
An Isolation Scheduling Model for Multicores
TIK Report No. 361

Pengcheng Huang, Georgia Giannopoulou, Rehan Ahmed, Davide B. Bartolini and Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland

Abstract—Efficiently exploiting multicore processors for
real-time applications is challenging because jobs that run
concurrently on different cores can interfere on shared re-
sources, severely complicating precise timing analysis. We
propose a new scheduling model called Isolation Scheduling
(IS); IS provides a framework to exploiting multicores for
real-time applications where tasks are grouped in classes. IS
enforces mutually exclusive execution among different task
classes, thus avoiding inter-class interference by construction.
We show that IS encompasses several recent advances in real-
time scheduling as special cases and we propose global and
partitioned scheduling algorithms based on this model. Specific
results are provided if the task classes correspond to different
safety criticality levels.

I. INTRODUCTION

There is a large gap between the requirements of real-time
applications and what architectures of embedded processors
offer today. On the one hand, real-time applications need
predictability in order to enable safe operation based on
worst-case execution time analysis. On the other hand,
following the end of Dennard scaling [13], embedded pro-
cessors increasingly feature a multicore architecture with
shared resources (e.g., last-level cache, memory controller)
in order to keep improving performance and efficiency.
Figure 1 depicts an example of such an architecture.

����������

	
������������

�������������

�����

�����

�����

�����

�

�

�

�

���� ���� ���� ���� ����

����������

��������������������

����������

Figure 1. Sample typical multicore architecture with m = 4 cores that
share last-level cache, DRAM controller and I/O controller.

To take advantage of multicore architectures, applications
need to run jobs concurrently on different cores. Unfortu-
nately, however, shared resources undermine predictability,
since jobs that run concurrently pay unpredictable per-
formance penalties due to contention in accessing shared
resources.

Filling this gap is a challenging problem. Coarse-grain
static partitioning in time and space, e.g., based on the DO-
178B standard [1] for avionics or the ISO 26262 standard [2]
for automotive systems, is an established technique for
single-core safety-critical systems, but this approach can not
be simply applied to multicore architectures; it would only

allow one job to execute at any point in time if strictly ap-
plied. More fine-grained partitioning requires to individually
control the access to each shared resource [32]. Finally, the
approach of finding a global schedule and bounding the con-
tention on shared resources at any time is only feasible with
the knowledge of the detailed resource sharing behavior of
all tasks, and it quickly becomes computationally intractable
with an increasing number of tasks [15].

In this paper, we propose a new scheduling model that we
call Isolation Scheduling (IS). IS is a practical model for ef-
ficiently scheduling real-time tasks on multicore processors,
i.e., exploiting hardware parallelism and shared resources. To
make the problem more tractable, IS makes an assumption
about the tasks, i.e., we assume that tasks are partitioned
into task classes that have exclusive access to the processor
and the platform resources. This way, interference on shared
resources is greatly reduced; inter-class interference is elimi-
nated by construction, and only intra-class interference needs
to be considered. Well-established methods [15, 18, 39] can
be applied to bound / control this remaining interference.

Indeed, subdividing real-time tasks into classes provides
key benefits in several contexts. For instance, gang schedul-
ing [19, 24, 42] groups jobs (threads) that share information
through fine-grained synchronization in the same class in
order to reduce blocking times. Conversely, when jobs do
not share information and there are well-defined task depen-
dencies, communication takes place between classes in order
to respect task dependencies, safely bound blocking times,
and avoid concurrent access to shared memory. Furthermore,
server-based scheduling [3] is an established approach for
performance isolation among task classes with different
timing requirements, e.g., for co-scheduling hard and soft
real-time tasks or periodic and aperiodic tasks. Finally,
in the context of mixed-criticality systems [37], tasks are
grouped in classes of different safety criticality, and indus-
trial standards [1, 2] pose strict requirements for isolating
these classes in order to allow independent certification of
criticality levels [11, 16, 36]. Isolation Scheduling guaran-
tees that tasks of different criticality levels do not interfere
on shared platform resources, and therefore, it allows for
independent certification as well as a much simplified intra-
class interference analysis.
Contribution and Outline. While recent work approached
the idea of Isolation Scheduling from different angles (see

Sec. III), to date this paper is the first to systematically
formalize the IS model (Sec. II). We specifically analyze the
IS model in the context of mixed-criticality scheduling and
we propose two novel scheduling approaches, respectively
based on fluid scheduling (Sec. IV and V) and on server-
based scheduling (Sec. VI). For each approach we provide
scheduling algorithms and prove schedulability bounds, and
we compare the approaches on scheduling large randomly-
generated task sets (Sec. VII). Our results deliver a deeper
understanding of the IS model and corresponding scheduling
techniques, and suggest that the IS model is a useful and
flexible abstraction for designing scheduling policies for
systems that require strong isolation among task classes,
such as mixed-criticality systems.

II. THE ISOLATION SCHEDULING (IS) MODEL

The Isolation Scheduling (IS) model dynamically parti-
tions a multicore processor in time between different task
classes so that, at any time, only jobs of the same task class
are allowed to execute on the platform. This strategy allows
to partition the problem of bounding interference on shared
resources to the single task classes; inter-class interference
is completely disallowed. We target homogeneous multicore
processors with m identical cores that share on-chip re-
sources. Figure 1 shows an example of such an architecture.

The IS model supports real-time tasks τ , where each
task periodically or sporadically instantiates single jobs. In
addition, we assume that tasks are partitioned into K task
classes S = {Sk | 1 ≤ k ≤ K}, where each task class
Sk contains nk tasks, i.e., Sk = {τi,k | 1 ≤ i ≤ nk}. For
each task τi,k in task class Sk, the tuple (Ti,k, Di,k, Ci,k)
defines the period of the jobs (or their minimal inter-arrival
time), their relative deadline, and their worst-case execution
time (WCET). Additionally, we define the density δi,k and
utilization ui,k of a task τi,k as

δi,k = Ci,k/Di,k, ui,k = Ci,k/Ti,k (1)

Throughout the paper, we use k to index task classes, and i
to index tasks within each task class. The set of task classes
S is IS-schedulable if all tasks can meet their deadlines while
respecting the IS-constraint of mutual exclusion between
task classes. We will refine some of these notations when
applying the IS model to mixed-criticality settings.

The IS model treats the multicore processor as a single
resource that needs to be time-partitioned between the differ-
ent scheduling classes. To give an intuition of how the model
works, Figure 2 shows an example of an IS schedule.

One way to relate the IS model to single-processor real-
time scheduling is by comparing the synchronous task class
switches (the vertical lines in Figure 2) with classic job
preemption. When a single-core processor would switch
between jobs, under the Isolation Scheduling model, all
cores of the multicore processor synchronously switch be-
tween jobs of two task classes. In other words, classical

core
1

core
2

core
…

core
m

shared interconnect

shared
memory

shared
input/output

core 1

core 2

core 3

core 4

t

t

t

t

τ∈S1 τ∈S2 τ∈S3 τ∈S2 τ∈S3

Figure 2. Example IS schedule with three task classes S1, S2 and S3.
Vertical lines mark the synchronous switching between task classes on all
cores.

job preemption is now lifted to synchronous switching
between classes. This approach is different from single-
core equivalence [32], which achieves task isolation by
individually protecting each shared resource. An alternative
way to look at the IS model is from a server perspective.
Classical real-time servers [3] provide bounded capacities
to task sets in a single processor setting. Recent proposals
for multicore servers [10, 34] divide a multicore platform
into multiple virtual platforms (servers) that could run in
parallel. In Isolation Scheduling, the server acts globally
on all cores, i.e., switching the resource allocation happens
synchronously on all cores.

The IS model imposes synchronous class switching to
bound resource interference, but remains general enough
to support different scenarios. For instance, the model
supports sporadic and periodic tasks; implicit, constrained,
and arbitrary deadlines; preemptive and non-preemptive
scheduling; static and dynamic time partitioning; and global
and partitioned mapping of tasks to cores. Moreover, the
implementation of an IS scheme depends on the specific
application. For instance, if the switching between task
classes can follow a static schedule, then a time-driven
synchronization is appropriate; instead, if switching deci-
sions are determined dynamically at run-time, then global
synchronization mechanisms will be helpful. In Sec. IV
to VI we analyze the schedulability and propose scheduling
algorithms for some of these combinations.
Isolation Scheduling for Mixed-Criticality Systems.
Mixed-criticality (MC) systems are a notable example
of systems that require strong isolation between task
classes. MC systems are real-time systems where tasks
are partitioned into classes, commonly called criticality
levels; different criticality levels have varying requirements
in terms of correctness, assurance, and safety. To allow
independent safety certification of criticality levels and
avoid costly re-certification, task classes need to be
strongly isolated [11, 16, 36]. While coarse-grained static
partitioning grants such isolation for single-core systems,
achieving a similar goal on multicore systems requires
hardware and/or software mechanisms for guaranteeing
interference-free or interference-bounded access of tasks
to any shared resource, see for example [32]. Instead, the
IS model takes advantage of the existence of well-defined
task classes and avoids concurrent execution of jobs with
different criticality by construction. In this way, different

classes cannot contend on shared resources at all, criticality
levels are completely isolated and they can be separately
analyzed and certified. We use (particularly, in Sec. V
and VI) mixed-criticality systems [37] as a case study to
illustrate the usefulness of the IS model.

