNets, de-
pending on used resources and on how the attack is implemented.
Finally, we briefly discuss our results and conclude in Sec. 6 and 7.

2. BACKGROUND AND RELATED WORK
Carrying out a (simple) sybil attack is generally quite straight-



forward in traditional distributed systems as opposed to OppNets.
Therefore, research on the sybil attack focuses on devising effec-
tive detection/defense mechanisms, with little attention on how to
best implement the attack. The goal of sybil detection is to accu-
rately identify sybil identities (i.e. accept all legitimate identities,
but no counterfeit ones). For our purpose of dissecting and com-
paring sybil attacks and their effectiveness in OppNets, algorithms
for sybil detection can be very useful in assessing the cost-benefit
tradeoff of each element of an OppNet sybil attack.

The state of the art in sybil detection consists in leveraging the
social network underlying the distributed system under considera-
tion. Assuming the sybil identities can create only a limited num-
ber of connections to honest nodes (i.e. attack edges), the resulting
graph will then consist of two regions, loosely connected to each
other: the honest nodes and the sybils. Depending on the structure
of the honest region, defense mechanisms do one of the following:

i) Identify and exclude all sybils (universal sybil defense). If the
honest region of the graph is relatively well, but flatly con-
nected internally and fast mixing, then the sybils are easily de-
tectable via community detection or similar algorithms. Many
sybil defense solutions are based on this idea [5, 6, 7, 8, 9, 10].

ii) Enable honest nodes to white-list a set of nodes of any given
size, ranked according to their trustworthiness. Since it has
been shown that, in practice, the honest region often has inter-
nal structure (e.g. “communities” of tightly-knit nodes, rela-
tively loosely connected with one another), the goal of sybil
defense has shifted accordingly [11].

OppNets have been shown to have a very strong social compo-
nent already at the network layer [12] (due to the nodes/phones be-
ing near perfect proxies for the human users), therefore the above-
mentioned sybil defense solutions should be directly applicable to
the OppNet setting. However, this requires the representation of
the network as a static graph. In OppNets, communication occurs
between two wireless peers whenever their mobility brings them
within radio range of each other. Deriving a graph from such con-
tacts is not straightforward: the contacts are shortlived and the tim-
ing information must be stored for each edge. This makes the re-
sulting time-varying graph very cumbersome and unintuitive. A
more practical and widely accepted representation can be obtained
by aggregating contacts into a (static) weighted graph, with weights
derived from contact statistics (e.g. frequency, duration, age of last
contact, or combinations thereof). It is this graph that was shown
to also reflect to high extent the social relationships among the
users [13], and on which existing sybil defense schemes are read-
ily applicable. To assess the effectiveness of OppNet sybil attacks,
we will thus apply the latest sybil defense algorithm [11], from the
second category to the weighted OppNet graph. We provide a more
detailed description of how this algorithm operates in Sec. 4.

Some literature on sybil detection exists also for network en-
vironments similar to OppNets. For example, adaptations of the
above algorithms have been proposed for small mobile networks
with very sparse social ties, as resulting from secure pairing [14].
However, the feasibility of such a pairing-based network is ques-
tionable, as it requires incentives for the users to actually pair their
devices. In the context of mobile ad hoc networks (MANETs),
sybil detection schemes are mostly based on peculiarities of this
environment (some of which are also exhibited by OppNets). How-
ever, such solutions usually require specialized hardware [15, 16,
17] or are based on strong, unrealistic assumptions [18].

3. INGREDIENTS OF A SYBIL ATTACK
In order to perform a sybil attack, an adversary must do two types

of operations: create links to honest nodes and create fake identi-
ties. The OppNet environment raises issues with both operations.
In the following, we discuss in detail each of these two operations
and the options an adversary has for implementing them.

honest edges

attack edges

virtual edges

honest nodes attacker

real IDs virtual IDs

Figure 1: Real vs. Virtual IDs in the contact graph

3.1 Fabricating Node Identities
The core of a sybil attack consists of creating a number of iden-

tities, all controlled by the same entity: the adversary. To the rest
of the network, each of these identities looks like just another node.
In OppNets, there are two options for fabricating identities:
Real IDs: An attacker with a single physical device can create

multiple real IDs, each of which will broadcast its existence
to the rest of the nodes, either at different times or simultane-
ously. Such sybils are harder to create, as they require more
resources (e.g. battery power) as well as specialized skills
(e.g. knowledge of the broadcast protocol). However, real ID
sybils are also much more powerful, as they are more likely
to be perceived as honest nodes: firstly, because they do not
necessarily need to interact among each other, and secondly,
on account of their direct interactions with honest nodes.

