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Abstract—Measuring radiation dosage rates is becoming more
and more important in many applications scenarios. Contin-
uously monitoring radiation in contaminated and poorly ac-
cessible areas is challenging due to the frequent data collec-
tion/transmission combined with long life requirements. We
present a self-sustainable wireless sensor node for low power,
high precision radiation dosage rate monitoring. We propose an
energy-efficient data acquisition algorithm that can reduce the
energy per measurement, while guaranteeing minimal loss of
precision. The proposed node is designed to work in collabo-
ration with an unmanned aerial vehicle used for two essential
mission steps: air-deployment of the wireless sensor nodes at
suitable locations, and acquiring data logs via low-power, short-
range radio communication in fly-by mode after a wake-up
command. The system uses off-the-shelf components for defining
the mission, drop-zone and trajectory, for compressing data and
managing communication. The node is equipped with a novel
low-power nuclear radiation sensor, and has been designed and
implemented with self-sustainability in mind as it will be deployed
in hazardous, inaccessible areas. To this end, the proposed node
uses a combination of complementary techniques: a low-power
microcontroller with non-volatile memory, energy harvesting,
adaptive power management and a nano-watt wake-up radio.
Experimental results demonstrate the precision and the low
energy consumption of the radiation sensor, the energy efficiency
of the whole solution and the acquisition algorithms. The node
consumes only 31µW in sleep mode and 1.7 mW in active mode,
and has the capability to achieve perpetual monitoring once
deployed.

I. INTRODUCTION

The continuous monitoring of ambient radioactivity over
widely contaminated areas has become a hot topic, as dramat-
ically illustrated in the aftermath of the Fukushima Daiichi
nuclear power plant incident in March 2011 [1]. However,
conventional radioactivity monitoring systems face severe
drawbacks when having to continuously monitor an extensive,
inaccessible, and hazardous area. In fact, they generally cannot
be deployed safely, quickly and effectively in potentially
contaminated areas, as there may be physical obstacles, a
lack of communication infrastructure, and an unknown level of
exposure. Their deployment is not automated, further increasing
potential human exposure, or is restricted to ground robots with
limitations in terms of speed and coverage area. As a result,
most systems are generally not economically viable in terms
of installation, operation, maintenance and mission fulfillment

Wireless sensor networks (WSNs) have become a mature
technology for a wide range of applications, among them

environmental monitoring, health care, security, and industrial
surveillance, mainly thanks to the flexible distribution of WSN
nodes [2]–[4]. WSNs offer a new approach to the challenge
of ambient radioactivity monitoring, as they eliminate the
dependence on in-place communication and on-site manpower
[5]. On the other hand, the operational lifetime of the WSNs
individual sensor nodes is limited by energy constraints, as
wireless sensor nodes are commonly powered by batteries.
Power consumption for long term monitoring is an even
more critical constraint when applications require long-range
communication technologies (e.g., GSM, WLAN) and/or power-
hungry devices such as Geiger-Müller counters, traditionally
used as radioactivity sensors [6].

To overcome the obstacle of power consumption in long-
range communication, novel approaches which combine WSN
with Unmanned Aerial Vehicles (UAV) or Micro Aerial
Vehicles (MAV) are gaining increased attention, due to their
potential for reducing the power consumption of long-range
communication and for accessing hazardous areas. In these new
systems, there is a clear separation between the short-distance
communication of the WSN and the long-range communication
performed by the UAV vehicles, once they have collected
data from the WSN [7]–[10]. New technologies can further
reduce power consumption by limiting the radio activities to
their strict minimum, as is the case with a wake-up radio
(WUR) [11], or dynamically reducing the sensor’s sample rate
when the battery level becomes critically low to guarantee
the self-sustainability of the nodes in applications where their
inaccessibility prohibits a change of batteries. Finally, energy
harvesting (EH) is becoming an established method for enabling
long term monitoring by WSN and has been employed in
several applications involving self-powered systems [12]–[15].
As is always the case with EH, it is important that energy
availability be tied to the application scenario [16], [17]. The
choice of a solar panel presumes the availability of sunlight,
which can be guaranteed by a careful planning of the UAV’s
sensor deployment.

New criteria are needed in the hardware and software design
of both the nodes and their communication. Combining low-
power design, power management techniques and EH increases
network lifetime by several orders of magnitude compared
with conventional WSN, due to increased energy availability
and reduced power consumption [18]–[20]. Node networks



Figure 1: Proposed UAV and Sensor Node WSN for Radiation
Monitoring.

with a very long or even unlimited operating life become
feasible. There is, of course, a trade-off between effective
energy management and monitoring quality [21].

In this paper, a novel ultra-low power, off-the-shelf radiation
sensor is presented and tested with different radiation dosage
rates in order to optimize the acquisition algorithm in terms of
energy efficiency. We describe the design, the implementation
and testing of a small form factor self-powered wireless
sensor node suitable for deployment by UAV for dosage
rate monitoring in contaminated areas. An overview of the
UAV/sensor node network can be seen in Figure 1. The node,
using a +3dBi antenna, can store dosage rate readings until
the UAV is within a 50m radius. At this point, the node can
detect a wake-up signal, turn on power-hungry data radio and
transmit the stored data to the UAV.

