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Abstract—Performance boosting of modern computing systems is
constrained by the chip/circuit power dissipation. Dynamic voltage
scaling (DVS) has been applied for reducing the energy consumption by
dynamically changing the supply voltage. One can optimistically apply
greedy online DVS scheduling algorithms by considering only the events
that have arrived in the system. However, this might require a speed that
is beyond a system’s capability. Alternatively, one can pessimistically use
a conservative speed to ensure timing guarantees, which might consume
an excessive amount of energy as events might be processed faster than
necessary. This paper presents an adaptive scheme that combines these
two strategies for the scheduling of arbitrary event streams. The proposed
adaptive DVS scheduler chooses the execution speed dynamically as
long as it is below a certain threshold. Once the speed exceeds this
threshold, the proposed scheduler operates at a constant (pessimistic)
speed for guaranteeing the feasibility. The computation of the threshold
speed is, however, not straight-forward. For deriving it, we make use
of a framework based on timed model checking because the scheduler
is strongly state-dependent. The resulting analysis framework allows to
obtain the threshold speed for the proposed adaptive DVS scheduling
algorithm such that both timing and speed constraints are guaranteed
to be met and at the same time an energy-efficient execution is ensured.

I. INTRODUCTION

Power-aware design in both hardware and software has become
a significant aspect for the design of modern computing systems.
Energy-efficient devices reduce the electricity bills, or extend the
battery lifetime of autonomous embedded systems. The dynamic
energy consumption of a system can be reduced by means of dynamic
voltage scaling (DVS), a technique that permits to trade system
performance for energy savings. In general, a lower supply voltage
for a processor leads not only to a lower execution speed, but also
to a lower power consumption. As a result, most DVS scheduling
algorithms, e.g., [18], tend to execute events as slowly as possible,
without any violation of timing constraints. On the other hand, to
consume less leakage (static) power, we can apply dynamic power
management (DPM) to change the system state to a sleep mode when
the system has no jobs to execute [7], [9].

Energy-efficient scheduling has been widely studied in the litera-
ture, coping with the minimization of energy consumption under real-
time constraints of events/tasks, see e. g., [7], [9], [18]. However, most
methods for energy-efficient scheduling in real-time systems assume
that event streams are very regular, e.g., events arrive periodically
or at most sporadically. Another common assumption is to have
irregular arrival patterns, but full a-priori knowledge of event arrival
times. Unfortunately, both assumptions are often not realistic, as in
practice event arrivals are neither regular nor fully predictable. For
instance, in many real streams events arrivals are affected by non-
deterministic jitters which may lead to bursts, i.e. short time intervals
with accumulated arrivals. Such more complex event streams can be
characterized by arrival curves as used in Real-Time Calculus (RTC)
[14], [17] and Network Calculus [11]. An arrival curve bounds the
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maximum number of events that may arrive in any time interval of
a specified length.

One possibility to minimize the energy consumption of a system is
to find the minimum (or most effective) constant speed to schedule
an event stream bounded by an arrival curve. This is the approach
considered in [13]. However, as the arrival curve itself does not reveal
how events actually arrive, the system could run most of the time at
an unnecessarily high speed. For instance, if bursts of events happen
only very rarely in a stream, the above scheduling approach would,
nevertheless, always run at a high speed in order to guarantee the
schedulability of the system. In other words, an arrival curve solely
defines an upper bound on the event arrivals but, in general, the
actually experienced event arrivals may be far away from that bound.

Instead of a static speed assignment, one can apply on-line DVS
scheduling algorithms in order to reduce the energy consumption.
These algorithms decide the execution speed based on the events
that actually arrive to the system. Different on-line DVS algorithms
have been proposed in the literature [3], [18]. However, to guarantee
the satisfaction of timing constraints, it is possible that the execution
speed required by an on-line DVS scheduling algorithm is higher than
the maximum speed available in the system. This imposes a careful
verification of the required maximum speed before actually adopting
an on-line DVS scheduling algorithm [6]. However, again, an on-line
DVS algorithm might exceed the maximum available speed only for
a short time interval, depending on the actual event arrivals. Falling
back to a static speed assignment in such a case, as suggested by
Chen et al. [6], might be overly pessimistic.

