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Abstract— In this paper we introduce to virtualization of
hardware on reconfigurable devices. We identify three main
approaches denoted with temporal partitioning, virtualized ex-
ecution, and virtual machine. For each virtualization approach,
we discuss the application models, the required execution archi-
tectures, the design tools and the run-time systems. Then, we
survey a selection of important projects in the field.
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I. I NTRODUCTION

Literally, hardware virtualization means that an applica-
tion executes on virtualized hardware as opposed to physical
hardware. “Virtual hardware” seems to be a contradictory
term because hardware is supposed to have a physical
existence. Furthermore, the terms “virtual hardware” and
“hardware virtualization” are used for different concepts in
literature.

Initially, the term virtual hardware was coined to show
the analogy to virtual memory. There, pages of memory
are swapped in and out a computing system, allowing ap-
plications to address a much larger memory than physically
existent. In the same way, a reconfigurable computing system
can swap in and out portions of the hardware by a recon-
figuration process, allowing applications to use more hard-
ware than physically existent. Later on, the term hardware
virtualization was used to describe mapping techniques and
architectures that allow for a certain degree of independence
between the mapped application and the actual capacity of
the target architecture. The most radical form of hardware
virtualization is to strive for complete independence of the
hardware execution from the actual underlying hardware.

The purpose of this paper is to introduce into the field of
hardware virtualization, to discuss the main issues involved,
and to provide a survey of important projects in this field. In
Section II, we identify three basic approaches of hardware
virtualization: temporal partitioning, virtualized execution
and virtual machine. Sections III, IV and V discuss the
programming models, execution architectures and tools for
these approaches. Further, each section presents a survey
of the most important projects for each virtualization style.
Finally, Section VI concludes the paper.

II. V IRTUALIZATION APPROACHES

We identify three approaches of hardware virtualization
that, although related, differ in their motivation. The ap-
proaches are denoted astemporal partitioning, virtualized
execution, andvirtual machine.

A. Temporal Partitioning

The motivation for this virtualization approach is to be
able to map an application of arbitrary size to a reconfig-
urable device with insufficient hardware capacity. Temporal
partitioning splits the application into smaller parts, each of
which fits onto the device, and runs these parts sequentially.
Temporal partitioning was the first virtualization style in-
vestigated. It was a necessity when reconfigurable devices
were too small for many interesting applications, and is still
of importance with todays multi-million gate FPGAs—in
particular in embedded systems—to save area and thus cost.

B. Virtualized Execution

The motivation for virtualized execution is to achieve a
certain level of device-independence within a device family.
An application is mapped to or specified directly in a
programming model. The programming model defines some
atomic unit of computation. Such a unit is commonly called
operator, actor, or—more generally—task. An application is
then described by a collection of such tasks and their inter-
actions. The execution architecture for such an application
is defined as a whole family of devices. All devices support
the abstractions defined by the programming model, i.e., the
computations (tasks) and the interactions (communication
channels). The members of a device family can differ in
the amount of resources they provide, e. g., the number of
tasks that can execute concurrently, or number of tasks that
can be stored on-chip. Since all implementations of the
execution architecture support the same programming model,
an application can run on any member of the device family
without recompilation. Task scheduling denotes the process
of determining the exact execution order of the tasks. This
order is partly given by the dependencies of the tasks, and
partly induced by the resource constraints of the chosen
device. This model of virtualized execution requires some
form of a runtime system that resolves resource conflicts at
runtime and schedules the tasks appropriately. The resulting
independence of the device size allows to trade-off perfor-
mance for cost. Furthermore, the forward compatibility lets
us exploit advances in technology that result in larger and
faster devices. This virtualization approach can be compared
with defining the instruction set of a microprocessor. Com-
pilers map application programs to binaries that can run on
any processor instance executing the instruction set.
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Fig. 1. Application models and tool flow

C. Virtual Machine

The motivation for this virtualization approach is to
achieve an even higher level of device-independence. Instead
of mapping an application directly to a specific architecture,
the application is mapped to an abstract computing archi-
tecture. A hardware virtual machine is able to execute an
application which has been mapped to such an abstract ar-
chitecture. There are two basic ways to construct a hardware
virtual machine. First, the application is remapped to the
native application code of a concrete architecture. The virtual
machine is then formally the tools for remapping. Second, the
concrete architecture can run an “interpreter” that allows for
direct execution of the abstract application code. This style of
virtual hardware is analogous to the approach of platform-
independent software that is used for instance in the Java
virtual machine. Conceptually, a hardware virtual machine
features platform-independent mobile hardware. This might
be of increasing importance as most reconfigurable systems
are connected to networks.