• The design and implementation of a self-sustainable
wireless sensor node for monitoring radioactivity.

• Experimental characterization of a novel solid-state radia-
tion sensor and data acquisition algorithm under controlled
dosage rates.

• We demonstrate the node’s self-sustainability by simula-
tion, after measuring the energy intake of a solar panel in
an outdoor environment and the power consumption of
our proposed energy efficient data acquisition algorithm.

The remainder of the paper is organized as follows. Related
work is presented in Sec. 2. The proposed sensor node’s
architecture is discussed in detail in Sec. 3. The radiation
sensor’s characterization and our proposed energy optimized
data acquisition are presented in Sec. 4 and 5, respectively. Sec.
6 presents the experimental results for the combined system
and simulation for evaluating the self-sustainability and energy
efficiency of the proposed solution. Finally, we conclude our
work in Sec. 7.

0Image adapted from: http://bit.ly/2rxX1VI

II. RELATED WORKS

Research on WSNs has been very prolific in recent years with
a variety of solutions in a wide range of application scenarios.
There are many examples of implemented and deployed WSNs
that exploit intelligent sensing, wireless communication and
computing abilities to monitor environmental phenomena [1].
In this area, WSNs have recently been regarded as a promising
candidate to monitor nuclear radiation in contaminated or
dangerous areas, especially for nuclear power plants [5]–
[7]. Nuclear radiation has typically been detected via hand-
held Geiger-Müller counters, which are particularly suited
for detecting radioactivity via the strongly ionizing effect of
alpha particles [6]. Geiger-Müller Counters (GMC) can also
be used for radioactivity detection in autonomous WSN sensor
nodes [22]. Zigbee networks with GMC’s have been used to
monitor radiation levels in nuclear facilities [23]. However, the
limitations of using GMCs in terms of size (mainly dictated
by the tube length), weight, cost and power consumption make
them a poor choice for miniaturized, low-energy, low-cost
sensor nodes. In our design, a novel nuclear radiation sensor
[24] based on an array of customized PIN diodes is used. The
sensor is capable of detecting beta radiation, gamma radiation
and X-rays with very low power requirements.

Another major challenge in WSNs is the limited energy
storage capacity in the node, usually in the form of batteries or
supercapacitors. The use of energy harvesters in combination
with energy storage elements attempts to overcome this issue,
and in some applications even achieves self-sustainability [21].
To achieve this, sensor nodes need to limit their consumption
to the average, long-term, harvested energy. Since the amount
of harvested energy cannot be controlled, designers are limited
to choosing packet acquisition and transmission schedules. To
do this optimally, offline solutions assume the nodes have
full knowledge of the harvesting and information generation
processes, while online approaches can only rely on some prior
statistical knowledge [25]. Researchers have been very active
in this field, and many promising approaches are presented in
literature [12], [13], [26]. In applications where wireless sensor
nodes monitoring contaminated areas are expected to operate
long-term without human maintenance, Energy Harvesting
(EH) is essential. As they usually imply an outdoor setting,
the most commonly available ambient energy sources are
photovoltaic, wind turbine or mechanical energy (harvesting
from vibrations or strain) [14]. Photovoltaic energy harvesters
are the most mature technology to achieve self-sustainability
in outdoor scenarios when the system is well designed and
dimensioned. In this paper, we target self-sustainability using
a photovoltaic cell and a commercial integrated circuit for
power management with a small form factor, which guarantee
state-of-the-art performance in terms of efficiency and adaptive
power management.

Another important issue for WSN in wide and poorly
accessible areas is the node’s deployment and the collection
of data from the base station [27]. Some approaches use GSM
band [1], but these approaches are expensive in terms of



cost and power, and it is not always possible to guarantee
network coverage. Due to their flexibility and cost-reduction
potential, the use of UAVs for sensor network deployment
has been studied for many years [26]. In [7], the authors
developed a system for the cooperation of UAV, static nodes,
and mobile nodes, where GPS was used for position estimation.
The authors described communication issues between nodes
after deployment due to their positioning. Another approach
is to use the UAVs not for sensor deployment, but for
actually monitoring the area itself [28]. This approach can
be challenging since the relatively short lifetimes of UAV’s
prevent them from continuously monitoring an area though EH
alone. Besides the use of UAVs, sensor network deployment
using unmanned ground vehicles has also received considerable
attention from the research community. Data collection from
unmanned explorations or monitoring have also been proposed
[29]. The approach presented in [8] is similar to the one
proposed in this paper, however, the authors do not use any
power management and EH, and the ground network does not
achieve self-sustainability. Moreover, the radio activities are
very expensive in terms of power (using Bluetooth or similar
power hungry communication) and no low-power mechanisms
are used, rendering it unsuitable for long-term self-sustainable
monitoring. In this paper, we present a self-sustainable sensor
node that can work in combination with UAV and is able to
monitor radiation levels. To the best of our knowledge, there
are no research-oriented or market products that offer similar
functionalities to the ones proposed by our system.