Virtual IDs: An easier way to create sybils is to introduce virtual
IDs. In contrast to a real node who broadcasts her ID to be
discovered, a virtual ID only interacts with the attacker’s real
IDs: it is thus only an imaginary neighbor, rater of content,
producer of spam, etc. Virtual IDs do not interact with other
nodes, as they do not broadcast their existence to the world.
Both real and virtual IDs are shown in Fig. 1.

In our practical evaluation of sybil attacks in Sec. 5, we will only
show the effect of the number of real identities on the strength of
the attack. Our preliminary experiments with virtual sybils show
that they are easily weeded out by social sybil defences; we thus
omit them here and defer a deeper look to future work.

3.2 Creating Links in the OppNet Graph
As pointed out above, representing an OppNet with a static weighted

graph opens the door for applying state of the art sybil defense
schemes to OppNets. However, this also means that the choice of
edge weights becomes crucial. Depending on how weights are de-
rived from contact statistics, the cost to an attacker of establishing
a link in the OppNet graph can vary significantly.

Like the underlying contacts, legitimate links in the OppNet graph
come “for free”, since they are simple by-products of node mobil-
ity. In contrast, to establish a link to an honest node, an adversary
must move at least once in physical proximity of the targeted node;
if the link weights are chosen wisely, the adversary may even have
to constantly follow a target node to establish and maintain a link.

Below we detail the different options for deriving link weights
from contacts and discuss the cost they impose on a sybil adversary
Contact Frequency. A frequently occuring contact often has a higher

probability of occuring again soon, reflecting a strong social
link, which is what the OppNet graph attempts to capture.
However, an adversary who has managed to get in range of
an honest node may easily enhance the link’s frequency, by
constantly connecting and disconnecting.

Age of Last Contact. In many scenarios, it is reasonable to as-
sume that an older contact has less predictive power than
more recent ones. In this case, a sybil adversary must reg-
ularly go “visit” its targeted peers in order to refresh and
maintain the links.

Total Contact Duration. The total contact duration, i.e., the total
time a peer has been detected in proximity is a link weight
which also reflects a strong social relationship between the



peers. To create strong links with this type of weight, a sybil
adversary must constantly follow its target.

Frequency-Duration Combined. Link weights can also be ob-
tained by some combination of contact frequency and dura-
tion (e.g., linear, principal component analysis etc). Depend-
ing on how the two are combined, this kind of weight might
work to the advantage of the adversary, as in the case of pure
frequency weights.

All in all, most reasonable types of edge weights come at a high
cost to a sybil adversary: the attacker must not only establish links
to honest nodes by making an initial contact, but she must also
maintain these links by continuously making recurrent contacts. An
adversary can do this, for example, by regularly following specific
nodes or by hiding at popular locations.

This is in very stark contrast to the link creation process in the
distributed systems in which the sybil attack is usually studied, such
as online social networks. In that case, an adversary can initiate a
virtually unlimited number of links (i.e., friendship requests) with
almost no effort. In addition, once some of these links are accepted,
no further maintainance is required.

Naturally, a sybil adversary also has the option of lying about
past contacts with third nodes. Due to the distributed nature of
OppNets, no single node has a global view of the contact graph.
Nodes need to approximate the contact graph by exchanging in-
formation on the neighbors they have seen and for how long upon
every encounter. An attacker can obviously report any encounter it
sees fit. Lying about encounters not only allows for the introduc-
tion of virtual sybil IDs, but can also be done for other real nodes.
This allows the attacker to manipulate all her outgoing edges in the
contact graph, except the one to the node it is reporting to.

