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ADVERSARIAL LEAKAGE IN GAMES∗

NOGA ALON† , YUVAL EMEK‡ , MICHAL FELDMAN§, AND MOSHE TENNENHOLTZ¶

Abstract. While the minimax (or maximin) strategy has become the standard and most agreed-
upon solution for decision making in adversarial settings, as discussed in game theory, computer
science, and other disciplines, its power arises from the use of mixed strategies, also known as
probabilistic algorithms. Nevertheless, in adversarial settings we face the risk of information leakage
about the actual strategy instantiation. Hence, real robust algorithms should take information
leakage into account. In this paper we introduce the notion of adversarial leakage in games, namely,
the ability of a player to learn the value of b binary predicates about the strategy instantiation of
her opponent. Different leakage models are suggested and tight bounds on the effect of adversarial
leakage as a function of the level of leakage (captured by b) are established. The complexity of
computing optimal strategies under these adversarial leakage models is also addressed. Together,
our study introduces a new framework for robust decision making and provides rigorous fundamental
understanding of its properties.
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1. Introduction. Decision making is at the foundations of fields such as eco-
nomics, operations research, and artificial intelligence. The question of what action
should be taken by a decision maker when facing an uncertain environment, poten-
tially consisting of other decision makers, is a fundamental problem which has led to
a wide variety of models and solutions. The only type of situation for which this ques-
tion has had an agreed-upon answer is in the context of two-player zero-sum games.
This setting can model any situation in which a decision maker aims at maximizing
her guaranteed payoff. When mixed strategies are allowed, such desired behavior,
termed an agent’s maximin (or safety level) strategy, leads to a well-defined expected
payoff (known as the value of the game). Moreover, when presented explicitly in a
matrix form, the computation of a maximin strategy is polynomial (by solving a linear
program). Various equilibrium concepts have been considered in the game theoretic
literature, but none of them provides prescriptive advice to a decision maker which
will be as acceptable as the maximin strategy solution in adversarial settings. Since
the introduction of the study of two-person zero-sum games [24], maximin strategies
have received very little criticism (see [6] for an exception). Moreover, the safety level
strategy has been advocated for some non-zero-sum settings as well (see [20], following
observations by [5]).

Much of the power of a maximin strategy is associated with the use of mixed
strategies, also known as randomized algorithms. In such algorithms the randomiza-
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tion phase is assumed to be done in a private manner by the decision maker, and
no information about the instantiation selected in that phase is assumed to be re-
vealed. In reality, however, nothing is really private; for example, competitors will
always strive to obtain the private actions of a business, possibly by means of indus-
trial espionage [16] (see also [23]); hence, information leakage should be considered.
As a result, it may be of interest to study the effects of adversarial leakage, where
a limited amount of information on an agent’s instantiation of her mixed strategy
may leak in an adversarial manner. We believe that only by considering this situa-
tion will it be possible to construct robust strategies when acting in an adversarial
setting.

Information leakage appeared in game theory in the context of conditioning a
player’s strategy about the other player’s strategy [22, 14]; however, that work did
not consider the leakage of mixed strategy instantiations nor its effects on designing
robust algorithms in adversarial settings taking information leakage into account.
Other game theoretic papers whose focus is related to information leakage studied
purchasing noisy information [19], partial exposure in games with many players [9],
spies in matrix games [17], and settings with costly randomness [7] or computation
[21, 18, 10]. Another related topic is that of leakage-resilient cryptography [8], where
the goal is to design cryptographic protocols that remain secure even if a bounded
amount of information regarding the internal state leaks to the adversary.

Our model of adversarial leakage considers a two-player zero-sum game in strategic
form (matrix form), depicted by anm by nmatrixM : the MAX player (MAX) chooses
some row 1 ≤ i ≤ m of M and the MIN player (MIN) chooses some column 1 ≤ j ≤ n
of M ; the outcome of the game is then dictated by the corresponding entry Mi,j in
M . This outcome is viewed as the payoff that MAX receives from MIN. The focus
of the current paper is restricted to {0, 1}-matrices M . This is known to be a highly
applicable model, as it captures games in which a goal is either achieved or not.

We first study the unidirectional leakage model, where MAX is our decision maker
andMIN is the adversary. MAX chooses a mixed strategy, that is, a distribution vector
over her pure strategies. MIN may base her action on the value of b binary predicates
defined on MAX’s pure strategies; each such predicate is a Boolean formula on the set
of strategies whose value is determined according to the actual instantiation of MAX’s
mixed strategy. The parameter b can be thought of as the amount of information
leakage (or number of leaking bits) regarding the instance of MAX’s mixed strategy.
MAX would like to maximize her guaranteed expected payoff against any choice of
such b binary predicates.

Two settings are studied, distinguished by the information structure assumed in
them. Under the strong leakage setting, MAX chooses a mixed strategy, which is
observable by MIN, who can then act upon it in determining the b predicates. On
the other hand, under the weak leakage setting, MIN chooses the b predicates first,
and MAX can observe it and act upon it in choosing her mixed strategy. (Refer to
section 2 for formal definitions.)

Note that by von Neumann’s minimax theorem, if MIN is allowed to choose the b
predicates probabilistically, then weak leakage becomes equivalent to strong leakage in
terms of the outcome that MAX (and MIN) can guarantee. However, the information
structure we consider is such that MIN is restricted to deterministically choosing the
b predicates. This clearly provides MAX with a potential advantage (compared to the
strong leakage setting) and we are interested in understanding and quantifying this
advantage. Other intriguing questions arise in this setting of unidirectional adversarial
leakage: What would be the best mixed strategy for the MAX player? How well will
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the original maximin strategy of the game perform? What is the computational
complexity of finding the optimal strategy under information leakage?

We then turn to study a bidirectional leakage model. Here, we no longer assume
a decision maker/adversary dichotomy; instead, each player has access to the answers
of b binary predicates defined over the instantiation of her opponent’s mixed strategy.
To avoid a circular definition, we actually take the domain of these binary predicates
to be the source of randomness used by the opponent. The main questions we study
under this model are, Do two-player zero-sum games with bidirectional leakage admit
a value? How does the number b of leaking bits affect the answer to the previous
question?

Our results. For the strong unidirectional leakage, if the value of the game is
q = 1− ε (for small positive ε) and 2b is much smaller than 1/ε, then MAX can ensure
an outcome close to 1 (at least 1 − 2bε), and this is tight. To do so, she simply uses
the maximin strategy (that is, the optimal mixed strategy for the original game with
no predicates). On the other hand, if 2b is much bigger than 1/ε, then for every mixed

strategy of MAX, the MIN player can ensure an outcome close to zero (at most e−2bε).
Therefore, for every such game with value 1− ε, which is close to 1, a sharp transition
occurs at b which is about1 log(1/ε): if b is slightly smaller, the outcome stays close
to 1; if it is slightly larger, the outcome drops to nearly zero.

For games with value q bounded away from 1, even one bit enables MIN to square
the outcome and drop it to at most q2, and every additional bit squares the outcome
again. There are also examples showing that this is essentially tight. Finally, for any
fixed value q < 1, log logm + Oq(1) bits suffice to enable MIN to drop the outcome
to precisely 0.

The situation is different for weak unidirectional leakage. Clearly, here MAX is
in a better shape; hence if the value of the game is q = 1 − ε (for small positive ε),
MAX can still ensure an outcome close to 1 if the number of bits is much smaller
than log(1/ε) as in the setting of strong unidirectional leakage. For games with value
q bounded away from 1, however, there are examples in which she can do much better
than under strong unidirectional leakage and in fact can ensure no essential drop in
the outcome as long as the number of leaking bits is somewhat smaller than log logm.
More precisely, for any fixed value 0 < q < 1 and for every large polynomially related2

m,n, there are examples of games represented by a binary m by n matrix with value
q + o(1), so that even if b = log logm − O(1), MAX can ensure that the outcome
will stay roughly q. This should be contrasted with the strong leakage setting, where
every additional bit squares MAX’s outcome.

Somewhat surprisingly, once the number of leaking bits is slightly larger, that is,
b = log logm+O(1), the MIN player can already ensure a 0 outcome in any game with
a fixed value q < 1. Thus, in the examples above a sharp transition occurs at nearly
b = log logm under weak unidirectional leakage: nearly log logm bits have essentially
no effect on the outcome, while slightly more bits already suffice to drop the outcome
to 0.

Note that in contrast to leakage-free settings, where no advantage is gained by
observing the opponent’s mixed strategy (due to the minimax theorem), in settings
of adversarial leakage, such information can contribute a great deal to the informed
player, reflected by the advantage obtained by MAX in the weak leakage setting
compared with the strong leakage setting.

1Unless stated otherwise, all logarithms are in base 2.
2We say that m and n are polynomially related if there exists some constant c such that m ≤ nc

and n ≤ mc.
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With respect to computational complexity, computing the optimal strategy (for
the MAX player) against b strongly leaking bits is poly-time for any fixed b, while this
problem becomes NP-hard to compute, or even to approximate within any factor, for
a general b. Under weak unidirectional leakage, the optimal strategy of MAX can be
computed in polynomial time for every b. Computing the optimal leakage strategy of
MIN under the weak leakage setting is NP-hard for any b.

Our last result concerns the bidirectional leakage model. In this context, we show
that for every ε > 0, there exists some b0 = b0(ε) such that in any game with b ≥ b0
bidirectional leaking bits, MAX (resp., MIN) can guarantee an expected payoff of at
least q − ε (resp., at most q + ε), where q is the value of the game, even if she reveals
her strategy first.