III. SYSTEM DESIGN

The proposed system can be conceptually divided in two
parts. The first part is the hardware architecture of the node,
comprising a microcontroller, a radio chip and a Wake-Up
Radio (WUR), harvester circuits and a radiation sensor. The
second part is the software side, where we propose an energy-
efficient, dynamic data acquisition algorithm to calculate the
radiation dosage rates from the sensor output. Moreover, the
power management techniques to reduce the total energy
consumption and extend the node’s lifetime are performed
by software exploiting the hardware capabilities of the node
(WUR and low power modes).

Figure 2 shows the block diagram of the developed wireless
sensor node with its four main units: the sensor subsystem
with the Teviso RD3024 sensor, the power management unit,
in charge of harvesting energy, recharging the supercapacitor
and powering the node, the ultra-low power microcontroller
unit with non-volatile memory, and finally the communication
unit which uses an ultra-low power WUR [30], [31] in sleep
mode to detect the UAV’s presence and the CC1100L as the
main transceiver.

1) Energy Harvesting: To achieve self-sustainability, a sys-
tem needs to have energy harvesting (EH) capabilities. For our
application scenario, Sanyo’s AM-1417 solar panel is able to
provide enough energy for continued operation despite its small
form factor (11.7mm x 35.0mm). The P-V characterization
of the selected solar panel can be seen in Figure 3. It can

Figure 2: Sensor Node Architecture

be seen that under good lighting conditions, i.e., a luminosity
of 10,000 lux, the panel can generate a maximum power of
0.85 mW. To have the maximum power transfer at different
operating conditions and load impedances, the BQ25570 energy
harvester circuit was used. A 1 F supercapacitor has been used
for storage, which will be charged to a maximum of 5.25 V.
Due to the BQ’s buck converter regulating the load’s voltage
(Vload=3.3 V), only 8 J of usable energy are stored between
the maximum and operating voltages.

2) Microcontroller unit: The MSP430FR5969 from Texas
Instruments was selected as the main core due to its ultra-low
power consumption and 64KB FRAM, a novel fast on-chip
non-volatile memory. The microcontroller acquires, processes,
stores and sends the data via the radio when the UAV is ready
to collect them.

3) Communication unit: The radio typically consumes
a large amount of the total energy in a wireless sensor
node. Consequently, any optimization that can be made in
the communication system has a big impact on the node’s
self-sustainability requirements. In the proposed application,
enabling asynchronous communication protocols significantly
increases the energy efficiency of the communication, since
the node can keep the radio in sleep to save power and turn
it on it only when the UAV is near by. A broad variety of
solutions for asynchronous low power receivers have been
proposed addressing the main trade-off between power, range,
and addressing capabilities [32]. One possibility is on-demand
network flooding [33], where devices can send multi-hop

Figure 3: Solar Panel Characterization.



Figure 4: Nano-watt wake-up receiver architecture.

messages with end-to-end latencies of tens of milliseconds.
In this work we use single-hop communication, leveraging
the CC110L for data transmission with an ultra-low power
Wake-Up Radio (WUR). Figure 4 shows the architecture of
the WUR, from [34].

The implemented receiver’s power consumption was mea-
sured to be around 1 µW at 2V, with a sensitivity of -55 dBm
[30]. Moreover, in-field experimental results demonstrate a
range of 30 meters with a 3 dBi omnidirectional antenna.

4) Energy Efficient Communication Protocol: Figure 5
presents the architecture of the communication where the UAV
can fly in a wide range field and the sensor node with the
radiation sensors are deployed in the field. While the sensor
node is in charge of collecting radiation data, the UAV collects
the data from all the deployed sensors. In our scenario, we
assume the nodes are deployed in the field in such a way that
there is no overlap of the communication range (see Figure 5)
so our application scenario does not require any addressing
capabilities. Consequently, the node will spend most of its time
in sleep mode, waking up only when the UAV is near by to
collect data.

1) A timer expiration, to perform periodic sensing of the
radiation sensor

2) The reception of the wake-up signal sent by the UAV
and detected by the WUR

The first event, called data acquisition, will be explained
in detail in Section 5. The second event, occurs when the
UAV sends a signal to download the data logs from the sensor
node. This wake-up signal is sent at 1 Kbps, since it’s the data
rate the WUR has been optimized for. If the UAV receives
an acknowledgment (ACK) from a sensor node in its vicinity,
it then reconfigures the data rate to 100Kbps to speed up the
data transfer.

5) Radiation Sensor: Measuring levels of radioactivity typi-
cally requires the use of an accurate Geiger counter. However,
these devices operate at a high voltage range (400-2,000V) [35]
and require a Geiger-Müller tube containing an inert gas at low
pressure. The Teviso RD3024 [24] solid state nuclear radiation
sensor, used in our design, is based on customized PIN diodes
which generate temperature compensated TTL pulses. It was
chosen because of its low power consumption of only 400 µA
at 3 V, small size and weight. It should be noted that, while
the number of pulses per unit of time (given in counts per
minute, or CPM) depends on the radiation level, the width of

TX range

WUR range

Figure 5: Network architecture comprised by several, non-
overlapping sensor nodes. The range of the WUR is assumed
to the be same as the TX radio.

these pulses is variable. The width depends on how much of
a ray’s energy is absorbed by the diode’s electron-hole pair.
Figure 6 shows the sensor’s response in terms of pulses per
minute, on a logarithmic scale, with respect to the measured
radiation dosage rate. In normal ambient conditions, radiation
dosage rates are in the order of magnitude of 50-100 nSv/h.
During radioactive emergencies, such as the Fukushima Daiichi
nuclear power plant incident, the rates reached 2 mSv/h [1].

