
Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based
Approach

Yongxin Tong1, Libin Wang1, Zimu Zhou2, Lei Chen3, Bowen Du1, Jieping Ye4
1 BDBC and SKLSDE Lab, Beihang University, Beijing, China, 2 ETH Zurich, Zurich, Switzerland,

3 The Hong Kong University of Science and Technology, Hong Kong SAR, China, 4 Didi Chuxing Inc., Beijing, China
1 {yxtong, lbwang, dubowen}@buaa.edu.cn, 2 zimu.zhou@tik.ee.ethz.ch, 3 leichen@cse.ust.hk,

4 yejieping@didichuxing.com

ABSTRACT

Pricing is essential for the commercial success of spatial crowd-

sourcing applications. The spatial crowdsourcing platform prices

tasks according to the demand and the supply in the crowdsourcing

market to maximize its total revenue. Traditional pricing strategies

seek a unified optimal price for a single global market. Yet spatial

crowdsourcing needs to dynamically price for multiple local mar-

kets fragmented by the spatiotemporal distributions of tasks and

workers and the mobility of workers. Dynamic pricing in spatial

crowdsourcing is challenging because the supply in local markets

can be limited and dependent, leading to global dependencies when

pricing tasks in each local market. To this end, we define the Global

Dynamic Pricing (GDP) problem in spatial crowdsourcing. We fur-

ther propose a MAtching-based Pricing Strategy (MAPS) with guar-

anteed bound, which efficiently approximates the expected total

revenue for markets with limited supply, effectively distributes the

dependent supply and dynamically prices the tasks. Extensive eval-

uations on both synthetic and real-world datasets demonstrate the

effectiveness and efficiency of MAPS.

CCS CONCEPTS

• Information systems → Spatial-temporal systems;

KEYWORDS

Spatial Crowdsourcing; Pricing Strategy

ACM Reference Format:

Yongxin Tong1, Libin Wang1, Zimu Zhou2, Lei Chen3, Bowen Du1, Jieping

Ye4. 2018. Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based

Approach. In SIGMOD’18: 2018 International Conference on Management

of Data, June 10–15, 2018, Houston, TX, USA. Houston, TX, USA, 16 pages.

https://doi.org/10.1145/3183713.3196929

1 INTRODUCTION

The development of mobile Internet and sharing economy brings

the prosperity of spatial crowdsourcing. Nowadays, spatial crowd-

sourcing applications are ubiquitous: intelligent transportation (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196929

Uber [3] and DiDi [5]), food delivery (e.g., Seamless [1]), informa-

tion collection (e.g., Waze [6] and OSM [2]) and micro-tasks (e.g.,

Gigwalk [4] and gMission [16]). These platforms provide a new

way of organizing the crowd to complete spatial tasks.

Pricing the spatial tasks is one crucial step in the management

and operation of spatial crowdsourcing. The typical pricing pro-

cess in spatial crowdsourcing works as follows. First, requesters

submit tasks to the crowdsourcing platform. Each task requires a

crowd worker to travel a distance from his/her origin to a specific

destination [15, 40]. Then the platform decides the price per unit

distance for the tasks and reveals the prices to the requesters. After

observing the unit price, the requesters decide whether to accept it

or not, according to their expectations on the unit price. After re-

ceiving the requesters’ decisions, the platform assigns workers for

those requesters who accept the unit price, and gets a correspond-

ing revenue. Proper unit prices are vital for the total revenue of

the platform, because (i) low unit price may yield low total revenue

when the number of workers is limited; (ii) high unit price may

threaten requesters away, which also decreases the total revenue.

Yet pricing tasks in spatial crowdsourcing is non-trivial. Unlike

traditional crowdsourcing where each worker can potentially per-

form all tasks posted on the platform [17, 25, 30, 31], workers in

spatial crowdsourcing can only serve a portion of spatial tasks, since

some tasks require a traveling distance beyond the capability of

workers [15, 40]. Consequently, the unified market in traditional

crowdsourcing tends to fragment into multiple local markets in spa-

tial crowdsourcing. As a result of the spatiotemporal distributions

of workers and tasks, each local market often varies in supply and

demand, posing a need for dynamic pricing for each local market.

Despite existing research on pricing in crowdsourcing [36, 37], dy-

namic pricing in spatial crowdsourcing is largely unexplored due

to the following three challenges.

Unknown Demand. Only the requesters who accept the price will

contribute to the total revenue of the crowdsourcing platform. But

the decisions of requesters are unknown before the platform decides

the unit prices. A common approach is to estimate the expectation

of requesters on the unit prices. Thus the first question for pricing

in spatial crowdsourcing is: How to estimate the expectations of

requesters on different prices (i.e., how much they are willing to pay)?

Limited Supply. Unlike traditional crowdsourcing where work-

ers are sufficient, spatial crowdsourcing applications can face a

shortage of workers. For instance, near the stadium after a football

match, there are usually insufficient taxis to drive people home, and

passengers are willing to pay a higher price due to the imbalanced

demand and supply. The variety of demand and supply across local

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tong et al.