This paper proposes an adaptive DVS scheduling scheme, in which
an on-line DVS algorithm is applied when the system is light-
loaded and a pessimistic speed is assigned when the system is
heavy-loaded. On one hand the proposed adaptive DVS scheduling
algorithm reduces the energy consumption by being as optimistic
as possible. On the other hand, it guarantees the feasibility of the
resulting solution by switching to a pessimistic mode once the system
is heavily loaded. The key issue for the adaptive DVS scheduling
algorithm is to decide when to be pessimistic and when to be
optimistic. This paper presents how to design and analyze such an
adaptive DVS scheme by applying timed automata (TA) [1]. In order
to perform the analysis by TA, we first derive an event generator
based on the arrival curve of a stream by applying the approach
proposed by Lampka et al. [10]. Then, we couple the event generator
with a discretized and time-triggered TA model of the adaptive DVS
processor. As a result, an adaptive DVS scheduler is confirmed to be
safe if it passes the verification of our proposed TA scheme. By means
of experiments we evaluate the performance of the adaptive DVS
scheme in comparison to purely pessimistic and purely optimistic
DVS approaches.
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The rest of this paper is organized as follows: Section II describes
the system models. Section III presents a motivational example and
the concept for the adaptive DVS scheme. How to design and analyze
such a scheme is discussed in Section IV. The performance of the
adaptive scheme is evaluated in Section V, and the paper is concluded
in Section VI

II. SYSTEM MODELS AND BACKGROUND

In this section we briefly describe the considered system models
and provide the theoretical background for the models.

A. Event Model

This paper considers a general model for event arrivals. Events
could come irregularly, periodically, sporadically, or with bounded
non-deterministic jitters. For example, events in real-time embedded
systems are often triggered by the physical environment, which can
in many cases not be predicted very accurately. It is, however, often
possible to constrain the number of event arrivals in a certain interval
length. This abstraction forms the basis of arrival curves, introduced
in Network and Real-Time Calculus (RTC) [11], [14].

An event stream can be abstractly characterized by an arrival curve
a(A), for which

R(t+A) — R(t) < &(A) (1)

holds for all 0 < ¢,0 < A, where R(¢) is the cumulative event
counting function of any event trace from time 0 to time {.

Arrival curves can be seen as a generalization of classical event
stream models such us periodic event arrivals or periodic events
with jitters. For instance, the arrival curve for an event stream with
periodicity and jitter (characterized by a period p, a maximum jitter
J, and a minimum event inter-arrival time d) is computed as

o-m(B )

An arrival curve can be derived from system specifications or by
profiling a set of representative event traces; see [14], [15] for details.
Note that by means of arrival curves one can specify arbitrary event
arrival patterns. As a result, the analysis framework proposed in this
paper can be directly applied to many simpler models.

For the events of an event stream, we suppose that C' is their
worst-case execution time at the maximum speed Smax and D is
their relative deadline D. We can use a curve a(A) = C - a(A)
to denote an upper bound on the processing demand of the event
stream for any time interval of size A, where the processing demand
is expressed in units of execution time at speed Smax-

In analogy with arrival curves, the availability of processing
resources is characterized by service curves. In particular, we use
a service curve 3(A) to denote a lower bound on the available
execution time in any time interval of length A with A > 0. For
arrival curves, service curves, and a given scheduling policy, RTC
can be used to analyze the worst-case response time (or delay)
experienced by an event or the required buffer size [14], [15].

B. Processor and DVS Model

This work assumes the power consumption that is manageable
by the system as a convex and increasing function of the supply
voltage/speed. We adopt the power model of [19] in which the
power consumption of the system at execution speed s is specified
by P(s) = Py + W Pua + Pa) = Pua + h(Pua + Cers™), where
Pita, Pna, and P, are static, speed-independent active, and speed-
dependent active power, respectively. If the system is in sleep mode,

h is 0, whereas h is set to 1 when the system is in active mode.
The mode switch between the active mode and the sleep mode
can be achieved by applying gated supply voltage with negligible
overhead in our scheduling scale. Moreover, C,r and 2 < v < 3 are
system-dependent constants for representing the effective switching
capacitance and the dynamic power exponent, respectively. Due to
the excessive time/energy overhead of turning on/off a system, the
static power Py, cannot be removed, and hence power consumption
that is manageable by the system is i( Pua + Cers”).