III. T EMPORAL PARTITIONING

A. Application Models

The traditional way to specify an application for a recon-
figurable device is using a hardware description language,
e. g., VHDL or Verilog. Such a description is synthesized to
an RTL description and, finally, to a netlist of combinational
and sequential logic elements. Design implementation tools
for reconfigurable devices take this netlist and perform
technology mapping, placement, and routing to generate the
configuration data for the reconfigurable device. This process
is shown in Figure 1.

Alternatively, an application can be specified in a high-
level programming language (HLL), e. g., C/C++ or Java.
A compiler builds an internal representation of the program
in the form of a control data-flow graph (CDFG). From
this graph, RTL descriptions and netlists are generated. The
results are further processed by the same tools as in the HDL-
based tool flow. Both HDLs and HLLs areimplementation
languages in the sense that they define the computations
performed by the application.

Temporal partitioning can be applied at different levels.
The main approaches are shown in Figure 2: temporal
partitioning at the level of netlists (see Section III-D.1), at
the level of data-flow graphs (see Section III-D.2), and at the
level of CDFGs (see Section III-D.3).
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Fig. 2. Approaches for temporal partitioning: netlist partitioning,
data-flow graph partitioning, and CDFG partitioning

Temporal partitioning on the netlist level operates on the
netlists obtained by synthesis or compilation tools. Netlist
partitioning is rather generic as it does not depend on the
actual implementation language that was used for application
specification. The main drawback of netlist partitioning is
that one cannot make use of application-specific knowledge.
In general, it is extremely difficult to regain information
about the high-level structure or even dynamic behavior of
the application from the netlist.

Data-flow graph partitioning works on operation or task
graphs. Such graphs result from HDL and HLL design
flows, but are also used as specification models in embedded
systems design. An operation graph is a directed acyclic
graph (DAG), where the nodes represent operations and the
edges represent dependencies and communication.

Temporal partitioning at the CDFG level becomes possi-
ble if a high-level language is used for application specifica-
tion. The main advantage is that CDFGs reveal information
about the control-flow, e. g., loops, conditional execution,
function calls, etc., which can be used to perform high-level
optimizations and transformations. Common optimization
techniques address runtime-intensive loops and increase the
parallelism by unrolling, software pipelining, or pipelined
vectorization.

B. Reconfigurable Architectures

Temporal partitioning decomposes an application into
smaller parts and executes them sequentially. As this might
require frequent reconfiguration, the efficiency of the ap-
proach is largely dependent on the ratio between a configu-
ration’s execution time and the device reconfiguration time.
Conceptually, anyre-configurable device can be used for
temporal partitioning, e. g., todays dominating SRAM-based
fine-grained FPGAs. However, the demand for low reconfig-
uration overheads favors advanced FPGA architectures that
allow for fast reconfiguration, e. g., multi-context FPGAs.

All temporal partitioning approaches need a configura-
tion controller. Usually, this control function is mapped to
a processor. The resulting target architectures combine a
processor with a reconfigurable device either in a single chip
(as hybrid processor) or as a board-level system. Further,



many approaches use an external memory to store the
interconfiguration data.

C. Design Tools and Runtime System

The conventional tool flow needs only moderate mod-
ifications to support hardware virtualization with temporal
partitioning. At some abstraction level in the design tool flow
the application is split up into a number of smaller parts.
Additionally, a configuration controller and circuitry for
interconfiguration communication is generated. The recon-
figuration controller implements the runtime system which
executes a static configuration schedule. The controllers for
interconfiguration communication store the output data of
configurations and provide subsequent configurations with
their input data. Each of the resulting application parts can
be implemented with the same tools as in the non-virtualized
case.

Irrespective of the chosen temporal partitioning approach,
the resulting partitions are mapped, placed, and routed by
the device-specific design implementation tools. Whenever
the resulting configuration exceeds the device capacity, the
temporal partitioning step must be iterated.

When the application is specified in a HLL, the compiler
can perform hardware/software partitioning in addition to
temporal partitioning. Only the runtime-intensive inner loops
of an application are mapped to the reconfigurable device,
while the rest of the application runs on the CPU.

