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Abstract Applications based on the Kahn process network (KPN) model of com-
putation are determinate, modular, and based on FIFO communication for inter-
process communication. While these properties allow KPN applications to effi-
ciently execute on multi-processor systems-on-chip (MPSoC), they also enable the
automation of the design process. This chapter focuses on the second aspect and
gives an overview of methods for automating the design process of KPN applica-
tions implemented on MPSoCs. Whereas previous chapters mainly introduced tech-
niques that apply to restricted classes of process networks, this overview will be
dealing with general Kahn process networks.

1 Introduction

Multi-processor system-on-chip (MPSoC) is one of the most promising and solid
paradigm for implementing embedded systems for signal processing in communi-
cation, medical, and multi-media applications. MPSoC platforms are heterogeneous
by nature as they use multiple computation, communication, memory, and periph-
eral resources. They allow the parallel execution of (multiple) applications and, at
the same time, they offer the flexibility to optimize performance, energy consump-
tion, or cost of the system. Nevertheless, to optimize an MPSoC in the presence of
tight time-to-market and budget constraints, a systematic design flow is required.

To deal with this challenge, Kienhuis et al. [1] suggested to structure the design
flow in a certain manner, now commonly referred to as the Y-chart approach. It is
a systematic methodology for selecting an embedded system implementation from
a set of alternatives, a process often denoted as design space exploration. One key
idea underlying this approach is to explicitly separate application and architecture
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specifications. A separate mapping specification describes how the application is
spatially (binding) and temporally (scheduling) executed on the architecture. De-
sign space exploration is then performed by iteratively analyzing and optimizing
the application, the structure of the underlying (hardware) architecture as well as
candidate mappings, as shown in Fig. 1.

Many design flows implementing the Y-chart approach have been proposed. For
a review, see [2]. These flows have in common that they impose a set of system-level
concepts to facilitate design space exploration, such as the use of a formal model of
computation, providing restrictions on the set of scheduling policies, and relying
on modular specifications. For instance, the application may be formally specified
as a data flow model, a synchronous model, or a discrete event model, in order to
enable automated performance analysis. In a similar way, resource sharing policies
may be limited to an event-triggered or a time-triggered policy, to prune the design
space. Finally, using modular system-level specifications will enable quick system
modifications concerning the application, architecture, and mapping.

In the context of (array) signal processing applications executing on MPSoC, the
Kahn process network (KPN) model of computation [3] is frequently used. Assum-
ing a network of autonomous, concurrently executing processes that communicate
point-to-point via unbounded FIFO channels, the KPN model has additional fa-
vorable properties. The KPN model is determinate, i.e. the functional behavior is
independent on the scheduling of processes. The inter-process communication via
FIFO channels using blocking read semantics can be efficiently implemented ei-
ther in software, hardware, or in heterogeneous HW/SW systems. Computation and
control are completely distributed, requiring no global synchronization, communi-
cation, or memory. The resulting modularity allows applications to be scaled easily
and opens up many degrees of freedom for implementing a system.

Due to these properties, the KPN model of computation is “compatible” with
the Y-chart approach and has led to numerous design flows. Although they share the
same model of computation, these design flows consider different design objectives,
they focus on different aspects, and leverage different properties of the KPN model

Fig. 1 Y-chart approach for
designing MPSoC.
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or one of its subclasses. In this chapter, an overview of KPN-based design flows is
given, emphasizing both, similarities and differences in these flows. The following
section reviews existing design flows and the way they relate to the Y-chart. Af-
terwards, a closer look at individual steps in the design flow is taken and several
methods to tackle them are presented. Finally, for exemplification, a specific design
flow is considered in detail.

2 KPN Design Flows for Multiprocessor Systems

Several design flows based on the Y-chart approach and the KPN model have been
developed. Table 1 shows a (non-exhaustive) list of design flows targeted at the im-
plementation of KPN applications on MPSoC platforms. In addition to the listed de-
sign flows, there are other approaches related to the KPN model with different aims.
Ptolemy [4] and Metropolis [5] allow the analysis and simulation of applications
specified as KPNs, among other models of computation. However, they are targeted
more towards hardware/software codesign and in particular towards the system syn-
thesis and verification. The design space exploration is not the main focus of these
frameworks. The Mathworks Real-Time Workshop [6] and the National Instruments
LabVIEW Microprocessor SDK [7] target the implementation of signal processing
applications on single-processor systems. SystemCoDesigner [8] and PeaCE [9] are
HW/SW codesign flows based on a model of computation that combines the KPN
model with finite state machines, see chapter [10]. Note that even though the fo-
cus of this chapter is on the design flows for MPSoC listed in Table 1, many of the
presented ideas also apply to the other mentioned design flows.

Table 1 KPN design flows for MPSoCs.

design flow web page

Artemis [11] http://daedalus.liacs.nl
Distributed Operation Layer (DOL) [12] http://www.tik.ee.ethz.ch/∼shapes/dol.html
Embedded System-Level Platform Synthesis and Ap-
plication Mapping (ESPAM) [13]

http://daedalus.liacs.nl

Koski [14] not available online
Multiapplication and Multiprocessor Synthesis
(MAMPS) [15]

http://www.es.ele.tue.nl/mamps

Open Dataflow (OpenDF) [16] http://opendf.sourceforge.net
Software/Hardware Integration Medium (SHIM) [17] not available online
StreamIt [18] http://www.cag.lcs.mit.edu/streamit

Generally, KPN design flows for MPSoCs respect the four design phases of the
Y-chart: system specification, performance analysis, design space exploration, and
system synthesis, as shown in Fig. 1.
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Based on these four phases, the design process can be described as follows: The
starting point of the design flow is a parallelized KPN specification of the appli-
cation. In this specification, the coarse-grain data and functional parallelism of the
application is made explicit. Fine-grained word or instruction-level parallelism can
effectively be handled by today’s compilers. Usually, the KPN is manually speci-
fied by the programmer. There are, however, also tools available that allow deriv-
ing a KPN from sequential programs, such as the Compaan [19] and pn [20] tools.
KPN design flows usually provide a functional simulation capability that enables the
execution of KPN specification on a standard single-processor machine in a multi-
tasking environment. Due to the determinacy of KPNs, the timing-independent func-
tionality of the application can be validated this way.

Second, the architecture needs to be specified. This is frequently done in form
of a system-level specification describing the architectural resources, such as pro-
cessors, memories, interconnects, and I/O devices. This specification can either de-
scribe a fixed MPSoC or the template of a configurable MPSoC platform. In both
cases, the architecture specification needs to contain all the information required for
design space exploration and performance analysis. In the case of a configurable
platform, the architecture specification is also the basis for the synthesis of the fi-
nal target platform later in the design flow. Hence, it needs to contain information
required by the RTL synthesis tool, such as references to VHDL or Verilog code of
hardware components, complete IP blocks, and configuration files.

The application and architecture specification phase is followed by defining a
mapping of the application onto the architecture. In this step, processes are bound
to processors and channels are bound to communication paths containing memories
and interconnects. In addition, the scheduling and arbitration policies for shared
resources are defined.

Usually, the final mapping is the result of a design space exploration, which
is done based on the system performance analysis. The methods applied for per-
formance analysis range from simple back-of-the-envelope calculations to formal
analysis methods, simulations, and measurements. In KPN design flows, perfor-
mance analysis during design space exploration is possible and is usually done at
a rather high level of abstraction. As shown in the next section, different methods
targeted towards KPN applications have been proposed in this context that achieve
high accuracy within short analysis times. Being able to defer the use of simulation
or measurements until late in the design cycle is one of the key advantages of KPN
design flows.

After manual or automated design space exploration, the system is finally imple-
mented by making use of appropriate synthesis techniques. For this purpose, KPN
design flows feature powerful synthesis tools that implement a system based on the
application, architecture, and mapping specification in software, hardware, or both
hardware and software. Clearly, this is a key advantage of KPN design flows because
the pitfalls of implementing a parallel system, such as hardware-software interface
generation, deadlocks, starvation, and data races are handled in an automated way.