In the described setting, the energy consumption for execution that
is manageable by the system is merely a convex function of the exe-
cution speed. There is a critical speed Scrir, €.8., 7/ % in [19],
such that executing at s.; is more energy-efficient than executing at
any other (also lower) speed [9], [19]. We assume that the system can
operate at any speed in the range of [smin, smax]. By the definition
of the critical speed, only operating speeds in the range [}, Smax]
should be used, where sh;, = min{max{Smin, Scrit }, Smax }-

For systems with only discrete speeds, we can use voltage hopping
[12] to achieve a spectrum of continuous speeds. Without loss of
generality, we assume that smax is normalized to 1, and all the
other related metrics are scaled accordingly. We consider systems
with negligible overhead to switch between sleep and active modes.
More specifically, we assume that the system turns to the sleep mode
when there is no event to process, and that it turns back to the active
mode as soon as an event to be processed arrives. Note that, our
method does not focus on a specific power model. We just require
monotonicity and convexity of the energy consumption in the interval

[Sx*nixn Smax} .

C. Problem Definition

In this paper, we consider power-aware DVS scheduling for one
event stream, in which an event arriving at time ¢ must be finished no
later than its absolute deadline t + D. The objective is to minimize
the energy consumption for the processing of the stream while
satisfying all the deadlines. For multiple event streams, our approach
can be easily adopted, but requires longer verification time. Events
are prioritized by their absolute deadlines with earliest-deadline-first
(EDF) scheduling. For notational brevity, for any two events e; and
er, we use e; < e to denote that event e; has higher priority than
or equal priority to ey.

Moreover, we assume that processing an event at speed s takes
C'/s time units. Hence, the curve a(A)/s denotes an upper bound
on the execution time requested by the event stream in any time
interval of size A under the assumption that the events are processed
at speed s.

D. Pessimistic DVS Scheduling

To guarantee the timing constraints, one needs to prepare for
the worst-case event arrivals, which occur in case of bursts. As
the energy consumption is a convex and increasing function of the
execution speed, the goal is to execute as slow as possible in the
range [Spin, Smax), see e.g. [18], [19]. Therefore, we can execute
events at a static speed such that the timing constraints are satisfied.
By using results from RTC [11], [14], the worst-case response time
(WCRT) of the event stream is a function of « and 3:

WCRT (e, B) = sup{inf{r > 0: a(X) < BA+7)}} 3)
A>0
WCRT(«, 3) can be interpreted as the maximum horizontal distance

between the curves « and 3 as shown in Figure 1a. The event stream
is schedulable if WCRT(a, ) < D, i.e. the worst-case response time
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(a) WCRT

(b) Pessimistic DVS scheduling

Fig. 1: Graphical interpretations for analysis based on Real-Time
Calculus.

is not larger than the relative deadline. This can also be expressed as
the inequality

a(A — D) < B(A) VA > 0. @)

Based on the above analysis, the static DVS schedule with one
constant speed is to find the minimum speed ssp such that

a(A—=D)<ssp-A VA>0, (5)

and to execute at the constant speed max{sk,;,, Ssp}. For brevity,
we denote this approach as Algorithm SD (stands for static DVS).
Therefore, executing events at a speed ssp that satisfies (5) and
by applying EDF, we can guarantee the satisfaction of the timing
constraints. However, as the arrival curve bounds the worst-case event
trace, the actual event arrivals might be far below the arrival curve in
many intervals. For instance, it could be that a burst of event arrivals
happens only once, but we have to always provide a high computation
speed ssp in order to guarantee the timing requirements. In other
words, by a static speed assignment one tends to be too pessimistic
and ignores the opportunity of reducing the energy consumption.

E. Optimistic On-Line DVS Algorithms

In contrast to a pessimistic scheduling scheme, an optimistic DVS
scheduling algorithm takes a new scheduling decision each time when
an event really arrives. As most systems do not have event bursts
all the time, the on-line algorithms can help to reduce the energy
consumption. Different on-line DVS algorithms have been proposed
in the literature [3], [18]. The Algorithm OPT proposed by Yao,
Demers, and Shenker [18] is known to be the best on-line competitive
algorithm for the minimization of the energy consumption.

For an event e; that is incomplete at time ¢, suppose that C;(t)
is its worst-case remaining execution time at time ¢ and speed Smax,
aj is its arrival time, and d; is its absolute deadline. Algorithm OPT
makes the scheduling decision at time ¢ by executing the highest-
priority event at speed

Ci(t)
dj —t

(6)

s(t) = max

>

Smin, INAX

€ e;:a;<t,e;<e;
In other words, Algorithm OPT selects the execution speed on-line
in a greedy fashion and guarantees a low energy consumption by
only considering those events that have arrived so far and are not yet
completely processed. Note that if speed switching requires timing
overhead bounded by x, we just have to modify d; — ¢t in (6) to
d;j —t — x, and introduce one additional state in the TA discussed in
Section IV.
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Fig. 2: An example for different scheduling algorithms.