III. BACKGROUND AND RELATED WORK

A. Mixed-criticality Systems — Formalization

When we discuss the IS model in the context of mixed-
criticality systems, we focus on systems with two task
classes (i.e., two criticality levels), as commonly assumed
for simplicity [12]. For convenience, we summarize here
the corresponding well-known model.

Task class SHI only consists of tasks of high (HI) crit-
icality; task class SLO only includes LO criticality tasks.
The execution time of HI criticality tasks is bounded on
both criticality levels: ∀τi ∈ SHI, the term Ci(LO) denotes
the low execution time bound, and Ci(HI) denotes the high
execution time bound. The high execution time bound must
be always guaranteed and is assumed to be more pessimistic
than the low: ∀τi ∈ SHI we require Ci(HI) ≥ Ci(LO). LO
criticality tasks only have one execution time bound, i.e.,
Ci(HI) = Ci(LO).

(2) defines the density δi(χ) and utilization ui(χ) of task
τi as a function of its execution time bound χ ∈ {HI,LO}.

δi(χ) := Ci(χ)/Di, ui(χ) := Ci(χ)/Ti (2)

Similarly, (3) defines the density ∆χ2
χ1

and utilization Uχ2
χ1

of
the task class Sχ1

with low (χ2 = LO) and high (χ2 = HI)
execution time bounds.

∆χ2
χ1

:=
∑

τi∈Sχ1

δi(χ2), Uχ2
χ1

:=
∑

τi∈Sχ1

ui(χ2) (3)

A dual criticality system is in LO mode as long as no
HI criticality job overruns its low execution time bound
Ci(LO); when at least one HI criticality job overruns its low
execution time bound, the system switches to HI mode. The
system must satisfy two schedulability requirements: 1) In
LO mode, all jobs of LO and HI criticality are schedulable;
and 2) in HI mode, all HI criticality jobs are schedulable.
After a switch to HI mode, the system can switch back to
LO mode under certain circumstances, e.g., when there are
no more HI criticality jobs to be scheduled [8, 31].

B. Baseline Mixed-Criticality Scheduling (MC) Policies

We provide a short overview of two mixed-criticality
(MC) scheduling policies, namely partitioned EDF-VD and
MC-Fluid, as we will build upon them in Sec. V and VI.
For a more extensive overview, we refer to the survey of
Burns and Davis [12].
Partitioned EDF-VD. Baruah et al. [6] introduced EDF
with virtual deadlines (EDF-VD) for uniprocessor implicit-
deadline task sets, which was later extended to multicores
under static task partitioning [8]. EDF-VD adapts classic

preemptive EDF scheduling to ensure the schedulability of
HI criticality tasks when the system switches to HI mode.
To achieve this goal, EDF-VD assigns virtual deadlines to
HI criticality jobs, i.e., to jobs of tasks in the SHI class.
The virtual deadline is computed by multiplying the original
deadline by a fixed factor x ∈ (0, 1]. In LO mode, jobs are
scheduled according to EDF, using the original deadlines
for LO criticality jobs and the virtual deadlines of HI
criticality jobs. Since the virtual deadlines are down-scaled,
HI criticality jobs will have some slack to “catch up” upon
switching to HI mode. In case the system switches to HI
mode, all LO criticality jobs are dropped and HI criticality
jobs are scheduled with EDF using their original deadlines.

Baruah et al. [6] proved that, in LO mode, all deadlines
(for HI criticality tasks, virtual deadlines) will be met if:

x ≥ (ULO
HI)/(1− ULO

LO) (4)

Moreover, Huang et al. [22] proved that there will be no
deadline violations for HI criticality tasks during switch to
HI mode and during HI mode operation if all HI criticality
tasks finish by their virtual deadlines in LO mode and∑

τi∈SHI

ui(HI)
ui(LO) + (1− x)

≤ 1 (5)

We will use the results from (4) and (5) in our IS-based
scheduling policies, see Sec. V and VI.
MC-Fluid & DP-Fair. Lee et al. [26] extended a
well known optimal multicore scheduling technique, DP-
Fair [27], to dual-criticality task systems by proposing MC-
Fluid. DP-Fair is a fluid based scheduling technique, which
enforces proportional progress of all tasks within dedicated
system slices. DP-Fair only requires a minimal set of rules
for achieving proportional progress, covering many other
scheduling techniques as special cases, e.g., the original P-
Fair algorithm [7]. Conceptually similar to EDF-VD, MC-
Fluid runs the system in two modes, with the deadlines
of HI criticality tasks shortened in LO mode. In both LO
and HI system modes, tasks are scheduled by DP-Fair. Lee
et al. [26] provided a corresponding schedulability test and
theoretically investigated the performance of MC-Fluid.

C. Task Class Isolation in MC Scheduling

Initial research on isolating task classes on multicores did
not explicitly address interference between task classes when
jobs concurrently access shared resources, i.e., they imply
that it can be bounded. For instance, Anderson et al. [4] and
Mollison et al. [28] adopt different strategies (partitioned
EDF, global EDF, cyclic executive) for different task classes
and use a bandwidth reservation server for timing isolation
between classes. However, interference analysis for multiple
shared resources is a very challenging task by itself. In fact,
estimating response time bounds under contention may be
even impossible for MC systems, because a certification
authority for higher criticality tasks does not necessarily

possess information on the behavior of lower criticality tasks
that are co-hosted on the same platform.

Subsequently, researchers acknowledged the problem
of inter-class interference and proposed mechanisms for
criticality-aware arbitration of shared resources, with the
objective of statically bounding interference from lower to
higher criticality tasks. Yun et al. [40] and Flodin et al. [14]
proposed a software-based memory throttling mechanism
(with predefined [40] or dynamically allocated [14] per-
core budgets) to explicitly control interference on a shared
memory controller. Goossens et al. [20], Paolieri et al.
[29] proposed hardware modifications to a shared memory
controller for mixed hard and soft real-time systems. Recent
works [17, 30, 39, 41] proposed partitioning data to disjoint
DRAM banks in order to minimize inter-core interference.
Tămaş-Selicean and Pop [36] present optimization methods
for time-triggered partition scheduling on heterogeneous
multicores that comply with the ARINC-653 standard [5];
they assume that the platform provides both spatial and
temporal partitioning that enforce enough isolation between
task classes. Similarly, Kim et al. [25] rely on ARINC-653
compliance to devise a method for conflict-free I/O transac-
tions. Finally, Tobuschat et al. [35] implemented virtualiza-
tion and monitoring mechanisms to provide independence
among flows of different criticality in networks-on-chips.
These mechanisms and policies ensure sufficient isolation
among criticality levels, but they suffer from poor flexibility,
e.g., memory budgets [40] cannot change dynamically if
the resource demand changes, and they may require special
hardware support, which is not widely available.

Finally, Giannopoulou et al. [16] and Burns et al. [11]
recently proposed scheduling strategies that sidestep the
need for fine-grained shared resource arbitration. The key
idea is to only permit tasks of the same criticality (i.e.,
from the same class) to execute concurrently. Based on this
insight, the scheduling policies they propose avoid resource
interference among task classes, exploit multiple cores, and
only suffer a limited schedulability loss to enforce time-
partitioning among task classes. The Isolation Scheduling
model we propose includes both these policies as special
cases; additionally, we propose novel policies built from
scratch upon the IS model.

IV. THE IS-DP-FAIR SCHEDULING POLICY

Optimal scheduling for multicores is provided, for both
periodic and sporadic task sets, by the DP-Fair family of
algorithms [27], which originated from P-Fair [7]. These
algorithms allow inter-class contention and inter-class use of
shared resources, as discussed in Sec. I and III. We tackle
this shortcoming by “porting” DP-Fair into the IS model, i.e.,
we extend DP-Fair with the IS constraint of strong isolation
between task classes. We call this new algorithm IS-DP-
Fair and we present its schedulability analysis, focusing
on periodic tasks. We show that, for tasks with implicit

Algorithm 1: IS-DP-Fair

1 Let t1, t2, · · · be the list (assuming no duplicates) of
all arrival times and deadlines of the jobs to be
scheduled; subdivide time into basic slices σj ,
separated by the tj time points:

σj = [tj , tj+1), with length Lj

2 Subdivide each σj into K subslices:
σj = {σj,k|1 ≤ k ≤ K}. The length of σj,k is

Lj,k = max

Lj max
τi,k∈Sk

{δi,k},
Lj
m

∑
τi,k∈Sk

δi,k

3 ∀i, j, k allocate an execution budget δi,kLj for task τi,k

in subslice σj,k.
4 Schedule tasks within each subslice with DP-Fair.

deadlines, IS-DP-Fair is optimal in terms of schedulability
among all possible schedulers based on the IS model; we
quantify the schedulability loss of IS-DP-Fair compared to
non-IS schedulers.