D. Survey of Approaches

1) Temporal Partitioning of Netlists: Netlists are com-
monly represented by graphs. Temporal partitioning of
netlists leads to graph partitioning problems which are,
although having a different motivation, quite similar to
structural partitioning problems. Structural partitioning of
large netlists for execution on FPGAs has been studied in
the context of FPGA-based emulation systems [1]. These
methods take a large netlist that does not fit onto a single
FPGA and determine a static partitioning to map the overall
circuit onto a multi-FPGA emulation system. Each partition
is required to fit onto a single FPGA while respecting the
limited interconnect resources between the FPGAs. Hence,
the used algorithms try to minimize the number of edges
that cross the partitions. Temporal partitioning and time-
multiplexed execution of partitions has not been considered
for logic emulation, because the long reconfiguration times
for conventional FPGAs would lead to excessive overheads.

With the advent of FPGAs that support fast reconfigura-
tion, in particular multi-context FPGAs, temporal partitioning
of netlists became realistic. Inspired by early multi-context
FPGAs like DPGA [2] and TMFPGA [3], first studies looked
at special cases of digital logic. Trimberger [4] and DeHon
[5] discuss the mapping of FSMs in levelized logic form onto
the multi-context architectures. The methods they propose
are based on list scheduling.

Figure 3 presents the mapping of an FSM to a multi-
context FPGA. The combinational state transition logic is
partitioned into a number of configurations that form device
contexts (e.g., configurations 1 and 2 in Figure 3). The
state of the FSM is mapped in a separate configuration
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Fig. 3. Temporal partitioning of netlists (logic engine mode of
TMFPGA, after [4])

(e.g., configuration 3 in Figure 3). The combinational signals
crossing the configurations are held in a set of registers (or
inter-context communication buffers) that are shared among
all contexts. At runtime, the contexts are cyclically executed.

The difficulty of implementing FSMs with levelized logic
is the high number of intermediate signals that might be
required, which can lead to an excessive amount of registers.
Therefore, several authors proposed improved heuristics that
try to reduce the size of the inter-context communication
buffers. A force-directed scheduling based method was stud-
ied by Chang and Marek-Sadowska [6][7]. Mak and Young
[8] and Liu and Wong [9] used a network-flow based method.
Wu et al. presented an exact ILP based algorithm [10].

2) Temporal Partitioning of Operation and Task-Graphs:
The approaches in this group define temporal partitioning
as an optimization problem over acyclic data-flow graphs.
Similar to the netlist approach, the graph is partitioned into a
number of configurations such that each single configuration
does not exceed the device capacity. Further, there must
exist at least one acyclic precedence relation between the
configurations, i.e., the construction of a feasible configu-
ration schedule must be possible. The primary optimization
objective is the minimization of the overall execution time.

Purna and Bhatia proposed two greedy heuristics for
this problem, thelevel-based and cluster-based partitioning
algorithms [11] [12]. These methods do not try to minimize
the overall execution time directly, but tend to minimize
the number of configurations, the configuration’s execution
times, and the amount of interconfiguration data, respectively.
Both methods construct configurations by adding node after
node until the capacity of the device is reached. The level-
based partitioning algorithm prefers to group nodes with the
same ASAP (as soon as possible) level together, resulting in
high degree of parallelism inside a configuration. This leads
to short configuration runtimes. The cluster-based heuristic
tries to group nodes with successor nodes to reduce the
amount of interconfiguration communication.

An exact method to solve the temporal partitioning prob-
lem was presented by Vemuri et al. [13]. The authors used a
0−1 linear program that minimizes the overall execution time.
Later, some authors extended the linear program to respect an
additional constraint on the size of the memory for storing



the interconfiguration data. The ILP formulation was also
extended to cover other system level design steps, such as
high-level synthesis [14] and design space exploration [15]
[16].

An approach for temporal partitioning of task graphs to
partially reconfigurable devices was discussed in [17] [18] by
Fekete et al. The resulting problem was cast as 3D packing
problem and an optimal branch and bound procedure was
given to solve it. Temporal partitioning was also combined
with the hardware/software partitioning problem by Chatha
and Vemuri [19]. This approach combines a greedy heuristic
partitioner with a heuristic list scheduler.