1 5432

1

2

3

4

5

0 X

Y

6 7 8

6

7

8

r3

(2,6)r2

(1,5)
w1 (3,5)

w2 (7,5)

w3 (5,3)

(5,5)
,,,

r1

(a) Tasks and workers. (b) Bipartite graph.

1 5432

1

2

3

4

5

0 X

Y

6 7 8

6

7

8

grid 1 grid 2 grid 3 grid 4

grid 5 grid 6 grid 7 grid 8

grid 9 grid 10 grid 11 grid 12

grid 14 grid 15 grid 16grid 13

(c) Grids.

1 5432

1

2

3

4

5

0 X

Y

6 7 8

6

7

8

r3

r1

(2,6)r2

(1,5)
w1 (3,5)

w2 (7,5)

w3 (5,3)

(5,5)

(d) Tasks and workers in grids.

Figure 1: An illustration of the running example.

Table 1: Acceptance ratios for Example 1.

p 1 2 3

S(p) 0.9 0.8 0.5

markets poses a question: How to formulate a pricing framework to

meet the diverse demand-supply conditions in multiple local markets?

Dependent Supply. Workers in real-world spatial crowdsourcing

applications can be dependent. For example, a taxi may be able to

pick up passengers living in multiple districts. But once it picks a

passenger, it cannot serve other passengers, leading to a reduce in

supply in the rest of the districts (local markets). As the platform

aims to maximize the total revenue among all local markets, the

dependency among local markets raises an additional question.

How to distribute the supply in multiple dependent local markets such

that the unit prices in each local market maximize the total revenue?

We illustrate the unique challenges of pricing in spatial crowd-

sourcing via the following example.

Example 1. Imagine a taxi-calling platform and assume 3 tasks

(r1 − r3) and 3 workers (w1 −w3) appear on the platform. The origins

of the tasks and the locations of the workers are shown in Fig. 1a. To

finish r1, r2 and r3, a worker needs to travel from the task’s origin to

destination with a distance of 1.3, 0.7, and 1, respectively. The platform

will offer a unit price for each task, and the tasks whose requesters

accept the offered price will be served. Table 1 shows the probabilities

of a requester to accept a given price. Note that Table 1 needs to

be estimated in practice. If every worker can perform all the tasks,

according to Table 1, a unit price of 2 will maximize the expected

total revenue of the platform. In reality, workers can only move in a

finite speed, imposing a range constraint on the tasks a worker can

serve. We assume all workers have the same range constraint, which

is a circle of a radius of 2.5. Based on the range constraint, we can

construct a bipartite graph (Fig. 1b), to reflect the spatial distributions

of tasks and workers. From Fig. 1b, at most two tasks can be served

and at most one of r1 and r2 can be served. We can set the unit price of

3 to r1 and r2 , because the possibility of both r1 and r2 reject the price
is low. And r3 is assured to be served as long as the offered price is

accepted, so we can offer the unit price of 2 to r3, which can maximize

the expected revenue contributed by r3. We will see later that unit

prices of 3, 3, 2 for r1, r2 and r3 is optimal in this example. To get

such an optimization, we need to estimate the acceptance ratios of

requesters, and consider the spatial distribution of tasks and works,

which indicates limited and dependent supply in the region.

Contributions and Roadmap.Motivated by the above exam-

ple, we propose the Global Dynamic Pricing (GDP) problem in spa-

tial crowdsourcing (Sec. 2). It stems from real-world spatial crowd-

sourcing applications and aims to deal with dynamic pricing in

multiple local markets with (i) unknown demand, (ii) limited supply

and (iii) dependent supply. To solve the GDP problem, we first pro-

pose a base pricing strategy with guarantees to set a unified base

price for all local markets with unknown demand (Sec. 3). Taking

the base price as input, we design MAtching-based Pricing Strategy

(MAPS), which (i) promptly learns the demand (probabilities to

accept a given price), (ii) efficiently approximates the expected rev-

enue with both sufficient and limited supply, and (iii) incrementally

optimizes the dependent supply (Sec. 4). We verify the effectiveness

and efficiency of the proposed pricing strategies on large-scale syn-

thetic and real-world datasets (Sec. 5). Finally, we review previous

works and conclude this paper (Sec. 6 and Sec. 7).

2 PROBLEM STATEMENT

This section introduces the important notations and defines the

global dynamic pricing (GDP) problem in spatial crowdsourcing. All

proofs involved in this paper are presented in the appendix.

2.1 Preliminaries

We assume the region of interest is partitioned in space as grids.

Definition 1 (Grid). The entire spatial region of interest is parti-

tioned into grid cells, indexed by 1, . . . ,G.

Spatiotemporal information is a central factor for pricing in

spatial crowdsourcing. Platforms tend to set a single unit price (i.e.,

price per unit distance) for the tasks in the same grid and the same

time period, due to lack of additional data for personalized pricing.