When EDF is applied, Algorithm OPT has a competitive factor of
~7, compared to optimal offline DVS scheduling with known event
arrival times [2]. Note that Algorithm OPT can always derive feasible
schedules to meet the timing constraints of the real-time events, if
the system has no maximum speed constraint (i.e., Smax = 00).
However, if smax is constrained, applying Algorithm OPT might lead
to a schedule that violates the timing constraints since the speed
required at some time instant ¢ might be larger than Smax.

III. ADAPTIVE SCHEDULING SCHEME

As suggested by Section II-E, before applying Algorithm OPT,
we have to ascertain that it is feasible in the particular system. That
is, we have to verify that in all possible event traces constrained by
the arrival curve the events can meet their deadlines without violating
Smax. The feasibility test of Algorithm OPT for one event stream has
been studied by Chen et al. [6]. If Algorithm OPT is not feasible,
we can fall back to the pessimistic DVS scheduling by running at
speed ssp, as suggested in [6]. But this fall-back might be too harsh
since Algorithm OPT is possibly applicable as long as the system
is light-loaded. In order to prevent deadline violations, we have to
be pessimistic when the system is heavy-loaded only. This section
presents a motivational example for an adaptive DVS scheduling
scheme, followed by the definition of such a scheme.

A. Motivational Example

Consider an upper arrival curve specified as in (2) with p = 2
msec, J = 4 msec, and d = 1 msec. For simplicity, let the power
consumption function be P(s) = h(lGSHz)S Watt, where Smin is
assumed 0 and the maximum speed is 1 GHz. The execution time at
speed Smax 1S % msec and the relative deadline D is 4 msec.

Suppose that we release 15 events bounded by the arrival curve

at times (4, 5,6,7,8,14, 16, 18, 20, 22, 24, 26, 28, 30, 32) msec. By
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Fig. 3: Flowchart of Adaptive DVS Scheduling Scheme.
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applying (5), for the given arrival curve, we know that speed ssp
is % GHz. The resulting schedule for the static speed assignment
for this input trace is shown in Figure 2a with 13.89 mlJoule
energy consumption. Applying Algorithm OPT leads to a schedule in
Figure 2b with 10.91 mJoule energy consumption, but the required
speed from in time interval [8, 12] msec is 1.017 GHz, which slightly
violates the maximal speed. If we adapt Algorithm OPT by greedily
running at the maximum speed Smax when s(t) derived from (6) is
more than 0.85 GHz, we can switch to speed smax at time 7 msec
and have a feasible schedule as shown in Figure 2c¢ with energy
consumption 10.92 mJoule, which is an energy reduction of 21%,
compared to running at speed ssp.

B. Definition of the Adaptive Scheme

To achieve energy saving while satisfying the timing constraints,
we propose the adaptive DVS scheduling scheme shown in Figure 3.
Specifically, at a scheduling point at time ¢, we first estimate the
speed s(t) by applying Algorithm OPT, as shown in (6). If s(t)
is less than or equal to a speed threshold s, we greedily execute
the event with the highest priority by using speed s(t). Otherwise,
we execute at speed Smax to resolve the burst of event arrivals. We
say that an adaptive DVS scheduling scheme is feasible with speed
s* if the timing constraints of the events are satisfied for all traces
constrained by the arrival curve. As we would like to be as optimistic
as possible to reduce the energy consumption, the objective is to
derive the maximal speed s™ such that the adaptive DVS scheduling
scheme is feasible with s*.

Algorithm OPT is an event-driven scheduling algorithm, which
means that the instant when a job arrives or completes is a scheduling
point for speed determination. Note that the speed computation in (6)
requires precise knowledge of the amount of completed processing
demand at the given time ¢, as well as the time left until the deadline
of the individual events. Taking into account these quantities is,
however, not trivial in a state-based model. This requires not only that
the modeling formalism has a notion of continuous time, but also that
computations on time variables can be performed. For instance, in
Uppaal [4], [5], the verification tool based on Timed Automata (TA)
that we employ in this paper, computations on clock variables are not
supported. This means that the event-driven scheduling policies that
are based on elapsed/remaining time such as OPT or EDF can only
be approximately represented by means of TA models. Moreover,
coming up with a conservative TA approximation for the described
adaptive scheduling scheme based on Algorithm OPT is not trivial.
In particular, any approximation that overestimates the actual speed
s(t) selected by the scheme at time ¢ is not safe as it might ignore
deadline violations. But at the same time, any approximation that
underestimates the actual speed s(¢) is not safe as it might result in
premature changes to smax compared to the actual system, and hence

again jeopardize the verification of deadlines.