A. The IS-DP-Fair Algorithm

Algorithm 1 outlines the IS-DP-Fair algorithm. Similarly
to DP-Fair, we first partition time into slices: given the list
of all arrival times and deadlines without duplicates, a slice
σj is the time span between two consecutive such instants.

As a second step, we subdivide each such slice σj into K
consecutive subslices; each subslice σj,k of length Lj,k (see
Algorithm 1, step 2) is used to exclusively host task class
Sk.

Third, we allocate the execution budget to all tasks.
The idea is to enforce proportional progress of all tasks
(from different task classes) within each slice: each task
τi,k is exclusively assigned an execution budget δi,kLj in
subslice σj,k within σj . Within each subslice σj,k, tasks are
assigned iteratively in a greedy way: each task is assigned
to a processor that has a non-empty (i.e., at least one task
was already assigned to it) and non-full (i.e., there is free
capacity) subslice σj,k. If no such processor exists, the task
is assigned to a processor that has empty σj,k. If the available
capacity in the subslice σj,k for the chosen processor is not
enough to serve all the execution budget of task τj,k, then
the budget is split and the excess is allocated to the next
available processor. This process continues until all tasks
are allocated.

After allocation, we know exactly when and on which pro-
cessor the budget for each task will be available. At runtime,
any task executes whenever its budget becomes available; as
long as the task does not arrive, the corresponding budget
is idled.

B. Schedulability Analysis of IS-DP-Fair

Theorem 1 gives an exact schedulability test for using
IS-DP-Fair to schedule a task set S with K task classes
Sk, with 1 ≤ k ≤ K, on a multicore architecture with m
identical cores.

Theorem 1. Task set S is schedulable with IS-DP-Fair iff

∑
Sk∈S

max

 max
τi,k∈Sk

{δi,k},
1

m

∑
τi,k∈Sk

δi,k

 ≤ 1 (6)

Proof: According to the IS-DP-Fair algorithm, the
arrival time ta and the absolute deadline td (d > a) of any
job of any task τi,k from task class Sk coincide with the
start or the end of a (possibly different) slice. There might
be multiple slices σj between ta and td, where a ≤ j < d.
Task τi,k is guaranteed to meet its deadline if its execution
budget is satisfied across these slices.

Within each slice σj , any task τi,k receives, by construc-
tion, an execution budget of δi,kLj for each subslice σj,k
and, since a task cannot run in parallel with itself, we find

Lj max
τi,k∈Sk

{δi,k} ≤ Lj,k (7)

In addition, since all tasks from Sk must be schedulable by
DP-Fair within σj,k, i.e., the cumulative allocated budget
must be less than or equal to the available processor time
from all cores, we conclude

Lj
∑

τi,k∈Sk

δi,k ≤ mLj,k (8)

Combining the two bounds from (7) and (8), we get

Lj,k ≥ max

Lj max
τi,k∈Sk

{δi,k},
Lj
m

∑
τi,k∈Sk

δi,k

 (9)

Setting Lj,k to the minimum value that satisfies (9) guaran-
tees schedulability within each subslice. Finally we consider
the additional constraint∑

Sk∈S
Lj,k ≤ Lj

⇐⇒
∑
Sk∈S

max

Lj max
τi,k∈Sk

{δi,k},
Lj
m

∑
τi,k∈Sk

δi,k

 ≤ Lj
⇐⇒

∑
Sk∈S

max

 max
τi,k∈Sk

{δi,k},
1

m

∑
τi,k∈Sk

δi,k

 ≤ 1 (10)

Therefore, the test of (6) is sufficient for schedulability with
IS-DP-Fair and, if the test of (6) fails, then the task set
S cannot be scheduled with IS-DP-Fair. Thus, the test as
specified in (6) is exact, i.e., both sufficient and necessary.

After providing the schedulability test of Theorem 1, we
show in Theorem 2 that the IS-DP-Fair algorithm is optimal
for any task set S = {Sk} with implicit deadlines under the
IS constraint, i.e., under isolation of task classes.

Theorem 2. IS-DP-Fair is optimal in terms of schedulability
for task sets with implicit deadlines under the IS constraint.

Proof: We prove Theorem 2 by showing that, whenever
IS-DP-Fair fails, no other scheduling solution exists. Since
the schedulability test of Theorem 1 is exact, assuming that
IS-DP-Fair fails for task set S = {Sk} implies

∑
Sk∈S

max

 max
τi,k∈Sk

{δi,k},
1

m

∑
τi,k∈Sk

δi,k

 > 1 (11)

For the purpose of contradiction, assume that S is still
schedulable by some other scheduling algorithm Λ.

Consider the hyperperiod of the tasks of S in the case
when all tasks initially arrive at time zero. Let Thyper denote
the duration of the hyperperiod and Thyper.k denote the total
duration of the subslices allocated to task class Sk within
the hyperperiod. A task τi,k in Sk cannot run in parallel
with itself and it must execute for δi,kThyper within Thyper.
Therefore,

∀τi,k ∈ Sk : Thyper.k ≥ δi,kThyper
⇐⇒ Thyper.k ≥ Thyper max

τi,k∈Sk
{δi,k}

Since we assumed that S is schedulable by Λ, then all tasks
from Sk meet their deadlines within Thyper, implying

mThyper.k ≥
∑

τi,k∈Sk

δi,kThyper

⇐⇒ Thyper.k ≥
Thyper
m

∑
τi,k∈Sk

δi,k

Within the hyperperiod, the total fraction of all slices
allocated to any task class cannot be more than Thyper.
Therefore:

Thyper ≥
∑
Sk∈S

max

 max
τi,k∈Sk

{δi,kThyper},
Thyper
m

∑
τi,k∈Sk

δi,k

⇐⇒

∑
Sk∈S

max

 max
τi,k∈Sk

{δi,k},
1

m

∑
τi,k∈Sk

δi,k

 ≤ 1

(12)

(11) contradicts (12), so no algorithm Λ can schedule S.
While IS-DP-Fair is optimal for implicit deadlines, the

same property does not hold for the case of a task set S
with constrained deadlines, as Theorem 3 states.

Theorem 3. IS-DP-Fair is not optimal for task sets with
constrained deadlines under the IS constraint.

Proof: We prove Theorem 3 by showing a counterexam-
ple. Consider a task set S with two task classes S1 and S2,
each containing a single task, respectively τ1 = (2, 1, 1)1 and
τ2 = (2, 2, 1). Trying to schedule S on a dual-core processor
fails the schedulability test of Theorem 1. However, S is in
fact schedulable. Since each class only contains one task, we
can reduce the problem to a single core scheduling problem
and apply fixed-priority scheduling (τ1 with higher priority).
Then it is straightforward to see, through conventional
response time analysis, that S is schedulable.

C. Schedulability Loss of IS-DP-Fair

Finally, it is important to quantify the loss of schedulabil-
ity due to enforcing the IS constraint, compared to allowing
inter-class interference. Theorem 4 provides a tight bound
on the speedup required to enforce isolation.

Theorem 4. Any task set S schedulable with DP-Fair (by
removing the IS constraint) is schedulable by IS-DP-Fair
under the IS constraint on a platform that is min{K,m}
times faster. This speedup bound is tight.

Proof: According to [27], Following equation gives the
schedulability test for DP-Fair schedulability strategy:

max

 max
τi,k∈Sk
Sk∈S

{δi,k},
1

m

∑
Sk∈S

∑
τi,k∈Sk

δi,k

 ≤ 1 (13)

Now, let us assume that the system is IS-DP-Fair schedulable
on a hardware that is λ times faster. Using Theorem 1, this
implies:

∑
Sk∈S

max

 max
τi,k∈Sk

{ 1

λ
δi,k},

1

m

∑
τi,k∈Sk

1

λ
δi,k

 ≤ 1

⇐⇒ λ ≥
∑
Sk∈S

max

 max
τi,k∈Sk

{δi,k},
1

m

∑
τi,k∈Sk

δi,k

(14)

Thus the minimum possible speedup bound can be calcu-
lated as

λmin = max
S
{f(S)}

s.t. (13)

where f(S) =
∑
Sk∈S

max

 max
τi,k∈Sk

{δi,k},
1

m

∑
τi,k∈Sk

δi,k

(15)

We will now characterize the the worst case f(S) which
maximizes λmin subject to (13).

1The tuple defines the period, relative deadline, and worst-case execution
time of the task, see Sec. II.

Fact 1. f(S) is maximized subject to (13) if:

∀Sk ∈ S, max
τi,k∈Sk

{δi,k} ≥
1

m

∑
τi,k∈Sk

δi,k. (16)

Proof: We prove this by contradiction. Suppose that for

some Sk′ , max
τi,k′∈Sk′

{δi,k′} <
1

m

∑
τi,k′∈Sk′

δi,k′ . We will now

compute max
S
{f(S)} subject to (13). To maximize f(S)

while satisfying (13), we set:

1

m

∑
τi,k′∈Sk′

δi,k′ ≤ 1− 1

m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k

As a result, for Sk′ , we have

max

 max
τi,k′∈Sk′

{δi,k′},
1

m

∑
τi,k′∈Sk′

δi,k′

≤ 1− 1

m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k

(17)

Now, let us consider two cases:
-m = 1 : In Sk′ , we can have just one single task

with density equal to 1 − 1
m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k.