It is important to point out that under the (strong and weak) unidirectional
leakage models, a game typically does not admit a value in the sense that if we
switch the roles of MAX and MIN so that MAX enjoys the benefit of having access to
information leaking from MIN’s strategy instantiation, then the expected payoff may
change dramatically. (Clearly, in that case MAX can always guarantee an expected
payoff of at least the value q.) This is in contrast to the bidirectional leakage model,
where our result essentially demonstrates the existence of a value.

2. Model. We consider two-player zero-sum games defined by an m by n matrix
M with {0, 1} entries,3 where the rows correspond to MAX’s pure strategies and the
columns correspond to MIN’s pure strategies: Mi,j is the payoff that MAX receives
from MIN if MAX and MIN play row i ∈ [m] and column j ∈ [n], respectively.4 The
matrix M is known to both players.

Unidirectional leakage. Given a matrix M and an integer b ≥ 0, we describe a
precise setting of adversarial strong unidirectional leakage, as follows:

(1) MAX chooses a distribution vector p = (p1, . . . , pm) on [m].
(2) MIN observes p and chooses a b-bit leakage function f : [m] → {0, 1}b.
(3) MAX realizes i ∈ [m] according to p, i.e., chooses row i with probability pi.
(4) MIN observes f(i) and chooses an action j ∈ [n].
(5) MAX receives a payoff of Mi,j from MIN.
In the strong unidirectional leakage setting, MIN knows MAX’s mixed strategy p

and may base the choice of the leakage function f on that knowledge. We would also
like to study the setting in which MIN is forced to choose the leakage function prior
to MAX’s choice of mixed strategy. This setting, referred to as weak unidirectional
leakage, is cast in the following description:

(1) MIN chooses a b-bit leakage function f : [m] → {0, 1}b.
(2) MAX observes f and chooses a distribution vector p = (p1, . . . , pm) on [m].
(3) MAX realizes i ∈ [m] according to p, i.e., chooses row i with probability pi.
(4) MIN observes p and f(i) and chooses an action j ∈ [n].
(5) MAX receives a payoff of Mi,j from MIN.
It will be convenient to formalize the choice of (pure) action made by MIN in

step (4) of both the strong and weak unidirectional leakage descriptions as a function
g : {0, 1}b → [n]. Note that MIN decides on g when it already knows the mixed
strategy p of MAX. This is less important under strong unidirectional leakage, where
it can be assumed that MIN chooses g simultaneously with her choice of f ; however,

3While we focus on the natural binary case, some of our results (specifically, Proposition 3.1 and
Theorem 5.1) hold for any matrix with entries in [0, 1] as well, while others become noninteresting
or are easily seen to be false.

4We use the standard notation [k] = {1, . . . , k}, where k is a positive integer.
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under weak unidirectional leakage the choice of g must be made at a later stage (when
MIN already knows p).

Given a matrix M , a nonnegative integer b, a distribution vector p on [m], a
function f : [m] → {0, 1}b, and a function g : {0, 1}b → [n], let

u(M, b,p, f, g) =
∑
i∈[m]

piMi,g(f(i)) =
∑

w∈{0,1}b

∑
i:f(i)=w

piMi,g(w)

denote the expected payoff of MAX in M with respect to b, p, f , and g. Denote

up(M, b) = min
f :[m]→{0,1}b and g:{0,1}b→[n]

u(M, b,p, f, g).

The (expected) payoff guaranteed by MAX in M against b unidirectional strongly
leaking bits is defined as5

vstrong(M, b) = max
p∈Δ(m)

up(M, b).

We denote by p∗
b a distribution vector that realizes vstrong(M, b), i.e., up∗

b
(M, b) =

vstrong(M, b). The (expected) payoff guaranteed by MAX inM against b unidirectional
weakly leaking bits is defined as

vweak(M, b) = min
f :[m]→{0,1}b

max
p∈Δ(m)

min
g:{0,1}b→[n]

u(M, b,p, f, g).

Observe that under this notation, vstrong(M, 0) = vweak(M, 0) is the classical value of
(the two-player zero-sum game defined by) M . We shall denote this value by v(M).

Bidirectional leakage. We now describe the bidirectional leakage model. An at-
tempt to use the action space of one player as the domain of the leakage function
of her opponent (as we did with the function f in the unidirectional setting) would
result in a circular definition as each player should base her choice of action on some
information regarding her opponent’s choice of action. To avoid this obstacle, we first
have to reformulate the way we address mixed strategies.

Let Rmax (resp., Rmin) be the source of randomness of MAX (resp., MIN) out of
which nature picks some element rmax (resp., rmin) uniformly at random and hands
it to MAX (resp., MIN); the random elements rmax and rmin are independent of each
other. A mixed strategy of MAX is therefore defined as a function from Rmax to
MAX’s action space [m], while a mixed strategy of MIN is defined as a function from
Rmin to MIN’s action space [n].6 It will be convenient to think of the sources of
randomness Rmax and Rmin as the continuous interval [0, 1]. As such, we consider
the elements rmax and rmin, randomly picked by nature, as infinite length bit strings
(standing for the binary representation of real numbers in [0, 1]). Having said that,
it is important to point out that the mixed strategies designed throughout this paper
use a finite number of random bits, so taking Rmax and Rmin to be sufficiently large
finite sets is, in that sense, just as good.

5Given some set S, we use the standard notation Δ(S) to denote the collection of all probability
distributions over S. For a positive integer k, we slightly abuse the notation and write Δ(k) instead
of Δ([k]) to denote the collection of all probability distributions over the set [k] = {1, . . . , k}.

6This alternative view of mixed strategies can be easily adapted to arbitrary games with any
number of players.
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Now, in a bidirectional leakage scenario, the strategy of each player is augmented
with a leakage function. Formally, the strategy of MAX with b bidirectional leaking
bits consists of a function fmax : Rmin → {0, 1}b and a function gmax : Rmax ×
{0, 1}b → [m], while the strategy of MIN with b bidirectional leaking bits consists
of a function fmin : Rmax → {0, 1}b and a function gmin : Rmin × {0, 1}b → [n].
MAX’s action is gmax(rmax, fmax(rmin)) and MIN’s action is gmin(rmin, fmin(rmax)),
where rmax and rmin are the elements randomly picked by nature from Rmax and
Rmin, respectively.

Remark. We could have, in fact, formulated the bidirectional leakage model with
a different number of leaking bits for each of the two players. However, this would have
complicated the model, the statement of the results, and the corresponding analysis
without contributing any additional meaningful insight.

3. Strong unidirectional leakage.
Games with high value. We first show that for any m by n matrix with {0, 1}

entries of value q = 1 − ε, the MAX player can guarantee herself at least a payoff of
1− 2bε. This can be done, in particular, by playing the maximin strategy.

Proposition 3.1. Let M be an m by n matrix with {0, 1} entries. Let q = 1− ε
be the value of the game defined by M , that is, v(M) = 1− ε. Then, for every b ≥ 0,
up∗

0
(M, b) ≥ 1− 2bε.

Proof. Let p∗
0 = (p1, . . . , pm). For every w ∈ {0, 1}b, let Sw = {i ∈ [m]|f(i) = w},

and let pw =
∑

i∈Sw pi. Fix some column j. Since 1 − ε is the value of the game, it
holds that for every w,

∑
i∈Sw piMi,j +

∑
i/∈Sw piMi,j ≥ 1− ε. As Mi,j ≤ 1 for every

i, j, we have
∑

i∈Sw piMi,j +
∑

i∈[m]\Sw pi ≥ 1 − ε. Substituting
∑

i/∈Sw pi = 1 − pw

and rearranging the last inequality yields

(1)
∑
i∈Sw

piMi,j ≥ pw − ε.

The expected payoff of MAX is given by the expression
∑

w∈{0,1}b

∑
i:f(i)=w pi ·

Mi,g(w) and the expected payoff of MAX conditioned on the event that some row i ∈
Sw is played is given by the expression

∑
i:f(i)=w

pi

pw ·Mi,g(w), which is at least 1
pw (p

w−
ε), by (1). Therefore the expected payoff of MAX is at least

∑
w∈{0,1}b pw 1

pw (p
w−ε) =

1− 2bε.

The above bound is tight, as established in the following proposition.
Proposition 3.2. For every ε > 0 and every b ≥ 0, there exists a matrix M with

{0, 1} entries so that (1) v(M) = 1− ε and (2) up∗
0
(M, b) = up∗

b
(M, b) = 1− 2bε.

Proof. Let n = 1/ε and consider the n by n matrix M in which Mi,i = 0 for every
i and Mi,j = 1 for every i �= j. From symmetry considerations, both the maximin
strategy and the optimal strategy against b leaking bits is the uniform distribution
over the rows. Let f be a function which imposes the following partition on the
rows: each one of the first 2b − 1 rows constitutes its own subset, and the remaining
rows constitute the last subset. In this case, if one of the first 2b − 1 rows is chosen
(each with probability ε), then MAX’s payoff is 0, while if one of the remaining rows
is chosen (with a total probability of 1 − (2b − 1)ε), then the payoff obtained by

the MAX player is
1
ε−2b

1
ε−(2b−1)

. The expected payoff of the MAX player is therefore

(1− (2b − 1)ε) · 1
ε
−2b

1
ε−(2b−1)

= 1− 2bε.



ADVERSARIAL LEAKAGE IN GAMES 369

Games with arbitrary value. The above two propositions essentially say that for
games with value q = 1−ε and b such that 2bε = o(1), MAX can guarantee a payoff of

about q2
b

by playing the maximin strategy, and this is optimal. The case of general q
and b, however, requires more work, and this is the focus of the following statement.

