
OpenFlow: A Security Analysis

Rowan Klöti
ETH Zurich

Zurich, Switzerland
Email: rkloeti@ee.ethz.ch

Vasileios Kotronis
ETH Zurich

Zurich, Switzerland
Email: vkotroni@tik.ee.ethz.ch

Paul Smith
AIT Austrian Institute of Technology

2444 Seibersdorf, Austria
Email: paul.smith@ait.ac.at

Abstract—Software Defined Networking (SDN) has been pro-
posed as a drastic shift in the networking paradigm, by de-
coupling network control from the data plane and making
the switching infrastructure truly programmable. The key en-
abler of SDN, OpenFlow, has seen widespread deployment on
production networks and its adoption is constantly increasing.
Although openness and programmability are primary features
of OpenFlow, security is of core importance for real-world
deployment. In this work, we perform a security analysis of
OpenFlow using STRIDE and attack tree modeling methods, and
we evaluate our approach on an emulated network testbed. The
evaluation assumes an attacker model with access to the network
data plane. Finally, we propose appropriate counter-measures
that can potentially mitigate the security issues associated with
OpenFlow networks. Our analysis and evaluation approach are
not exhaustive, but are intended to be adaptable and extensible
to new versions and deployment contexts of OpenFlow.

I. INTRODUCTION

Software Defined Networking (SDN) is the key outcome
of extensive research efforts over the last decade towards the
transformation of the Internet to a more open, programmable,
reliable, secure and manageable infrastructure. The main con-
cepts of SDN are: i) the separation of the network control
plane from the data plane and, ii) a logically centralized con-
troller [1], communicating with the data plane over open and
standardized interfaces and protocols. The control applications
running on top of element (ii) see a network-wide view based
on the abstraction of the distributed network state.

OpenFlow [2] is a standardized [3] protocol which im-
plements the aforementioned notion of SDN. It is used for
the interaction between a network switch, constituting the
data plane, and a controller, constituting the control plane.
The switch performs packet forwarding using one or more
flow tables. These tables contain sets of rules matching to
flows traversing the switch (i.e., matching to packet header
patterns), corresponding actions (e.g., forwarding or header
rewriting), and counters used for measurements. The flow rules
are installed on the switch by the controller. The controller
can choose to install them proactively on its own accord, or
reactively in response to a notification by the switch regarding
a packet failing to match existing rules.

Despite having started as a largely academic endeavour,
OpenFlow has been increasingly deployed in production sys-
tems over the past two years. For instance, Google has de-
ployed OpenFlow within its datacenter backbone network to
maximize utilization on links carrying huge elastic loads [4].
Major vendors such as Cisco, Juniper and HP are offering

OpenFlow support in their products [5], and they are using
OpenFlow capabilities to differentiate within the growing SDN
market [6]. It seems very likely that the adoption of OpenFlow
will continue at an increasing rate in the coming years, as
service providers and cloud hosts hope to accelerate service
deployment, enable easier cloud management and build novel
applications on top of their networks [7].

Given the potential of SDN in general (and OpenFlow in
particular) to revolutionize the way in which networks are
managed, looking into the security implications of OpenFlow-
based setups while the technology is still young constitutes
a very important and challenging task. Although there are
research publications on the deployment of security applica-
tions over OpenFlow [8], [9], none of these address the core
issue of the security of the protocol itself. To the best of our
knowledge, there is no official security analysis of OpenFlow
available to the public. For the sake of completeness, we note
the work in progress described with Internet Drafts [10], which
complement our current work. In this paper, we make the
following contributions:

a) Security Analysis: We perform a high-level, exten-
sible and adaptable security analysis of OpenFlow (protocol
and network setups), using the STRIDE [11] vulnerability
modeling technique. By combining STRIDE with attack tree
approaches [12], we provide a fitting methodology for an-
alyzing OpenFlow from a security perspective, uncovering
potential vulnerabilities and describing exploits.

b) Evaluation: We experimentally demonstrate promi-
nent vulnerabilities which are yielded by our security analysis.
Further, we implement test-suites in order to exhibit the impact
of the exploitation of these vulnerabilities on a widely used
OpenFlow virtual switch [13] and controller [14], using an
OpenFlow network emulator [15].

c) Recommendations: Based on our security analysis
and evaluation of OpenFlow, we propose techniques that could
prevent or mitigate the identified security issues, depending on
the deployment and operation context.