This way, max
τi,k′∈S′

k

{δi,k′} = 1
m

∑
τi,k′∈S′

k

δi,k′

(m = 1 ∧ |Sk′ | = 1) and (13) is still satisfied.
Furthermore, the maximum possible value of

max

{
max

τi,k′∈Sk′
{δi,k′}, 1

m

∑
τi,k′∈Sk′

δi,k′

}
is the same

compared to (17). Therefore, f(s) stays the same.
-m ≥ 2 : Let us denote with 0+ an infinitely small positive

number. Now for Sk′ , we can have just two tasks, one
with density 1 − 1

m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k + 0+ and the

other with density 1− 1
m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k−0+. This

way, (13) is still satisfied while

max

 max
τi,k′∈Sk′

{δi,k′},
1

m

∑
τi,k′∈Sk′

δi,k′

= 1− 1

m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k + 0+,

which is increased as compared to (17). Therefore,
max
S
{f(S)} gets larger.

Both cases lead to contradictions and (16) must hold.
With Fact 1, the problem of finding λmin becomes

λmin = max
S
{f(S)}

s.t. (13)

f(S) =
∑
Sk∈S

max
τi,k∈Sk

{δi,k}
(18)

To get the maximum possible value of f(S), we have

f(S) =
∑
Sk∈S

max
τi,k∈Sk

{δi,k}

≤
∑
Sk∈S

1 (from condition (13))

= |S| = K

f(S) =
∑
Sk∈S

max
τi,k∈Sk

{δi,k}

≤
∑
Sk∈S

∑
τi,k∈Sk

δi,k

≤ m (from condition (13))

(19)

Thus, λmin = min{K,m}.
Tightness Finally, we show that the speedup bound is

tight by finding a concrete IS task model that will lead
to such a bound: For each Sk ∈ S, let it only contain

one single task with density
min{K,m}

K
≤ 1. In this

case the total density of the system can be calculated as:
min{K,m}

K
·K ≤ m. Thus, (13) is satisfied and the system

is schedulable without the IS constraint by an optimal mul-
tiprocessor scheduling algorithm like DP-Fair. Furthermore,

we calculate that f(S) =
min{K,m}

K
· K = min{K,m}.

As a result, our derived speedup bound is tight.
Though IS-DP-Fair is not optimal in terms of schedula-

bility for task sets with constrained deadlines, we find that it
is optimal with respect to the speedup bound of Theorem 4.

Theorem 5. Under the IS constraint, no scheduler can
achieve a speedup bound better than min{K,m} compared
to an optimal scheduling algorithm that ignores the IS
constraint.

Proof Sketch: For IS task models with implicit dead-
lines, IS-DP-Fair is optimal according to Theorem 2, and
the result follows directly from Theorem 4. In case of con-
strained deadlines, we can use the same concrete example
as shown in the tightness proof for Theorem 4. For such an
example, if tasks have a zero offset and the same period and
deadline, then no IS scheduler is able to schedule it on any
platform with speedup less than min{K,m}.

While, in general, there is a cost for enforcing the IS
constraint (as Theorem 4 and 5 show), there is no such cost
to pay under suitable assumptions, as Corollary 1 shows.

Corollary 1. If a task set S is schedulable by ignoring the
IS constraint and if it satisfies the condition

∀Sk ∈ S :

max
τi,k∈Sk

{δi,k}

avg
τi,k∈Sk

{δi,k}
≤ |Sk|

m
(20)

where the operator avg computes the average of its argu-
ments, then S is also schedulable with IS-DP-Fair.

Proof Sketch: By reformatting (20), we get
max
τi,k∈Sk

{δi,k} ≤ 1
m

∑
τi,k∈Sk

δi,k. If the system is schedulable

without the IS constraint and (20) holds, then we have:

f(S) =
1

m

∑
Sk∈S

∑
τi,k∈Sk

δi,k ≤ 1 (f(S) given by (15))

(21)

According to Theorem 1, the system is IS-DP-Fair schedu-
lable.

Essentially Corollary 1 states that the schedulability loss
due to isolation decreases, as the variation in density across
tasks within task classes decreases and, as the number of
tasks within task classes increases.

V. IS-DP-FAIR FOR MIXED-CRITICALITY SYSTEMS

An immediate application of IS-DP-Fair is scheduling
mixed-criticality (MC) systems on multicores. Thanks to
the IS model, IS-DP-Fair ensures isolation between criti-
cality levels. While all the results of Sec. IV apply, MC
systems have some additional peculiarities (see Sec. III),
e.g., they can switch between criticality modes. For this
reason, we extend IS-DP-Fair for MC systems; we call this
new algorithm MC-IS-Fluid. An extension of the DP-Fair
algorithm for MC systems exists for multiprocessors without
considering isolation. We outlined this algorithm, known as
MC-Fluid [26], in Sec. III-B. The key idea, borrowed from
Baruah et al. [6], is to shorten the deadlines of HI criticality
tasks in LO mode, in order to shift demand from HI to
LO mode and improve schedulability. We adopt the same
technique in MC-IS-Fluid.

A. The MC-IS-Fluid Algorithm

Algorithm 2 outlines the MC-IS-Fluid algorithm for a
dual-criticality task set S = {SHI, SLO}. We compute
shortened deadlines for the HI criticality tasks, similarly to
MC-Fluid. In LO mode, we schedule the system with IS-
DP-Fair, using the original deadlines for LO criticality tasks
and the shortened deadlines for HI criticality tasks. After
a switch to HI mode, all LO criticality tasks are dropped
and we schedule the remaining HI criticality tasks with a
DP-Fair compatible scheduling technique, using the original
deadlines. While using a similar approach to MC-Fluid,
MC-IS-Fluid has two main differences: 1) we shorten the
deadlines of HI criticality tasks uniformly, so we are able to
provide a closed-form schedulability test; and 2) we show
(see Lemma 2) that greedily shortening the deadlines of HI
criticality tasks is optimal for schedulability in HI mode.

B. Schedulability Analysis for MC-IS-Fluid

In LO mode, MC-IS-Fluid uses shortened deadlines D′i =
xDi, with 0 < x ≤ 1 (see Algorithm 2), for all HI criticality
tasks τi ∈ SHI. Therefore, the density of each task τi ∈ SHI
in LO mode increases to δi(LO)/x. MC-IS-Fluid does not
shorten the deadlines of LO criticality tasks; so, ∀τi ∈ SLO,

Algorithm 2: MC-IS-Fluid

1 For all HI criticality tasks τi ∈ SHI, compute the
shortened deadline D′i = xDi, to be used in LO mode;
the shortening factor x : 0 < x ≤ 1 is:

x =

max

{
max
τi∈SHI

{δi(LO)}, 1
m∆LO

HI

}
1−max

{
max
τi∈SLO

{δi(LO)}, 1
m∆LO

LO

} (22)

2 In LO mode, set the density of all HI criticality tasks
τi ∈ SHI to δi(LO)/x; for LO criticality tasks τi ∈ SLO
use the density δi(LO). In LO mode, schedule all tasks
by IS-DP-Fair.

3 If any HI criticality task overruns its LO level WCET,
first conclude the current slice; then, switch to HI mode
by terminating all LO criticality tasks and restoring the
original deadlines of HI criticality tasks. Schedule the
remaining HI criticality tasks with DP-Fair (densities
for HI criticality tasks set by Lemma 1).

the density is δi(LO). We can use the schedulability test of
Theorem 1, by simply using the shortened deadlines for HI
criticality tasks, to test schedulability in LO mode.

Finding a closed-form schedulability test for MC-IS-Fluid
in HI mode is less trivial because, in general, we do not know
when the system will switch to HI mode. If, at mode switch,
a partially executed HI criticality job is carried over to HI
mode, we need to know the remaining execution requirement
of this job and the time until its actual deadline in order to
bound the maximum task density in HI mode. Let us denote
such maximum density of a HI criticality task τi in HI mode
as δmax

i (HI). Formally, we establish the following result.

Lemma 1. For any HI criticality task τi, δmax
i (HI) =

max

{
δi(HI)− δi(LO)

1− x
, δi(HI)

}
.

Proof: Consider τi ∈ SHI. If there is no carry-over job
from this task in HI mode, then we only need to consider
jobs of τi that arrive after the mode switch. In this case the
maximum density of τi in HI mode equals to δi(HI).

Otherwise, we need to consider the carry-over job. As-
sume that the mode switch happens t? after the arrival of
a job of τi, where 0 ≤ t? ≤ xDi. Since, according to
Algorithm 2, the mode switch coincides with the end of
one slice in LO mode, then the density of this carry-over
job in HI mode is:

δ∗i (HI) =
Ci(HI)− δi(LO)

x t?