Therefore, in order to avoid ambiguous results for the safety of
an actual system architecture, in this paper we devise a formal
model based on TA that restricts the scheduling scheme to time-
driven scheduling. More precisely, we discretize time by introducing
artificial clock ticks with period 7'. These ticks are counted in order
to keep track of elapsed/remaining computation times. In our model,
an event that arrives between two clock ticks will be buffered, and
will affect the system only at the following tick. That is, an event that
arrives at time ¢’ will be released to the scheduler at time [%1 T and

we also anticipate its deadline from ¢’ +D to H%DJ T'. The resulting
algorithm is an adaptive and time-driven variant of the original OPT
algorithm.

IV. ANALYSIS OF ADAPTIVE SCHEME

The proposed DVS scheduler is state-based, as it chooses the
processing speed depending on the actual history of event arrivals.
For this reason, the traditional RTC analysis for state-less components
cannot be applied to examine its behavior and derive the optimal
threshold speed s*. As shown in [6], it is also not trivial to employ
RTC for analyzing the maximum speed that Algorithm OPT might
experience. This section presents a method for the analysis of the
proposed DVS scheme. The method uses RTC curves for abstractly
describing event streams (task activation patterns) and exploits TA [1]
for modeling the DVS scheduler. It is based on the hybrid analysis
approach introduced in [10]. Figure 4 depicts our analysis framework.
It consists of the following components:

1) Simplified arrival curves
For reducing the complexity of the TA-based analysis frame-
work we use conservatively simplified event arrival curves.
The simplification is an over-approximation which converts a
general curve @ into a staircase function & with non-decreasing
step-widths.

2) Event generator
We automatically derive a network of TA which produces event
streams that are bounded by the simplified staircase curve
a'. This event generator, which we denote G(&'), is fully
equivalent to @' in the sense that it is able to produce all event
traces that are constrained by &'.

3) TA-based abstraction of the DVS-scheduler
We use a TA-based model of the adaptive DVS scheduling
algorithm in which we employ clock discretization in order
to keep track of the completed/remaing processing demands of
events. The interaction among the event generator and the state-
based DVS scheduler is modeled by means of a shared variable,
which represents the number of buffered input events. We
employ the timed model checker Uppaal [4] in order to derive
the maximum threshold speed s*. In particular, we follow a
binary search strategy in which the timing requirements of the
input event stream are verified for different values of s*. If
for a given value of s* Uppaal reports a deadline violation,
we have to be more conservative and reduce s*. In contrast,
if Uppaal confirms that for the given s* all events meat their
deadline, we try to use a more optimistic threshold speed. Note
that the model checker asserts the schedulability for all timed
event traces bounded by &'.

It is important to note that the analysis framework described above,
which is based on expensive formal verification of TA models, is
used at design time only. In particular, it is employed offline to
parameterize and validate the adaptive DVS scheduler for a given
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Fig. 5: Stair-case arrival curve

(potentially infinite) set of real-time event streams. In the proposed
scheme there is, however, no additional overhead for the online DVS
algorithm itself, which is just a simple variant of Algorithm OPT.

In the following we detail on the parts of the analysis framework.
Due to space limitation, we will implicitly use the syntax and
semantic of Uppaal for describing our TA-based approach. For details
about Uppaal, please refer to [4], [S].

A. Conservative Simplification of Input Curves

A general arrival curve & can by approximated by a set of simple
staircase functions @, composed by minimum operation.

a'(A) = miin{(ié(A)} with

a(8) =N+ |2]. @
Figure 5 shows an example of a staircase function & that is obtained
by the minimum of two simple staircase functions &; and &5. Each
simple staircase function & is defined by means of two parameters
N; and §; which represent the maximum burst and the maximum
long-term rate of the considered event stream, respectively. Note that
a staircase curve @ in (7) has non-decreasing step widths, which we
denote as pseudo-concaveness of the arrival curve. The approximation
of an arrival curve is safe as long as @ < & holds for all A € [0, c0),
where @ denotes the original arrival curve and & is the approximated
one. Intuitively speaking, for the sake of efficiency we test the DVS

x=0,
b = min(b+1, BVIAX)

System Declarations

broadcast channel event,
Local Declarations for GTA i
const int BMAX = Nj;
clock x;

int b=0;

const int Delta = §;

@ x <= Delta

if (b==BMAX) x=0,

Sync++
(a) GTA for guarding &,

(b) Declarations

event!

o ©

Sync=0
(c) TA for enforcing full synchronization
Fig. 6: Event generator G(a') for a concave arrival curve &'.

scheduler with more activation patterns than necessary, which does
not harm the safety of the analysis.