The design flows listed in Table 1 implement this basic Y-chart approach in dif-
ferent ways: On the one hand, the methods that are applied in each of the four phases
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differ between the design flows, as discussed in the next section. On the other hand,
the scope (set of optimization variables) of design space exploration is different. Ba-
sically, one can distinguish between software design flows, where the target platform
is fixed, and hardware/software co-design flows, where a template of a target plat-
form is given and the instantiation of a specific platform is part of the design space
exploration. This is shown in Table 2 where a few case studies are summarized that
have been performed using the design flows listed in Table 1. DOL, SHIM, and
StreamIt assume fixed hardware platforms, whereas the scope of the other design
flows encompasses the implementation of the target platform on FPGAs.

Table 2 Please write your table caption here

design flow case study target performance exploration
application platform analysis method

Artemis [21] motion-JPEG
encoder

Molen architecture on Xilinx
Virtex-II Pro FPGA

trace-driven
simulation

evolutionary
algorithm

DOL [12] MPEG-2 de-
coder

Atmel DIOPSIS 940 real-time ana-
lytic model

evolutionary
algorithm

ESPAM [13] motion-JPEG
encoder

multi-MicroBlaze on Xilinx
Virtex-II Pro FPGA

measurement exhaustive
search

Koski [14] WLAN terminal multi-NIOS on Altera
Stratix-II FPGA

high-level sim-
ulation

simulated an-
nealing

MAMPS [15] H263 and JPEG
decoders

multi-MicroBlaze on Xilinx
Virtex-II Pro FPGA

high-level sim-
ulation

dedicated
heuristic

OpenDF [22] MPEG-4 SP de-
coder

FPGA (no particular type
specified)

not applicable not applicable

SHIM [23] JPEG decoder Sony/Toshiba/IBM Cell BE not applicable not applicable
StreamIt [18] 12 streaming ap-

plications
RAW architecture SDF analytic

model
simulated an-
nealing

3 Methods

KPN design flows attempt to assist a system designer in implementing an applica-
tion as a hardware/software system by offering support for several activities such
as:

• system specification,
• system synthesis,
• performance analysis, and
• design space exploration.

For each of these activities, methods have been proposed that differ in goal, scope,
degree of automation, and complexity. In the previous chapters, mainly methods for
subclasses of KPNs have been discussed. In this chapter, we give an overview of
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methods that are applicable to general KPNs in the context of MPSoCs. For each of
the activities mentioned above, we discuss the challenges and proposed solutions.

3.1 System Specification

Developing applications that run correctly and efficiently on MPSoCs is challeng-
ing. The difficulty consists in finding an appropriate level of abstraction that bal-
ances the conflicting goals of (a) developing applications in a productive manner and
of (b) enabling efficient automated implementation. While productivity is usually
achieved by programming at a high abstraction level, efficiency is usually achieved
by optimizing code at a low abstraction level. Many case studies provide evidence
that for streaming applications, the KPN model of computation achieves a good
trade-off between these two goals. On the one hand, streaming applications can of-
ten naturally be modeled as a KPN which promotes productivity. On the other hand,
runtime environments have been developed that efficiently implement processes and
channels.

Specifically, the KPN model can be seen as a coordination model [24] which
considers the programming of a distributed system as the combination of two dis-
tinct activities: the actual computing part comprising a number of processes involved
in manipulating data and a coordination part reflecting the communication and co-
operation between processes. The coordination model allows reuse of components
because the application programmer can easily build new algorithms by a new com-
position of existing processes. Furthermore the coordination model allows applica-
tions to be ported to different target architectures because usually only the glue-code
that implements the coordination part is architecture dependent.

Due to these reasons, KPN applications are usually specified in a way that reflects
the coordination model. Two different approaches can be distinguished, namely
specification using a host as well as a coordination language, and specification us-
ing a domain-specific language. When using distinguished host and coordination
languages, the KPN processes are specified in a host language (often in C or C++)
whereas the coordination part is specified separately using a coordination language
(often in XML or UML). This is, for instance, the approach taken in the Artemis
and DOL design flows, where C and XML are used. When using a domain-specific
language, computation and coordination are expressed in a single language that pro-
vides constructs for both parts. OpenDF and StreamIt, for instance, are based on
domain-specific languages.

In both cases, applications are usually expressed based on the principles of en-
capsulation and explicit concurrency: Each process completely encapsulates its own
state together with the code that operates on it and operates independently from
other processes in the system, except for the data dependencies that are made ex-
plicit by channels. This allows for modular, scalable, and platform-independent ap-
plication specifications.
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System specification for KPNs is thus different from two other frequently used
approaches for MPSoC software development, namely specification based on a
board support package and specification based on a high-level application program-
ming interface (API). When developing an application based on the board support
package that is usually shipped with an MPSoC, the abstraction level is rather low.
The focus is thus often on correctly implementing an application using low-level
primitives for initialization, communication, or synchronization, rather than on op-
timizing an application. When using a high-level API the designer is relieved from
dealing with low-level details (provided that the API has been ported to the target
MPSoC). Compared to the KPN based approach, however, automatically optimizing
programs written using a high-level API, such as MPI or OpenMP, is more difficult:
Due to the lack of an underlying model of computation, the basis for automatically
analyzing and optimizing a program is essentially missing.

3.2 System Synthesis

The Y-chart approach opens a gap between the system-level specification and the
actual implementation of the design, sometimes referred to as the implementation
gap. The challenge in bridging this gap is to preserve the KPN semantics on the
one hand and achieve the desired performance on the other hand. Also, the pitfalls
of parallel programming, such as deadlocks, starvation, and data races need to be
handled. This is the task of system synthesis.

Different approaches for the synthesis of KPNs for software, hardware, and in
combined hardware/software platforms have been proposed. The target architec-
tures have been comprised of single-processors, multi-processors, and FPGAs. In
all cases, system synthesis deals with the implementation of processes and chan-
nels as well as the arbitration of resources in case that processes and channels are
mapped to shared resources. If not all parameters of an implementation are fixed
before synthesis, the remaining degrees of freedom need to be exploited during sys-
tem synthesis. In that case, system synthesis is often considered as an optimization
problem where frequently considered optimization goals are the minimization of
code size, the minimization of buffer requirements, or finding the schedules that
minimize delays and maximize system throughput.

While many of these problems can be solved only for restricted subclasses, a few
observations apply to general KPNs:

• First, KPN applications can be efficiently implemented on architectures with dif-
ferent processor, interconnect, and memory configurations, as shown in Table 2.
As an example, KPN applications can be implemented on distributed memory
(message-passing) architectures as well as shared memory architectures. The
FIFO communication can be implemented using dedicated hardware FIFOs or
buses, but also more complex communication topologies, such as hierarchical
buses or networks-on-chip.
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• Second, KPN applications can be executed in a purely data-driven manner based
on their determinacy. This means that resources can operate independently from
each other without any global synchronization. Pair-wise synchronization is
only needed between processes that are directly connected by channels. From
another perspective, this means that KPN applications can be scheduled with
any scheduling policy that prevents deadlocks, i.e., preemptive, non-preemptive,
or cooperative scheduling could be used. Due to these very relaxed require-
ments, KPN applications can usually be implemented easily on top of exist-
ing (real-time) operating systems. On the other hand, implementing a runtime-
environment for a new platform from scratch is also possible because not many
services need to be provided by the runtime-environment.

• Third, KPN applications can be easily partitioned into processes running in hard-
ware and processes running in software. This is due to the parallel specification
of the KPN application on the one hand, and due to the simple interaction of
processes over FIFO channels on the other hand which facilitates the synthesis
of the HW/SW interface.

The observations above indicate that synthesizing a KPN is conceptually not
a very difficult task. Implementing a KPN based on a multi-processor operating
system, for instance, is rather simple: Processes can be implemented as operating
system processes or threads, and channels can be implemented using existing inter-
process communication schemes. The difficulties in KPN synthesis origin from op-
timizing an implementation by minimizing the overhead for FIFO communication
and the runtime environment. This can be achieved by considering low-level details
of an implementation, for instance by efficiently using the hardware communica-
tion infrastructure (e.g. DMA engines) or by efficiently using the memory hierarchy
(e.g. caches or scratchpad memories). On the other hand, optimizations can also be
done at a high level, for instance, by (automatically) adjusting the granularity and
topology of a KPN to the target architecture. This includes the replication of pro-
cesses to increase the parallelism in a KPN or the merging of processes to reduce
inter-process communication. We refrain from giving further details here and refer
to the previous chapters for details on applicable techniques.