Di − t?
(23)

Since t∗ can only vary in the interval [0, xDi], we need to
find the maximum of δ∗i (HI) within this interval. To do so, in
(24) we compute d δ∗i (HI)/dt?, i.e., the first order derivative

of δ∗i (HI) with respect to t∗:

d δ∗i (HI)
dt?

=

d

(
Ci(HI)− δi(LO)

x t?

Di−t?

)
dt?

=
1

(Di − t?)2

(
−δi(LO)

x
(Di − t?) + Ci(HI)− δi(LO)

x
t?
)

=
1

(Di − t?)2

(
−δi(LO)

x
Di + Ci(HI)

)
(24)

Looking at (24), the sign of d δ∗i (HI)/dt? does not change
within the interval [0, xDi]. Therefore, the maximum of
δ∗i (HI) will be at one of the extremes of the interval,
according to whether δ∗i (HI) is increasing or decreasing
(respectively, if d δ∗i (HI)/dt? is positive or negative). Since
the sign of (24) is determined by the second factor, we can
look at two cases:
• When δi(LO)/x ≤ δi(HI), (24) is non-negative and the

maximum density of the carry-over is when t? = xDi:

max
t?=xDi

{δ∗i (HI)}

=
Ci(HI)− δi(LO)

x xDi

Di − xDi
=
δi(HI)− δi(LO)

1− x
(25)

≥ δi(HI)− xδi(HI)
1− x

= δi(HI)

• When δi(LO)/x > δi(HI), (24) is negative and the
maximum density of the carry-over is when t? = 0:

max
t?=0
{δ∗i (HI)}

=δi(HI) =
δi(HI)− xδi(HI)

1− x
>
δi(HI)− δi(LO)

1− x
(26)

Putting the two cases together, we get Lemma 1.
Using Lemma 1, we can formally determine a schedula-

bility test for HI mode (Theorem 6).

Theorem 6. A dual-criticality task set S = {SHI, SLO} is
schedulable in HI mode under MC-IS-Fluid iff

max

{
max
τi∈SHI

{δmax
i (HI)}, 1

m

∑
τi∈SHI

δmax
i (HI)

}
≤ 1 (27)

Proof: Theorem 6 directly follows from Lemma 1 and
the DP-Fair schedulability test [27].

C. Optimal Greedy Choice of x

So far, our analysis did not assume any particular choice
of x. With Lemma 2, we show now that setting x according
to (22) in MC-IS-Fluid is optimal in terms of schedulability.

Lemma 2. Whenever a dual-criticality task S = {SHI, SLO}
is schedulable with MC-IS-Fluid for some choice of x, it is
also schedulable when x is set according to (22).

Proof: Based on Theorem 1, in order to guarantee
schedulability under IS-DP-Fair in LO mode, we have:

1

x
max

{
max
τi∈SHI

{δi(LO)}, ∆LO
HI

m

}
+ max

{
max
τi∈SLO

{δi(LO)},
∆LO

LO

m

}
≤ 1

(28)

Now, suppose that there exists some x′ which leads to a
schedulable system in both LO and HI modes. Then, in order
to guarantee LO mode schedulability, we must have that
x′ ≥ x. According to Lemma 1 and Theorem 6, if we choose
x instead of x′, then the maximum task density in HI mode
will not increase and the system remains schedulable in HI
mode. Therefore, setting x according to (22) is optimal.

Finally, with Theorem 7, we summarize our analysis into
a complete schedulability test.

Theorem 7. A dual-criticality task S = {SHI, SLO} is
schedulable with MC-IS-Fluid under the IS constraint iff
0 < x ≤ 1, with x set by (22), and (27) is satisfied.

Proof: Theorem 7 directly follows from Theorem 1,
Theorem 6 and Lemma 2.

VI. THE IS-SERVER AND MC-IS-SERVER POLICIES

A possible issue with all fluid scheduling algorithms,
including IS-DP-Fair (Sec. IV) and MC-IS-Fluid (Sec. V),
is the large number of preemptions, migrations and in our
case, synchronous task class switches, which can be costly.
To address this issue, we explore a different server-based
scheduling strategy for the IS model; we refer to this new
strategy as IS-Server. We first analyze MC-IS-Server, a
variant of IS-Server for mixed-criticality (MC) systems and
then we show that IS-Server is really a special case of
MC-IS-Server, without the mixed-criticality requirements
(Sec. VI-C). Notice that existing server methods for multi-
core platforms [10, 34] assume that tasks are grouped into
multiple virtual platforms (servers) that could run in parallel.
Such methods violate the Isolation Scheduling constraint we
assume in this paper. Instead, we propose global servers,
one for each task class, which have exclusive access to
the underlying platform. Compared to the time-triggered
approach proposed in [18], we generalize the server method
to incorporate EDF-based (rather than static) scheduling.

Similarly to partitioned EDF-VD [8], for MC-IS-Server
we focus on dual-criticality implicit-deadline task sets,
which need strong isolation. MC-IS-Server is a partitioned
scheduling algorithm, i.e., tasks are not allowed to migrate
across cores. The algorithm has two phases: 1) In the first
phase, we partition tasks using a MIQCP (Mixed Integer
Quadratically Constrained Programming) formulation; in
this phase, we make sure to guarantee schedulability in
LO and HI modes on all cores. 2) After partitioning, we
employ a search strategy to find a periodic server schedule of
maximal period such that all tasks meet their deadlines. All

Variables:

xj is the deadline scaling factor for HI tasks on core j

αi,j =

{
1, if task τi is assigned to core j
0, otherwise

Objective:

Minimize max
1≤j≤m

∑
τi∈SHI
αi,j=1

ui(LO)/xj +
∑
τi∈SLO
αi,j=1

ui(LO)

Constraints:∑

1≤j≤m

αi,j = 1 ∀τi ∈ {SHI, SLO} (29)

∑
τi∈SHI
αi,j=1

(
ui(HI)

ui(LO) + 1− xj

)
≤ 1 ∀ 1 ≤ j ≤ m (30)

Figure 3. Mixed Integer Quadratically Constrained Programming (MIQCP)
formulation for the partitioning phase.

cores perform the same server schedule, thus guaranteeing
mutual exclusion among criticality levels / task classes.

A. Task Partitioning

The partitioning phase of MC-IS-Server assigns tasks
to cores in order to guarantee both LO and HI criticality
behavior. To do so, we need to make sure that schedulability
conditions specified in Sec. III, (4) and (5), hold for each
core. Figure 3 formulates the partitioning phase as a MIQCP
problem. Similarly to other MC schedulers (see Sec. III-B),
in LO mode we scale the deadlines of HI criticality tasks
assigned to core j by a factor xj ; note that this is in
contrast to MC-IS-Fluid (Sec. V), which adopts a single
scaling factor x for all cores. The objective function that
we want to minimize is the maximum LO mode utilization
across all cores. Constraint (29) guarantees that each task is
assigned to exactly one core and Constraint (30) bounds
the scaling factors xj , 1 ≤ j ≤ m, so that HI mode
schedulability of the system is guaranteed, as required by
(5). While solving the MIQCP problem is computationally
expensive, this phase only needs to run offline. In practice,
the time the optimizer takes to run is acceptable on modern
hardware (99% of the evaluated task sets in Sec. VII were
optimally partitioned in less than 100 seconds on a quad-
core Core-i7 Haswell platform). As alternative to the MIQCP
formulation, the partitioning phase could employ a task
partitioning algorithm, for instance MC-Partition [8].

B. Server Scheduling

Once the partitioning phase is done, we apply hierarchical
scheduling using K global servers, one for each task class
Sk (1 ≤ k ≤ K). Since we focus on dual-criticality systems,

we consider two servers: one for HI criticality tasks (from
class SHI) and one for LO criticality tasks (from class SLO).
To enforce the IS constraint, only one global server can be
active at any time.

When the system is in LO mode, MC-IS-Server schedules
tasks within each global server according to the EDF policy,
using the shortened deadlines (scaled by xj on core j) for HI
criticality tasks. To schedule the global servers, we consider
the whole multicore as a single TDMA resource [21, 38].
MC-IS-Server periodically assigns the TDMA resource (i.e.,
the whole multicore) to the HI and the LO server according
to a predefined timing pattern. This pattern recurs with a
period P , which is common to both global servers. Each
server is assigned the multicore for a fraction of the period
P , proportional to its execution budget. The execution slots
for HI and LO tasks are called `HI and `LO, respectively. We
assume full system utilization, i.e., P = `HI +`LO. Note that,
as alternative to the TDMA server schedule, other server
strategies (e.g., periodic resource servers [33]) could be used.

Upon switch to HI mode, MC-IS-Server drops all LO
criticality tasks (effectively disabling the associated server)
and it schedules the remaining HI criticality tasks with par-
titioned EDF using their original (non-shortened) deadlines.
Schedulability in HI mode is ensured by the constraints of
the partitioning phase (see Sec. VI-A).