B. TA-Based Modeling of Arrival Curves

The proposed modelling pattern for arrival curves follows the
ideas of [10]. A pseudo-concave arrival curve & is implemented
by an event generator G(&'), which is a set of cooperating TA that
produces all event traces bounded by &'. Figure 6 illustrates the basic
components of the TA network. For each simple staircase function
&, defined in (7), an instance of the TA shown in Figure 6(a) is
used. This TA, denoted as GTA, constrains event emissions such that
the event trace conforms to &;. The event emissions are triggered by
the TA of Figure 6(c). The synchronization with the different GTA
enforces that the event generator can produce only timed event traces
that are bounded by &'. In particular, the minimum operation of (7) is
implemented by full synchronization of all GTA. Within Uppaal this
behavior can be implemented by making use of a broadcast channel
and a global variable SY NC' as depicted in Figure 6. In the TA of
Figure 6(c) the constant K corresponds to the number of employed
GTA. Note that G(&') allows to produce all event traces that are
constrained by &'. The corresponding proof is provided in [10].
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An example is provided by Figures 5 and 6. For translating the
arrival curve @ of Figure 5, one needs 2 GTA instantiated with
BMAX := N2 and Delta := 0(12;. In the event emitter
(Figure 6(c)) the constant K is set to 2 such that events can be
generated only if both &) and & are respected.

Note that the described model for representing arrival curves by
means of TA is very general in the sense that it allows to combine an
arbitrary number of simple staircase functions &) in order obtain an
accurate approximation of an arrival curve. There are, however, also
more specific models that are tailored to particular types of arrival
curves. For instance, in [8] a TA model for periodic event streams
with jitter is presented. While such dedicated models have a very
restricted application scope, in terms of verification they are at times
more efficient than the described general representation.

C. Analysis Method

In this work we consider TA extended with integer data types,
as employed by the model checker Uppaal [4]. Uppaal adopts a
continuous representation of time (clocks are real-valued), however
it does not permit arithmetic operations on clock values. Hence,
the behavior of the event-driven OPT Algorithm as described by
(6) cannot be directly translated to TA. In order to circumvent this
problem, in the following we introduce a TA model for a time-driven
variant of OPT that makes use of a discrete time representation.

The TA model for a CPU processing one event stream and
implementing the proposed scheduling scheme is shown in Figure 7.
The figure depicts a network of TA that cooperate by means of
channels and global variables. The model assumes that all the events
of the input stream have a constant execution demand C expressed
in processing units, and a constant relative deadline D expressed
in time units, where both C and D are integers. The model relies
on an explicit representation of time, where the advancing of a
clock is tracked by periodic clock ticks. In particular, automaton (a)
broadcasts a signal tick every T time units (clock period). Automaton
(b) handles the arrival of new events, as it synchronizes with the
event generator over the broadcast signal event. Every time a new
event arrives, the automaton increments the counter variable b which
represents the current number of buffered events that need to be
processed. Note that event arrivals are independent of clock ticks,
meaning that new events can arrive at any point in time. However, in
the proposed model an event arrival will not affect the CPU until the
next clock tick, when the automaton will move to the BUSY location
if the CPU was idle or compute a new processing speed when it was
busy. The processing speed is represented by a global integer variable
s. The value of s represents the number of processing units that the
CPU provides per time unit. The model uses an array of integers
deadlines to keep track of the number of time units remaining for
each individual event to its absolute deadline. At an event arrival the
corresponding position in the array is initialized with D, see 7(b). At
every clock tick, all elements in the deadline array are updated, that
is, for each buffered event the counter of time units remaining to the
deadline is decreased by 7. Note that at each clock tick the deadline
array is updated before the new processing speed is computed. This
makes sure that a sufficiently high speed will be chosen, such that the
deadline of an event is met, even though it might have been released
with delay, i.e. only at the next clock tick following its actual arrival
time.

Automaton 7(c) models the CPU itself. It manipulates a global
integer variable rct that represents the remaining execution demand,
expressed in processing units, for the currently processed event. At
each clock tick rct is decreased according to the selected processing

speed. If the deadline of an event is contained within the next clock
tick but the processing cannot be finished in time, the automaton
immediately reports a deadline violation by moving to an appropriate
state.! On the other hand, if the remaining execution demand for
an event is less or equal than the processing service available in a
clock period, the location BUSY is immediately left and one of the
following three cases applies. (1) The number of time units left to
the deadline is not sufficient to complete the processing of the event
and, hence, a deadline violation is reported. (2) The completion of
the event processing happens in time and there are no other events
in the queue. Hence, the transition to the location /IDLE is taken.
(3) The completion of the event processing happens in time and
there are other events in the queue. Hence the direct transition to
the location BUSY is taken. In both cases (2) and (3) the elements
of the array deadlines are shifted by one position and the variable b
is decremented.