3) Temporal Partitioning of Control Data-Flow Graphs:

a) Garp: The Garp project [20] aims at creating a
compiler that accelerates arbitrary applications written in C.
The target architecture is the Garp chip that features a MIPS
CPU core and a custom reconfigurable array co-processor
[21]. The co-processor interface is used for configuration
download and data-transfers. Additionally, the array can ac-
cess the main memory itself via several memory controllers.
A configuration cache allows to store 4 configurations on-
chip.

The Garp C compiler (GarpCC) does not define a specific
application model, but uses fully automatic compilation from
C. GarpCC performs automatic hardware/software partition-
ing and maps application kernels to the reconfigurable array.
The compiler uses similar techniques that VLIW compilers
use for instruction scheduling, e. g., trace-scheduling. The
GarpCC compiler pipelines loops and tries to find iterative
schedules. Code is generated for both, the CPU core and
the reconfigurable co-processor. The CDFGs that represent
the code portions for the co-processor are processed by
mapping, placing and routing tools and are transformed to a
configuration bitstream.

Garp does not use a dedicated runtime system. Rather, the
runtime system is implicitly integrated within the application
that runs on the CPU core and on the array. The code for
the CPU core includes the instructions for array control and
configuration sequencing. The controllers that control the
array execution are synthesized as part of the configuration.

b) XPP-VC: XPP-VC [22] is a vectorizing C compiler
for the PACT XPP architecture. In contrast to compilers that
try to find inner loops that fit directly onto the reconfigurable
device, XPP-VC also uses temporal partitioning within a
loop. After loop unrolling and data-dependence analysis, the
compiler applies pipeline vectorization [23] to inner loops.
Pipeline vectorization tries to overlap loop iterations and
to execute the loop in a pipelined fashion. The vectorized
loop is transformed to XPP’s native netlist format. If the
vectorized loop does not fit onto the device, an iterative
process consisting of temporal partitioning and design im-
plementation (map, place, route) is started.

The XPP device implements a dedicated programmable
unit (configuration manager) that executes the runtime sys-
tem for a temporally partitioned execution. The configuration
manager autonomously sequences and loads the configura-
tions. A configuration cache is used to keep the most recently
used configurations on-chip.
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Fig. 4. Application specification with a process network

IV. V IRTUALIZED EXECUTION

A. Application Models

The use ofcoordination languages (or formalisms) for
application modeling is widespread in embedded systems
design. Coordination languages are semantically well-defined
and usually more restricted than HLLs. Hence, they often
allow for formal analysis of system properties such as the
absence of deadlocks. Coordination languages are often
tailored to specific application domains, e. g., SDF for signal-
processing applications, or Petri-Nets for communication
protocols.

In the majority of cases, coordination languages are
used in combination with implementation languages. Large
applications are decomposed into smaller execution objects
(tasks). The interaction of these execution objects is specified
using the coordination language, while the functionalities of
the tasks are defined with animplementation language. This
style of application modeling leads naturally to virtualized
execution. Given a suitable device and a task scheduler, the
application can be executed directly on the architecture, as
the sequence and interaction of the tasks is defined by the
coordination language.

Figure 4 shows an example for an application specified
in a coordination formalism namedprocess network. The
tasks in the process network are connected via FIFO channels
of unlimited capacity. A task can run when input data is
available on all of its input FIFOs. Process networks model
concurrency; thus tasks 2 and 3 in Figure 4 may execute at
the same time.

B. Reconfigurable Architectures

There are two basic architectural approaches to support
virtualized execution. In the first approach, the reconfigurable
architecture directly supports the programming model. As
an application is decomposed into a number of interacting
tasks, the architecture needs to implement the logic resources
to execute one or several tasks concurrently and the com-
munication channels to implement the interaction between
the tasks. Such an architecture is composed out of atomic
units (often called hardware pages) that can accommodate
one task.

The second approach relies on classical reconfigurable
devices and assigns the reconfigurable resources to the tasks
at runtime. A task is assigned an amount of resources that
matches its demand, rather than a fixed-size hardware page.
While such a scheme complicates the runtime system, it leads
to improved device utilization.

C. Design Tools and Runtime System

The decomposition of an application into communicating
operators, according to the chosen coordination language,
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Fig. 5. PipeRench: pipelined processing and pipelined reconfigu-
ration

can either be done by the programmer or by design tools.
The resulting operators are implemented by conventional
synthesis and design implementation tools.