Finally, a further problem needs to be considered in the synthesis of KPNs:
The denotational semantics of the Kahn model is based on FIFO channels with
unbounded capacity. Since unbounded channels cannot be realized in physical im-
plementations, however, KPNs need to be transformed in a way that allows for an
implementation on channels with finite capacity. It can be shown that an operational
semantics of KPNs based on channels with finite capacity matches the denotational
semantics when artificial deadlocks can be avoided. An artificial deadlock is a dead-
lock caused by one or more channels having insufficient capacity. Due to the Turing-
completeness of KPNs, it is in general not possible to determine sufficient channel
sizes at design time, however. One possibility to deal with this situation are runtime
approaches that detect and resolve artificial deadlocks during execution [25]. An-
other possibility is to restrict the communication behavior of the processes such that
the channels become amenable to analysis at design time.
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Fig. 2 Scope of different performance analysis methods for MPSoC.

3.3 Performance Analysis

During the design process, a designer is typically faced with questions such as
whether the timing properties of a certain design will meet the design requirements,
what architectural element will act as a bottleneck, or what the memory require-
ments will be. Consequently, one of the major challenges in the design process is
to quantitatively analyze specific characteristics of a system, such as end-to-end de-
lays, buffer requirements, throughput, energy consumption, or temperature rises due
to application activities. We refer to this analysis as performance analysis.

The performance analysis of KPNs executing on MPSoCs poses a major chal-
lenge due to multiple and heterogeneous hardware resources, the distributed execu-
tion of the application, and the interaction of computation and communication on
shared resources. To deal with these challenges, multiple methods have been suc-
cessfully used in the context of KPN design flows. These methods differ in accuracy,
evaluation time, set-up effort, and scope.

In Fig. 2, the scope of different performance analysis methods is compared. Left-
most, the interval of values for a performance metric as occurring in the real sys-
tem is shown. This performance metric could be the end-to-end delay of a system,
the utilization of a computation or communication resource, or the occupation of
a channel buffer, for instance. Different performance analysis methods now differ
regarding the values that can be obtained.

When taking measurements of the real system, the measured values only rep-
resent a subset of all possible values. Most likely, due to insufficient coverage of
corner cases and the limited number of measurement samples, the interval bounds
can only be estimated based on the measurements. This observation applies to sim-
ulation as well. Best-case and worst-case analysis methods take a different approach
by providing safe results about the interval bounds, i.e. upper and lower bounds on
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the worst-case and best-case behavior, respectively. On the other hand, usually not
all parts of a system can be accurately modeled. In that case, (safe) optimistic and
pessimistic assumptions need to be made, leading to bounds on system performance
measures that are not tight. Finally, also probabilistic methods are used to provide
quantitative statements about system behavior. In the following, we take a closer
look at simulation and best-case/worst-case analysis due to their frequent applica-
tion in KPN design flows.

Simulation is presumably the most frequently used method for performance anal-
ysis. This is reflected by the availability of a wide range of simulation tools that
are applicable to different levels of abstraction. The most accurate but also slowest
class are cycle-accurate simulators. Instruction-accurate simulators (also referred to
as instruction-set simulators or virtual platforms) provide a good trade-off between
speed and accuracy which allows entire MPSoCs to be modeled and simulated. An
example is the so-called full system simulator of the Cell Broadband Engine which
also allows switching between different simulation modes with different accuracies
[26]. Besides performance analysis, virtual platforms can also be used for software
development and debugging. For this purpose, the full system simulator of the Cell
Broadband Engine provides a fast, purely functional simulation mode in which tim-
ing is not considered.

At higher levels of abstraction, also other kinds of simulation are used for per-
formance analysis. One example is trace-based simulation in the Artemis design
flow [11] or in DOL [27], for instance. In trace-based simulation, first an untimed
execution trace of the application is recorded that contains computation and com-
munication events of processes and channels. Based on an architecture description,
the mapping of the application onto the architecture, and estimates about the time to
process events, this trace is refined towards timing behavior. This technique allows
designers to estimate the system performance. Depending on the level of detail in
the trace and the modeling of the execution platform, estimation errors of less than
5 % have been reported with a significantly reduced simulation time compared to
instruction-accurate simulation.

For the design of hard real-time systems, worst-case guarantees on the system
timing need to be given. As stated above, worst-case bounds are difficult to ob-
tain from simulation due to insufficient corner case coverage and often prohibitively
long execution times of a simulation run. Therefore, analytic methods appear to be a
promising method for providing worst-case guarantees even in the case of complex
and large-scale MPSoC implementations. Prominent methods for analytic perfor-
mance analysis are listed in the following.

• Holistic Methods: Holistic analysis is a collection of techniques for the analysis
of distributed systems. The principle is to extend concepts of classical single-
processor scheduling theory to distributed systems, integrating the analysis of
computation and communication resource scheduling. Several holistic analysis
techniques have been aggregated in the modeling and analysis suite for real-time
applications (MAST) [28].

• Compositional Performance Analysis Methods: The basic idea of compositional
performance analysis methods is to construct an analysis model of small com-
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ponents and propagate timing information between these components. Typical
components model the execution of processes on a processor, the transmission
of data packets on interconnects, or traffic shapers. Timing information is de-
scribed by event models, such as periodic, periodic with jitter and bursts, or more
general models in terms of arrival curves. Prominent methods of compositional
performance analysis are modular performance analysis (MPA) [29] and sym-
bolic timing analysis for systems (SymTA/S) [30]. Both methods support a rich
set of scheduling policies, such as preemptive and non-preemptive fixed priority
scheduling, earliest deadline first scheduling, or time division multiple access.
MPA is used in the DOL design flow, for instance.

• Automata Based Analysis: Performance analysis of MPSoCs has also been tack-
led using state-based formalisms. One example are timed automata [31]: The
approach is to model a system as a network of interacting timed automata and
formally verify its behavior by means of reachability analysis using the Uppaal
model checker [32].

A comparison of these performance analysis methods is provided in [33]. Note that
beside being suited for the analysis of real-time systems, analytic models are often
used as the basis for performing system optimization, such as scheduling parameter
optimization [34] or robustness optimization [35].

Finally, one can observe that none of the methods shown in Fig. 2 can fulfill all
the requirements concerning accuracy, scope, and set-up effort. Therefore, combi-
nations of the different methods have been proposed: Simulation has been coupled
with native execution on the target platform to reduce simulation time [36] [37]. Dif-
ferent analytic methods have been coupled to broaden the analysis scope [38, 39].
Subsystems in simulation have been replaced by analytic models to reduce sim-
ulation time and eliminate the need to generate a detailed simulation model of a
component [40]. In these efforts, the modularity of KPNs is often leveraged by us-
ing the FIFO channels as the interface between the different performance analysis
methods.

3.4 Design Space Exploration

Designers of MPSoCs face a large design space due to the combinatorial explosion
related to the available degrees of freedom. At several points in the design flow
and at various levels of abstraction, they need to decide between design alternatives.
Specifically, the design space of MPSoCs can be roughly divided into three domains:
the application design space, the architecture design space, and the mapping design
space. These three domains can be further split up, as shown in Fig. 3.

Exploration of the application design space can be split up into two main kinds of
transformations, namely algorithmic and source transformations. Algorithmic trans-
formations make explicit the coarse-grained parallelism in a sequential application
by transforming it into a KPN. Given a KPN application, source transformations
split and merge processes to trade-off parallelism and communication overhead.
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Fig. 3 Application, archi-
tecture, and mapping design
space.
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Exploration of the architecture design space attempts to find an optimized ar-
chitecture for a given application. The goal is to instantiate programmable and
(re-)configurable hardware components that allow an efficient implementation of
an application.