4. ASSESSING THE EFFECTIVENESS OF
SYBIL ATTACKS ON OPPNETS

Having identified the two main elements of a sybil attack and
their variations in the OppNet context, we now need a methodology
for assessing and comparing these variations. To do so, we use the
latest sybil defense algorithm [11], which enables honest nodes to
white-list a set of nodes of any given size, ranked according to their
trustworthiness. Then, based on this algorithm, we define some
metrics to measure the strength and effectiveness of a sybil attack.
We use these metrics in our experiments in Sec. 5.

4.1 Social Sybil Defense on the OppNet Graph
The state of the art sybil defense algorithm, referred to as ACL

(for its creators: Andersen, Chung and Lang), was first proposed
in [19] as a graph partitioning algorithm; Alvisi et al. [11] analyzed
in great detail its application to sybil defense and derived theoreti-
cal guarantees on its performance.

The ACL algorithm is based on social network theory: it assumes
the network is formed of one or several tightly-knit communities,
which are only loosely connected to one another. Since relation-
ships are strong inside a community, it is reasonable to assume that
those nodes know and trust one another. Thus, for a given honest
node, its community neighbors are very unlikely to be sybils, while
the nodes outside its local community are more questionable.

The rough idea of ACL is to associate a score with each node and
to identify as part of a community all nodes whose score exceeds a
certain threshold. To determine the score of a node, ACL originates
from the honest user many truncated random walks, whose lengths
are geometrically distributed. Then, a node’s score is given by the
frequency with which it is visited, normalized by its degree. By
interpreting the score of a node i as a measure of the trust that the
seed node puts in i, ACL can be employed for sybil detection.

Since the length of the random walks is geometrically distributed,
long walks are rare and short walks in the neighborhood of the hon-
est node are common. In this way, the nodes in the community of
the seed node are visited more frequently and thus receive a higher

score. Sorting according to the scores in descending order produces
a (white-)list of nodes ranked from the most trustworthy to the least
trustworthy, from the seed node’s viewpoint.

The ACL algorithm is designed for unweighted, undirected graphs.
However, the OppNet graph has weighted edges, where the weight
of an edge is derived from contact statistics of the corresponding
node pair. Moreover, if the adversary uses the option of lying about
past contacts with third nodes (as discussed in Sec. 3.2), the graph
is also directed: indeed, a pair of one sybil and one honest node will
report different weights for the edge between them, effectively re-
sulting in two directed edges, with each node controlling the weight
of its outgoing edge. Thus, to use ACL on the OppNet graph, we
must make a small adjustment as follows. At each step of a ran-
dom walk, an edge is traversed with probability proportional to its
weight. That is, if the walker is currently at node i, the probability
of moving to neighbor j is:

w i j

dout(i)
, where w i j is the weight of edge

(i , j) and dout(i) = ∑
k
w i k is the out-degree of node i.

4.2 Measuring Sybil Effectiveness in OppNets
In order to evaluate the effectiveness of a sybil attack, every node

i calculates rankings of the other nodes in the OppNet, using the
adapted ACL algorithm described above. That is, every node i as-
signs a rank, t i( j), to every other node j, where a smaller rank is
better and 0 is the top rank. The better the sybil nodes are ranked,
the more successful the attack.

To quantify the success of a sybil attack, we use the following
three metrics. Since the rankings are intimately related to commu-
nity structure, community size is an integral part of the first two
metrics. The third metric captures the impact across communities.
The normalized rank measures how well an attacker is integrated

in a community. It is a value between 0 and 1, where 1
means perfectly integrated and 0 means not at all. For a
given honest node i and a given sybil k, the normalized rank

is: R = max(1 −
t i(k)
∣C i ∣

, 0). To obtain the normalized rank

assigned by node i to the adversary, we take the best value
across all identities. Finally, the normalized rank assigned
by a community C i to an adversary is obtained by averaging
over all honest members.

The influence is the percentage of sybils in the top ∣C i ∣ spots of
the ranking of an honest node i. It shows the potential of the
adversary to outweigh honest nodes in a given community.

The total influence is the total number of influential sybils, that is,
the sum of all per-community influences, weighted by each
community’s size.