The rest of the paper is structured as follows: Section II
provides an overview of our security analysis of OpenFlow,
along with the methodology used and vulnerabilities found.
Section III describes the evaluation environment and presents
the results of our test-suite for different attacks. In Section IV
we recommend prevention and mitigation techniques stemming
from our analysis and evaluation. Section V gives an overview
of the related work. Finally, we conclude.978-1-4799-1270-4/13/$31.00 c© 2013 IEEE

II. OPENFLOW SECURITY ANALYSIS

We have carried out a structured security analysis of the
OpenFlow protocol. Here, we provide an overview of the
methodology applied to conduct this analysis. For more details
we refer the reader to our work in [16], where the full
methodology and results are presented.

A. Methodology

To implement the security analysis of OpenFlow, we com-
bine two modeling techniques: Microsoft’s STRIDE method-
ology [11] and attack trees [17]. In an initial phase, the
STRIDE methodology is used to construct a model of an
OpenFlow system and enumerate its potential vulnerabilities;
subsequently, attack trees are employed to explore how the
identified vulnerabilities could be exploited by an attacker.

Using STRIDE, a Data Flow Diagram (DFD) of a target
system can be developed. This DFD shows the system’s
components, including processes, data stores, (conditional)
data flows and trust boundaries. With a DFD in place an analyst
then examines the potential vulnerabilities of each compo-
nent using the STRIDE mnemonic: Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privilege. For instance, one might consider the
possibility of a Denial of Service (DoS) to an OpenFlow
controller process, and evaluate its impact on the overall
system. The result of this analysis is a set of system component
and vulnerability pairs.

We use attack trees to explore how an identified vulnerabil-
ity could be exploited. The root of an attack tree is an attacker’s
ultimate objective – in our case, an OpenFlow component and
vulnerability pair, derived by STRIDE. Sub-nodes in a tree
represent intermediate attack objectives; leaf nodes represent
basic actions and events. Branches in a tree can have logical
OR or AND semantics, whereby any sub-node or all sub-nodes
must be satisfied to achieve a goal, respectively. The analysis
begins at the root node; child nodes are created recursively by
decomposing the parent objective.

We made the following assumptions about the attacker’s
capabilities: they are unable to gain access to the secure con-
trol channel that provides connectivity between an OpenFlow
switch and its controller, and they cannot directly compromise
the system on which the controller or the switch runs. We
made these assumptions for two reasons: (i) we assume that
a network operator has taken reasonable precautions to secure
the controller and associated communication channel (e.g., via
TLS), and (ii) we wanted to focus on threats that emerge from
the data plane as a consequence of using OpenFlow.

B. Modeling and Analyzing OpenFlow via STRIDE

Fig. 1 presents a simplified version of a DFD of an Open-
Flow switch (for space reasons, we show only a simplified
DFD). A number of processes are shown in Fig. 1 that perform
forwarding tasks (i.e., Data path, implemented on the hardware
of the switch) and OpenFlow-related activities: the OpenFlow
Module, which runs as a software on the switch’s CPU
and performs tasks such as managing the Flow table based
on interactions with the controller, and the Secure Channel
process that handles switch–controller communication. Data

flows are defined, e.g., Read flow table and Packet sample.
A trust boundary exists between the data path and the Open-
Flow components, as indicated by the dashed-line. Interactions
across such boundaries should be carefully considered, as they
are likely sources of attacks. Finally, the Flow table data store
is shown, which contains flow rules for matching L2 – 4
headers, actions to be invoked on flows, and counters.

Data path

OpenFlow
Module

Secure
Channel

ModifyRead

Read flow table

Update counter

Set state/action

Get state/event

Packet sample

Transmit packet

Denial of service
Information disclosure

Tampering
Flow table

Fig. 1. Simplified DFD for an OpenFlow switch, showing relevant vulnera-
bilities

With a DFD in place, one can analyze each component
using the STRIDE mnemonic. We observe that Information
Disclosure, Denial of Service and Tampering vulnerabilities
and attacks are possible. An attack with severe consequences is
a Denial of Service against the flow table, whereby an attacker
aims to overload the table with flow rules, illustrated in Fig. 1.
We show how an attacker can achieve this in Sec. III-B1. We
further note the possible detrimental effects of such attacks on
the controller as well as the secure channel – in the case of the
former, the attack may also affect further switches managed by
the same controller. If the attacker has sufficient knowledge of
the internal implementation, they may be able to effect a hash
collision attack on the flow table or analogous data structures in
the controller. With respect to Information Disclosure, we note
that by observing differences in controller response times, an
attacker may be able to derive information about network state,
such as active flow rules. Sec. III-B2 gives an example of such
an attack. Furthermore, with respect to Tampering we mention
the possibility of cache poisoning attacks against the flow table
and/or controller state. More complex attacks that combine the
aforementioned primitives (e.g., using knowledge acquired by
a preemptive Information Disclosure attack in order to mount
an effective DoS) can also be formulated.