In order to measure the radiation dosage rate, the number of
pulses generated by the sensor and the time taken to reach a
statistically significant number of pulses need to be measured.
According to the manufacturer, 1k samples are enough to have
a statistically significant measurement. With these two values,
the node is able to calculate the equivalent counts per minute,
which can then be converted into a dosage rate in [mSv/h]
units by multiplying the sensor’s sensitivity. The dosage rate
can be calculated either continuously, with a moving average,
or it can be duty-cycled.

For a low-power, self-sustainable application, continuous
sensing is too expensive, so one must periodically activate the
sensor to make a measurement in a limited amount of time.
However, if a stable measurement requires 1k samples, the
settling time will vary greatly within the sensor’s measurement
range. When exposed to high dosage rates, much less time
will be needed for the measurement to settle. These values and

Figure 6: Sensor response as a function of the radiation dosage
rate [24].



Figure 7: Schematic of characterization set-up.

their precision trade-offs will be discussed in more detail in
Section V which discusses the data acquisition in detail. The
node, after making a measurement, will store the results in
non-volatile memory until the UAV passes over the node and
sends a wake-up command to collect the data.

IV. ULTRA-LOW-POWER RADIATION SENSORS

In this section, we will present the characterization of the
novel radiation sensor, which is the core of the wireless sensor
node. To this end, we will first explain our experimental test
bed in detail, then the results obtained. These results will be
used later on to determine the best parameters for our proposed
energy efficient data acquisition algorithms.

A. Experimental Setup

An experimental testing chamber (Figure 8) located at
the Institut de Radiophysique (ISO/IEC 17025:2005 and
17020:2012 certified) at the Centre Hospitalier Universitaire
Vaudois (Lausanne, Switzerland) has been used to test the
sensor, allowing the controlled irradiation of the sensor with
gamma rays under well-defined dosage rate conditions. The
block diagram of the experimental set up is shown in Figure 7.
A radiation source (i.e., several Cs-137 sources of different
radiation doses) emitted gamma rays, at four different dosage
rates, on the sensor test bed. The number of pulses generated
by the sensor in each test was detected and logged using a
high precision National Instruments USB621X DAQ platform.
This data was subsequently analyzed to determine the accuracy
and precision of the fixed and dynamic window sampling
algorithms.

The dosage rates (0.01, 0.01, 1 and 10 mSv/h) were selected
to sweep a wide range of the characterization curve in presented
in Section III-5. The exposure times were chosen to have at
least 3000 pulses detected at all radiation levels to have three
times more data than the recommended value of the Teviso
sensor, and thus, a stable CPM reading, given the specific
radiation dosage rate. The sensor was tested under standard
conditions, i.e., 20 ◦C, 974 hPa and 23 % relative humidity.
All of the results pertaining to the sensor characterization and
acquisition algorithms presented in this work are based on the
data acquired from these experiments.

Table I: Nominal Dosage Rates and Measured Sensor Response.

Nominal Value Measured Value
Radiation Dose
Rate [mSv/h]

Exposure
Time [s]

Counted
Pulses

Measured
CPM

Mean Time
to Settle [s]

0.010 3399 3781 66.743 898.9
0.102 1509 9614 382.26 156.9
1.006 748 44839 3596.7 16.68
10.150 380 129190 20398 2.94

Figure 8: Laboratory set-up for radiation experiments.

B. Sensor Characterization

In order to evaluate the precision of our proposed sampling
algorithms, it is necessary to first characterize the sensor’s
response to controlled dosage rate conditions. This characteri-
zation data will later be used to evaluate our energy-efficient
data acquisition algorithm. Once the experimental setup was
ready, the experiment for each dosage rate was carried out.
The nominal dosage rate and CPM values calculated from the
sensor response are listed in Table I. The mean time to settle
is defined as the average time taken to detect 1000 pulses. As
expected, the number of pulses detected per unit time increases
with the radiation dosage rate. Figure 9 shows how the counts
per minute (CPM) vary with the number of pulses detected, for
4 different radiation levels. These values were obtained using
a sample trace of 1000 pulses for each dosage rate, which,
according to the manufacturer, guarantees a stable and precise
measurement. Naturally, the longer the measurement, the more
precise it will be. In fact, the reference CPM column in Table I
corresponds to dividing the total number of pulses detected
during the experiment by the experiment’s duration. This is

Figure 9: Measured CPM as a function of the number of
samples detected, for different dosage rates.



our most precise measured value, which our proposed data
acquisition algorithms will later be compared to for precision.

What is important to note is that under all four dosage
rates, the measured CPM value stabilizes after 400 pulses have
been detected. This is the first important observation and the
foundation of our proposed approach to reduce the sampling
time by counting the number of pulses detected. This will
optimize a dynamic window sampling policy, since waiting for
a fixed number of pulses will take shorter times at higher dosage
rates, and thus reduce the energy consumed per measurement
without affecting its precision. In the following section, we
will explore two different data acquisition algorithms that will
make a sensor reading possible within a limited amount of
time.