In the next section, we use these metrics to assess the effective-
ness of a sybil attack, in function of the resources consumed by the
adversary to perform the attack.

5. THE SYBIL ATTACKER’S COST-BENEFIT
TRADEOFFS IN OPPNETS

To evaluate the cost-benefit tradeoffs of sybil attacks in Opp-
Nets we use two real world traces (WiFi access point associations
from the campuses of Dartmouth [20] and ETH Zurich) and one
synthetic trace generated by the TVCM mobility model [21]. The
main properties of the traces are summarized in Table 1.

For the two WiFi traces, only users who have an AP association
for at least five days a week are considered. In addition, short dis-
connections (less than 60 seconds) attributed to interference and the
well known ping-pong effect (where devices jump back and forth
between different APs in less than 60 seconds) are filtered out. Two
nodes are considered in contact while associated to the same AP.

For the TVCM trace, we place 505 nodes in an area of 900 ×
900 m, divided into a 9 × 9 grid of cells. Each node is assigned



TVCM ETH DART
# Nodes 505 294 1045
Time Period 72 hours 14.6 weeks 16.9 weeks
Type Coordinates AP assoc. AP assoc.
# Contacts Total 3’822’531 101’805 5’177’521
# Contacts/Node 7’569 346 4’954
# Communities 34 26 65
Modularity 0.89 0.77 0.61

Table 1: Mobility traces used in evaluation. (Modularity
measures the strength of the community structure [23].)

one of 34 home cells, based on a skewed distribution, resulting in a
skewed community size distribution. Each node moves within the
home cell for 80% of the time. The nodes visit one of 10 hotspot
cells for 10% of the time, and the remaining 10% is spent roaming
the whole area. We generate one trace with a timespan of 72 hours.
Nodes are considered in contact if they are less than 30 m apart.

We build the OppNet graphs of our three traces, using total con-
tact duration as the edge weight. Since community size is an im-
portant component of our metrics from Sec. 4, we extract the com-
munity structure from the OppNet graphs, using the Louvain com-
munity detection algorithm [22]. The community size distributions
are shown in Fig. 2(a) for all three traces.

In the following we discuss and evaluate the different tradeoffs
facing a sybil adversary in an OppNet. We exclusively use real
sybil IDs as virtual IDs are hardly useful (see Sec. 3.1).

5.1 Finding a Target: Communities vs. Users
vs. Hotspots

The first step of a sybil attack is finding a target. An adversary
has several options: (i) position oneself at a hotspot, that is often
frequented by many nodes, (ii) follow a random node, or (iii) follow
a community, by following that community’s highest degree node
(this requires knowledge of the degrees). Fig. 2(b) and 2(c) show
the benefit of these attacks in terms of the maximal normalized rank
an attacker receives in a community.

For the hotspot approach, we positioned the attacker at the most
frequented AP in the ETH and DART traces, and in the center of a
hotspot cell in the TVCM trace. While this is the most convenient
approach for an attacker (as she does not have to move), Fig. 2(b)
and 2(c) clearly show that it is also useless. The adversary has
numerous contacts with many different nodes, but their cumulative
duration is too short to have an impact.

Following a random target node puts the attacker very high in
that specific node’s rankings. However, the attacker’s rank by other
nodes depends on whether the target is well connected in its com-
munity or not. This results in a highly variable distribution of the
normalized rank, as seen in Fig. 2(b) and 2(c). If the attacker only
wants to influence the specific target, this approach is fine. How-
ever, if she wants to influence as many nodes as possible, the at-
tacker must specifically target a whole community, by following
the highest degree node of that community. Performing such a di-
rected attack, the adversary must identify the most central node of
a community. While this is certainly not an easy task, it does pro-
duce the highest normalized rank within the community, as shown
in Fig. 2(b) and 2(c).

Conclusion: An attacker must make an effort to gain trust, po-
sitioning itself at a hotspot although easy is futile. To achieve the
greatest impact an attacker should follow the most central node of
a target community.