Recall that the LO mode schedulability in our partitioning
phase is only guaranteed with best-effort, i.e. through an
optimization goal. To make a hard guarantee in MC-IS-
Server, we now determine a feasible period P and the server
budgets `HI and `LO through a search method. The goal
here is to maximize the period P in order to minimize
the synchronous task class switches, which can be costly.
To illustrate how MC-IS-Server finds the period P and the
budgets, `HI and `LO, we first define some useful terms. Task
demand bound function (dbf). The function dbf(τi, t) is
the maximum execution demand of task τi over any time
interval of size t [9]:

dbf(τi, t) = max

{⌊
t−Di

Ti

⌋
+ 1, 0

}
· Ci

Per-Core Class Demand Bound Function (pc cdbf). The
function pc cdbf(Sk, t, j) is the maximum aggregate execu-
tion demand of all tasks τi in task class Sk, which run on
core j over any time interval of size t:

pc cdbf(Sk, t, j) =
∑
τi∈Sk

τi on core j

dbf(τi, t)

Class Demand Bound Function (cdbf). The function
cdbf(Sk, t) is the maximum aggregate execution demand of
task class Sk on all cores, over any time interval of size t:

cdbf(Sk, t) = max
1≤j≤m

{pc cdbf(Sk, t, j)}

Supply Bound Function (sbf). The function sbf(Sk, t) for
the server associated with task class Sk is the minimum

t

T
D

M
A

 s
u
p

p
ly

sbf(SHI,t)

(a) Supply bound function for the HI
global server.

(b) Demand bound functions for task
class SHI.

Figure 4. Supply and demand bound functions for the HI global server.

service (execution cycles) that the server provides over any
time interval of size t:

sbf(Sk, t) =

⌊
t

P

⌋
`k + max

{
t− (P − `k)−

⌊
t

P

⌋
· P, 0

}
For the global servers to ensure schedulability of all tasks

in LO mode, the following conditions must hold:

sbf(SHI, t) ≥ cdbf(SHI, t), ∀t ≥ 0,

sbf(SLO, t) ≥ cdbf(SLO, t), ∀t ≥ 0. (31)

Note that in LO mode, the demand bound function of HI
criticality tasks is computed using the shortened deadlines
and the LO-level execution times.

We illustrate the notations of this section in Figure 4.
Figure 4a depicts an example supply bound function of the
HI server, sbf(SHI, t), and 4b the corresponding demand
bound function of task class SHI, cdbf(SHI, t). For reducing
the complexity of working with arbitrarily complex class
demand bound functions, we determine tight linear over-
approximations with slope σ, which intersect with the x-
axis at point (τ, 0), τ ∈ N. In Figure 4b, the black solid
line represents such an over-approximation for class SHI.
The intersection point τHI (where demand = 0) defines
the maximum budget that we can allocate for the LO
server `LO; respectively, τLO of the over-approximation of
cdbf(SLO, t) defines the maximum budget for the HI server
`HI. Additionally, the slope of the linear over-approximation
determines the minimal long-term rate that the supply bound
function of the corresponding server must support. For
instance, the long-term rate of the HI server, which is `HI/P
(see Figure 4a), must be at least equal to σHI to ensure
schedulability of the HI tasks across all cores (supply at
least equal to demand, Eq. (31)).

Based on the above, the sought TDMA schedule for the
HI and LO servers must fulfill the conditions:

Condition 1: `HI ≤ τLO and `LO ≤ τHI
Condition 2: `HI ≥ σHI · P and `LO ≥ σLO · P
From these, it follows that:

P ≤ min

{
`HI

σHI
,
`LO

σLO

}
≤ min

{
τLO

σHI
,
τHI

σLO

}
(32)

0 10 20 30 40 50
0

5

10

15

20

τHI = 4

σHI
=
3/
8

σHI,in
f
=
3/
10

t

D
em

an
d

cdbf(SHI,t)

0 10 20 30 40 50
0

5

10

15

20

σ LO
=
1
−
σ HI

=
5/
8

τLO = 13.6

σLO,in
f =

2/1
0

t

cdbf(SLO,t)

Figure 5. Joint djustment of parameters τHI, σHI, τLO, σLO during search.

Given the necessary condition σLO + σHI ≤ 1 for a
feasible TDMA schedule2, it can be shown that σHI is
monotonically increasing and σLO is monotonically de-
creasing, respectively, with increasing τHI, where τHI ∈
[0, inf {t ≥ 0 : cdbf(SHI, t) > 0}]. This leads to period P
being maximized if there is a value of τHI within its feasible
range, such that τLO

σHI
= τHI

σLO
.

Based on this result, Algorithm 3 performs binary search
on τHI, to define the budgets of the LO and HI servers
that maximize the period of the TDMA cycle and guar-
antee schedulability of the system. Note that function
tight overapprox(c, τ) computes the slope of the tightest
linear over-approximation of a curve c for a given in-
tersection coordinate τ (minimal slope). For τ = 0, the
returned slope is denoted as σinf. Function max cut(c, σ)
computes the intersection coordinate with the x-axis of the
tightest linear over-approximation of curve c for a given
slope σ (maximal coordinate). For each potential value of
τHI, lines 9–20 compute the respective parameters σHI, τLO,
σLO, such that the tightest over-approximations of the class
demand bound functions are considered, and schedulability
is ensured in that σLO + σHI ≤ 1. An example of the
parameter computations for τHI = 4 is illustrated in Figure 5.
In each iteration, the search range of τHI is reduced to the
upper or lower half of the range in the previous iteration
depending on whether the difference of line 14 is negative
or positive, respectively, so as to converge eventually to a
solution where τLO

σHI
= τHI

σLO
. If such a solution is found (lines

21–23), the HI server is assigned with budget `HI = τLO
and the LO server with budget `LO = τHI (optimal P). If,
however, such a solution does not exist in the feasible range
of τHI (lines 24–36), then period P is computed based on
Eq. (32) for the value of τHI, to which the binary search
converged. The budgets of the two servers are determined
similarly as before (non-optimal P).

C. The IS-Server Policy for non Mixed-Critical Systems

IS-Server is a variant of MC-IS-Server for non mixed-
critical systems. The algorithm is mostly the same, it be-
comes a little simpler because we do not need to consider
switching to HI mode. In particular, the task partitioning

2It follows from Condition 2 and equality `HI + `LO = P .

Algorithm 3: Search method for MC-IS-Server budgets

1 σHI,inf = tight overapprox(cdfb(SHI,t), 0)
2 σLO,inf = tight overapprox(cdfb(SLO,t), 0)
3 if (σHI,inf + σLO,inf > 1)
4 return INFEASIBLE
5 else
6 τHI,min = 0
7 τHI,max = inf {t ≥ 0 : cdbf(SHI, t) > 0}
8 τHI = (τHI,min + τHI,max)/2
9 do

10 τHI,cur = τHI
11 σHI = tight overapprox(cdfb(SHI, t), τHI)
12 σLO = 1− σHI
13 τLO = max cut(cdbf(SLO, t),σLO)
14 diff = τHI

σLO
− τLO

σHI

15 if (diff < 0)
16 τHI,min = τHI
17 else
18 τHI,max = τHI
19 τHI = (τHI,min + τHI,max)/2
20 while (diff 6= 0 AND τHI,cur 6= τHI)
21 if (diff = 0)
22 P = τHI + τLO; `HI = τLO; `LO = τHI
23 return FEASIBLE
24 else B if τHI has converged

25 P = min
{
τHI
σLO
, τLO
σHI

}
26 if (P = τhi

σlo
)

27 τLO = P − τHI B fix τHI
28 σLO = tight overapprox(cdfb(SLO, t), τLO)
29 else
30 τHI = P − τLO B fix τLO
31 σHI = tight overapprox(cdfb(SHI, t), τHI)
32 if (σLO + σHI > 1)
33 return INFEASIBLE
34 else
35 P = τHI + τlo; `HI = τLO; `LO = τHI
36 return FEASIBLE

phase becomes simpler because of the absence of deadline
scaling factors. In the partitioning phase, IS-Server looks for
task to core assignments (αi,j) that minimize the objective
function (33):

max
1≤j≤m

max

∑

τi,k∈S1

αi,j=1

ui,k,
∑

τi,k∈S2

αi,j=1

ui,k

 (33)

subject to the partitioning constraint (29). After partitioning,
the search strategy for server parameters is the same as for
MC-IS-Server. Note that IS-Server minimizes the maximum
of the utilizations of the two task classes across cores.
Instead, MC-IS-Server minimizes the sum of the utilizations
of SLO and SHI. We choose a different objective function for

IS-Server because we found that it gives better results.

VII. EXPERIMENTAL EVALUATION

In the following, we evaluate and compare the perfor-
mance of IS-DP-Fair, MC-IS-Fluid (Sec. IV and V), IS-
Server and MC-IS-Server (Sec. VI) in terms of schedula-
bility, synchronous switches between task classes, and task
migrations. Additionally, we provide comparisons with state-
of-the-art scheduling techniques.