Exploration of the mapping design space is the last step in the design space ex-
ploration. Given a KPN application and an architecture, processes and channels of
the KPN are bound to processors and interconnects in the architecture, and schedul-
ing policies are defined on shared communication or computation resources.

Usually, design space exploration is a multi-objective optimization problem. The
goal is thus to find a set of Pareto-optimal designs which represent solutions with
different trade-offs between the optimization goals such as performance, cost, en-
ergy consumption, or peak temperature. The final choice is left to the designer who
needs to decide which of the Pareto-optimal designs to implement or to refine to the
next level of abstraction.

Available approaches to the exploration of design spaces can be characterized
as follows. Gries [41] presents a more detailed survey of automated design space
exploration and performance analysis in different design flows.

• Manual Exploration: The selection of design points is done by the designer.
When taking this approach, the advantage of using a KPN design flow lies in
efficient performance analysis and automated synthesis of selected designs.

• Exhaustive Search: All design points in a specified region of the design parame-
ters are evaluated. Very often, this approach is combined with local optimization
in one or several design parameters in order to reduce the size of the design
space. Due to the availability of fast performance analysis techniques for KPNs,
exhaustive search is a realistic option if the design space is limited (or can be
pruned) to roughly a few thousand designs.

• Reduction to Single Objective: For design space exploration with multiple con-
flicting criteria, there are several approaches available that reduce the problem to
a single criterion optimization. For example, manual or exhaustive sampling is
done in one (or several) directions of the search space and a constraint optimiza-
tion, e.g. iterative improvement or analytic methods is done in the other. One may
also combine the various objectives to a single criterion by means of a weighted
sum where the weights express the preferences of the designer.
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• Black-box Randomized Search: The design space is sampled and searched via
a black-box optimization approach, i.e. new design points are generated based
on the information gathered so far and by defining an appropriate neighborhood
function (variation operator). The properties of these new design points are es-
timated which increases the available information about the design space. Ex-
amples of sampling and search strategies are Pareto simulated annealing, Pareto
tabu search, or evolutionary multi-objective optimization. These black box op-
timization methods are often combined with local search methods that optimize
certain design parameters or structures. This approach is most frequently used in
KPN design flows, as illustrated in Table 2.

• Problem-Dependent Approaches: In addition to the above methods, one can find
also a close integration of the exploration with a problem-dependent performance
analysis of implementations. This approach is often used in design flows that
are based on subclasses of KPNs. The StreamIt and MAMPS design flow, for
instance, are based on SDF (Synchronous Data Flow) graphs and use adopted
techniques for design space exploration, see chapter [42].

4 Specification, Synthesis, Analysis, and Optimization in DOL

Until now, this chapter introduced KPN design flows and the corresponding main
design activities. This section will provide additional technical details by means
of a concrete example of a typical design flow: the Distributed Operation Layer
(DOL) [12] [43]. The underlying concepts for system specification, synthesis, per-
formance analysis, and design space exploration will be considered, as well as a few
typical experimental results for the size of the implementation, the runtime, and ac-
curacy of the applied methods. DOL is currently being extended towards scenario-
based design flow [44], and supports the design, optimization, and simultaneous
execution of multiple dynamic applications on a MPSoC starting with a similar pro-
gramming model as [45]. However, this section does not discuss these extensions,
focusing on the typical design flow for single Kahn process networks.

4.1 Distributed Operation Layer

The distributed operation layer (DOL) [12] [43] is a platform independent MPSoC
design flow based on the Kahn process network (KPN) model of computation [3]
and targeted at real-time multimedia and (array) signal processing applications.

The DOL design cycle, as shown in Fig. 4, follows the Y-chart approach in which
the application specification is platform-independent and needs to be related to a
concrete architecture by means of an explicit mapping. As usual, the design starts
with the specification of the application and architecture (and sometimes even a
mapping). Then, code for the functional simulation of the application is automati-
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Fig. 4 Overview of the DOL design flow.

cally generated for testing and debugging the parallel application code with standard
debugging tools on a standard PC/workstation.

Once the application is functionally correct, it can be mapped onto the target ar-
chitecture. Based on the architecture and the mapping specification, the system is
synthesized by generating the corresponding binaries. Note that, here, system syn-
thesis refers to software synthesis only as the architecture specification is considered
to be unaltered during the exploration phase. Then, the synthesis involves the gener-
ation of the mapping-dependent source code for processors, the compilation, and the
linking to platform specific libraries as well as to the run-time environment. Gener-
ated binaries can either be executed on a simulator of the target platform or on the
real MPSoC. Both, the functional and the low-level simulation provide performance
figures that will enrich the application specification. This information will be used
in later phases for the calibration of the analysis model.

The design flow described so far is typical for MPSoC design and very similar
to the other design flows listed in Table 1 and explained in the previous chapters.
What is different in DOL is its focus on the design and analysis of real-time signal
processing applications. To this end, an analytic worst-/best-case performance anal-
ysis method has been embedded into the design flow. Besides enabling the analysis
of real-time systems, using an analytic method for performance analysis facilitates
rapid design space exploration due to short analysis times. The resulting perfor-
mance data are embedded in a design space exploration loop in search of the optimal
mapping.
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01: procedure INIT(Process p)

02:   //initialize process state

03: end procedure

04:  

05: procedure FIRE(Process p)

06:   READ(input, size, buf)

07:   //processing

08:   WRITE(output, size, buf)

09: end procedure

01: <process name="p1">

02:   <port type="output" name="out"/>

03:   <source type="c" location="p1.c"/>

04: </process>

05: 

06: <process name="p2">

07:   <port type="input" name="in"/>

08:   <source type="c" location="p2.c"/>

09: </process>

10: 

11: <connection name="c1_fifo">

12:   <origin name="p1"><port name="out"/></origin>

13:   <target name="p2"><port name="in"/></target>

14: </connection>

p1 p2 p4

p3

c1

c3 c4

c2

Fig. 5 Kahn process network model. Left: XML description of the process network structure.
Right top: example of a process network. Right bottom: C code of individual processes.

4.2 System Specification

For designing the specification format of an MPSoC, one has to consider three cri-
teria. First, the specification format should be expressive enough to represent the
class of envisioned applications, i.e. (real-time) signal processing applications. Sec-
ond, the specification should facilitate automation of system synthesis and analysis.
The third criterion is the possibility of mapping an application in different ways
onto an architecture. In the DOL framework, these criteria are met by specifying
the application as a Kahn Process Network [3] and by specifying the application
independently of architecture.

When designing parallel applications irrespective of architectures, an important
feature is the ability to specify different topologies of the process network with
different degrees of parallelism. For this reason, the KPN coordination part is kept
separately (described in XML) from the source code of the individual processes
(described in C/C++ ), see Fig. 5. Similar hybrid XML/C formats are employed by
other frameworks as well (e.g. in Artemis [11], ESPAM [13], and MAMPS [15]).

While the syntax of the XML file is specified using an XML schema, the C code
is based on a simple API. As shown in Fig. 5, this API basically consists of four
functions, two of which concern computation, namely INIT and FIRE, and two
of which concern communication inside the FIRE procedure, namely READ and
WRITE:

• INIT contains the code that is executed once at start-up to initialize a process.
• FIRE contains the code that is repeatedly called by the scheduler.
• READ implements the blocking read from a FIFO channel.
• WRITE implements the blocking write to a FIFO channel.

A similar API is defined by Y-API [46], for instance, a library for specifying and
executing Kahn process networks.
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01: <binding name="b_p1" type="computation">
02:   <process name="p1"/>
03:   <processor name="processor1"/>
04: </binding>
...
16: <binding name="b_c2" type="communication">
17:   <sw_channel name="c2"/>
18:   <writepath name="dmem1_bus_shm"/>
19:   <readpath name="shm_bus_dmem2"/>
20: </binding>
...
30: <schedule name="sched1" type="fixedpriority">
31:   <resource name="processor1"/>
32:   <origin name="p1">
33:    <configuration name="priority" value="0"/>
34: </origin>
35:   <origin name="p2">
36:     <configuration name="priority" value="1"/>
37:   </origin>
38: </schedule>

Fig. 6 Mapping of a Kahn process network onto a two-processors architecture and an example of
a corresponding mapping XML file.