Theorem 3.3. Let M be an m by n matrix with {0, 1} entries. Let q be the
value of the game defined by M , that is, q = v(M). Then, for every b ≥ 0 and every

distribution vector p of the MAX player, up(M, b) ≤ q2
b

.
Proof. Put p(1) = p, and let j1 ∈ [n] be a pure strategy of MIN (a column

of M) ensuring an expected payoff of q1 ≤ q against the mixed strategy p(1) of
MAX. Such a pure strategy must exist since q is the value of the game. Define

S1 = {i ∈ [m] | Mi,j1 = 0}. It holds that∑i∈S1
p
(1)
i Mi,j1 +

∑
i∈[m]−S1

p
(1)
i Mi,j1 = q1,

hence
∑

i∈[m]−S1
p
(1)
i = q1.

Let p(2) be the distribution vector defined by restricting p(1) to the rows in
[m]− S1, namely,

p
(2)
i =

{
p
(1)
i /q1 if i ∈ [m]− S1,

0 otherwise.

Let j2 be a pure strategy of MIN ensuring an expected payoff of q2 ≤ q against the
mixed strategy p(2) of MAX. Once again, such a pure strategy must exist since q is
the value of the game. Define S2 = {i ∈ [m] − S1 | Mi,j2 = 0}. As before, it holds

that
∑

i∈S2
p
(2)
i Mi,j2 +

∑
i∈[m]−S1−S2

p
(2)
i Mi,j2 = q2, hence

∑
i∈[m]−S1−S2

p
(2)
i = q2.

Continuing in this manner for 2b steps, we obtain 2b pairwise disjoint subsets
S1, . . . , S2b of [m] with corresponding columns j1, . . . , j2b such that Mi,jk = 0 for
every 1 ≤ k ≤ 2b and i ∈ Sk. For convenience we index the words in {0, 1}b by
w1, . . . , w2b and fix

f(i) =

{
wk if 1 ≤ k < 2b and i ∈ Sk,
w2b if i /∈ ∪k<2bSk

and

g(wk) = jk for every 1 ≤ k ≤ 2b.

The above construction guarantees that when MAX plays according to p and MIN

follows f and g, the payoff is 1 with probability at most q1q2 · · · q2b ≤ q2
b

. It follows

that up(M, b) = q1 · · · q2b ≤ q2
b

as required.
Using Theorem 3.3, we show that with b = log logm + O(1) leaking bits, MIN

can always ensure a 0 outcome; this relies on the following lemma.
Lemma 3.4. Let M be an m by n matrix with {0, 1} entries, and let q be the value

of the game defined by M . If q2
b

< 1/m, then there exist functions f : [m] → {0, 1}b
and g : {0, 1}b → [n] such that Mi,g(f(i)) = 0 for every i ∈ [m].

Proof. Let p be the uniform distribution on [m]. Take f and g to be the functions
promised to MIN against p by Theorem 3.3, that is, if MAX plays according to p

and MIN follows f and g, then the expected payoff is at most q2
b

< 1/m. We argue
that, in fact, the expected payoff in this case must be 0. Indeed, since pi = 1/m for
every i ∈ [m], a positive expected payoff is possible only if it is at least 1/m, which
derives a contradiction. Therefore, for every w ∈ {0, 1}b and for every i ∈ [m] such
that f(i) = w, we must have Mi,g(w) = 0. The assertion follows.
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Clearly, if MIN plays according to the functions f and g promised by Lemma 3.4,
then the expected payoff drops to 0 regardless of the mixed strategy of MAX.

Corollary 3.5. Let M be an m by n matrix with {0, 1} entries, and let q be

the value of the game defined by M . If q2
b

< 1/m, then for every distribution vector
p of the MAX player, up(M, b) = 0. Therefore, for every fixed 0 < q < 1, taking
b = log logm+Oq(1) suffices for MIN to to ensure a 0 outcome.

Remark. The corollary is essentially the known simple fact (proved in [11, 13])
that the ratio between the fractional cover and the integer cover of a hypergraph with
m edges is at most lnm.

The following theorem shows that both Theorem 3.3 and Corollary 3.5 are essen-
tially tight.

Theorem 3.6. For every real 0 < q < 1, for every integer b ≥ 0, and for every

large polynomially related m and n satisfying q2
b

m > 2b logn, there exists an m by n
{0, 1}-matrix M that satisfies

(i) v(M) = q ± o(1), where the o(1)-term tends to 0 as m and n grow; and
(ii) if p = (p1, p2, . . . , pm) is the uniform distribution on the rows, then up(M, b) ≥

(1− o(1))q2
b

(and thus up(M, b) = (1± o(1))q2
b

, by Theorem 3.3).
In particular, for, say, m = n2 and b ≤ log logm−Θ(1), up(M, b) > 0.

Proof. LetM be a randomm by nmatrix with {0, 1}-entries obtained by choosing
each entry Mi,j , randomly and independently, to be 1 with probability q and 0 with
probability 1− q. We show that M satisfies the assertion of the theorem with positive
probability.

Since m,n are large and are polynomially related, almost surely (that is, with
probability that tends to 1 as m,n tend to infinity) every row of M has (1± o(1))qn
1-entries, and every column of M has (1 ± o(1))qm 1 entries. This follows easily
by the standard known estimates for Binomial distributions; see, for example, [4].
This implies that the value of the game is (1± o(1))q: indeed, if MAX (respectively,
MIN) plays according to the uniform distribution on the rows (resp., columns), then
it guarantees an expected payoff of at least (resp., at most) (1±o(1))q. Thus (i) holds
almost surely.

We establish the assertion by showing that (ii) holds with high probability as
well. For that purpose, we argue that for every choice of a set J ⊂ [n] of size
|J | = 2b, the number of indices i ∈ [m] so that Mi,j = 1 for all j ∈ J is, almost surely,

(1±o(1))q2
b

m. Indeed, for a fixed choice of a set J , the random variableX that counts
the number of such indices i is a Binomial random variable with parameters m and

q2
b

. Therefore the probability that X is not (1 ± o(1))q2
b

m decreases exponentially

with q2
b

m > 2b logn = log(n2b). The assertion is established by applying the union

bound over all
(
n
2b

)
< n2b choices of the set J .

Remark. Theorem 3.6 is proved using a probabilistic argument: we show that a
random matrix M satisfies the promise of the theorem with positive probability. In
Appendix A we present two explicit constructions of the desired matrixM using either
finite geometries or character sum estimates (Weil’s theorem [25]). In general, one can
use any construction of small sample spaces supporting nearly 2b-wise independent bi-
nary random variables to supply additional examples. Indeed, this guarantees that in
a random row, every subset of 2b entries appears nearly independent, and in particu-

lar, they are all 1 with probability close to q2
b

. (Recall that this is the main argument
in Theorem 3.6’s proof.) General constructions of small sample spaces supporting
nearly 2b-wise independent random variables are developed in [15, 2].
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4. Weak unidirectional leakage.
The adversarial weakness. Arbitrarily large matrices M with the property that

MIN can significantly decrease the expected payoff with a small number of leaking bits
are easy to construct even under the weak leakage setting as long as v(M) is bounded
away from 1. For example, if M is obtained from a constant size binary matrix M ′

(that does not admit any row of 1s) by replacing each 1-entry (resp., 0-entry) with an
arbitrarily large block of 1s (resp., 0s), then clearly, v(M) = v(M ′), i.e., a constant
value, whereas a constant number of leaking bits is sufficient for MIN to guarantee a
0 outcome. In that regard, the weak leakage setting is no different from the strong
leakage setting.

The interesting question, though, concerns the guarantees that hold for arbitrary
matrices, specifically those promised by Theorem 3.3 and Corollary 3.5. The following
result shows that in sharp contrast to the situation with the strong leakage setting,
under the weak leakage setting there are examples in which log logm − O(1) bits of
information do not enable the MIN player to gain any significant advantage.

Theorem 4.1. For every real q, 0 < q < 1, for every positive δ, and for all large
polynomially related n,m satisfying

[(
10

δ

)]n2b
< δ−m/

√
n and

[
q(1− q)

10

]2b
≥ 1√

n
,

there is an m by n matrix M with {0, 1}-entries so that the value v(M) of the game
it determines is q ± o(1) and vweak(M, b) ≥ q − δ. In particular, if n = m2 and
b = log logm−Θ(1), vweak(M, b) is essentially equal to v(M).

The proof of the above theorem is more complicated than the ones in the previous
section and requires several preparations. We need the following known result.

Lemma 4.2 (see [3, Lemma 3.2]). Let Y be a random variable with expectation
E[Y ] = 0, variance E[Y 2], and fourth moment E[Y 4] ≤ k(E[Y 2])2, where k is a
positive real. Then P[Y ≥ 0] ≥ 1

24/3k
.

Using the above lemma, we prove the following.
Lemma 4.3. Consider some real 0 < q < 1 and let p = (p1, p2, . . . , pn) be a

distribution vector on [n]. Let X1, X2, . . . , Xn be independent identically distributed
indicator random variables, where each Xj is 1 with probability q (and 0 with prob-
ability 1 − q). Define X =

∑n
j=1 Xjpj. Then the probability that X is at least its

expectation (which is q) is bigger than q(1−q)
10 .