C. Attack Tree Analysis

We have developed attack trees for several vulnerabilities
that were identified using the STRIDE methodology. An ex-
ample attack (sub-)tree is shown in Fig. 2, which shows how
an attacker might implement an Information Disclosure attack
against an OpenFlow controller. In this scenario, an attacker
is attempting to learn the nature of the controller’s behavior,
e.g., whether and which aggregated rules are in use for certain
flows, by measuring the time it takes for selected packets to
reach an end-point and return. The intuition for this attack
is that packets which do not correspond to already installed
flow rules require forwarding to the controller, thus inducing
an additional forwarding and processing delay.

Fig. 2 shows the steps necessary to realize this attack –
an attacker must elicit a response from an end-point, either
by gaining access to multiple clients (e.g., by compromising
a machine) or forcing a client to reproduce a response. Either
of these options is possible, as indicated by the logical OR

Select packet
contents

Information
disclosure against

controller

Send packets &
measure time

Obtain access
to multiple

clients

Force another
client to
produce
response

Disclose installed
flows using a timing

attack

Fig. 2. Simplified attack (sub-)tree showing an Information Disclosure attack
against an OpenFlow controller

branch in the attack tree. Subsequently, an attacker selects the
packet contents associated with the information they wish to
disclose, sends the packet and measures the round-trip time. A
more detailed description of this attack is given in Sec. III-B2,
wherein we describe an experimental implementation of it.

III. EMPIRICAL EVALUATION

A. Setup and Emulation Environment

In this section, we provide an overview of the emulation
environment, the traffic generation tools and the network setup
that we used in order to evaluate the Denial of Service and
Information Disclosure vulnerabilities and consequent attacks.
Further evaluation details and scripts implementing our test-
suite are provided in [16].

1) Emulation Environment: We used the Mininet frame-
work to create virtual networks based on Open vSwitch [13].
Mininet utilizes network namespaces, a feature of the Linux
kernel, to implement lightweight network virtualization. In-
dividual clients are modeled as nodes (which can be hosts,
switches or controllers) and possess interfaces, representing
NICs. Virtual links between interfaces are modeled as links,
which may be subject to performance constraints, such as
bandwidth, delay, buffer size and simulated packet loss. See
[18] for more information on the Mininet implementation.

2) Traffic Generation: To implement the attacker, the
packet generation and analysis framework scapy is used. It
is a Python-based framework allowing the creation of packets
with arbitrary data in the header fields. The utilitity netcat is
used to emulate a TCP client and server.

3) Network Setup: The main setup consists of two identical
client systems, a user-space OpenFlow switch and a POX-
based controller [14]. This setup is depicted in Fig. 3. Each
node has a unique virtual network connection to the switch.
The attacker controls one or more client systems. The attacker
does not have any control over or access to the switch
or the controller. External observations (e.g., packet dumps
between the switch and the controller) are not permitted for the
attacker, but may be used to evaluate the impact of the attacks.
Some forms of attack require a more sophisticated network
environment depicted in Fig. 4, which shows two virtual
switches linked together. Each of the switches is connected
to three further virtual hosts. A single controller controls both
switches. As above, all of the data path links have identical

performance parameters, while the control path links also have
identical and distinctive (from the data path links) performance
characteristics. This setup requires that the controller supports
layer-3 forwarding properly.