Algorithm 1 Compute speed

1: function SPEED

2: int s — 0, int s’

3: for i — 0,b — 1 do

4: s’ = (rct + i * C)/deadlinesli]
5: s «— mazx(s,s’)

6: end for

7. if s > s then

8: S — Smazx

9: end if

10: return s

11: end function

The function adopted in the model to compute the processing
speed is reported in Algorithm 1. As can be seen, it implements
the described adaptive scheduling scheme by setting the processing
speed to Smaz if a speed above the threshold s* is requested.

By means of the model checker Uppaal we can now verify whether
an event stream is schedulable by the proposed adaptive scheduling
scheme with threshold speed s*. The corresponding query is specified
as follows:?

A[] (not CPU.DEADLINE MISS)

By performing a simple binary search on s* it is possible to determine
the maximal threshold speed that permits to guarantee the timing
constraints.

Note that the discrete time approximation of the scheduling scheme
can be made arbitrarily precise by reducing the length of the clock
period 7. However, a more fine-grained time representation will
result in longer verification times. Hence, a system designer adopting
the proposed approximated model can trade analysis accuracy for
verification time.

D. Generalization to Multiple Event Streams

In this section we briefly explain how the TA model introduced
above can be extended to the case of multiple input event streams. In
particular, we sketch a model of a CPU that processes the events of
several input streams according to the Earliest Deadline First (EDF)
scheduling policy. For the sake of conciseness, we do not report the
entire TA model, but only point out the differences to the model of
Section IV-C.

We assume that the CPU processes n input event streams with
execution demands C; and relative deadlines D;, ¢ € n. The extended
model still uses a single counter variable b and a single array

'Immediate reaction is guaranteed by the urgent channel hurry which is
always ready to synchronize.
2In Uppaal A[] stands for ’always invariantly’.
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(deadlineg[0] >=rct / s) && (b > 1)

shift_deadline_array(),
b--,
rct=rct+C

(deadlines[0] >=rct / s) && (b == 1)
shift_deadline_array(),

Fig. 7: TA model of the discretized adaptive scheduling scheme

deadlines to handle all the input events now originating from different
input streams. However, unlike in the previous case, the last arrived
event does not necessarily have the farthest absolute deadline. Hence,
we have to explicitly keep the elements in the array deadlines sorted,
meaning that new elements have to be inserted at the right position.
Moreover, under EDF scheduling it can happen that a currently
processed event is preempted by a newly arrived event with earlier
deadline. In our discrete time representation of the CPU, this case
is conservatively approximated by newly selecting the next event to
process at each clock tick. Preemptions also imply that we have to
explicitly store the remaining execution demand for each buffered
event. This is done by replacing the variable rct by an appropriate
array of integers.

While in principle the described modeling method permits to
consider an arbitrary number of input streams, it is clear that the
complexity of the verification will increase drastically with the
number of considered input streams.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Algorithm SD,
Algorithm OPT, and the proposed adaptive algorithm (denoted AD)
in terms of energy usage.

Experimental Setup: For comparison of the performance of the
three algorithms, we use a set of 6 different event streams adapted
from [16]. The considered streams are periodic event streams with
jitter that are specified by the following parameters: period p, jitter
J, minimum time between consecutive event arrivals d, worst-
case execution time C (at Smax), and relative deadline D. Table 1
summarizes the parameter values for the 6 event streams. The streams
have been selected such that if they are scheduled with Algorithm
OPT, they violate the maximum system speed which is 0.5GHz. In
other words, there will be deadline violations if Algorithm OPT is
constrained to Smax = 0.5GHz. The maximum speeds required by
Algorithm OPT for the different streams are calculated as proposed
in [6]. In particular, we use approximative traces of length 3 - D ms
(where D is the relative deadline of a stream), which was shown to
be a tight approximation. The speeds required by Algorithm SD are

| 1] o] m[v] v] vi]
198 | 102 | 283 | 239 | 148 | 114
387 | 70 [ 269 [ 222 91| 13
48 | 45| 58] 65| 78 0
30 35 7] 69 ] 53| 52
110 | 140 | 310 | 280 | 200 | 120

=Nl N- ALl

TABLE I: Parameters for the 8 input event streams in [ms].

calculated with (5). The corresponding speeds are shown in Table II
(first two rows).