Proof. Define Yj = Xjpj − E[Xjpj ] = Xjpj − qpj, and Y =
∑

j Yj . By linearity
of expectation, Y = X − E[X ], and E[Y ] = 0. In order to apply the previous lemma,
we compute the variance of Y and estimate its fourth moment:

Var[Y ] =
∑
j

Var[Yj ]

=
∑
j

[q(1 − q)2p2j + (1− q)q2p2j ]

= q(1 − q)
∑
j

p2j ;
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similarly,

E[Y 4] =
∑
j

E[Y 4
j ] + 6

∑
i<j

E[Y 2
i ]E[Y

2
j ]

=
∑
j

[q(1 − q)4p4j + (1− q)q4p4j ] + 6
∑
i<j

q2(1− q)2p2i p
2
j

≤ q(1− q)
∑
j

p4j + 6
∑
i<j

q2(1− q)2p2i p
2
j

≤ 1

q(1 − q)

⎡
⎣q2(1− q)2

∑
j

p4j + 6
∑
i<j

q2(1− q)2p2i p
2
j

⎤
⎦

≤ 3

q(1 − q)
(Var[Y ])2.

The desired result now follows from Lemma 4.2 (using the fact that 24/3 · 3 <
10).

Remark. For q ≤ 1/2 the estimate in the lemma is tight, up to a constant factor.
Indeed, for p = (1, 0, 0, . . . , 0) the probability that X is at least q is precisely the
probability that X1 = 1, which is q. For q = 1/k with k being an integer there is
a simpler argument showing that in this case the probability that X is at least its
expectation is at least q (which is precisely tight). The idea is to choose the random
vector (X1, X2, . . . , Xn) by first choosing, for each 1 ≤ j ≤ n, a random uniform
number nj in {1, 2, , . . . , k} with all choices being independent and then by selecting a
uniform random Z ∈ {1, 2, . . . , k}, defining Xj to be 1 if and only if nj = Z. Since the
sum

∑
Z∈[k](

∑
j:nj=Z pj) = 1, it follows that for each choice of the values nj, there

is at least one Z so that
∑

j:nj=Z pj ≥ 1/k, and therefore the probability that the

obtained random sum is at least q = 1/k is at least 1/k, as claimed. Note that for
some values of q the probability that X is at least q is strictly smaller than q. Indeed,
for example, if q = 0.501 and the vector p is (0.5, 0.5, 0, 0, . . . , 0), then the probability
that X is at least q is the probability that X1 = X2 = 1, which is q2, that is, roughly
q/2.

The next ingredient required for our proof is a special case of the FKG inequality
(see, e.g., [4, Chapter 6]). Let U be the collection of all length d binary vectors.
Consider the following natural partial order on U : for two vectors x, y ∈ U , the
relation x ≤ y holds if x(i) ≤ y(i) for every i ∈ [d]. A binary function f : U → {0, 1}
is said to be increasing if f(x) = 1 implies f(y) = 1 for every two vectors x, y ∈ U
satisfying x ≤ y.

Lemma 4.4 (see [4]). Let F be a finite collection of increasing binary functions
on U and let x be a vector chosen randomly from U by picking each coordinate x(i)
according to some specified probability distribution Pi, independently of all other co-
ordinates. Then

Px

⎡
⎣∏
f∈F

f(x) = 1

⎤
⎦ ≥

∏
f∈F

Px [f(x) = 1] .

We are now ready to establish the following corollary.
Corollary 4.5. Let w be a random vector of length n with {0, 1} entries obtained

by selecting each entry, randomly and independently, to be 1 with probability q and 0
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with probability 1− q. Let P be any fixed set of distribution vectors of length n. Then,
the probability that the inner product of the vector w with each of the vectors p ∈ P

is at least q is at least ( q(1−q)
10 )|P|.

Proof. The proof relies on the following application of Lemma 4.4. Take d = n.
Define the probability distribution Pi, i ∈ [d], so that 1 is chosen with probability q
and 0 is chosen with probability 1− q and identify the random vector x ∈ U from the
statement of Lemma 4.4 with the random vector w ∈ {0, 1}n from the statement of
the current lemma. For each p ∈ P, define the binary function fp : {0, 1}n → {0, 1}
by setting

fp(v) =

{
1 if 〈v,p〉 ≥ q,
0 otherwise

for every vector v ∈ {0, 1}n, observing that all functions fp are increasing. Applying
Lemma 4.4, we conclude that

Pw∈{0,1}n

⎡
⎣∏
p∈P

fp(w) = 1

⎤
⎦ ≥

∏
p∈P

Pw∈{0,1}n [fp(w) = 1] ,

that is, the probability that the inner product of w with each of the vectors p ∈ P is
at least q is greater than or equal to the product of these probabilities. But according
to Lemma 4.3, for every p ∈ P, the probability that the inner product of w with p is

at least q is greater than q(1−q)
10 . The desired result follows.

We are now ready to state the proof of Theorem 4.1.
Proof of Theorem 4.1. Let M be a random m by n matrix with {0, 1}-entries

obtained by choosing each entry Mi,j , randomly and independently, to be 1 with
probability q and 0 with probability 1− q. As specified in the proof of Theorem 3.6,
the value of this game is almost surely v(M) = q ± o(1).

Recall that in a weak unidirectional leakage setting, MIN first chooses a function
f : [m] → {0, 1}b. This can be thought of as partitioning the rows ofM into 2b disjoint
subsets, each defining a submatrix of M—denote these submatrices by A1, . . . , A2b .
Each submatrix Ai corresponds to a two-player zero-sum game by its own right.
Given the choice of f , the expected payoff guaranteed by MAX in M against b weakly
leaking bits is vweak(M, b) = max1≤i≤2b v(Ai). Therefore, together with the choice of
the function f , MIN essentially chooses a set P = {p1, . . . ,p2b} of distribution vectors
of length n, where pi realizes v(Ai). In order to show that vweak(M, b) ≥ q − δ, it
suffices to prove that in each submatrix Ai, there is some row ri such that the inner
product of ri and pi is at least q− δ. This will be established by arguing that almost
surely, for every choice of a set P, there exists some row Mi in M so that Mi ·p ≥ q−δ
for every p ∈ P. To that end, we take some δ-net N of distributions of length n with
respect to the �1-norm and show that almost surely, for every P ⊆ N , |P| = 2b, there
exists some row Mi in M so that Mi · p ≥ q for every p ∈ P.

It is a standard fact that there exists a δ-net N of distribution vectors of length n

with respect to the �1-norm so that |N | ≤ ( 10δ )n. This δ-net exhibits at most
(
10
δ

)n2b
ways to choose a subset of size 2b. Fix some set P ⊆ N , |P| = 2b, and fix some row
Mi in M . By the last corollary, the probability that Mi · p ≥ q for every p ∈ P is at

least ( q(1−q)
10 )2

b

. Hence, the probability that none of the m rows ensures MAX a payoff

of at least q with each of the mixed strategies p ∈ P is at most (1 − ( q(1−q)
10 )2

b

)m.

Applying the union bound, with probability at least 1− (1− ( q(1−q)
10 )2

b

)m(10δ )
n2b , for
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every set P ⊆ N , |P| = 2b, there exists some row Mi in M such that Mi · p ≥ q
for every p ∈ P. The assertion follows by applying the inequalities specified in the
statement of the theorem.

Paley games. The proof of Theorem 4.1 relies on a probabilistically constructed
matrix M ∈ {0, 1}m×n that satisfies the following property almost surely. For any
collection P of 2b distribution vectors of length n, there exists some i ∈ [m] such that
for every distribution vector p ∈ P, the inner product of the ith row in M and p is
almost as high as the value v(M) of the game defined by M . This result raises two
questions. First, in light of the bidirectional leakage model discussed in section 6,
does there exist such a matrix M with a similar guarantee for both MAX and MIN?
Second, does there exist an explicit construction of such a matrix M? It turns out
that these two questions can be answered in the affirmative.

Let n be an odd prime, let Zn denote the finite field with n elements, and let χ(x)
denote the quadratic character function defined on Zn, namely, χ(0) = 0; χ(x) = 1
if x �= 0 is a quadratic residue modulo n and χ(x) = −1 if x �= 0 is a quadratic
nonresidue. Let A = An denote the n by n matrix defined by A[i, j] = χ(i− j). Note
that An is symmetric if n ≡ 1 (mod 4) and An is antisymmetric if n ≡ 3 (mod 4).

Let M = Mn ∈ {0, 1}n×n be the matrix obtained from An by arbitrarily changing
the 0-entries on the diagonal of A to be either 1 or −1 and then setting M [i, j] =
A[i,j]+1

2 for every i, j ∈ [n]; in other words, the −1-entries of A turn into 0-entries in
M and the 1-entries in A turn into 1-entries in M . As the number of 0-entries and
the number of 1-entries in each row and each column of M are (n ± 1)/2, it follows
that the value v(M) of M is 1/2± o(1).

Theorem 4.6. For every integer B ≥ 1 and any real ε > 0, there is an n0 =
n0(ε, B) so that the following holds for every prime n > n0. For any collection P of
B distribution vectors of length n, there is a row of M whose inner product with each
of the vectors in P is at least 1/2 − ε and a column of M whose inner product with
each of the vectors in P is at most 1/2 + ε.

In order to establish Theorem 4.6, we first have to state the following two lemmas.
Lemma 4.7. Every vector r = (r1, . . . , rn) of nonnegative reals whose sum of

coordinates is at most 1 satisfies ||Ar||22 ≤ n ·maxi{ri}.
Proof. Note that AtA = nI − J , where I is the identity matrix of dimension n

and J is the n× n all 1 matrix. Therefore,

‖Ar‖22 = rtAtAr = rt(nI − J)r =

n∑
i=1

nr2i −
(

n∑
i=1

ri

)2

≤ n ·max
i

{ri} ·
(

n∑
i=1

ri

)
≤ n ·max

i
{ri}.