V. ENERGY OPTIMIZED SENSOR DATA ACQUISITION

Due to the node’s high energy efficiency requirements
to achieve a self-sustainable sensor system, it is important
to power manage the sensor to reduce the overall energy
consumption. Duty cycling is a common way to this goal,
by keeping the sensor and the node active only for a fixed
amount of time within a period. Depending on the size of the
active period, we can expect a certain number of pulses to be
detected at a given dosage rate. Ideally, the microcontroller
and the radio will spend most of their time in sleep mode and
wake up only when absolutely necessary, e.g. when the sensor
is activated for making a radiation measurement.

Figure 10 shows our proposed node’s finite state machine.
The main state, with a double outline, has the microcontroller
in LPM3 mode and the sensor off. One timer is configured to
periodically trigger the data acquisition phase. At the beginning
of this phase, outlined in red, the microcontroller configures a
timer and a counter. The first timer will generate an interrupt
after a given time, called window size. The counter will simply
count the number of pulses within the window size. Depending
on the data acquisition algorithm, this phase can end after
an interrupt from either the timer or the counter, the latter
occurring if a maximum number of pulses to be detected is set.
Lastly, the node enters the data transmission phase only when
the WUR detects a wake-up command. The wake up command
is generated by the UAV when it will be in the range of the
wake up radio. At this point, the node transmits its buffered
data to the UAV for further processing.

In this paper, we proposed an energy-optimized algorithm for
the radiation sensor. To this end, we have taken the sensor’s
characterization data presented in the previous section and
used it to evaluate the precision and energy efficiency with two
different sampling algorithms. The first, called Fixed Window
Sampling, will turn off the sensor after a fixed (constant) time.
This method is essentially constant duty-cycling, which clearly
saves power, but has some disadvantages. The second, called
Dynamic Window Sampling, can turn off the sensor before a
fixed (maximum) time if it detects a predefined number of
pulses. We use the characterization data from the previous
section and process it with Matlab to determine the number of
pulses that would have been detected using fixed and dynamic

Figure 10: Node’s finite state machine.

window sizes. This methodology allows us to calculate the
CPM distribution for both algorithms, compare it to the known
reference value, and infer the measurement’s precision. To this
end, the node’s state machine will be discussed first, followed
by the two data acquisition algorithms.

As mentioned earlier, the data acquisition phase is initiated
periodically by a timer. The duration of the phase depends on
the algorithm. As was shown in Table I, different dosage rates
have different settling times. For the Fixed Window Sampling
algorithm, if we were to choose a high enough window value,
we guarantee that we will obtain a precise measurement for a
wide range of radiation levels. This, however, is very inefficient
in terms of energy since higher levels of radiation exhibit much
shorter settling times. With this characteristic in mind, we
propose the second algorithm, which will keep the sensor on
until either a maximum time has elapsed, or a given number
of pulses has been detected. By turning off the sensor after the
reading has stabilized, the energy consumed by the sensors can
be significantly reduced, particularly at high levels of radiation,
which have short stabilization times. In the next subsection,
the two algorithms will be discussed in greater detail.

A. Fixed Window Sampling

In the Section IV, we have analyzed the radiation sensor’s
response to different dosage rate conditions. It has been
determined that after only 400 pulses were detected, the CPM
measurement had a stable value. However, as it had been
shown in Table I, waiting for 400 pulses at low dosage rates
would take prohibitively long measurement times. For this
reason, and given our high radiation application scenario, we
have chosen a maximum window of 20 s, which will result in
accurate readings at high dosage rates while still able to detect
low levels with an acceptable precision, as can be seen in the
”avg. CPM dispersion" column in Table II. These values were
obtained by counting the number of pulses detected within fixed
time windows of 20 s. The average CPM dispersion indicates
how consistent the fixed window reading was compared to
the Reference CPM value, our precise reference value. We
define the dispersion in the following way: Let MCPM be a
vector containing the CPM values from all 20 second fixed
window measurements from our characterization data. In order
to calculate the dispersion D, we use the following formula:

D = 100 · mean(MCPM − stddev(MCPM ))

mean(MCPM )
(1)



Table II: Sensor Response with Fixed Window = 20 sec.

Radiation Dose
Rate (mSv/h) Average CPM Avg. CPM

Dispersion [%]
0.010 66.800 7.93
0.102 382.50 4.03
1.006 3598.0 1.37

10.150 20330 0.33

The dispersion is a measure of how different the value from
one measurement varies to the next. If, for example, the sensor
generated pulses perfectly periodically, the measured CPM
values would be the same, meaning the dispersion would be
zero. Unfortunately, the pulse generation depends directly on
the ionizing radiation, and is inherently random. This means
that even when the radiation level is kept constant, for small
time windows, the measurement might give slightly different
results. In fact, for a dosage rate of 0.010 mSv/h, for example,
the dispersion is 7.93 % of the expected CPM value, while at
10.0 mSv/h, the dispersion is only 0.33 %. This result is to be
expected, since the lower dosage rate will have a lower number
of detected pulses within the fixed time window, and the CPM
value has not yet fully stabilized. Figure 11 shows the average
number of pulses detected in all measurements of a given
window size in a semi-log plot. Naturally, with higher dosage
rates, a much greater number of pulses are detected within a
fixed window size. Due to this difference in the number of
pulses, the measurement’s precision within a fixed window
will depend on the dosage rate. Figure 12 shows the maximum
error for different dosage rates in fixed window measurements
as a function of the window size. In order to calculate the
maximum error E, we use the following formula:

E = 100 · max|CPMref −MCPM (window)|
CPMref

(2)

Where CPMref represents the most precise CPM value,
and MCPM (Window) is a vector containing all the measure-
ments of a given window size. The CPMref values are listed
under the ”Measured CPM” column in Table I. As expected,
the maximum error converges to zero with increasing window
size. The only difference between the lines is the time scale:
for lower dosage rates, the stabilization times are longer. It
should be noted that there are two types of imprecise readings:
The first, which goes up to 100%, happens at low dosage
rates with very small time windows. In this scenario, a fixed
window measurement will not detect any pulses, resulting in a
0 CPM reading, or 100% error. The second type of imprecision
occurs with higher dosage rates and small window sizes. Here,
a quick burst of pulses can lead to an artificially higher reading,
which can lead to errors above 100%. From this result, we
can determine that a fixed window duration of 20 s can offer
high precision reading at high dosage rates, and an acceptable
precision at lower rates.

B. Dynamic Window Sampling
As presented in the previous subsection, a fixed (periodic)

window size can by itself reduce the energy consumed by the

Figure 11: Average number of pulses detected as a function of
the window size and dosage rates.

sensor compared to continuous sampling. Furthermore, it has
been shown that a given fixed size has a variable precision,
which depends on the dosage rate: Higher dosage rates have a
higher number of pulses detected within the same time, and thus
a more stable CPM reading. The aim of the second algorithm
is to explore a more energy efficient data sampling algorithm
that can reduce the window size for high dosage rates, such
that the sampling ends after a stable CPM reading can be
calculated. From Section IV, it has been shown that after a few
hundred pulses have been detected, a stable measurement can be
obtained. From our empirical data, it was determined that with a
threshold of 400 pulses, we can significantly reduce the window
sizes with only a marginal effect on the maximum measured
CPM error. We once again utilize the characterization data
acquired at our testing facility, and based on that, we calculate
all the dynamic window measurements, to then determine what
the longest windows sizes are and what the maximum error for
those measurements are. These results are shown in Figure 15.
The blue bars show the maximum measured window size for
different radiation levels. For lower levels of radiation, this
window size will be our predefined maximum, 20 s. This is
expected because at low levels of radiation, it takes a relatively
long amount of time to reach 400 pulses. As the level of
radiation increases, however, this stabilization time decreases,
and already for 1 mSv/h, we detect a maximum window of 6 s.
This 70% reduction in window size leads to significant savings
in the sensor energy. Furthermore, the higher the radiation
levels are, the higher are the potential savings: at 10 mSv/h
the maximum window size was 1.5 s, or a 92.5 % window
size reduction. Since the energy spent per measurement is
proportional to the window size, this reduction in window size
is equivalent to a reduction in the energy spent per measurement.
The red bars show the maximum error for a measurement at
a given radiation level. Note how the error decreases as the
radiation level increases. This is expected since a time window
of 20 s is not long enough for a precise measurement at low
levels of radiation at high levels, a relatively short amount of
time necessary to reach the 400 pulses we have selected as the



100 101 102 103

Windows Size (sec)

0

50

100

150

M
a
x
im

u
m

  
C

P
M

 E
rr

o
r 

(%
)

10.0 mSv/h

1.00 mSv/h

0.10 mSv/h

0.01 mSv/h

Zero Peaks

Detected
Burst of Peaks

Detected

Figure 12: Maximum CPM error measured with fixed window sampling as a function of the window size, for different dosage
rates.

threshold for a precise measurement.

C. Self-Sustainability Model

In this section, we introduce the self-sustainability model
of our application scenario to evaluate the proposed approach,
with a special focus on the benefits of the adaptive sampling
algorithm and wake up radio capabilities in the communication.
In all current scenarios, the WUR will detect the request for
data retrieval from the UAV and trigger the data transmission
once per hour. As presented in Figure 10, the sensor nodes
will make a measurement periodically and store the data until
a transmission request from a UAV is detected. During the
data acquisition (DAQ) phase, the fixed and dynamic window
sampling will count the number of pulses within a maximum
time frame to calculate the CPM. During the transmission (TX)
phase, the CC110L radio is activated to transmit the data stored
in the node. Since a WUR is being used, there is no need
for any polling. It is designed to be always listening for the
wake-up request. This comes at the cost of a slight increase
in the idle power, in the order of one microwatt. Thus, the
energy consumption for both methodologies (fixed and dynamic
windows) can be summarized in the following equations:

EConsumed,WUR = EDAQ + ETX + Eidle_wur (3)

Where EDAQ, ETX , and EIdle_wur are the node’s periodic
energy consumption from the data acquisition, data transmis-
sion, polling and idle phases, respectively. The nano-watt
WUR is an important component in reducing the node’s power
consumption, since it allows the other components to be in sleep
mode and generates an interrupt only when needed. However,
minimizing a node’s power consumption alone is not enough
to reach self-sustainability. Energy harvesting is necessary to
replenish the available energy for uninterrupted operation. In
our application scenario, the solar panel will harvest energy
from the available sunlight, which varies with time. Within a
period, the difference in energy can be expressed as follows:

∆EPeriod = EHarvested − EConsumed (4)

In systems with energy storage, ∆E can either be positive or
negative. If it is positive, it means more energy was harvested
than consumed. As a result, the amount of stored energy will
increase. On the other hand, if the ∆E is negative, it means
more energy was consumed than harvested, and the amount of
stored energy will decrease.