5.2 Creating Links to Honest Nodes
As we have seen in Sec. 3, one of the main costs of a sybil at-

tack is the time the attacker has to spend following its target. This
is necessary, since it is the only way to create a link to the tar-
get. Here we show the relationship between amount of following
time and gained influence. Fig. 3 clearly demonstrated that a sybil
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attack on an OppNet is at least one full time job. While in the
more homogeneus scenario of the TVCM trace, 8 continuous hours
are enough to successfully infiltrate a community, in the ETH and
DART traces there is a day-night cycle, which affects the attack’s
efficiency. Since different nodes are active at different times of the
day, following less than 24 hours a day has a notable effect (not all
nodes in the community are active at the same time).

Conclusion: Efficient sybil infiltration is a fulltime stalking job.

5.3 Following Multiple Targets
The community structure of OppNet nodes confines the reach of

a sybil attacker to the community of the target. However, an at-
tacker may want to influence users beyond community borders. To
do so, she must follow multiple targets from different communities.
This not only requires more knowledge about the existing commu-
nities and their central nodes, but also requires an effort to spatially
switch from following one target to another. Our simulations take
the switching distance into account, as the attacker needs some time
to move from the current target’s AP to the next target’s AP.

When following multiple communities, the influence in each com-
munity will be reduced as shown in Fig. 4. Note that this influence
reduction is actually more significant than when varying the fol-
lowing time, as shown in Fig. 3. The perceptive reader will notice
that the time spent in each community is, in fact, the same as in the
variable following time scenario.

Having a reduced influence in each community is not necessar-
ily a bad thing, as more communities are reached. To account for
this effect, we show the total number of influential sybils in Fig. 5.
For the TVCM model the reduction in influence per community is
actually more severe than the benefit of influencing multiple com-
munities. For the ETH and DART traces, following multiple targets
is beneficial, peaking at 10 and 3 targets respectively. For the ETH
trace following more than 10 targets is difficult to assess as the trace
is too small.

Conclusion: If an attacker wants to extend her influence beyond
the border of a community, she must follow multiple targets. How-
ever, as the influence per followed community decreases, the total
influence is still bounded.

5.4 How Many Sybils Are Enough?
Each real sybil ID needs to broadcast its existence and interacts

with honest nodes. This naturally incurrs a cost in terms of battery
consumption (depending on the communication protocol there is
also a natural limit), so a natural question that arises is how many
sybil identities should an attacker create. As shown in Fig. 6 the
influence of an attacker increases as the number of sybils increases.

If the number of created sybils is too low, the attacker’s influ-
ence is diminishing as she is outnumbered by the honest nodes in
the community. However, when enough sybils are created to out-
number the whole community (for our traces this happens between
20 and 40 sybils), the influence is only limited by the attackers
rank. Interestingly, increasing the number of sybils also increases
the rank and thus the influence of the attacker. The reason why the
rank would increase with an increasing amount of sybils is not ne-
sessarily intuitive as a particular sybil will not be visited more often
by a random walk just because there are more of her kind. How-
ever, an increasing number of sybils increases the degree of honest
nodes resulting in a more severe normalization.

While for the TVCM model and the ETH traces a good influence
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Figure 3: Impact of the stalking time in the % of infiltrated by Sybils. Real Sybils, not interconnected, following 1 target node.
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Figure 4: Impact of following multiple targets on the % of target communities infiltrated by Sybils. 80 real Sybils, not interconnected.
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Figure 5: Impact of following multiple targets on the total number of influential Sybils. 80 real Sybils, not interconnected.

can be achieved with a reasonable amount of Sybils, in the DART
traces the impact increases slower. This is because the communities
in the DART traces are less tightly knit and it is thus hard for an
attacker to cover the whole community.

Figure 6 also shows the rank and the influence in the second most
infiltrated community. We can see that for the TVCM model this
is practically 0, as the community structure is very strong, but the
DART traces have weaker community structure and there is thus a
slight influence in the second community. There is practically no
influence in a third community. This actually shows the benefit of
communities: while one community can be infiltrated, the others
remain unharmed.

Conclusion: The more Sybils an attacker can create, the bet-
ter, while they come at a cost of energy consumption. Also, with
a stronger community structure the attack is more focused on the
specific community.