The assertion follows.
The next lemma is a known consequence of Weil’s theorem [25]; see, e.g., [1] for

a proof.
Lemma 4.8. For any positive integer k ≤ 0.5 logn, any subset K ⊂ [n] of size

|K| = k, and any values δj ∈ {−1, 1} for j ∈ K, the number of rows i of A so that
A[i, j] = δj for all j ∈ K deviates from n

2k by at most k · n1/2.
We are now ready to establish Theorem 4.6.
Proof of Theorem 4.6. We prove the existence of a row with the required proper-

ties; the proof of existence of a column as needed is essentially identical. The proof
relies on showing that for any collection P as in the statement of the theorem, there
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is a row of A = An whose inner product with each of the vectors in P is at least −ε.
The assertion follows by the construction of M .

Given a collection P as in the statement of the theorem, let n be some sufficiently
large prime. Specifically, we assume that n is sufficiently large with respect to B and
ε; the exact dependency on B and ε will be revealed in the course of the proof. Let
Q = � logn

2B �. For simplicity, we omit all floor signs from now on; it is easy to check that
this is not essential. For each vector p = (p1, . . . , pn) ∈ P let K(p) be the (possibly
empty) set of coordinates j for which pj ≥ 1

Q . Note that |K(p)| ≤ Q for every p ∈ P.

Let plarge be the vector obtained from p by keeping its coordinates pj with j ∈ K(p)
and replacing each of its other coordinates by 0; let psmall = p− plarge.

Fix S = ∪p∈PK(p) and recall that plargej = 0 for every p ∈ P and j /∈ S. Let

{−1, 1}S be the set of all vectors over {−1, 1} with |S| coordinates identified with
the indices in S and consider some random vector w ∈ {−1, 1}S. Given an arbitrary
vector p ∈ P, the probability that

(2)
∑
j∈S

w(j) · plargej ≥ 0

is at least 1/2 since from any pair consisting of a vector w ∈ {−1, 1}S and its additive
inverse, at least one of the vectors satisfies (2).

We now apply Lemma 4.4 as follows. Put d = |S|. Take the probability dis-
tribution Pi, i ∈ [d], to be the uniform distribution over {−1, 1} and identify the
random vector x ∈ U from the statement of Lemma 4.4 with the aforementioned
random vector w ∈ {−1, 1}S. For each vector p ∈ P, define the binary function
fp : {−1, 1}S → {0, 1} by setting

fp(v) =

{
1 if

∑
j∈S v(j) · plargej ≥ 0,

0 otherwise

for every vector v ∈ {−1, 1}S, observing that all functions fp are increasing. Applying
Lemma 4.4, we conclude that

Pw∈{−1,1}S

⎡
⎣∏
p∈P

fp(w) = 1

⎤
⎦ ≥

∏
p∈P

Pw∈{−1,1}S [fp(w) = 1] ,

that is, the probability that w satisfies (2) with the vector plarge for all p ∈ P is at
least 1

2B
. We refer to such a vector w ∈ {−1, 1}S as a good vector. Thus, there exist

at least 2|S|−B good vectors.
A row Ai of A is said to be good if there exists some good vector w ∈ {−1, 1}S such

that Ai agrees with w on the coordinates in S. Since |S| ≤ QB ≤ log(n)/2, Lemma 4.8
guarantees that each good vector w ∈ {−1, 1}S contributes at least n

2|S| −|S|n1/2 good
rows, which sums up to at least

2|S|−B
( n

2|S| − |S|n1/2
)
=

n

2B
− 2QB−BQBn1/2 >

n

2B+1

good rows, where the last inequality holds provided that n is sufficiently large.
Lemma 4.7 implies that

∑
p∈P

∑
i∈[n]

〈Ai, p
small〉2 =

∑
p∈P

‖Apsmall‖22 ≤ Bn

Q
,
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and thus there is a good row Ai so that

∑
p∈P

〈Ai, p
small〉2 ≤ Bn/Q

n/2B+1
=

B2B+1

Q
=

4B2 · 2B+1

log n
.

The last quantity is at most ε2 provided n is sufficiently large, hence 〈Ai, p
small〉 ≥ −ε

for all p ∈ P. The proof is completed by recalling that 〈Ai, p
large〉 ≥ 0 as Ai is a good

row.
A slightly increased leakage. Somewhat surprisingly, even under the weak uni-

directional leakage setting, although there are examples in which the MIN player
cannot decrease the expected payoff by much using at most log logm − O(1) bits of
information, if she is allowed to use log logm+O(1) bits, she can always decrease the
expected payoff to 0. This is described in the next (simple) result, whose proof follows
directly from Lemma 3.4. Together with Theorem 4.1, this exhibits an unexpected
sharp phase transition at b = log logm.

Theorem 4.9. Let M be an m by n matrix with {0, 1} entries, and let q be the

value of the game defined by M . If q2
b

< 1/m, then vweak(M, b) = 0. Therefore, for
every fixed 0 < q < 1, taking b = log logm + Oq(1) suffices for MIN to ensure a 0
outcome, even under the weak unidirectional leakage setting.

5. Unidirectional leakage—optimal strategy computation. In this section
we study the complexity of various computations in the adversarial unidirectional
leakage model. We begin with a simple example of a {0, 1} matrix M with a maximin
strategy p∗

0 that satisfies (i) up∗
0
(M, 0) = 1/2 and (ii) up∗

0
(M, 1) = 0. On the other

hand, there exists another mixed strategy p of MAX that satisfies (i) up(M, 0) = 3/7
and (ii) up∗

1
(M, 1) ≥ 1/7. This shows that playing the maximin strategy may be a

naive behavior for b > 0 and hence motivates the computation of better strategies.
The matrix M showing the above is of dimension 9 × 14 and is depicted in Table 1.
The main ingredient in the construction is a 7 by 7 matrix T7 with {0, 1} entries that
satisfies the following properties: (1) every row and every column of T7 contain exactly
three 1-entries, and (2) for every choice of 1 ≤ j ≤ j′ ≤ 7, there exists some 1 ≤ i ≤ 7
such that Mi,j = Mi,j′ = 1. (Refer to Example 1 in Appendix A.) Playing the
first two rows with probability 1/2 each yields an expected payoff of 1/2 for MAX.
One can easily verify that this is a unique optimal strategy when b = 0, while its
expected payoff is clearly 0 when b = 1. Yet, by playing the uniform distribution on
the bottom seven rows, MAX ensures an expected payoff of 3/7 when b = 0 and an
expected payoff of at least 1/7 when b = 1.

MAX’s optimal strategy. We now turn to consider the computational complexity
of finding the optimal strategy for the MAX player under the strong leakage setting.
The following theorem shows that computing the optimal strategy against b bits is
poly-time for any fixed b.

Theorem 5.1. Given an m by n matrix M with {0, 1} entries and a fixed b ≥ 0,
computing the optimal strategy against b strongly leaking bits (p∗

b) is poly-time.

Table 1

M ∈ {0, 1}9×14 of value 1/2, satisfying (i) up∗
0
(M, 1) = 0 and (ii) up∗

1
(M, 1) ≥ 1/7.

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
T7 T7



ADVERSARIAL LEAKAGE IN GAMES 377

Proof. An optimal strategy p∗
b = (p1, . . . , pm) can be computed by solving the

following linear program:

maximize z s.t.∑
w∈{0,1}b

∑
i:f(i)=w

piMi,g(w) ≥ z ∀f : [m] → {0, 1}b, ∀g : {0, 1}b → [n],

∑
i∈[m]

pi = 1,

pi ≥ 0 ∀i ∈ [m].

Since there are 2bm possible functions f and n2b possible functions g, this linear
program admits a polynomial number of variables but an exponential number of con-
straints. However, a closer analysis shows that it can be rewritten with a polynomial
number of constraints.

The composition of f and g is essentially a mapping h : [m] → [n] with image of
cardinality at most 2b. Fixing some subset J ⊆ [n], |J | ≤ 2b, it is easy to compute
a mapping hJ that minimizes the expected payoff of MAX over all mappings h with
image J : hJ simply maps each row i ∈ [m] to a column j ∈ J that minimizes Mi,j .
Therefore an optimal strategy p∗

b can be computed by solving the linear program

maximize z s.t.∑
j∈J

∑
i:hJ (i)=j

piMi,j ≥ z ∀J ⊆ [n], |J | ≤ 2b,(3)

∑
i∈[m]

pi = 1,

pi ≥ 0 ∀i ∈ [m],

whose size is polynomial as long as b is a constant.
We next show that for general b, computing the optimal strategy against b bits is

NP-hard. Moreover, we show that it is NP-hard to approximate the expected payoff
guaranteed by MAX to within any factor.

Theorem 5.2. Given an m by n matrix M with {0, 1} entries, it is NP-hard to
approximate vstrong(M, b) by any factor under the strong leakage setting.

Proof. We show that given anm by nmatrixM with {0, 1} entries and some b ≥ 0,
it is NP-hard to decide whether vstrong(M, b) > 0. This is done by reduction from set
cover (SC). An instance of SC is composed of a finite set of elements U = {1, . . . ,m}, a
collection C = {C1, . . . , Cr} of subsets of U and an integer k. The question is whether
there is a subcollection C′ ⊆ C, |C′| ≤ k, such that every element in U belongs to at
least one member of C′.