Virtualized execution requires a runtime system. For
architectures with fixed-size hardware pages, the runtime
system schedules the tasks according to the semantics of
the coordination language and the available hardware re-
sources. Additionally to scheduling, the runtime system has
to perform allocation of resources such as communication
channels, buffers and I/O ports. Although computing a static
schedule is possible in general, it would diminish the benefits
of device-independence. Architectures with variable-sized
resource assignment require a more complex runtime system.
Before a task can be scheduled, a feasible placement on the
reconfigurable device must be found.

D. Survey of Approaches

c) PipeRench: The PipeRench architecture [24] fo-
cuses on the pipelined processing of data-streams. The pro-
gramming model for PipeRench is to decompose the appli-
cation into a sequence of pipelined operators, called stripes.
PipeRench achieves hardware virtualization by allowing an
application to use an unlimited number of virtual stripes. If
the number of physically available stripes is smaller than
the number of virtual stripes required by an application,
the configurations for the stripes are loaded at runtime.
PipeRench is restricted to forward pipelining of a fixed
sequence of operators. Feedback is supported only within a
stripe. Nonetheless, many important streaming applications
can be mapped to this architecture.

A key feature of PipeRench is—additionally to pipelined
data-processing—pipelined reconfiguration. Figure 5 shows
the execution of a streaming application that requires 5

virtual stripes on a device with 3 physical stripes. The
upper part of the figure shows the application specified in
virtual stripes v1-v5. The shaded box moving from virtual
stripe v1 to v5 shows which virtual stripes are mapped to
physical stripes in a given time step. Two physical stripes
are executing concurrently in each time step, while the third
stripe is being reconfigured. In time steps 2 and 3 an input
value is read into the array. The first output is produced by
stripe v5 at time 6. The second output is produced at time
7, when also the next input value is read. The lower part
of the figure shows the function of the physical stripes for
each time step: cfgX means loading configuration X, exX[i]
means executing configuration X on sample i.

A custom reconfigurable device that implements the
PipeRench execution model was presented in [25]. The
device features 16 physical stripes and on-chip configuration
memory for 256 virtual stripes. The runtime system for
PipeRench is implemented directly on the PipeRench chip.

PipeRench uses a compiler that takes C programs as
input language. After inlining all functions, unrolling all
loops and converting to single-assignment form, the com-
piler transforms the program to an intermediate data-flow
language. Bit-widths are infered and complex operators are
decomposed into simpler operators.

d) SCORE: Caspi et al. [26] developed the SCORE
model that provides both, a specification model and a virtu-
alized execution model for the important class of stream-
ing applications. An application is defined as a graph of
computation nodes (operators) that are connected by FIFOs
of unbounded size. The coordination of the operators is
defined by the data dependencies in the execution graph. The
function of the operators is specified in the TDF language,
an RTL language with C-like notation. The memory used by
the operators is allocated in fixed-size memory pages.

So far there is no physical device that implements the
SCORE application model. Thus SCORE was evaluated by
simulation only. However, a hybrid execution architecture
was defined that comprises a CPU and a reconfigurable
array. The reconfigurable array consists of a number of
equivalent and independent compute pages (that implement
the operators), configurable memory blocks, and buffered
interconnect.

The runtime system of a SCORE system is supposed
to run on the CPU and consists of the instantiation engine
and the scheduling engine. The instantiation engine interprets
the compute graph and instructs the scheduler which tasks
are to be scheduled. The scheduling engine takes care of
resource allocation, placement of operators to compute pages
and routing.

e) WASMII / DRL: The WASMII [27] is a multi-
context reconfigurable device that is specifically tailored
to virtual hardware execution. The WASMII architecture is
data-driven and allows for execution of data-flow graphs. The
application is first mapped to a data-flow graph, which is
then decomposed into sub-graphs that fit the size of a page.
A page is the basic computation unit of the device. The
WASMII architecture also supports the connection of several
WASMII devices to build a multichip WASMII architecture.
The sequencing of pages is controlled by a static schedule



that is generated at compile-time with the LS-M algorithm
[28].

f) Reconfigurable HW Operating Systems: Recon-
figurable hardware operating systems treat reconfigurable
devices as dynamic resources that are managed at runtime.
Similar to software operating systems, these approaches
introduce tasks or threads as basic units of computation
and provide various communication and synchronization
mechanisms. The runtime system places and schedules tasks
on the reconfigurable device in a multitasking manner. Such
an operating system provides a minimal programming model,
although being less restrictive than coordination languages.