h1h1 h2h2

c0c0

s1s1

Fig. 3. Schematic diagram of virtual network setup used in Sec. III-B1

h1-1h1-1 h2-1h2-1

c0c0

s1s1 s2s2

h1-3h1-3 h2-3h2-3

h1-2h1-2h1-2h1-2 h2-2h2-2

Fig. 4. Schematic diagram of virtual network setup used in Sec. III-B2

B. Results

1) Denial of Service: The objective of this attack is to
generate a large number of packets that will be sent to the con-
troller and result in it installing a new flow rule for each packet,
eventually overflowing the flow table. We utilize the POX
module forwarding.l2 learning which implements a layer-2
learning switch, exemplifying a purely reactive strategy. As the
controller only installs rules matching header fields exactly, it
is only necessary to permute some value in a packet header to
cause the installation of a new flow rule. For this purpose, the
source and destination port fields of UDP packets are used. The
forwarding.l2 learning module has been modified to accept
user-provided soft timeout values, which determine when a
flow rule expires, so that their effect on the attack may be
observed. The effect of the attack is measured by packet loss
and instances of the All tables full error being produced by the
switch. These correlate perfectly, so only the former is shown
here. Fig. 5 shows a steady increase in the number of lost
packets with an increasing timeout value. This increase can
be explained as follows: larger timeouts mean more persistent
flow rules within the table and larger probability of table
overflows and denied rule installations. There is also a long
plateau between approximately 37 s and 67 s, probably an
artifact of the Open vSwitch implementation [13].

Fig. 6 illustrates that lower performance on the control link
tends to aggravate the effect of the aforementioned DoS attack,
with the plateau of packet loss being reached earlier (with
31 s timeout). The packet loss also exceeds this plateau for
lower timeout values (about 64 s). There is significantly higher
incidence of packet loss being observed for smaller timeout
values than in the previous case. This is counterintuitive: we
expected that with the same timeouts, a slower control link
would result in less flow rules being installed per time unit,
thus reducing the incidence of table overflows.

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

0

10000

20000

30000

40000

50000

60000

Soft timeout [s]

Pa
ck

et
s

lo
st

Fig. 5. Test with data link at 100 Mbps, 10 ms delay, control link at 100
Mbps, 1 ms delay

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

0

10000

20000

30000

40000

50000

60000

Soft timeout [s]

Pa
ck

et
s

lo
st

Fig. 6. Test with data link at 100 Mbps, 10 ms delay, control link at 10
Mbps, 10 ms delay

2) Information Disclosure: The objective of the attack is to
exploit the use of flow aggregation in order to discover some
aspect of network state that would otherwise not be visible to
an attacker. This information could be used by an attacker to
determine the presence and nature of services on a network.
Such knowledge might also be used in a later stage of an
attack. The network setup used here is described in Fig. 4. If
a server is connected to the second switch (s2), and several
clients to the first switch (s1), then the aggregation occurring
in s1 in response to several connections from the clients to the
server could allow another client connected to s1 to deduce that
such a connection exists. This is performed by timing the TCP
setup; if a second connection attempt is substantially faster
than the first, then a new flow rule was installed in response
to the connection attempt. Conversely, if there is no significant
difference, the attacker may conclude that a flow rule already
existed. For this attack to be performed, it is necessary that
dynamic aggregation of flow rules is in use. This is achieved
with the POX module forwarding.l3 aggregator simple. This
module sets the following header values to wildcards: link and
network layer source addresses, transport layer source port and
the physical switch port. The forwarding behaviour does not
need to depend on source values, so the aggregation of these
fields is reasonable to minimize the number of flow rules.

We measure the distribution of setup times in order to
determine the certainty with which we may conclude whether
an existing flow rule is present. We also perform the operation
with a non-aggregating controller, acting as the control. This
allows us to observe how significant the differences in timing
are. Fig. 7 shows a histogram of the control data. The two data
sets exhibit the case before a parallel connection is created
from another client to the server, and the case afterwards. In

0

2

4

6

8

10

12

14

16

18

20

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Fr
eq

ue
nc

y

Measured response time [ms]

Single flow (initial)

Two flows (new+initial),
distinct

Fig. 7. Histogram of control using forwarding.l3 learning controller with
symmetric timing at 10 ms

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0

2

4

6

8

10

12

14

16

18

20

Measured response time [ms]

Fr
eq

ue
nc

y

Single flow (initial)

Two flows (new+initial),
aggregated

Fig. 8. Histogram of data using forwarding.l3 aggregator simple controller
with symmetric timing at 10 ms

the latter case, aggregation may occur, if the controller allows
this. In the control, this is not allowed. The distributions here
are equal within a reasonable tolerance, as expected.