Estorage(t+ Period) = Estorage(t)−∆EPeriod(t) (5)

Where EStorage(t) and EStorage(t+Period) are the energy
storage levels at the time t and t + Period. Since the storage
element has a limited capacity, EMax, the storage level cannot
surpass it. On the other hand, EStorage has to guarantee that
there will always be enough energy to acquire and transmit
data when necessary, otherwise data can be lost, and the node
will no longer be self-sustainable. This minimal value, EMin,
is simply EConsumed. Therefore, at any time t, the following
equation has to be satisfied:

Emax > Estore(t) > Emean (6)

VI. EXPERIMENTAL RESULTS

In this section we will present and discuss the experimental
results of our data acquisition algorithms and energy sustain-
ability models. As was shown in Section 3, our energy budget
is given by EH and energy storage. To allow the whole system
to be self-sustainable, this budget must be large enough for our
application requirements. To this end, we carried out power
measurements of the sensor node during its different states and
intake energy from Sanyo’s AM-1417 solar panel (11.7mm x
35.0mm) during several days. These measurements have been
used in our simulation using the model presented in previous
section to demonstrate the viability and self-reliability of the
proposed solution.

A. Power Consumption Measurements and Intake Energy

As the low power is crucial to achieve a self-sustainable sys-
tem, the first step has been to evaluate the power consumption
measurement of the designed and developed node. Table III
shows the sensor node’s power consumption with a 3.3V power



Table III: Node’s Power and Timing Characteristics Per Hour.

Node Phase Description Avg. Power [mW] Time [s]
Single Data Acquisition (DAQ) MSP430 in LPM3, CC110L in sleep 1.731 Max 20

Data Transmission (TX) MSP430 active, CC110L in TX 23.1 0.020
Idle_wur MSP430 in LPM3, CC110L in sleep + WUR 0.031 Max. 3598.5

supply and with the microcontroller running at 8 MHz. During
the DAQ phase, the MSP430 is in low-power mode LPM3,
and both a timer and counter are used to measure time and
register the detected pulses from the radiation sensor.

During the TX phase, the main radio is turned on and
used to transmit data back to the UAV. Data transmission
is the most power hungry phase, consuming 23.1 mW, and
lasting approximately 20 ms to send 60 bytes, which is the data
corresponding to 1 hour. Due to the presence of the WUR, the
node can enter an ultra-low power idle_wur phase, in which
the WUR awaits a transmission request. In this state, the node
consumes only 30µW + 1µW from the MCU and the WUR,
respectively.

Figure 13 shows the experimental measurement from our
selected solar panel in an outdoor environment during 6
days. The figure shows how the amount of sunlight can
vary the available power considerably during the day, due to
unpredictable weather conditions. The peak harvester power is
only of few mW due mainly to the small size of the solar panel.
This makes the power management and the energy efficient
acquisition algorithms even more important and challenging.

B. Wake-Up Radio Communication In-field Experiments.

To evaluate the range of the energy efficient protocol using
the wake up radio in the outdoor scenario, we have carried
out a set of measurements using a transmitter and a wake up
radio. The experimental set up includes the following hardware
components: i) the wake up radio with -55dBm sensitivity
equipped with a commercial 900MHz antenna with +3dBi
gain. ii) A demo board with an MSP430 microcontroller and a
CC110L transceiver has been deployed in the field to different
distances from 5 meters to 40 meters in a country side area
with steps of 5 meters. The antennae have been placed 1 meter
above the ground. For each step of 5 meters, 1000 wake up
beacons of 5 consecutive bit ’1’ has been transmitted and the

Figure 13: Instantaneous power available measured in an
outdoor environment.

log of the received data has been traced. The transmission
power of the CC110L has been set to a fixed value of +10dBm.
With this configuration, we could measure the influence of the
distance on the packet loss and identify the safe region where
data are always received correctly.

The performance in terms of packets received and false
positive wake up are presented in Table IV. It can be noticed
that up to 30 meters, the packets success rate is above the
99 % so the communication can be considered accurate. As
the range starts to increase, the success rate decreases to 75 %.
It is interesting to notice that the false positives are very rare.
This heavily depends on the environment, and because of our
radioactively contaminated scenario, a very low level of radio
frequency noise is expected. Moreover, if the environment
becomes noisy or a more robust signal is needed, the wake up
radio communication can provide both addressing capability
or the length of the wake up beacon can be increased.

Table IV: Performance of distance vs packet lost for 100 wake
up beacons.