The first description of hardware multitasking is due to
Brebner [29]. More recently, Wigley et al. discussed operat-
ing system functions including device partitioning, placement
and routing [30]. Multitasking and task preemption was
investigated in [31], and [32], respectively. Scheduling and
placement techniques were devised in [33] [34]. Functional
prototypes that demonstrate multitasking on todays FPGA
technology were also described, e. g., in [35] [36].

V. V IRTUAL MACHINE

Hardware virtualization with thevirtual machine ap-
proach requires neither a specific application model nor a
specific reconfigurable architecture.

Application specification and synthesis can be performed
with conventional tools, aside from the fact that the targeted
technology is an abstract architecture. Mapping to an abstract
architecture can easily be achieved by using generic synthesis
and technology mapping libraries. The definition of the
abstract architecture is key to the virtual machine approach.
One one hand, the abstract architecture has to be generic
enough to allow for an efficient remapping to different
targets. On the other hand, the abstract architecture must be
close to typical FPGA architectures to leverage their per-
formance potential. At loading time or runtime, the abstract
description is remapped to the actual architecture by a virtual
machine. As the abstract architecture is a generalization of
the actual architecture, the remapping involves running parts
of the conventional tool flow, such as technology mapping,
and place and route [37].

A. Survey of Approaches

Issues of circuit portability in a networked environment
were first addressed by Brebner [38]. He coined the term
circlets (circuits + applets) to denote mobile circuits. There
is, however, no virtual hardware machine running on the
target. The concept described circlets as location-independent
circuits that are pre-synthesized, pre-placed and pre-routed
to a specific technology. Circlets are mapped to the target
FPGA by a runtime system, which is more in the line of
reconfigurable hardware operating systems (see Section IV-
D.0.f).

Ha et al. [37] proposed a virtual hardware machine that
executes hardware bytecode. The hardware bytecode for a
circuit is essentially a technology-mapped, placed, and routed
netlist for an abstract FPGA architecture. The abstract FPGA
architecture proposed in [37] is a generic fine-grained FPGA

with symmetrical routing. The logic blocks are based on4-
LUT elements followed by a register that can be bypassed.
The routing is structured into channels running in vertical and
horizontal directions. The virtual machine has to perform a
number of steps on the hardware bytecode to translate it to
the target FPGA. These steps include the remapping of logic
blocks and I/O pins as well as global and detailed routing.
Temporal partitioning in case the hardware bytecode exceeds
the FPGA capacity was not considered. Rather, a runtime
system was proposed that places and executes the final circuit
on the FPGA.

In [39], a framework was described that adopts the
virtual hardware machine approach to a hybrid, networked
target system consisting of a CPU and an FPGA. At design
time, a hardware/software codesign environment partitions
an application into software and hardware functions and
generates the hardware and software bytecodes. A service
bytecode binder combines all bytecodes into one file that is
transferred to the target.

VI. CONCLUSION

Virtualization of hardware is a rather new research area.
Up to date, three main approaches have emerged. Each
approach has its own challenges concerning design tools and
runtime systems, and sometimes also device architectures.

Temporal partitioning was the first virtualization ap-
proach, applied to netlists and operation graphs. In the
meantime, the main focus there has shifted to compilation
from HLLs. We see the main role for temporal partitioning in
embedded systems, where saving chip area and thus cost is
an important optimization goal. Virtualized execution comes
in two flavors: approaches that compile to architectures with
a fixed-size basic hardware element and approaches that
map the atomic operator to variable-sized hardware elements
at runtime. While the variable-sized approaches lead to a
potentially higher device utilization, the algorithmic prob-
lems involved are hard and their solutions time-consuming.
The virtual machine approach is the newest one. Although
conceptually the most powerful virtualization approach, the
practical realization has yet to be shown. Remapping circuit
descriptions at the target involves complex design tools and
requires significant runtime. Many target systems, especially
networked embedded systems, might just be not powerful
enough for that.

Reconfigurable devices deliver their peak performance
when a maximum on low-level parallelism and specific
device features are used. A virtualization technique that
sacrifices too much of this performance for the sake of
device-independence will most likely not be accepted.
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