Fig. 8 shows a histogram of measured times when ag-
gregation is in effect, for a network with symmetric delays
(the latency is the same on all control and data links). The
distribution of the second data set (with aggregation) is clearly
distinguishable from the pre-aggregated one, in contrast to the
previous case. This attack is dependent on the latencies of
the network in question; longer latencies on the control path
increase the distinguishability of the distributions, while longer
latencies on the data path or multiple hops diminish it.

IV. RECOMMENDATIONS

Based on the findings of our model-based analysis in Sec. II
and experimental results in Sec. III, we provide insights regard-
ing techniques that could potentially counter the uncovered
security issues within OpenFlow deployments.

To organize our recommendations, we consider the various
network setups in which OpenFlow may be deployed, together
with their special characteristics such as: 1) the user base
(e.g., known and trusted or external and untrusted), 2) the
direction of flow establishment (e.g., inbound from untrusted
sources or outbound from trusted insiders), and 3) the opera-
tional requirements: security (e.g., prevention of unauthorized
external access), performance (e.g., throughput and latency)
and reliability (e.g., minimization of downtime or fast fail-over
capability). Table I includes usual network types together with
their corresponding properties and requirements. Requirements
are ranked with high (H), medium (M) or low (L) importance.

Type User base known Flows established Requirements
(main direction) Security Performance Reliability

Corporate 3 Outbound H M H
Academic 3/7 Outbound M L M
Research 3 Both L L L

Data center 3/7 Both H H H
Backbone 7 Both L H H

DMZ 7 Inbound H M H
Special purpose 3/7 Unknown M M M

TABLE I. DIFFERENT NETWORK TYPES AND THEIR PROPERTIES.

Next, we mention proposed state-of-the-art applications [7]
of OpenFlow within the aforementioned network environ-
ments: 1) dynamic or proactive switching and routing, 2) mul-
ticasting, 3) access control, 4) load balancing, 5) fail-over
and path recovery, 6) QoS policy enforcement, 7) network
virtualization and isolation [19], and 8) monitoring and in-
strumentation. Different network types may benefit more from
certain applications, e.g., a monitoring controller application
that captures the behavior of new flows is valuable to data-
center and DMZ networks, as well as research networks.
We note that the prevention and mitigation techniques to be
used depend on the combination of the network type and
application: there is no “one-size-fits-all’ recipe or practice.

In the following two sections, we describe a number
of useful techniques that can potentially mitigate DoS and
Information Disclosure attacks, applicable to diverse networks.
We note that the context of these approaches is not a generic
network setup, but an OpenFlow environment. Although these
techniques are recommended, they require further investigation
and empirical evaluation, beyond the scope of this paper.

A. Denial of Service

DoS attacks can target the controller and/or the switch,
aiming at crippling the communication between the compo-
nents or the components themselves. Mitigation in this context
is coupled with the continuing operation of those elements,
without noticeable performance degradation. The following
approaches are conceivable for achieving this goal.

1) Rate Limiting, Event Filtering, Packet Dropping and
Timeout Adjustment: Rate limiting on the control channel
and/or the data interface can allow the controller and/or the
switch respectively to remain responsive during a DoS attack,
although it cannot protect other users from negative effects.
Event filtering enables the selective handling of event types
by the controller, potentially increasing system resilience. Fur-
thermore, in case the attacker can be detected with sufficient
precision, flow rules that match the malicious traffic can be
installed on the switch, effectively dropping the misbehaving
packets. Even if the administrators are unable to isolate the
attacker, traffic prioritization and QoS mechanisms can be put
in place to cope with the load. Lastly, flow timeouts can
be tuned to decrease the impact of DoS accordingly, since
larger timeouts can lighten the load on the control channel
while shorter ones can decrease the number of switch flow
table overflow incidents. Some of these approaches have been
standardized by the ONF [3] in recent versions of OpenFlow.

2) Flow Aggregation: Flow Aggregation is a proactive
strategy where each flow rule matches multiple network flows,
thus reducing the number of rules required to match network
traffic. Its advantage is that the flow table is less prone to
overflows, while the controller receives less load on the control

Proposed measures Implemented on Suited for
Description Switch Controller Protocol Network

Rate limiting 3 3 3

AllEvent filtering 3 3 3
Packet dropping 3 7 7
Reduce timeouts 7 3 7

Flow aggregation 7 3 7
Backbone

Data center
DMZ

Attack detection 3 3 7
Corporate
Academic

DMZ

Access control 7 3 7
Corporate

Special cases

TABLE II. PROPOSED COUNTERMEASURES AGAINST DENIAL OF
SERVICE ATTACKS AND THEIR CONTEXT.

channel, i.e., fewer unmatched packet notifications by the
switch. Of course, this comes with the cost of precision and re-
sponsiveness. Aggregated flow rules are suitable for networks
that practice proactive strategies, e.g., backbone carriers, but
they may not be applicable to enterprise networks, where fine-
grained flow control is a key security objective. This method
is obviously more effective when the attack traffic has limited
dispersion characteristics.