The architecture model in DOL is an abstract representation of the underlying ex-
ecution platform. Its purpose is to determine at a system-level the consequences of
the application mapping. This abstract architecture models the topology (i.e. the set
of processors and communication paths between processors) and includes perfor-
mance figures of the underlying platform useful for performance analysis, e.g. the
clock frequency and throughput of architectural resources. The architecture model
is a structural description that does not express the functional behavior, and which
is specified in XML, similar to the application model. This XML architecture rep-
resentation is not specific to DOL, but also encountered in other frameworks, such
as Artemis and MAMPS.

The application model is brought in correspondence to the architecture model by
a mapping (see Fig. 6) which can be either established manually by an experienced
designer or generated automatically by design space exploration. This mapping fixes
the allocation of hardware resources, the binding of the application elements onto
these resources, and the scheduling on shared resources. For the mapping specifica-
tion, once more, the XML format is used. The mapping XML serves as intermediate
format and interface between tools, i.e. the design space exploration tool generates
a mapping XML as an output, which is the input for the software synthesis tool.

The application XML, the architecture XML, and the mapping XML are the
basis for the following DOL synthesis steps, i.e. for the functional simulation and
the implementation of the final MPSoC, but also for the generation of the analytic
performance analysis model (see Fig. 4).
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4.3 System Synthesis

Similar to other frameworks, an application specified in DOL cannot be directly ex-
ecuted by just compiling the provided source code of the processes. A synthesis step
is required that generates the “glue code” implementing the processes and channels,
the bootstrapping and the scheduling of the application. Specifically, synthesis is
done first for a standard PC/workstation to support the functional verification and
debugging of the application (in which case it should be rather termed functional
simulation generation) and second for the target MPSoC (which is properly known
as system synthesis). However, due to similarities, the two steps are treated together
in the following subsections as facets of system synthesis in the DOL design flow.
Note that when the behavior of a part of an application can be restricted to a subclass
of KPN, the general approach described below could be combined with one of the
corresponding synthesis techniques described in the previous chapters.

4.3.1 Functional Simulation Generation

The purpose of providing a functional simulation that can be executed on a standard
PC/workstation is to provide the application developer with a convenient approach
to test and debug the application. Specifically, functional bugs within the application
can be exposed and debugged by running a functional simulation on a standard PC
and using standard debugging tools, e.g. the GNU debugger gdb.

A second role of the functional simulation is to obtain architecture-independent
application parameters for performance analysis, such as the amount of data trans-
ferred between processes or the number of activations of processes. These param-
eters can easily be obtained from functional simulation by monitoring the calls of
the READ, WRITE, and FIRE methods. By back-annotating these parameters to the
application specification as shown in Fig. 4, they can be referred to during perfor-
mance analysis, as explained later in this section.

Using the DOL design flow, a functional simulation can be automatically gen-
erated according to the application specification: For each process, an execution
thread is instantiated. To implement software channels, inter-thread communication
channels are used. The execution of the application is then controlled by a simple
data-driven scheduler. Since Kahn process networks are determinate, this is a viable
possibility because the scheduling does not influence the input/output behavior of
the application.

In DOL, the functional simulation is based on the SystemC library. Therefore,
processes can be implemented as user-space threads which incurs less runtime over-
head compared to using an operating system thread library, such as the pthread
library. Fig. 7 shows the software architecture of the functional simulation based
on SystemC: Each Kahn process is embedded into a SystemC thread, whereas each
Kahn software channel is implemented as a SystemC channel. Moreover, the main
file that bootstraps the process network and implements the scheduler to coordinate
the quasi-parallel execution of processes is generated automatically as well.
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Fig. 7 Software architecture of the functional simulation of a KPN application based on SystemC.

Another frequently chosen library is the pthreads library. On multicore multipro-
cessors where single operating system threads can be executed on different cores, a
functional simulation based on pthreads can even achieve a speed-up compared to
the sequential version of the application. In [47], speeds-ups of more than 3 have
been reported for executing applications specified in SHIM on a quad-core Intel
Xeon processor.

4.3.2 Software Synthesis

After the application has been functionally verified by functional simulation, it is
ported to the target platform. This requires an architecture dependent runtime en-
vironment in which the application is executed. The role of the runtime environ-
ment is to hide architectural details of the MPSoC platform by providing a set of
high-level services enabling the execution of an application on the platform, such as
task scheduling, inter-process communication, or inter-processor communication.
Depending on the target platform, developing (parts of) the runtime environment
might be necessary to create the basis for software synthesis.

In case of the DOL design flow, different hardware MPSoC platforms are sup-
ported:

• Cell Broadband Engine [48]: MPSoC consisting of a PowerPC-based Power
Processor Element and eight DSP-like Synergistic Processing Elements inter-
connected via a ring bus.

• Atmel Diopsis 940 [49]: tile-based MPSoC, where a single tile is composed of
an ARM9 processor and a DSP interconnected by an AMBA bus; up to eight tiles
are interconnected via a network-on-chip.

• MPARM [50]: Homogeneous MPSoC consisting of identical ARM7 processors
connected by an AMBA bus.

• Intel SCC [51]: Many-core homogeneous architecture with 48 cores organized in
24 tiles, each tile embedding two cores. Tiles are connected via a mesh on-chip
network, and each tile has also a message passing buffer.
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Fig. 8 Block diagram of the MPARM architecture.

Fig. 8 depicts a block diagram of the MPARM architecture. Software synthesis
for MPARM is based on the RTEMS (Real-Time Executive for Multi-processor Sys-
tems) [52] operating system. Basic services provided by RTEMS are the scheduling
of processes, device drivers for inter-process communication, and device drivers for
system input/output. Based on these services, it is rather simple to bootstrap and
execute a process network. As an example, Listing 1 illustrates parts of the code for
bootstrapping a process network based on the RTEMS API. Software synthesis for
the Cell Broadband Engine is described in [53] in the context of the DOL design
flow, and in [23] in the context of the SHIM design flow, for instance.

Listing 1 shows parts of a main file for a producer-consumer type application
running on MPARM. In lines 2-3, memory is allocated for the local data of the
producer and consumer processes. In lines 6-9, two tasks are created for the pro-
cesses by allocating a task control block, by assigning a task name and a task ID,
by allocating a stack, and by setting initial attributes like the task priority and the
task mode. Lines 11–12 show the creation of a message queue. In lines 14–18,
the rtems task start directive puts the tasks into the ready state, enabling the
scheduler to execute them. Finally, the initialization tasks deletes itself (line 20).

Listing 1 RTEMS initialization task in which two tasks are bootstrapped to run a producer and
consumer process of a process network.

1 r t e m s t a s k I n i t ( r t e m s t a s k a r g u m e n t a r g ) {
2 p r o d u c e r w r a p p e r ← ma l l oc ( s i z e o f ( RtemsProcessWrapper ) ) ;
3 consumer wrappe r ← ma l l oc ( s i z e o f ( RtemsProcessWrapper ) ) ;
4

5 f o r ( j ← 0 ; j < 2 ; j ++) {
6 s t a t u s ← r t e m s t a s k c r e a t e ( j + 1 , 128 ,
7 RTEMS MINIMUM STACK SIZE , RTEMS DEFAULT MODES,
8 RTEMS DEFAULT ATTRIBUTES , &( t a s k i d [ j ] ) ) ;
9 }

10

11 s t a t u s ← r t e m s m e s s a g e q u e u e c r e a t e ( 1 , 10 , 1 ,
12 RTEMS DEFAULT ATTRIBUTES , &q u e u e i d [ 0 ] ) ;
13

14 s t a t u s ← r t e m s t a s k s t a r t ( t a s k i d [ 1 ] , p r o d u c e r t a s k ,
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15 ( r t e m s t a s k a r g u m e n t ) p r o d u c e r w r a p p e r ) ;
16

17 s t a t u s ← r t e m s t a s k s t a r t ( t a s k i d [ 2 ] , c o n s u m e r t a s k ,
18 ( r t e m s t a s k a r g u m e n t ) consumer wrappe r ) ;
19

20 r t e m s t a s k d e l e t e ( RTEMS SELF ) ;
21 }

For all the mentioned platforms, the main challenge is to provide an efficient
FIFO channel implementation that allows overlapping computation and communi-
cation in order to reduce the runtime overhead as much as possible. Aspects that
play an important role in this context are the size and location of channel buffers,
the efficient use of DMA controllers for data transfers between processors, and the
minimization of synchronization messages.