A. Random Task Set Generation

We synthetically generate implicit-deadline periodic task
sets at different system utilization points. For creating basic
(non mixed-criticality) IS task classes, we generate tasks in
the following manner:
• Periods are randomly chosen from {x ∈ Z | 2 ≤ x ≤

2000}.
• Task utilizations are uniformly chosen from [0.02, 0.2].
• Tasks are equally likely to belong to task class
{S1, · · · , SK}.

For creating dual-criticality, implicit-deadline task sets,
we implement a widely used task set generator [6, 16, 26],
with the following parameters:
• Probability of any task being HI criticality PHI = 0.2.
• r = Ci(HI)/Ci(LO); for each HI criticality task r is

chosen uniformly from [1, 5].
• The utilization of any dual-criticality task set is defined

as max{ULO
HI + ULO

LO , U
HI
HI }.

Periods and LO level utilizations for dual criticality task
sets are generated similar to the non mixed-critical task sets.
For both basic IS task sets and dual criticality task sets, we
perform experiments with system utilizations varying in the
interval [0.1, 4] (quad-core experiments) or [0.1, 8] (octa-core
experiments). Utilization is incremented in steps of 0.1.

B. Schedulability

1) Non Mixed-Criticality Isolation Scheduling: First, we
evaluate the schedulability loss caused by enforcing the
IS constraint (i.e., mutual exclusion among task classes).
For this purpose, we generate 500 task sets for each sys-
tem utilization and compute the fraction of task sets that
are deemed schedulable under the IS-DP-Fair approach on
m = 4 and m = 8 cores. The results are depicted in
Figure 6a (4 cores) and Figure 6b (8 cores). For both
configurations, the acceptance ratio by IS-DP-Fair decreases
as the number of classes increases. This is intuitive: with
only one task class, IS-DP-Fair is equivalent to DP-Fair
and hence optimal. By adding more classes, we limit task
parallelism within each class, thus impairing schedulability.
Our results here also match with the theoretical analysis.
According to Theorem 5, with increasing number of classes
or processors, the speedup bound of IS-DP-Fair to catch
DP-Fair increases, i.e., schedulability decreases.

Second, we compare schedulability under three different
approaches: DP-Fair, IS-DP-Fair and IS-Server. We restrict
the number of task classes to two. Our results are presented
in Figure 6c (4 cores) and Figure 6d (8 cores). Note that IS-
DP-Fair performs closely to DP-Fair: only at high system
utilizations (U > 3.6 for 4 cores, U > 7.3 for 8 cores) there
is schedulability loss. For both configurations, however,
there is a considerable schedulability loss by adopting the
server-based approach, reaching up to 68.6% for 4 cores
(U = 3.9) and 86.6% for 8 cores (U = 7.4). We mainly
attribute this loss to the static task partitioning and the
time-triggered global server scheduling. In fact, this cost in
schedulability for the server approach can be compensated
by significantly less synchronous switches between task
classes and zero task migrations, as opposed to IS-DP-Fair.
A comparison based on this criterion is presented later.

2) Mixed-Criticality Isolation Scheduling: We now
present results for dual-criticality systems and compare our
approaches to two state-of-the-art scheduling techniques:
MC-Fluid [26] and partitioned EDF-VD [8]. We present
our results in Figure 7a (4 cores) and Figure 7b (8 cores).
As shown in the figures, the feasibility of MC-IS-Fluid is
very close to MC-Fluid for all utilizations. Therefore, we
conclude that for dual-criticality task systems, the cost of
enforcing Isolation Scheduling by MC-IS-Fluid is relatively
low. However, as explained for Figure 6a, this cost is ex-
pected to increase as the number of criticality levels increase.
The server-based approach incurs a loss in schedulability
as compared to MC-IS-Fluid, similar to that in the non
mixed-criticality scenario. Note, nonetheless, that even with
the additional IS constraint, both MC-IS-Fluid and MC-IS-
Server are comparable to or better than a well-known mixed-
criticality scheduling technique (partitioned EDF-VD) in
terms of schedulability. This is a significant result, espe-
cially considering that partitioned EDF-VD does not enforce
isolation. The reason for this gain is that the optimization
formulation for partitioning performs better than the bin-
packing heuristic employed by partitioned EDF-VD.

C. Synchronous Task Class Switching & Task Migration

Conceptually, the advantage of adopting the server-based
approach over the fluid approach for Isolation Schedul-
ing lies in the reduced number of synchronous task class
switches, which can cause a significant runtime overhead.
Additionally, the IS-Server and MC-IS-Server approaches
require no task migrations as opposed to the fluid sched-
ulers, since tasks are statically partitioned to cores prior to
execution. We now present simulation results to quantify
these advantages. Our experiments consider a dual-criticality
setting, which is equivalent to supporting K = 2 task
classes in the non mixed-criticality case. For each utilization
point between 0.1 and 4 (in steps of 0.1), we consider 500
randomly generated dual-criticality task sets.

We first compare the required number of synchronous

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■

■

■

■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆

◆
◆

◆◆

◆

◆

◆
◆

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲

▲▲
▲
▲▲

▲
▲

▲

▲
▲

▲
▲
▲
▲▲

▲▲▲▲

● K=2
■ K=4
◆ K=5
▲ K=6

DP-Fair

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

U

A
cc
ep
ta
nc
e
R
at
io

(a) IS-DP-Fair: Impact of number of
classes on schedulability, 4 cores

●●●

●

■■
■
■
■

■
■

■

◆◆◆
◆
◆
◆
◆
◆
◆
◆

◆
◆

◆
◆
◆
◆
◆◆

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲

▲
▲▲
▲▲
▲
▲
▲
▲▲
▲▲
▲▲
▲
▲▲▲
▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

● K=2
■ K=4
◆ K=5
▲ K=6

DP-Fair

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

U

A
cc
ep
ta
nc
e
R
at
io

(b) IS-DP-Fair: Impact of number of
classes on schedulability, 8 cores

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■

■
■■

■
■

■

■

■

■
■

● IS-DP-Fair
■ IS-Server

DP-Fair

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

U

A
cc
ep
ta
nc
e
R
at
io

(c) Schedulability of DP-Fair, IS-DP-
Fair and IS-Server, 4 cores, K = 2

●●●
●

●●

●

●

■■■
■■
■■
■
■■■■■

■
■■■
■

■■

■■
■■

■■
■

■■
■
■■■■

● IS-DP-Fair
■ IS-Server

DP-Fair

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

U

A
cc
ep
ta
nc
e
R
at
io

(d) Schedulability of DP-Fair, IS-DP-
Fair and IS-Server, 8 cores, K = 2

Figure 6. Non-mixed-critical Isolation Scheduling: Fraction of schedulable task sets vs. system utilization. Red lines in plots correspond to DP-Fair.

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●

●
●

●

●

●
●
●

■■■■■■■■■■■■■■■■■■■■■■■■■
■■

■■

■

■

■
■

■

■

■
■
■■■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆

◆◆
◆
◆
◆
◆
◆

◆
◆

◆◆

◆
◆
◆◆

◆◆◆◆◆

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲

▲

▲

▲

▲▲▲▲▲▲▲▲▲▲▲

● MC-Fluid
■ MC-IS-Fluid
◆ MC-IS-Server
▲ Partitioned EDF-VD

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

U

A
cc
ep
ta
nc
e
R
at
io

(a) Schedulability of MC-Fluid, MC-
IS-Fluid and MC-IS-Server, 4 cores

●●
●●
●●
●●
●●

●●

●
●●
●
●
●
●
●
●●●●●●●●

■■

■
■■■
■
■

■■
■■
■
■■

■

■
■

■■■
■
■■■■■■■■■■■■

● MC-Fluid
■ MC-IS-Fluid

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

U

A
cc
ep
ta
nc
e
R
at
io

(b) Schedulability of MC-Fluid, MC-
IS-Fluid, 8 cores

Figure 7. Mixed-Criticality Isolation Scheduling.

 MC-IS-Server

MC-IS-Fluid

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

0

100000

200000

300000

400000

U

#
C
la
ss
S
w
it
ch

Figure 8. Distribution of task class switches for MC-IS-Fluid and MC-
IS-Server for increasing system utilization (box-whisker-plot).

Fluid (DP-Fair)
MC-IS-Fluid

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

0
500000
1.0× 106
1.5× 106
2.0× 106
2.5× 106
3.0× 106

U

#
T
as
k
M
ig
ra
ti
on

Figure 9. Distribution of task migrations for MC-IS-Fluid and DP-Fair
for increasing system utilization (box-whisker-plot).

switches between two criticality levels for MC-IS-Fluid and
MC-IS-Server. To this end, we consider a fixed, sufficiently
large time interval Π = 2 × 106 time units. The number
of class switches within Π for the various task sets is
presented for MC-IS-Fluid and MC-IS-Server in Figure 8.
Data in these plots are represented in the form of a box-
whisker-plot to reveal the distribution of class switches
for the 500 considered task sets at each utilization point
(median, minimum, maximum). To enhance readability, only
the points that lie within the inner fence of the distribution

are shown. Also, we consider utilizations up to U = 3, since
beyond it several task sets are not schedulable under MC-
IS-Server (few samples are available). The results confirm
the significant reduction of class switches by the MC-IS-
Server approach. Given the median of class switches across
all utilization points, MC-IS-Server achieves a 2.4 to 4.4-
fold reduction in synchronous class switches compared to
MC-IS-Fluid.