3) Attack Detection: Detecting DoS is itself a very difficult
problem and open research area [20], [21]. Here, we note that
basic detection functionality could be implemented as a logi-
cally centralized controller application. Related performance
issues (such as control channel latency) can be technically
dealt with in part via physical distribution or multi-thread pro-
cessing. On the switch’s side, the flexible forwarding behavior
of OpenFlow could be employed to direct flows to monitored
paths for processing, while the monitoring systems themselves
can “subscribe”, via OpenFlow, to the type of traffic they want
to examine dynamically. The addition of OXM to OpenFlow
v1.2 [3] offers useful extensions to implement DPI on a flow
at relatively low performance costs, subject to vendor support.

4) Access Control: Enforcement of access control lists
in the form of flow rules on the table of the OpenFlow
switch is also a feasible and low-cost approach. For example,
traffic originating from inside the trusted domain may be
allowed to pass, while inbound traffic would be compared
against a whitelist set of flow rules. This solution is worth
considering for corporate networks, in which traffic is likely
to originate from internal hosts or trusted external ones (e.g.,
over VPN connections). On the other hand, it is not bound to
be applicable in DMZ or backbone networks. Lastly, directing
flows to actual firewalls and IPS that analyze and filter traffic
is another solution, although these systems do not separate the
data and control planes and do not follow the SDN principles
of OpenFlow. The problem of detecting or predicting malicious
traffic still remains. In any case, the controller is responsible
for installing the appropriate flow rules that handle such traffic
(e.g., which drop it), proactively or reactively on the switch.

Table II summarizes the diverse approaches that can be
employed to mitigate DoS attacks, along with the appropriate
implementation context (switch, controller and protocol) and
the applicability on different network environments.

B. Information Disclosure

Information Disclosure, arising from timing analysis, can
reveal certain aspects of a network’s state as well as a
controller’s strategy to an attacker. Mitigation in this context
means ensuring that the observable system parameters do not
expose the internal system state. For example, the increased
delay for the establishment of a new flow rule in response to
an incoming packet can inform the attacker about the behavior
of the OpenFlow controller. The following approaches are
conceivable for achieving mitigation.

1) Proactive Strategies: Proactive flow rule establishment
removes the dependency of the response time on the network
state (i.e., the switch flow table entries). Of course, automatic
flow aggregation techniques may worsen the situation, since an
attacker may infer the presence of another connection that is
aggregated with his current one from the switch’s perspective.

2) Randomization: Increasing the variance of measurable
response times can increase the statistical uncertainty of the
attacker and reduce the strength of the attack considerably.
A way to implement this via OpenFlow is to randomize the
timeouts of the installed flow rules, in order to mimic an unpre-
dictable behavior that will prevent the attacker from forming
a coherent view of the network state. In this case, trade-
offs between the level of timing obfuscation and performance
degradation need to be carefully evaluated.

3) Attack Detection: Any attack that is based on timing
analysis is likely to exhibit a distinctive, repetitive pattern that
may be used by a controller application to detect it, enact
counter-measures or notify an administrator. Counter-measures
could include dropping suspicious traffic, introducing random-
ization or adapting the forwarding strategy accordingly.

V. RELATED WORK

To the best of our knowledge, there is no prior official
security analysis of OpenFlow itself, [10] notwithstanding. [8]
introduces an extension called FortNOX to the NOX controller
[1], providing a role-based access control system that validates
digitally signed flow rules before table insertion. FortNOX
is focused on the control plane and proposes extensions to
OpenFlow control, while our work is focused on the data plane
and is an analysis of OpenFlow. [19] proposes FlowVisor,
a system allowing virtual networks to be built on top of
an OpenFlow network, thus enabling multiple experimental
network slices that do not interfere with production traffic. [9]
proposes VeriFlow, a system used to validate the forwarding
behavior of an OpenFlow network in real time. [22] describes
OpenFlow Random Host Mutation, a technique that exploits
OpenFlow to protect end systems from attacks by providing
them with virtual external IP addresses, translated into the
actual ones by the controller. [23] describes an application of
OpenFlow for the detection of DDoS attacks, making use of
Self Organising Maps to classify traffic patterns.