Given an instance of SC , 〈U, C, k〉, we construct the following instance of our
problem. Let M be a binary matrix with m = |U | rows and n = r columns such that
Mi,j = 0 ⇔ i ∈ Cj . Fix b = log k. We show that there is a set cover of size at most k
if and only if vstrong(M, b) = 0.

Sufficiency. Suppose the size of the set cover is greater than k. Then, we
show that taking the uniform distribution over the whole action set (i.e., setting
pi =

1
m ∀i ∈ [m]) yields vstrong(M, b) > 0.
Consider inequality (3) and let p be the uniform distribution as described above.

For every choice of J ⊆ [n], the left-hand side of the inequality is composed of a finite
set of summands. In order to show that the obtained payoff is greater than zero, it
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is sufficient to show that at least one summand is greater than zero. Indeed, since
the set cover is greater than k = 2b, there must exist some row i ∈ [m], call it i′,
such that Mi′,j = 1 for every j ∈ J , and also p(i′) > 0 (since p has a full support).
Consequently, vstrong(M, b) > 0.

Necessity. Suppose there exists a set cover of size at most k = 2b. Then, there is
a set of columns S, |S| ≤ 2b, such that for every i ∈ [m] there exists j ∈ |S| for which
Mi,j = 0. Let g be a function that maps every w ∈ {0, 1}b to a different column in S
(arbitrarily). By the choice of S, it must hold that for every i ∈ [m], Mi,g(fg(i)) = 0.
Therefore, for every distribution vector p, every summand in inequality (3) equals
zero. Consequently, vstrong(M, b) = 0.

In contrast to the last theorem, under the weak leakage setting, computing the
optimal strategy for a given f : [m] → {0, 1}b is trivially poly-time: For every w ∈
{0, 1}b, let Sw = {i : f(i) = w}, and let Mw denote the submatrix Mw ∈ R

|Sw|×n

induced by Sw. MAX will choose w that maximizes v(Mw) and play the corresponding
maximin strategy.

MIN’s optimal strategy. Finally, we consider the computational complexity of
finding the optimal strategy (i.e., the optimal f function) for MIN under the weak
leakage setting. For a general b, the exact same reduction from set cover, presented
in the proof of Theorem 5.2, shows that computing the optimal f function is NP-
hard and that it is NP-hard to find an f function that approximates the optimal
expected payoff (for MIN) within any factor. We next show that given an integer
matrix, computing the optimal f function (for MIN) is NP-hard for any number b
of weakly leaking bits. The following theorem establishes the NP-hardness of this
problem under a single bit. This proof can be easily extended to any b.

Theorem 5.3. Given an m by n integer matrix M and some real 0 < v < 1, it
is NP-hard to determine whether MIN can guarantee an expected payoff of at most v,
even under a single weakly leaking bit.

Proof. An expected payoff of at most v can be guaranteed by MIN if and only if
there exists a pair of probability distributions p1,p2 ∈ Δ(n) so that for every row Mi

of M , the inner product of Mi with either p1 or p2 is at most v, i.e., either Mi ·p1 ≤ v
or Mi · p2 ≤ v. (To see the correctness of the last statement, refer to the proof of
Theorem 4.1.)

We show that given an m by n matrix M and an integer v, it is NP-hard to
determine whether M admits a pair of probability distributions satisfying the last
requirement. This is done by a reduction from balanced 3-uniform hypergraph 2-
coloring (BH2C). An instance of BH2C is composed of a 3-uniform hypergraph H =
(V,E), where V = {u1, . . . , u2k} is the set of vertices and E is the set of edges. Every
edge e ∈ E is composed of a set of three vertices, denoted Ve. A 2-coloring function
is denoted by c : V → {1, 2}, mapping each vertex to either 1 or 2. The question is
whether there exists a 2-coloring function c such that no edge of H is monochromatic
and exactly k vertices are colored with each color.

It is well known that the problem of deciding whether a 3-uniform hypergraph
G is 2-colorable is NP-complete (see [12]), and a moment’s reflection shows that a
vertex disjoint union of two copies of G has a balanced 2-coloring if and only if G has
a 2-coloring.

Given an instance of BH2C, H = (V,E), we construct a matrixM with n = 2k+2
columns and m = 2|E|+ 2k + 2 rows. Columns j = 1, . . . , 2k correspond to vertices
u1, . . . , u2k, respectively. As for the rows, the first 2k rows correspond to the vertices
and the next 2|E| rows correspond to the edges (two for each edge). The entries of
M are given below.
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For i = 1, . . . , 2k, Mi,i = 2 and Mi,j = 6k+2 for j �= i. Rows i = 2k+1, . . . , 2k+
2|E| correspond to the edges, two for each edge. For both rows i that correspond to
some edge e: for 1 ≤ j ≤ 2k, Mi,j = 2 if uj ∈ Ve and Mi,j = 6k + 2 if uj ∈ V \ Ve.
As for the last two columns, if i is the first row corresponding to the edge, then
Mi,2k+1 = 6k+2 and Mi,2k+2 = 12k, and otherwise it is reversed; i.e., Mi,2k+1 = 12k
and Mi,2k+2 = 6k + 2. Finally, in the last two rows, all the entries equal 12k except
the following two entries: M2k+2|E|+1,2k+1 = 3k and M2k+2|E|+2,2k+2 = 3k.

We show that H admits a balanced 2-coloring if and only if there exists a pair
of probability distributions p1,p2 such that for every i ∈ [m] either Mi · p1 ≤ 6k or
Mi · p2 ≤ 6k.

Necessity. Suppose H admits a balanced 2-coloring, and let V1, V2 denote the
respective sets of vertices colored 1 and 2, i.e., V1 = {u ∈ V : c(u) = 1} and V2 =
{u ∈ V : c(u) = 2}. We construct the required pair of probability distributions p1,p2

as follows. p1
j = 1/3k for every j such that uj ∈ V1, p

1
j = 0 for every j such that

uj ∈ V2 and for j = 2k + 2, and p1
2k+1 = 2/3. Similarly, p2

j = 1/3k for every j
such that uj ∈ V2, p

2
j = 0 for every j such that uj ∈ V1 and for j = 2k + 1, and

p2
2k+2 = 2/3. We show that for every row i ∈ [m], either Mi ·p1 ≤ 6k orMi ·p2 ≤ 6k.
Consider first rows i = 1, . . . , 2k corresponding to the 2k vertices. If ui ∈ V1,

then Mi · p1 = 1/3k · 2 + (1− 1/3k) · (6k+2) = 6k. Otherwise, ui ∈ V2 and similarly
Mi · p2 = 6k.

Consider next a row i that corresponds to edge e. Since every edge has at least
one vertex of each color and Mi,j = 2 for every j such that uj ∈ Ve, then for every
� ∈ {1, 2}, there exists 1 ≤ j ≤ 2k such that p�

j = 1/3k and Mi,j = 2. If i is odd,
then Mi,2k+1 = 6k+2 and it follows that Mi ·p1 ≤ 1/3k ·2+(1−1/3k) ·(6k+2) = 6k.
Otherwise, Mi,2k+2 = 6k + 2, and we similarly have Mi · p2 ≤ 6k.

Finally, for the last two rows, M2k+2|E|+1 · p1 = 2/3 · 3k + 1/3 · 12k = 6k, and
similarly M2k+2|E|+2 · p2 = 6k. This establishes necessity.

Sufficiency. Suppose there exists a pair of probability distributions p1,p2 ∈
Δ(n) such that for every i ∈ [m] either Mi · p1 ≤ 6k or Mi · p2 ≤ 6k. Then, we
construct a balanced 2-coloring of H as follows.

Suppose without loss of generality that p1 satisfies M2k+2|E|+1 ·p1 ≤ 6k. Simple
arithmetic reveals that p1

2k+1 ≥ 2/3. Similar reasoning for row i = 2k + 2|E| + 2
implies that for some � ∈ {1, 2} it must hold that p�

2k+2 ≥ 2/3, but since p1
2k+1 ≥

2/3, it follows that p2
2k+2 ≥ 2/3.

Consider next a row i ∈ {1, . . . , 2k}. Since there exists an � ∈ {1, 2} such that
Mi · p� ≤ 6k, p�

i should satisfy p�
i · 2 + (1 − p�

i) · (6k + 2) ≤ 6k, implying that for
every i ∈ {1, . . . , 2k}, there exists an � ∈ {1, 2} such that p�

i ≥ 1/3k. Combining
this with the inequalities p1

2k+1 ≥ 2/3 and p2
2k+2 ≥ 2/3 we have that p1 and p2

essentially partition the indices j = 1, . . . , 2k into two disjoint equal-size sets X1, X2

such that p1
j = 1/3k for every j ∈ X1 and p2

j = 1/3k for every j ∈ X2. In addition,
p1

2k+1 = 2/3, p2
2k+2 = 2/3, and all other entries are zero.

Consider the following coloring. For i = 1, . . . , 2k, if i ∈ X1, then c(ui) = 1; else
(i.e., if i ∈ X2), c(ui) = 2. c is balanced since |X1| = |X2| = k. It remains to show
that none of the edges is monochromatic. We show that for every edge e, there exists
u ∈ Ve such that c(u) = 1. One can analogously show that for every edge e, there
exists u ∈ Ve such that c(u) = 2.

Suppose toward contradiction that there exists an edge e such that c(uj) = 2 for all
j such that uj ∈ Ve. This implies that p2

j = 1/3k for all such j. Consider the odd row
i corresponding to edge e (i.e., row i in which Mi,2k+1 = 6k + 2 and Mi,2k+2 = 12k).
It holds that Mi · p2 ≥ 2/3 · 12k = 8k > 6k and Mi · p1 = 6k + 2 > 6k. That is, the
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inner product of row Mi with both p1 and p2 is greater than 6k, in contradiction.
It follows that every edge has at least one vertex colored in 1. This concludes the
proof.