4.4 Performance Analysis

The DOL design flow is targeted towards the design of real-time multi-media
and signal processing applications. These systems must meet real-time constraints,
which means that not only the correctness and performance of a system are of ma-
jor concern but also the timeliness of the computed results. Typical questions in this
context are:

• What is the response time to certain events? Is this response time within the
required real-time limits?

• Can the system accept additional load and still meet the quality-of-service and
real-time constraints?

• Is a system schedulable, that is, are all real-time constraints met?

To be able to answer these questions, a suitable combination of system design and
performance analysis is required. To this end, it is essential that the architecture,
application, and runtime-environment of a system are amenable to formal analysis,
because simulation or measurements are not able to provide guarantees about tim-
ing properties. On the other hand, performance analysis methods with a reasonable
scope and accuracy need to be employed such that effects occurring in the system
implementation can be faithfully modeled. For MPSoC applications, this includes
the modeling of heterogeneous resources and their sharing, the modeling of com-
plex timing behavior arising from variable execution demands and interference on
shared resources, or the modeling of different processing semantics.

Many approaches have been proposed to solve this problem, see [54] for an
overview. Frequently used approaches are time-triggered and synchronous approaches,
for instance. In purely time-triggered approaches, such as the time-triggered archi-
tecture [55] or Giotto [56], processing time of resources is allocated to tasks in fixed
time slots. This fixed allocation facilitates analysis, but dimensioning of the slots
turns out to be difficult for varying workloads. For instance, using the worst-case
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workload for setting the slot sizes might lead to over-dimensioned systems. Purely
synchronous approaches implemented in synchronous languages, such as Esterel,
Lustre, and Signal, rely on a global clock that divides the execution of a system into
a sequence of atomic processing steps [57]. While synchronous approaches are suc-
cessfully used for single-processor systems, applying them to MPSoCs is difficult
because MPSoCs are usually split up into different (asynchronous) clock domains
such that the synchronous assumption does not hold.

The approach taken in DOL relies on using compositional performance analysis
where a system is modeled as a set of processing components that interact via event
streams. This is a good match for MPSoCs as well as for KPNs. Contrary to other
approaches, the approach is rather flexible in that it is not limited to a certain system
architecture, scheduling policy, or execution semantics. Specifically, Modular Per-
formance Analysis (MPA) is integrated into the DOL design flow. In the following,
the basic concepts of MPA are reviewed. Afterwards, it is summarized how MPA is
integrated into the DOL design flow.

4.4.1 Modular Performance Analysis (MPA)

MPA [29, 58] is an analytical approach for the analysis of real-time systems. It is
based on real-time calculus [59] which has its foundations in network calculus, a
method for worst-case analysis of communication networks [60, 61]. With MPA,
hard upper and lower bound for performance metrics of a distributed real-time sys-
tem can be computed. As shown in Fig. 9, the performance model of a system is
decomposed into a network of abstract processing components that model the com-
putation and communication in a system. These processing components are con-
nected by abstract event streams that model the timing properties of the data streams
flowing through the system. Finally, resources are modeled by resource streams that
model the availability of processing resources to computation and communication
tasks. Different scheduling policies can be modeled by differently connecting pro-
cessing components and resource streams. As an example, Fig. 9 illustrates fixed
priority (FP) scheduling on processors and time-division multiple-access (TDMA)
scheduling on the bus.

The processing components modeling computation and communication are char-
acterized by the worst-case/best-case execution demand and the minimal and max-
imal token size, respectively. Event streams are characterized by so-called arrival
curves and resource streams by service curves. Summarizing, these abstractions al-
low the modeling of computation and communication on heterogeneous resources
in a unified manner.

Based on these abstractions, the system is analyzed by consecutive propagation
of event streams between components. Depending on the mapping of processing
components to a resource and its scheduling/arbitration, the timing properties of the
streams change. System properties such as resource utilization, system throughput,
end-to-end delays, or buffer sizes can be derived this way. Tool support for actually
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Fig. 9 MPA model of a system with two processors connected by a bus on which a KPN with
four processes is executing. In the MPA model, horizontal edges represent event streams whereas
vertical edges represent resource streams.

performing the analysis is provided by a freely available Matlab toolbox [62] that
implements the underlying algebraic operations.

4.4.2 Integration of MPA into the DOL Design Flow

It has been mentioned that the goal of system synthesis is to bridge the implemen-
tation gap, that is, to refine a high-level system specification into an actual system
implementation. Similarly, there is an “abstraction gap” between an MPA model and
the implementation: The execution of sequential processes on a processor is mod-
eled by an abstract processing component, the availability of resources is abstracted
by service curves, and the dataflow through the systems by arrival curves. Bridging
this abstraction gap, that is, creating an analysis model that correctly models the
implementation is a non-trivial task. On the one hand, the high-level system spec-
ification is conceptually similar to the analysis model but does not contain all the
parameters required to generate an MPA model, such as best-case/worst-case task
execution times or token sizes. The implementation, on the other hand, implicitly
contains this information, but extracting the information is not straightforward.

In the DOL design flow, the abstraction gap is bridged by analysis model gen-
eration and calibration. In model generation, the high-level system specification
is translated into a corresponding MPA model. In model calibration, the required
model parameters are obtained. In both steps, the modular structure of the applica-
tion and architecture specification is leveraged. The basic approach is depicted in
Fig. 10. The analysis model generation represents a branch in the design flow that
is parallel to the system synthesis. The analysis model calibration makes use of this
feature later on in order to build a database with necessary performance data for the
formal model. In the following, the basic approach is described. Further details are
provided in [63].

The goal of model generation is to translate the high-level application, architec-
ture, and mapping specification into a corresponding MPA model implemented as a
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Fig. 10 Analysis model generation and calibration in the DOL flow.

Matlab script. Due to the modular specification of the application that is made ex-
plicit in the process network XML description, this is straightforward: Each process
is simply modeled as an abstract processing component. Similarly, the communi-
cation channels between processes are modeled as abstract communication compo-
nents and connected to the processing components according to the topology of the
KPN.

The aim of model calibration is to obtain the quantities to parameterize the gen-
erated model such that it correctly models the implementation. Basically, three dif-
ferent types of parameters can be distinguished:

• First, there are the application parameters that are architecture and timing inde-
pendent. An example is the minimal and maximal size of tokens transmitted over
each channel.

• Second, there are the parameters that depend only on the architecture and the run-
time environment. Examples are the throughput of the different communication
resources or the context switch time of the runtime environment.

• Third, there are the application parameters that depend on the architecture and the
mapping. Basically, whenever the architecture or mapping changes, new param-
eters need to be determined. An example is the worst-case/best-case execution
time of a process on a processor.

Depending on the parameter type, there are different ways to obtain them. Timing
independent parameters can be obtained from the functional simulation, due to the
determinism of KPN applications. Architecture dependent parameters need to be
obtained once a new hardware architecture or runtime environment is employed for
realizing a system. The parameters of the third category, i.e. application parameters
that depend on the architecture and the mapping, are more difficult to determine.
Similar to system-level performance analysis, different methods for worst-case/best-
case execution time analysis have been proposed, for instance [64]. In the DOL
design flow, timed simulation on a virtual platform is employed. Note that compared
to formal methods, this approach is not suitable for the calibration of hard real-
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time system models unless complete coverage of corner cases is exhibited in the
calibration simulation runs. One can observe that similar approaches are taken in
other design flows. In the Artemis design flow, for instance, model generation and
calibration is used to create a model for trace-based simulation [65].