Distance Packets Received False Positive
5 meters 1000 1000 0

10 meters 1000 1000 1
15 meters 1000 1000 0
20 meters 1000 1000 1
25 meters 1000 999 0
30 meters 1000 999 0
35 meters 1000 978 0
40 meters 1000 756 1

C. Simulation and Self-Sustainability

In order to demonstrate the self-sustainability of our proposed
solution, the above-presented measurements have been used as
input to our Matlab simulation. Based on the model presented
in Section 6, it calculates the energy storage level for fixed and
dynamic window sizes and sampling periods. It should be noted
that we do not consider leakage currents or temperature/aging
degradation in the supercapacitor. The former is negligible
compared to the node’s sleep power, and the former is mitigated
by over-dimensioning. The first aim of this simulation is
to evaluate the benefit between the fixed windows, dynamic
windows and continuous sampling. As a second aim we wanted
to highlight the importance of the wake up radio. Figure 14
shows how the sensor node would operate under the energy
harvesting conditions presented in Figure 13. There are four
lines, representing the energy storage level for fixed windows,
dynamic windows and continuous sampling when exposed to
a dosage rate of 10 mSv/h. The blue line indicates the energy
storage level when the sensor is continuously acquiring data.
As expected, this is very expensive in terms of energy and



Figure 14: Energy storage levels for Fixed and Dynamic Window Sampling with different periods, at dosage rate=10mSv/h.

cannot satisfy the requirement of continuous monitoring as the
storage device is completely depleted for long periods of time.
In fact, there is stored energy only during periods of excess
power during the day.

The red line represents sampling with a fixed window size
of 20 s and a sampling period of 6 minutes. It is interesting to
notice, for Fixed Window Sampling, that the stored energy level
is the same, regardless of the environmental dosage rate. At
its lowest level, there are 1954 mJ stored in the supercapacitor,
indicating that even with our initial sampling algorithm, our
proposed node exhibits self-sustainable behavior. The black
line represents the storage levels for dynamic window sizes
with a sampling period of 1 minute. Since the dosage rate
is the maximum, this energy efficient algorithm will have a
reduced window size of only 1.5 s, as shown in Figure 15.
Because of this reduced energy, the system can support the
elevated sampling rate, and still maintains at least 4477 mJ
stored in the supercapacitor at all times. This corroborates the
energy savings introduced by our proposed data acquisition
algorithm at high dosage rates. In fact, as Table V shows, up
to 92.5 % of the energy per sample can be saved using our
proposed algorithm.

These energy savings come at small price of precision.

Figure 15: Maximum detected error with dynamic window
sizes (Max. Window=20 s, Pulses=400) for different dosage
rates.

For high dosage rates, fixed window sampling can offer a
maximum error of less than 1.4 % for 1.006mSv/h, while
dynamic windows have a maximum error of 12.39 %. Lastly,
the green line corresponds to the scenario where there is no
wake-up receiver. Here, the main radio needs to perform polling,
which we have defined as lasting for 1 minute every hour, so
the node can detect the presence of the UAV when it passes
over the node. This strategy is clearly energy inefficient, since
the main radio is the most power consuming component, and
as a result, the node has no stored energy for considerable
periods of time.

These simulations confirm the energy efficiency of the
proposed data acquisition, dynamic power management and
wake-up receiver. These features allow the node to make
radiation dosage measurements with high sampling frequency
and precision, while guaranteeing the node’s self-sustainability.

VII. CONCLUSIONS

This work has presented a self-sustainable radioactive sensor
node for environmental monitoring in hazardous environments.
A novel off-the-shelf low power radiation sensor has been
presented and characterized in detail, and two energy efficient
data acquisition algorithms have been proposed. The proposed
sampling methods have been evaluated under several different
radiation dosage rates in terms of precision and energy saving
using real-world measurements. The whole node has been
designed to have a small form factor, low power and self-
sustainability, enabling it to be distributed by UAVs across
inaccessible areas. In some cases it might not only be dangerous
for a human to perform measurements, it might not even be
possible. The node contains solar panels and a supercapacitor,
which enables it to gather enough energy for continuous
periodic sensing. Furthermore, with the combination of a
power efficient acquisition algorithm, an ultra-low power

Table V: Summary of Dynamic Window Sampling Results.

Radiation Dose
Rate (mSv/h)

Dynamic Window
Size [s]

Energy Savings
per sample [%]

Max. CPM
Error (%)

0.010 20 0 53.53
0.102 20 0 18.97
1.006 6 70 12.39
10.150 1.5 92.5 5.63



WUR and radio transceiver, the node is able to transmit its
sensed data back to the UAV with very high energy efficiency.
As a result, the proposed solution is able to produce and
continuously update an accurate map of radioactivity levels
in industrial accident sites. The power measurements demon-
strate the viability of a self-sustainable node with dynamic
window sampling and the benefits of using a combination of
aggressive power management and low power techniques. The
results show that with a WUR and our proposed sampling
algorithm, the node achieves the self-sustainability level with
low latency transmissions, providing measurements with fine-
grained time resolution and high precision. The experimental
results show that even with low energy budgets, our low power
HW/SW codesign with novel sensors can enable the perpetual
monitoring of dangerous areas.
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