For Algorithm AD, the speed thresholds s* have been computed
with the model checker Uppaal based on the TA models described
in Sec. IV and using a discretization granularity of 7" = 2 ms. Note
that in order to improve the efficiency of the verification, we take
advantage of the periodicity of the considered streams by using the
dedicated event generator described in [8] to trigger the TA-based
adaptive DVS model. The resulting threshold speeds are shown in
Table II (last row). The run-times for computing the speed thresholds
for Algorithm AD on a 64-bit Sun Fire X2200 M2 with 8GB RAM
are shown in Table III.

| T 1T [oJm]wv]v]v]

SSD 0.44 | 038 | 042 | 0.4 | 039 | 0.47
SOBT 0.513]0.505 | 0.501 | 0.506 | 0.506 | 0.506
s* (T=2ms) || 0.38 | 0.36 | 0.29 | 0.39 | 0.37 | 0.39

TABLE II: Maximum speeds for algorithms SD and OPT (first two
rows), threshold speeds s* determined for Algorithm AD, assuming
Smaz = 0.5 (last row) in [GHz].

In order to evaluate the energy-efficiency of the different algo-
rithms, we first use the RTC Toolbox [15] to produce 10 random
event traces for each of the streams. These traces are generated so
that they are as close to the arrival curve as possible, each with a
length of 20000 ms. The execution of these traces is then simulated
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| H1|11|111|1v|v|v1|
| T=2ms [[ 210 [ 262 | 16679 [ 2973 | 459 | 2 |

TABLE III: Run-times for computing the threshold speeds s* for
clock period value 7" = 2 ms in [sec].
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o 1 |
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Fig. 8: Average energy required by the evaluated algorithms to
process the traces of each stream.

by means of a simple discrete event simulator that implements the
described scheduling schemes and monitors the energy consumption
of the system. The simulator adopts the power consumption function
P(s) = 0.04 + h(1.56(5=57=)°) Watt, which is an approximation
for the power consumption of the Intel XScale architecture. Finally,
we calculate the average energy needed by each algorithm for
scheduling the different traces from a particular stream.

Results: Figure 8 shows the average energy required by the
algorithms to process the traces of each event stream. Since for the
considered streams it is not feasible to use Algorithm OPT on a
system with a maximum speed of 0.5GHz, the average energy is
given only as a reference to see how pessimistic Algorithm AD is.
As can be observed in the figure, Algorithm AD is not much worse
than Algorithm OPT, on average 10%. For five of the streams, it
performs better than Algorithm SD with 22% on average. Note the
results for the last stream that show that Algorithm SD is not always
worse than Algorithm AD. The reason for this result is that stream
VI has a very small jitter, i.e., is almost a periodic event stream and
hence executing at a constant speed is more energy-efficient than
adapting the execution speed.

VI. CONCLUSION

This paper explores an adaptive DVS scheduling scheme that
decides the adoption of pessimistic and optimistic DVS scheduling
dynamically. Specifically, the scheme tries to be as optimistic as
possible when the system is light-loaded in order to reduce the
energy consumption. However, when the required processing speed
reaches some threshold, the scheme becomes pessimistic in order to
ensure the observation of deadlines. The presented approach models
event streams by means of arrival curves, an abstraction used in
Real-Time Calculus (RTC), and exploits Timed Automata with clock
discretization for verifying whether a given threshold speed is safe
in terms of timing guarantees. In particular, the framework applies a
binary search to find the maximal threshold such that the scheduling
scheme is as optimistic as possible. The experiments confirm the
beneficial properties of the adaptive DVS scheme.

Note that the proposed analysis method can be easily extended
to systems with discrete speeds, without falling back to voltage
hopping and (expensive) speed-scaling. One just needs to modify
the speed selection in (6) and the models in Figure 7 accordingly.
As the restriction to discrete speeds reduces the search space, lower

verification times are expected. Moreover, we considered that the
scheme runs at speed Smax in the pessimistic mode, but any other
speed can be used instead. However, how to best choose a suitable
speed for the pessimistic mode in terms of energy is unclear. Further,
note that even though we focussed most of our discussions on
systems with one event stream, the approach can be easily extended
to multiple streams. However, when scaling TA models one often
encounters state space explosion. Hence, we expect the verification
time to increase drastically for systems with multiple inputs.
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