Finally, the DOL framework have been extended with capabilities for worst-case
thermal analysis, as nowadays providing guarantees on maximum temperature is
as important as functional correctness and timeliness. Aware of the performance-
temperature correlation, DOL is optimizing the system design with respect to both
worst-case performance and worst-case temperature, analyzed in the same MPA
framework. The basic worst-case peak temperature analysis method in MPA for a
single processor under a broad range of uncertainties in terms of task execution
times, task invocation periods, and jitter in task arrivals is described in [66]. Ex-
tensions are then proposed in [67] for analysis of MPSoC platforms by considering
both the self-heating of the processor and the heat transfer between neighboring
processors. In the same manner as it is done for timing, thermal analysis models
are automatically generated from the same set of specifications as used for soft-
ware synthesis. To increase the model accuracy, both analysis models are calibrated
with data corresponding to real system parameters obtained in an automatic manner,
prior to design space exploration. The calibration tool-chain for the thermal model
is described in [68].

4.5 Design Space Exploration

The final piece of the DOL flow is design space exploration, built on top of analysis
and synthesis tools to find an optimal mapping. In general, the problem of optimally
mapping an application to a heterogeneous distributed architecture is known to be
NP-complete. Even for systems of modest complexity, one thus needs to resort to
heuristics to solve the problem. In addition, the mapping problem is usually multi-
objective such that there is no single optimal solution but a set of Pareto-optimal
solutions constituting a so-called Pareto-front.

In DOL, the aim of the design space exploration is to compute the set of Pareto-
optimal solutions representing different trade-offs in the design space. Based on the
(approximated) Pareto-front, the designer chooses the final solution to implement.
Therefore, the mapping problem is specified as a multi-objective optimization prob-
lem.

Formally, a multi-objective optimization problem is defined on the decision space
X which contains all possible design decisions, i.e. architectures, applications and
mappings. To each implementation x ∈ X there is associated an objective vector
f in the objective space Z that consists of n objectives f = ( f1, . . . , fn) which
should be minimized (or maximized). An order relation ≤ is defined on the ob-
jective space Z, which induces a preference relation � on the decision space X :
x1 � x2⇔ f (x1) ≤ f (x2), for x1, x2 ∈ X . In other words, for the mapping problem
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for instance, if mapping x1 is better (minimal) in all objectives than mapping x2, the
optimization algorithm will “preferentially” select mapping x1.

The design search space, symbolized with Ψ , is the set of all subsets of X , i.e. it
includes all possible solution sets A ⊆ X . The final goal is to determine an optimal
element of Ψ , i.e. an optimal subset of all possible implementations X . This subset
should reflect all trade-offs induced by the multiple objectives. The preference rela-
tion � on X that has been defined above can now be used to define a corresponding
set preference relation, symbolized with 4, on the search space Ψ .

This set preference relation provides the information on the basis of which two
candidate Pareto sets can be compared: A 4 B⇔∀b ∈ B,∃a ∈ A : a� b. This prop-
erty reflects the concept of Pareto-dominance: A design point dominates another
one if it is equal or better in all criteria and strictly better in at least one. More-
over, the search in the design space will be pursued until a good Pareto-optimal set
approximation A ∈Ψ is found.

In DOL, evolutionary algorithms are used to solve the mapping optimization
problem. Evolutionary algorithms find solutions to a given problem by iterating two
main steps [69]: (1) selection of promising candidates, based on an a-priori eval-
uation of candidate solutions and (2) generation of new candidates by variation of
previously selected candidates. The principle of the selection in evolutionary multi-
objective optimization is sketched in Algorithm 1. For a complete description, we
refer to [70]. The starting point is a randomly generated population P∈Ψ of size m.
During optimization, a heuristic mutation operator based on selection and variation
generates another set P′ ∈Ψ , which is wanted to be better than P in the context of
the predefined set preference relation 4, i.e. P′ 4 P. Finally, P is replaced by P′, if
the later is preferable to the former (i.e., P′ 4 P), or P it remains unchanged in the
opposite case.

Algorithm 1 Main optimization function.
1: randomly choose A ∈Ψ . generate initial set P of size m
2: set P← A
3:
4: while termination criterion not fulfilled do . main optimization loop
5: P′← heuristicSetMutation(P)
6: if P′ 4 P then
7: P← P′

8: end if
9: end while

10: return P

The heuristic set mutation operator is detailed in Algorithm 2. First, k new solu-
tions are created based on P, after an appropriate selection and variation operation.
While the variation is problem-specific, the selection is independent of the problem,
using either an uniform random selection or a fitness-based selection. Then, the k
new solutions are added to P, resulting in a set P′ of size m+ k. P′ is iteratively
truncated to size m by removing the solutions with worst fitness values. Note that
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Algorithm 2 Heuristic set mutation function.
1: function HEURISTICSETMUTATION(()P)
2: generate {r1, ...,rk} ∈ X based on P
3: P′← P∪{r1, ...,rk}
4: while |P′|> m do
5: choose p ∈ P′ with f itness(p) = mina∈P{ f itness(a)}
6: P′← P′ \{p}
7: end while
8: return P′

9: end function

the fitness values are associated in a performance evaluation process, i.e., in DOL
we use the MPA framework as described in Section 4.4.

While the selection algorithm described is domain independent, specific meth-
ods are used to include domain specific knowledge into the search process and se-
lect “best” solutions among a population. These are the domain representation (i.e.,
the system mapping), the evaluation of designs (i.e., the MPA analysis), and the
variation of a population of solutions by mutation and cross-over operations.

Although standard variation schemes exist for mutation and crossover, their im-
plementation is strongly dependent on system properties. The mutation generates
a local neighborhood of selected design points. In the DOL context, the mutation
affects the mapping solutions; for instance, different mappings can be generated
with different bindings of processes onto processors. The crossover recombines two
selected solutions to generate a new one. Note that during mutation or crossover,
infeasible (mapping) solutions can be generated. In this situation, a repair strategy
is invoked, which, in conformity with the evolutionary algorithm principle, attempts
to maintain a high diversity in the population. An example could be the rerouting
of inter-process communication, when during re-mapping a process was bound to a
new location.

In DOL, the design space exploration framework includes several tools, as shown
in Fig. 11. In particular, the EXPO [71] tool is the central module of the framework.
As underlying multi-objective search algorithm, Strength Pareto Evolutionary Al-
gorithm (SPEA2) [72] is used that communicates with EXPO via the PISA [73]
interface. Similarly, the design space exploration framework in Artemis [11] is also
based on PISA and SPEA2.

Using the frameworks of EXPO and PISA relieves the designer from implement-
ing those parts of the design space exploration that are independent of the actual
optimization problem. For example, the selection may be handled inside the multi-
objective optimizer SPEA2. The designer just needs to focus on the problem specific
parts, that is, the generation, variation, and evaluation of solutions. The implemen-
tation of problem specific parts starts with the specification, where the application
and architecture (and later on, the mapping) are automatically extracted from the
corresponding XML files and represented in the design space exploration frame-
work. Then, candidate mappings are inspected (as described above) based on the
provided variation methods. Finally, during design space exploration, the objective
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Fig. 11 Design space exploration in the DOL framework.

values of all candidate mappings are computed by generating the corresponding
Matlab MPA scripts and interfacing Matlab for their evaluation. In DOL, all these
operations are automatically parameterized using the application and architecture
specification. Note that the approach described above is a heuristic search proce-
dure. Therefore, it does not guarantee the optimality of the final solution, i.e., the
final set of solutions. However, in our experiments we have identified that after sev-
eral design space exploration cycles, the found solutions are close to optimal even
for large problem complexities.

4.6 Results of the DOL Framework

In this section, a few results are highlighted that have been obtained by applying
the DOL design flow described above. Specifically, the design and analysis of a
Motion-JPEG (MJPEG) decoder [74] running on MPARM [50] is considered. For
the execution of the system, we used a 31-frame input bitstream encoded using the
QVGA (320×240) YUV 444 format.