6. Bidirectional leakage. In this section we show that under the bidirectional
leakage model, if b is a large constant, then both players can guarantee a payoff very
close to that of the original game.

Theorem 6.1. For every small ε > 0, there exists some b0 = b0(ε) so that the
following hold for every m, n, and M ∈ {0, 1}m×n:

(1) There exists a strategy of MAX consisting of a function fmax : Rmin → {0, 1}b
and a function gmax : Rmax×{0, 1}b → [m] so that for every strategy of MIN consisting
of a function fmin : Rmax → {0, 1}b and a function gmin : Rmin × {0, 1}b → [n], the
expected payoff of the game played on M with b ≥ b0 bidirectional leaking bits is at
least v(M)− ε.

(2) There exists a strategy of MIN consisting of a function fmin : Rmax → {0, 1}b
and a function gmin : Rmin×{0, 1}b → [n] so that for every strategy of MAX consisting
of a function fmax : Rmin → {0, 1}b and a function gmax : Rmax × {0, 1}b → [m], the
expected payoff of the game played on M with b ≥ b0 bidirectional leaking bits is at
most v(M) + ε.

We will soon prove Theorem 6.1, but first let us introduce the following notation.
Given some probability distribution p = (p1, . . . , pn), let H(p) denote the entropy
of p, defined as H(p) = −∑n

i=1 pi log(pi). Given two probability distributions p =
(p1, . . . , pn) and p′ = (p′1, . . . , p

′
n), let d(p,p

′) denote the variation distance between
p and p′, defined as

∑n
i=1 |pi − p′i|. Let u = (1/n, . . . , 1/n) denote the uniform

distribution on [n].
Lemma 6.2. There exists an absolute constant c > 0 so that if p is a probability

distribution on [n] and d(p,u) = ε for some ε < 1/5, then H(p) ≤ logn− cε2.
Proof. For convenience, we will prove that He(p) ≤ lnn − cε2 for some constant

c > 0, where e is Euler’s number, ln(·) = loge(·) is the natural base logarithm, and
He(p) = −∑n

i=1 pi ln(pi) is the entropy of p measured in units of e. The assertion
follows as H(p) = He(p) · log(e).

By compactness, there is a probability distribution p = (p1, . . . , pn) satisfying
d(p,u) = ε for which He(p) is maximum. It is easy to see that p cannot contain two
distinct components pi �= pj so that pi, pj ≤ 1/n since replacing both by their average
will increase the value of He(p) without changing d(p,u). Similarly, there cannot be
distinct pi �= pj so that pi, pj > 1/n. It thus follows that there exists an integer k so
that p has k coordinates whose value is 1/n+ ε

2k and n− k coordinates, each equal
to 1/n− ε

2(n−k) . Notice that k must satisfy ε
2(n−k) < 1/n.

The proof continues by considering two possible cases.
Case 1. ε

2k ≤ 5
n .

We argue that for any real x satisfying −1/n < x ≤ 5
n ,

(4) −
(
1

n
+ x

)
ln

(
1

n
+ x

)
≤ lnn

n
+ (lnn− 1)x− 1

12
x2n.

To establish this argument, define

g(x) =
lnn

n
+ (lnn− 1)x− 1

12
x2n+

(
1

n
+ x

)
ln

(
1

n
+ x

)
.

Then g′(x) = lnn− 1− xn
6 + ln( 1n +x)+ 1 and g′′(x) = −n

6 + 1
(1/n)+x . Since g(0) = 0,



ADVERSARIAL LEAKAGE IN GAMES 381

g′(0) = 0, and g′′(x) ≥ 0 for all −1/n < x ≤ 5
n , it follows that g(x) ≥ 0 for all

−1/n < x ≤ 5
n which establishes our argument.

Plugging (4) with x = ε
2(n−k) and with x = ε

2k in the expression for He(p), we

conclude that

He(p) = −k

(
1

n
+

ε

2k

)
ln

(
1

n
+

ε

2k

)

− (n− k)

(
1

n
− ε

2(n− k)

)
ln

(
1

n
− ε

2(n− k)

)

≤ lnn− k
1

12
· ε2

4k2
n− (n− k)

1

12
· ε2

4(n− k)2
n

= lnn− 1

48
ε2
(
n

k
+

n

n− k

)
.

The assertion follows since n
k + n

n−k ≥ 4.

Case 2. ε
2k > 5

n .
In this case

He(p) = −k

(
1

n
+

ε

2k

)
ln

(
1

n
+

ε

2k

)

− (n− k)

(
1

n
− ε

2(n− k)

)
ln

(
1

n
− ε

2(n− k)

)

= −k

(
1

n
+

ε

2k

)[
ln
(
1 +

εn

2k

)
− ln(n)

]

− (n− k)

(
1

n
− ε

2(n− k)

)[
ln

(
1− εn

2(n− k)

)
− ln(n)

]

= ln(n)− k

(
1

n
+

ε

2k

)
ln
(
1 +

εn

2k

)

− (n− k)

(
1

n
− ε

2(n− k)

)
ln

(
1− εn

2(n− k)

)
.

Fix

h = k

(
1

n
+

ε

2k

)
ln
(
1 +

εn

2k

)
+ (n− k)

(
1

n
− ε

2(n− k)

)
ln

(
1− εn

2(n− k)

)
,

so it remains to show that h ≥ cε2 for some constant c. Since εn
2k ≥ 5, it follows that

h ≥ 2k + εn

2n
ln(6) +

2(n− k)− εn

2n
ln

(
1− εn

2(n− k)

)

≥
(
k

n
+

ε

2

)
ln(6) + ln

(
1− εn

2(n− k)

)
.

Using the fact that ln(6) > 3/2 and the fact that for y ≤ 1/2, ln(1 − y) ≥ −y − y2,
we conclude that

(5) h ≥ 3

2

(
k

n
+

ε

2

)
− εn

2(n− k)
−
(

εn

2(n− k)

)2

.
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Since ε
2k > 5

n and since ε ≤ 1/5, it follows that k < n/2. Therefore, if k ≥ n/5,
then (5) implies that

h ≥ 3

2

(
1

5
+

ε

2

)
− εn

2(n− n/2)
−
(

εn

2(n− n/2)

)2

≥ 3

2
ε+

3

4
ε− ε− ε2 =

5

4
ε− ε2.

On the other hand, if k < n/5, then (5) implies that

h >
3

4
ε− εn

2(n− n/5)
−
(

εn

2(n− n/5)

)2

=
1

8
ε− 25

64
ε2 ≥ 5

8
ε2 − 25

64
ε2 =

15

64
ε2.

The assertion follows.
Remark. For small ε > 0 the best possible value of the constant c promised by

Lemma 6.2 is 1/2, but we make no attempt to optimize it here.
Lemma 6.2 is the key ingredient in the proof of the following lemma (which is a

simple, though not very efficient, construction of a strong extractor).
Lemma 6.3. Let b be a positive integer and let X = (X1, . . . , X2b) be a random

uniform bit string of length k · 2b, consisting of 2b blocks Xi, each being a random

uniform bit string of length k. Let f : {0, 1}k·2b → {0, 1}b be an arbitrary function. If
i is chosen uniformly at random from [2b], then the expected (over the random choice
of i) variation distance between Xi given the value of f(X) and a uniform distribution
on {0, 1}k is at most O(

√
b/2b).

Proof. For i = 1, . . . , 2b, let pi denote the probability distribution of the (random)
block Xi given the value of f(X). Since the conditional entropy H(X |f(X)) satisfies
H(X |f(X)) = H(X, f(X)) − H(f(X)) = H(X) − H(f(X)) ≥ k · 2b − b and since the

subadditivity of the entropy function implies that H(X |f(X)) ≤∑2b

i=1 H(Xi|f(X)) =∑2b

i=1 H(p
i), it follows that

1

2b

2b∑
i=1

H(pi) ≥ k − b

2b
.

Lemma 6.2 guarantees that

1

2b

2b∑
i=1

d(pi,u) ≤ 1

2b

2b∑
i=1

O
(√

k −H(pi)
)
,

hence the concavity of
√· implies that

1

2b

2b∑
i=1

d(pi,u) ≤ O

⎛
⎝
√√√√ 1

2b

2b∑
i=1

(k −H(pi))

⎞
⎠ = O

(√
b/2b

)
.

The assertion follows.
We are now ready to establish the main theorem of this section.
Proof of Theorem 6.1. Given some ε > 0, take b0 = b0(ε) to be sufficiently large so

that c
√
b0/2b0 ≤ ε, where c is the hidden constant in the O-notation in Lemma 6.3.

Let m and n be some positive integers and let M be an arbitrary binary m × n
matrix. Consider the game defined by M with b ≥ b0 bidirectional leaking bits. We
will construct a strategy for MAX consisting of a function fmax : Rmin → {0, 1}b and
a function gmax : Rmax×{0, 1}b → [m] so that for every strategy of MIN, the expected
payoff of the game is at least v(M)− ε. The construction of such a strategy for MIN
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that guarantees an expected payoff of at most v(M) + ε for every strategy of MAX is
analogous.

Let s be an optimal (mixed) strategy of MAX in the two-player zero-sum game
defined by M (with no leakage). For simplicity, we assume that s can be implemented
with k random bits; in particular, it will be convenient to think of s as a function
s : {0, 1}k → [m] that maps a random bit string of length k to some action (row) in [m].