5.5 To Build or Not to Build a Sybil Network
When an attacker creates many real sybil identities (here we use

80), these will all be connected to the target and its community in
the same way. However, since all sybils are on the same device, the
attacker may decide on how to interconnect them. There is a natural
tradeoff when considering the interconnection of sybils. On the one
hand, a random walk that enters the sybil region may spend more
time among sybils if they are interconnected. On the other hand,
having interconnections increases the degree of each sybil identity
and decreases its trust via the degree normalization. As shown in
Fig. 7, the second effect clearly dominates in all traces.

Conclusion: An attacker has a choice on how it apparently in-
terconnects its sybils and the best strategy is to pretend they never
see each other.

6. DISCUSSION AND FUTURE WORK
Here we discuss limitations and possible extensions to our work.
The Benefit of Lying: As explained in Sec. 3.2, an attacker

might lie about its encounters and change the perceived contact
graph. While we analyze the effect of lying about sybil intercon-
nections in Sec. 5, lying about encounters with honest nodes is a
complex topic. Our preliminary experiments and calculations show
that it often has a counterintuitive result as the edge weights not
only influence the random walk but also the normalization in the
end and always in opposing ways. Additionally, lying needs to be
done in a smart way in order not to be exposed. We leave the thor-
ough analysis of this topic to future work.

Colluding Attacker: Multiple attackers may of course collude
to reach more communities and increase their influence. We did
not study this attack as its effect is straightforward. When attackers
collude they may actually also lie and pretent to be in contact. This
is however a bad idea as it increases the attackers’ degree by which
its trust will be normalized.

Beyond Social Network-Based Defences: We have shown that
an attacker who is willing to pay the price of creating edges can
easily infiltrate a community. On the bright side, this spares all the
other communities; however, we may also want to protect the at-
tacked community. Considering a defence in depth approach, we
can add more layers of security [24], such as a complementary so-
cial network approach (see Sec. 2), based on a network of secure
pairing [25], imported form an online social network, or based on
communication behavior such as phone calls and text messages.
However, such networks may be unavailable, too sparse, or also
infiltrated by an attacker. Anyway, if the attacker can infiltrate the
local community, any social sybil defence is helpless.

A different approach is to find patterns in the attackers behavior



0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

in
fl
u
e
n
c
e

# of sybils

(a) TVCM

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

in
fl
u
e
n
c
e

# of sybils

(b) ETH

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

in
fl
u
e
n
c
e

# of sybils

(c) DART
Figure 6: Impact of # of sybils on the % of infiltrated Sybils. Real Sybils, not interconnected, following 1 target node.
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Figure 7: Impact of Sybil interconnections on the trust rank of the attacker. 80 real Sybils, following 1 target node.

or that result from the introduction of sybils. Piro et al. [15] tries to
detect sybils based on the fact that they are always seen at the same
time. Looking at the introduction of sybils into the contact graph,
there are also patterns that emerge. Generally, nodes that are in
contact for a long time are also more similar, as they see many of
the same neighbors. However, an attacker who creates many sybils
and does not interconnect them will have long contacts to its tar-
get, but show little similarity as the honest node sees all sybils, but
each sybil does not see the others. While this sounds promising as
a detection scheme, especially as the similarity decreases with an
increasing number of sybils, such an approach is easily fooled and
will naturally have false positives. One might weigh the contacts
by the similarity to penalize the attacker but such an approach is
difficult to implement and not very effective as preliminary experi-
ments have shown.

Other patterns may be discovered and used for detection, espe-
cially if an attacker resorts to misreporting contacts to honest nodes.
However, patterns can always be faked if the attacker knows about
them. Nonetheless, knowledge does not come for free and such ma-
chine learning approaches should be further explored and applied.

7. CONCLUSION
In this paper we studied the anatomy of the sybil attack in an

OppNet. While sybil attacks have been studied for many distributed
systems, OppNets come with additional challenges as well as use-
ful properties. We show that infiltrating the underlying contact
graph of OppNets comes at a significant cost in terms of time, as
nodes need to be actively followed. Furthermore, the reach of an
attack is limited by the targets community. While in this paper we
show the limits of the sybil attack in terms of general trust estab-
lishment, which is an important first step, there is much more to
explore, such as sybils’ impact on routing specific metrics.
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