VI. CONCLUSIONS

We presented a security analysis and modeling methodol-
ogy for the OpenFlow protocol and network setups. Using
STRIDE [11] and data flow diagrams we uncovered vulnera-
bilities such as Denial of Service and Information Disclosure

which are exacerbated due to the nature of SDN. These
vulnerabilities were developed into feasible attacks through
attack tree modeling methods. The feasibility and impact of the
attacks were evaluated using network emulation, testing tools,
an open-source controller and a virtual OpenFlow switch distri-
bution. Based on our analysis and evaluation, we recommended
numerous prevention and mitigation techniques corresponding
to different network deployment and operation contexts. Our
methodology and testing approach can be adapted to future
versions and extensions of OpenFlow. We hope that this work
will help SDN researchers [24] and the OpenFlow standardiza-
tion body [3] in the ongoing effort [10] for SDN architectures,
applications and standards that are more secure by design.

ACKNOWLEDGMENTS

This work has been partially funded by the EU FP7 projects
OFELIA and SECCRIT.

REFERENCES

[1] NOXRepo.org, “NOX,” http://www.noxrepo.org/.
[2] N. McKeown et al., “OpenFlow: enabling innovation in campus net-

works,” SIGCOMM CCR, Mar. 2008.
[3] “Open Networking Foundation,” https://www.opennetworking.org/.
[4] U. Hoelzle, “OpenFlow@Google,”

http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf.
[5] “Open Networking Summit,” http://www.opennetsummit.org/.
[6] “SDNCentral Exclusive: SDN Market Expected to Reach $35B by

2018,”
http://www.sdncentral.com/sdn-blog/sdn-market-sizing/2013/04/.

[7] “SDN applications,”
http://searchsdn.techtarget.com/resources/SDN-applications.

[8] P. Porras et al., “A security enforcement kernel for OpenFlow net-
works,” in Proc. of HotSDN, 2012.

[9] A. Khurshid et al., “VeriFlow: verifying network-wide invariants in real
time,” in Proc. of HotSDN, 2012.

[10] “Security Analysis of the ONF OpenFlow Switch Specification,”
http://tools.ietf.org/html/draft-mrw-sdnsec-openflow-analysis-02.

[11] S. Hernan et al., “Uncover Security Design Flaws Using The STRIDE
Approach,” http://msdn.microsoft.com/en-gb/magazine/cc163519.aspx,
2006.

[12] V. Saini et al., “Threat modeling using attack trees,” J. Comput. Sci.
Coll., Apr. 2008.

[13] “Open vSwitch,” http://openvswitch.org/.
[14] NOXRepo.org, “About POX,” http://www.noxrepo.org/pox/about-pox/.
[15] “Mininet,” http://mininet.github.com/.
[16] Rowan Klöti, “OpenFlow: A Security Analysis. MSc thesis, D-ITET,

ETH Zurich,”
ftp://ftp.tik.ee.ethz.ch/pub/students/2012-HS/MA-2012-20.pdf, 2013.

[17] P. Khand, “System level security modeling using attack trees,” in Proc.
of the 2nd Intl. Conf. on Computer, Control and Communication, 2009.

[18] N. Handigol et al., “Reproducible network experiments using container-
based emulation,” in Proc. of ACM CoNEXT, 2012.

[19] R. Sherwood et al., “Carving research slices out of your production
networks with OpenFlow,” SIGCOMM CCR, Jan. 2010.

[20] G. Thatte et al., “Parametric methods for anomaly detection in aggregate
traffic,” IEEE/ACM Trans. Netw., Apr. 2011.

[21] J. Cheng et al., “DDoS attack detection method based on linear
prediction model,” in Proc. of ISIC, 2009.

[22] J. H. Jafarian et al., “Openflow random host mutation: transparent
moving target defense using software defined networking,” in Proc. of
HotSDN, 2012.

[23] R. Braga et al., “Lightweight DDoS flooding attack detection using
NOX/OpenFlow,” in Proc. of IEEE LCN, 2010.

[24] “OpenFlowSec.org,” http://www.openflowsec.org/.