Recall that the elements rmax and rmin, randomly picked by nature from Rmax

and Rmin, respectively, are assumed to be infinite length bit strings. In particular,
our proof relies on rmax being of length at least k · 2b and on rmin being of length
at least b. The latter assumption naturally raises the following question: Is it valid
on behalf of MAX (and on our behalf) to assume that MIN uses at least b random
bits? We believe that in a setting involving the leakage of b bits from the players’
random sources, one can safely assume that the players employ significantly more
than b random bits. Indeed, if MIN restricts herself to using b (or less) random bits,
then when she plays first, she cannot expect the payoff to be better than the game’s
deterministic minimax, which is typically much worse than the game’s value v(M).
Of course, this question becomes redundant once we recall the assumption that both
rmax and rmin contain infinite many random bits, regardless of how many random bits
the players choose to employ.

The mixed strategy of MAX is defined as follows. Take fmax to be the function
that returns the first b bits in rmin and let 0 ≤ λ ≤ 2b−1 be the integer interpretation
of fmax(rmin). For the construction of gmax, we partition the first k · 2b bits in rmax

into 2b blocks, each containing k consecutive bits, denoted

B� = (rmax[�k + 1], . . . , rmax[�k + k]) , � = 0, 1, . . . , 2b − 1.

MAX then employs the random bits in block Bλ to implement the mixed strategy s,
namely,

gmax(rmax, fmax(rmin)) = s(Bλ).

Informally speaking, MIN knows that MAX realizes s based on some block Bλ

and she could have demolished the strategy of MAX if she would have known which
block Bλ is used. However, the index λ is determined by rmin which, by the definition
of our model, is revealed to MIN only after she already committed to her leakage
function fmin.

7 Hence, MIN can obtain (via fmin) very limited information regarding
the block Bλ and this limited information does not suffice to harm the payoff of MAX
by more than ε.

More formally, consider an arbitrary strategy of MIN consisting of a function
fmin : Rmax → {0, 1}b and a function gmin : Rmin×{0, 1}b → [n]. Our goal is to show
that if MAX plays row s(Bλ) = gmax(rmax, fmax(rmin)) ∈ [m] and MIN plays column
gmin(rmin, fmin(rmax)) ∈ [n], then the expected payoff of the game is at least v(M)−ε.

To that end, let pλ be the probability distribution of Bλ given the value of
fmin(rmax). Note that in the language of the aforementioned informal discussion, pλ

is what MIN “sees” as the probability distribution MAX uses to realize s. The key
observation here is that by the choice of b0 = b0(ε), Lemma 6.3 guarantees that the
expected variation distance between pλ and the uniform distribution u2k on the set
of all length k bit strings is at most ε. Therefore, in expectation, the payoff of the

7This feature of our bidirectional leakage model can be thought of as if the players’ strategies
are mixed, but the actual choice of the leakage functions is assumed to be pure.
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game cannot differ from v(M), which is obtained by MAX if she uses u2k to realize
s, by more than ε. The assertion follows.

Appendix A. Explicit constructions. In this appendix we describe several
explicit constructions of n by n {0, 1}-matrices representing games with value q, such
that if the MIN player has b bits and b is smaller than log logn + O(1), then the

MAX player can guarantee a payoff of at least roughly q2
b

. This shows (by explicit
examples) that the statements of Theorem 3.3 and Corollary 3.5 are essentially tight.

Example 1. Let p be a prime power and let r be a positive integer. Fix n = pr−1.
Let M = (Mu,v) be the following n by n binary matrix whose rows and columns are
indexed by the set N of all nonzero vectors of length r over GF (p). For each such u, v,
Mu,v = 1 if and only if the two vectors u and v are orthogonal over GF (p) (namely,
their inner product over GF (p) is zero). Note that M is a symmetric matrix, and
every row and every column of it contains exactly pr−1 − 1 1-entries. Indeed, this is
the number of nonzero solutions of a single linear equation in r variables over GF (p).
It is easy to check that the maximin strategy of the game determined by M is the

uniform distribution over N , yielding a value of q = pr−1−1
pr−1 . Note that for large

n = pr − 1 this is very close to 1/p.
We claim that for every set J ⊆ N of at most logp n columns, there are at

least pr−|J| − 1 rows u so that Mu,v = 1 for every v ∈ J . Note that if pr−|J| is
large, then this number is very close to q|J|n, implying that by playing the uniform
distribution on the rows of M , MAX can ensure a value close to q|J|. Note also that
if b ≤ log r − O(1) = log logn − Op(1), then 2b is much smaller than r, and hence
pr−|J| is large provided |J | ≤ 2b. Fix a subset J ⊆ N of cardinality at most logp n.
By definition, row u satisfies Mu,v = 1 for every v ∈ J if and only if the inner product
of u and v over GF (p) is zero for every v ∈ J . This is a homogeneous system of
|J | linear equations in the r variables representing the coordinates of u. This system
clearly admits at least pr−|J| − 1 nontrivial solutions; each such nontrivial solution
corresponds to a row with the desired properties, proving the claim.

This completes the description of the first set of examples. Note that it works for
every value q which is about 1/p, where p is a prime power.

Example 2 (sketch). Let p be a prime and let M be a p × p binary matrix,
where Mi,j = 1 if and only if i − j is a quadratic residue modulo p (where here
zero is considered a quadratic residue). The value of the game represented by M is
(p+1)/(2p), which, for large p, is roughly 1/2. Using Weil’s theorem, it is not difficult
to show that for every subset S of Zp of size at most (0.5 − δ) log p, the number of
rows i such that Mi,j = 1 for all j ∈ S is (1 + o(1)) p

2|S| . A similar example holds
for characters of other orders instead of the quadratic character, providing examples
with values close to 1/d for any desired positive integer d > 1 (where here we have
to choose a prime p so that d divides p − 1—by Dirichlet’s theorem on primes in
arithmetic progressions it is known that there are infinitely many such primes for any
such d).
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[2] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, Simple constructions of almost k-wise
independent random variables, in Proceedings of the 31st IEEE FOCS, St. Louis, MO,
IEEE, 1990, pp. 544–553.



ADVERSARIAL LEAKAGE IN GAMES 385

[3] N. Alon, G. Gutin, and M. Krivelevich, Algorithms with large domination ratio, J. Algo-
rithms, 50 (2004), pp. 118–131.

[4] N. Alon and J.H. Spencer, The Probabilistic Method, 3rd ed., John Wiley, New York, 2008.
[5] R.J. Aumann, On the non-transferable utility value: A comment on the Roth-Shaper examples,

Econometrica, 53 (1985), pp. 667–677.
[6] R.J. Aumann and M. Maschler, Some thoughts on the minimax principle, J. Management

Sci., 18 (1972), pp. 54–63.
[7] M. Budinich and L. Fortnow, Repeated matching pennies with limited randomness, in Pro-

ceedings of the 12th ACM Conference on Electronic Commerce, 2011, pp. 111–118.
[8] S. Dziembowski and K. Pietrzak, Leakage-resilient cryptography, in Proceedings of the 49th

IEEE Symposium on Foundations of Computer Science, 2008, pp. 293–302.
[9] R. Gradwohl and O. Reingold, Partial exposure in large games, Games Econom. Behav.,

68 (2010), pp. 602–613.
[10] J.Y. Halpern and R. Pass, Algorithmic rationality: Adding cost of computation to game

theory, ACM SIGecom Exchanges, 10 (2011), pp. 9–15.
[11] D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci.,

9 (1974), pp. 256–278.
[12] L. Lovász, Coverings and coloring of hypergraphs, in Proceedings of the Fourth Southeastern

Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic University,
Boca Raton, FL, Utilitas Mathematica, Winnipeg, MB, Canada, 1973, pp. 3–12.

[13] L. Lovász, On the ratio of optimal and fractional covers, Discrete Math., 13 (1975), pp. 383–
390.

[14] A. Matsui, Information Leakage Forces Cooperation, Discussion paper, Northwestern Univer-
sity, 1988.

[15] J. Naor and M. Naor, Small-bias probability spaces: Efficient constructions and applications,
in Proceedings of the 22nd Annual ACM STOC, ACM Press, 1990, pp. 213–223.

[16] H. Nasheri, Economic Espionage and Industrial Spying, Cambridge University Press, Cam-
bridge, UK, 2005.

[17] J.S. Provan, The Use of Spies in Strategic Situations: Preliminary Report, UNC/STOR/
07/01, University of North Carolina at Chapel Hill, NC, 2008.

[18] A. Rubinstein, Finite automata play the repeated prisoner’s dilemma, J. Econom. Theory, 39
(1986), pp. 83–96.

[19] E. Solan and L.Yariv, Games with espionage, Games Econom. Behav., 47 (2004), pp. 172–
199.

[20] M. Tennenholtz, Competitive safety analysis: Robust decision-making in multi-agent systems,
J. Artificial Intelligence Res., 17 (2002), pp. 363–378.

[21] H.A. Simon, A behavioral model of rational choice, Quart. J. Econom., 49 (1955), pp. 99–118.
[22] M. Tennenholtz, Program equilibrium, Games Econom. Behav., 49 (2004), pp. 363–373.
[23] The Eudaemons, http://physics.ucsc.edu/people/eudaemons/eudaemons.html.
[24] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton

University Press, Princeton, NJ, 1944.
[25] A. Weil, Sur les courbes algebriques et les varietes qui s’en deduisent, Actualités Sci. Indust.

1041, Herman, Paris, 1948.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