We present the number of task migrations for MC-IS-
Fluid and a non-IS scheduler, namely DP-Fair in Figure 93.
Recall that MC-IS-Server incurs no task migration. One
can observe that, for low system utilizations, MC-IS-Fluid
already incurs task migrations. This is counter-intuitive, as
one might expect that task migrations should happen only for
system utilizations greater than 1. Although this is true for
DP-Fair, it is not true for MC-IS-Fluid. The reason for task
migrations at low utilizations for MC-IS-Fluid is two-fold:
First, the deadline of HI criticality tasks is shortened in LO
mode, effectively increasing system utilization. Second, MC-
IS-Fluid adopts IS-DP-Fair scheduling in LO mode, which
allocates the smallest possible slices for each criticality level,
forcing tasks to migrate in order to increase schedulabil-
ity. Furthermore, as system utilization increases, both the
number of system slices and the migrations within each
slice increase4, as more tasks exist in the system. Across
all utilizations, MC-IS-Fluid incurs significantly more task
migrations than DP-Fair, e.g., for the median of task mi-
grations and U ≥ 1.1, the former incurs a 2.8 to 5.4-fold
increase as compared to the latter. However, this cost comes
with the benefit that MC-IS-Fluid enforces isolation among
different task classes and incorporates dynamic scheduling
to improve system schedulability.

VIII. CONCLUDING REMARKS

We presented the Isolation Scheduling (IS) model, a
flexible abstraction that helps designing real-time scheduling
policies for multicore processors with shared resources. The

3For DP-Fair, we take the original deadlines of all tasks since it is a non
mixed-criticality scheduler. For the two cases, we simulate task migrations
according to Algorithm 2 and [27], respectively.

4Maximum m− 1 migrations within each slice.

IS model leverages the common property of having different
task classes within a real-time task set and avoids interfer-
ence among different classes by enforcing by construction
the IS constraint: at any time, only one task class can
run exclusively on the platform. We present four novel
scheduling policies built upon the IS model. The goal of
the first two policies is enforcing the IS constraint; IS-DP-
Fair is based on fluid scheduling, while IS-Server is based
on server scheduling. The remaining policies, MC-IS-Fluid
and MC-IS-Server, are variants that target mixed-criticality
systems, which we use as a relevant case study to apply the
IS model.

Our experimental evaluation indicates that, for typical
dual criticality / class systems, enforcing the IS constraint
by fluid-based methods incurs relatively small penalty in
schedulability. Server-based methods have larger theoreti-
cal schedulability penalty, but drastically reduce runtime
overheads on inter-class switches and task migrations. This
advantage would be significant in real-world deployments,
where switches and migrations can be costly.

The IS model opens several directions for future research.
One direction is to study the trade-off between theoretical
schedulability and runtime overhead on real deployments,
since high runtime overhead could cause missed deadlines
despite satisfaction of the schedulability condition. A second
direction is to evaluate alternative partitioning and server
scheduling approaches for MC-IS-Server, in order to reduce
the schedulability gap compared to MC-IS-Fluid. In general,
we hope that the IS model will prove a valuable tool for
devising efficient scheduling policies for multicores.

REFERENCES
[1] “RTCA/DO-178C, Software Considerations in Airborne Systems and

Equipment Certification,” 2011.
[2] “ISO 26262, Road Vehicles - Functional Safety,” 2011.
[3] L. Abeni and G. Buttazzo, “Integrating multimedia applications in

hard real-time systems,” in RTSS, 1998, pp. 4–13.
[4] J. Anderson, S. Baruah, and B. Brandenburg, “Multicore operating-

system support for mixed criticality,” in Workshop on Mixed Critical-
ity: Roadmap to Evolving UAV Certification, 2009.

[5] ARINC, “ARINC 653-1 avionics application software standard inter-
face,” http://www.arinc.com/, Tech. Rep., 2003.

[6] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in
ECRTS, 2012, pp. 145–154.

[7] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
in STOC. ACM, 1993, pp. 345–354.

[8] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, vol. 50, no. 1,
pp. 142–177, 2014.

[9] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in RTSS, 1990, pp.
182–190.

[10] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor plat-
forms: Specification and use,” in RTSS, 2009, pp. 437–446.

[11] A. Burns, T. Fleming, and S. Baruah, “Cyclic executives, multi-core
platforms and mixed criticality applications,” in ECRTS, 2015, pp.
3–12.

[12] A. Burns and R. Davis, “Mixed criticality systems-a review,” 2015.

[13] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011, pp. 365–376.

[14] J. Flodin, K. Lampka, and W. Yi, “Dynamic budgeting for settling
dram contention of co-running hard and soft real-time tasks,” in SIES,
2014, pp. 151–159.

[15] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele, “Timed
model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems,” in EMSOFT, 2012,
pp. 63–72.

[16] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling
of mixed-criticality applications on resource-sharing multicore sys-
tems,” in EMSOFT, 2013, pp. 1–15.

[17] ——, “Mapping mixed-criticality applications on multi-core architec-
tures,” in DATE, 2014, pp. 1–6.

[18] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D.
de Dinechin, “Mixed-criticality scheduling on cluster-based many-
cores with shared communication and storage resources,” Real-Time
Systems, pp. 1–51, 2015.

[19] J. Goossens and V. Berten, “Gang ftp scheduling of periodic and
parallel rigid real-time tasks,” arXiv preprint arXiv:1006.2617, 2010.

[20] S. Goossens, B. Akesson, and K. Goossens, “Conservative open-page
policy for mixed time-criticality memory controllers,” in DATE, 2013,
pp. 525–530.

[21] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in Embedded Soft-
ware, ser. LNCS, 2001, vol. 2211, pp. 166–184.

[22] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, “Service
adaptions for mixed-criticality systems,” in ASP-DAC, 2014, pp. 125
– 130.

[23] P. Huang, G. Giannopoulou, R. Ahmed, D. B. Bartolini, and L. Thiele,
“An isolation scheduling model for multicores,” ETH Zurich, Labo-
ratory TIK, Tech. Rep. 361, December 2015.

[24] S. Kato and Y. Ishikawa, “Gang edf scheduling of parallel task
systems,” in RTSS, 2009, pp. 459–468.

[25] J.-E. Kim, M.-K. Yoon, R. Bradford, and L. Sha, “Integrated modular
avionics (ima) partition scheduling with conflict-free i/o for multicore
avionics systems,” in COMPSAC, 2014, pp. 321–331.

[26] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and
I. Lee, “Mc-fluid: Fluid model-based mixed-criticality scheduling on
multiprocessors,” in RTSS, 2014, pp. 41–52.

[27] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor scheduling,”
in ECRTS, 2010, pp. 3–13.

[28] M. Mollison, J. Erickson, J. Anderson, S. Baruah, J. Scoredos et al.,
“Mixed-criticality real-time scheduling for multicore systems,” in
ICCIT, 2010, pp. 1864–1871.

[29] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero,
“Hardware support for wcet analysis of hard real-time multicore
systems,” in ISCA, 2009, pp. 57–68.

[30] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “Pret
dram controller: bank privatization for predictability and temporal
isolation,” in CODES+ISSS, 2011, pp. 99–108.

[31] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with fp,” in
ECRTS, 2012, pp. 155–165.

[32] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pelliz-
zoni, H. Yun, R. Kegley, D. Perlman, G. Arundale et al., “Single core
equivalent virtual machines for hard real-time computing on multicore
processors,” Department of Computer Science, University of Illinois
at Urbana-Champaign, Tech. Rep., November 2014.

[33] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in RTSS, 2003, pp. 2–13.

[34] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework
for virtual clustering of multiprocessors,” in ECRTS, 2008, pp. 181–
190.

[35] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer, “Idamc: A noc for
mixed criticality systems,” in RTCSA, 2013, pp. 149–156.

[36] D. Tămaş-Selicean and P. Pop, “Design optimization of mixed-
criticality real-time embedded systems,” ACM Trans. on Embeddded
Computing Systems, vol. 14, no. 3, pp. 50:1–50:29, 2015.

[37] S. Vestal, “Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance,” in RTSS, 2007, pp.
239–243.

[38] E. Wandeler and L. Thiele, “Optimal tdma time slot and cycle length
allocation for hard real-time systems,” in ASP-DAC, 2006.

[39] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of dram
latency in multi-requestor systems,” in RTSS, 2013, pp. 372–383.

[40] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
access control in multiprocessor for real-time systems with mixed

criticality,” in ECRTS, 2012, pp. 299–308.
[41] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “Palloc: Dram

bank-aware memory allocator for performance isolation on multicore
platforms,” in RTAS, 2014, pp. 155–166.

[42] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “An
integrated approach to parallel scheduling using gang-scheduling,
backfilling, and migration,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 14, no. 3, pp. 236–247, 2003.