The MJPEG decoder decompresses a sequence of frames by applying JPEG de-
compression to each frame. Because of the inherent parallelism in the MJPEG al-
gorithm, the decoding is done in a pipeline with five stages, each stage being imple-
mented as a Kahn process. The first and last stages are the splitting of streams into
frames (ss) and the merging of frames back to streams (ms). The variable length
decoding and the splitting of frames into macroblocks form the second stage (sf).
The zigzag scan, inverse quantization and the inverse discrete cosine transform form
the third (zii), while combining macroblocks back to frames forms the fourth stage
(mf).

Using the design space exploration framework of DOL based on the PISA in-
terface and SPEA2, one can compute the Pareto optimal mappings of the MJPEG
application onto an MPARM system with a variable number of processors. The
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Fig. 12 Pareto optimal solu-
tions resulted after the design
space exploration (screenshot
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mapping has been optimized in conformity with two design objectives: (1) end-to-
end delay in the system computed as the result of MPA analysis, which is an upper
bound of the actual end-to-end delay and (2) the cost of the system evaluated as
a sum of costs associated with the used processors, memories, and the bus. In the
experiments, a population size of 60 individuals has been chosen and the algorithm
has been executed for 50 generations. These parameters generally depend on the
complexity of the problem to solve. The obtained Pareto front is shown in Fig. 12,
consisting of 6 mapping solutions onto a different number of processors. The search
in this design space took about 2 hours.

For illustration purposes only, we employ a simple configuration with a small
number of processes that can be mapped in different ways onto the architecture and
can communicate via different hardware communication paths. However, a more
efficient implementation can be obtained if the same application is specified with
a scalable number of processes processing data in parallel. This would enlarge the
parallelism of the design but also the dimensionality of the design space. A more
complex design space exploration with the DOL framework is shown in [12], where
a scaled version of an MPEG-2 decoder has been mapped onto a tile-based hetero-
geneous architecture.

Other KPN flows, like Sesame in the Artemis project [11] that use exactly the
same optimization frameworks of PISA and SPEA2, report comparable parameters
and results for the design space exploration. However, their design space exploration
is considerably shorter, i.e. 5 s for a design with 8 processes, because they use a
much simpler additive performance model. Of course, for larger problem sizes all
the parameters will scale and the design space exploration can take much longer if
more accurate analysis methods, like MPA or simulation, are used. However, this is
an acceptable cost since designers are exploring the entire design space only once.

In the remainder of this section, a mapping of the MJPEG application onto a
3-tile MPARM system, that is, three ARM processors interconnected via a shared
AMBA bus, is considered. The resulting MPA model is shown in Fig. 13.
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Fig. 13 MPA model of MJPEG application mapped onto a 3-tile MPARM platform. Px are the five
processes of the MJPEG decoding pipeline that communicate via the Cy software channels.

To evaluate the efficiency of the design flow (i.e., the time spent in obtaining
results), Table 3 lists the durations of the different design steps for performance
analysis of the different design solutions. Several conclusions can be drawn:

• Automated software synthesis can be done fast. Actually, most of the time re-
quired to generate the functional simulation or the binaries for the target platform
is required to compile the generated source code rather than to generate this code.

• The table shows that timed simulation on the virtual platform is the most time-
consuming step in the design flow. Minimization of simulation time is thus
paramount and actually possible in a systematic design flow, as has been shown
above. Conversely, simulation time can become a major bottleneck in MPSoC
design when following a less systematic design flow requiring many design iter-
ations involving timed simulation.

• The generation and analysis of a system’s MPA model is a matter of seconds.
Note that similar times have been reported for alternative performance analysis
methods like trace-based simulation in the Artemis design flow, for instance.
While further reducing this time is desirable, it is a reasonable time frame for
performance analysis within a design space exploration loop.

• The one-time calibration to obtain the parameters for the MPA model takes
several seconds albeit being completely automated. Extracting these parameters
manually would be a major effort.

In order to evaluate the accuracy of MPA estimations, the performance bounds
computed with MPA are compared to actual (average-case behavior) quantities ob-
served during system simulation. The differences are in a range of 10-20%, which
is typical for a compositional performance analysis. Differences in the same range
have been observed for several systems in [33], for instance. There are two main rea-
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Table 3 Duration of different design steps in the MJPEG design, measured on a 1.86 GHz Intel
Pentium Mobile machine with 1 GB of RAM. The simulations were executed to decode a 31-frame
input bitstream encoded using the QVGA (320×240) YUV 444 format.

step duration

model calibration (one-time effort) functional simulation generation 42 s
functional simulation 3.6 s
synthesis (generation of binary) 4 s
simulation on MPARM 13550 s
log-file analysis and back-annotation 12 s

model generation 1 s
performance analysis based on generated model 2.5 s
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Fig. 14 Worst-case latency versus worst-case peak temperature for similar bindings but different
placements, of an MJPEG decoder evaluated on MPARM platform [50].

sons for these differences. First, several operators in the formal performance analy-
sis do not yield tight bounds. Second, the simulation of a complex system in general
cannot determine the actual worst-case and best-case behavior. The simulations on
the system level do not use exhaustive test patterns and do not cover all possible
corner cases in the interference through joint resources.

Moreover, to illustrate the connection between the worst-case chip temperature
and worst-case latency, we represent eight selected mapping configurations of the
MJPEG decoder application together with their worst-case chip temperature and
worst-case latency calculated in MPA. Interesting here is the effect of the the phys-
ical placement that cannot be ignored anymore. So even if the mapping is already
defined, the system designer might still optimize the system (i.e., reduce the tem-
perature) by selecting an appropriate physical placement. This is highlighted by
solution pairs where only the placement of the processing components has changed
but temperature differences of 8K can still appear [75].

Finally, the DOL framework itself is evaluated in terms of code size of the pro-
totype implementation. The DOL design flow and the associated tools are imple-
mented in Java. To give an indication about the size of the implementation, Table 4
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shows the code size of different parts of the design flow (excluding the plug-ins for
design space exploration and thermal analysis). One can see that apart from the tool-
internal representations of the system specification, the largest part is the MPA code
generator for performance analysis. The software synthesizers and the monitoring
for the MPA model calibration are comparatively small. Similar observations can be
made for other design flows, as well.

Table 4 Java code size of different parts of the DOL design flow.

part of design flow lines of code

DOL representation of system specifications 6200
functional simulation generator 4100
MPARM code generator 2100
MPA Matlab code generator 5000
log-file analysis of functional and timed simulation 1200

5 Concluding Remarks

The mapping of process networks onto multi-processor systems requires a system-
atic and automated design methodology. This chapter provides an overview over
different existing methods and tools, which are all starting from a general Kahn pro-
cess network (KPN) model of computation and are implementing the established
Y-chart approach. Due to fundamental properties of the Kahn model, many prob-
lems in the design process can be solved in an automated manner. Thus, the system
specification, synthesis, performance analysis, and design space exploration can be
implemented in a fully automated way.

After an overview over all these activities, this chapter provides a practical illus-
tration of their implementation in the distributed operation layer (DOL) framework.
The design steps followed by DOL are somewhat common to all the KPN flows.
What is typical to the DOL framework is the embedding of an accurate formal
performance analysis model into the design flow. This presents a clear advantage
over the standard simulation-based approaches employed for performance analy-
sis, which typically take more time to execute than a formal model and cannot offer
guarantees for (hard) real-time signal-processing applications, due to the incomplete
coverage of the design space.

Another key point is the need for a scalable design flow which allows to design
large and complex MPSOC systems, which can clearly be noticed from Table 2. As
soon as we are faced with more complex MPSoCs, this forthcoming difficulty needs
to be considered in all steps of the design trajectory. In particular, it will have an
impact at the system-level, where basic design decisions are taken. In this sense, the
Kahn model and design methods based on it are promising candidates due to the
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modular system specification. It offers a great potential for compositional (and fast)
performance analysis and design space exploration. By taking a closer look at the
DOL framework, it can be observed that it features a specification format that can
easily be scaled (i.e. provided by the XML and C basis), it includes a compositional
formal performance analysis in the design, and the optimization is done with the
support of modular tools such as EXPO and PISA. These features provide the basis
for scalable mappings and mapping optimizations.
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