Note that the concrete space partitioning scheme is application-

specific, and we adopt grid indices for simplicity.

Example 2. We use grids with the side of length 2 and index from

the bottom-left to partition the region in Example 1.w3 is in grid 7.

r1 and r2 are in grid 9.

Definition 2 (Spatial Task). A spatial task (“task” for short),

denoted by r =< t ,orir ,desr >, is issued by a requester1 in a time

period t . Each requester has a private valuation vr representing the
maximum unit price he/she is willing to accept.

1In the rest of the paper, we also use r to denote the requester who issues the task r .

Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based Approach SIGMOD’18, June 10–15, 2018, Houston, TX, USA

If a requester accepts the unit price set by the platform, he/she

will be assigned a worker to complete his/her task. To complete the

task, the worker travels from orir to desr with a total distance dr
(e.g., Euclidean or road-network distance). And the platform gets a

revenue equal to dr times the offered unit price.

Private valuations vr are unknown to the platform. We assume

that the private valuations in the same grid д are i.i.d. samples from

an unknown distribution in a given time period [9, 10, 22, 34, 37].

For any requester in a grid д, the cumulative distribution function

(“CDF” for short) of his/her vr is defined by Fд(p) = Pr[vr ≤ p].
We further define the acceptance ratio of requesters.

Definition 3 (Acceptance Ratio of Reqesters). For any

requester in a grid д and a given unit price p, his/her acceptance ratio
w.r.t. p is defined by Sд(p) = Pr[vr > p] = 1 − Fд(p).

Note that the acceptance radio is a generic indicator of the price

level in the spatial crowdsourcingmarket. According to the efficient-

market hypothesis (EMH) [24], the acceptance ratios have implicitly

accounted for all available information such as time, routes, traffic

conditions, weather, etc.

Definition 4 (Crowd Worker). A crowd worker, denoted by

w =< t , lw ,aw >, is available on the platform from time period t at
an initial location lw . A workerw can complete any task r only if r ’s
origin orir is located within the circle centered at lw with the radius

aw (known as the range constraint).

Thiswork only considers workers without a constraint on his/her

final destination. Studies have shown that most workers in crowd-

sourcing platforms tend to performmultiple tasks for a long time [33],

e.g., full-time taxi drivers. Workers who only perform tasks at their

convenience (e.g., temporary Uber drivers who take passengers on

their way home) are beyond the scope.

2.2 Problem Definition

As stated in Sec. 1, the platform sets the unit prices for spatial tasks

to maximize its potential total revenue. The total revenue is affected

by (i) the tasks that accept the unit prices and (ii) the spatiotemporal

relationships between tasks and workers. We define total revenue

leveraging a probabilistic bipartite graph, which represents both

the probabilistic acceptance of tasks (modeled by acceptance ratios

in Definition 3), as well as the spatial constraints between tasks

and workers (each worker may serve multiple grids but can only

perform one task at a time).

We use possible world semantics [19] to identify the probabilistic

bipartite graph, denoted by Bt =< Rt ,W t ,Et , S >, with the dis-

tribution of sampled possible bipartite graphs, where Rt andW t

denote the sets of issued tasks and available workers in time period

t , respectively, and S is the set of acceptance ratios of requesters.

(i) The nodes on the left and right represent the tasks and workers,

respectively. (ii) There is an edge (r ,w) ∈ Et if the task r satisfies
the range constraint of the workerw . (iii) The weight of an edge

(r ,w) is dr × pr where pr is a specific unit price of r , and dr is the
distance from the origin orir to the destination desr . At the end
of t , a bipartite graph Bt =< R′t ,W ′t ,E ′t >, which is an instan-

tiation of the probabilistic bipartite graph Bt , can be constructed.

Specifically, R′t ⊆ Rt are the tasks that accept the unit price, i.e.,
nodes on the left in Bt with pr ≤ vr .W

′t is the same asW t . E ′t is

Figure 2: Possible bipartite graphs for Fig. 1b.

the edge set of the subgraph based on R′t andW ′t . We then define

the total revenue of all grids for time period t .

Definition 5 (Total Revenue). At the end of a time period t ,
given a set of issued tasks Rt , a set of available workersW t , and the

corresponding prices for the tasks, an instantiated bipartite graph

Bt =< R′t ,W ′t ,E ′t > can be constructed, and the total revenue

U (Bt) = ∑
r ∈R′t ,w ∈W ′t ,(r,w)∈M dr × pr , where M is the maximum

weighted bipartite matching in Bt .

There can be 2 |Rt | possible bipartite graphs (and thus 2 |Rt | rev-
enues). Denote the i-th possible bipartite graph by PWBi . In PWBi ,
we use Rt

PW Bi
as the set of tasks that accept the unit price pr and

thus Rt \Rt
PW Bi

is the set of the tasks that reject the unit price.

Since the private valuations of requestersvr within the same grid д
and time period are assumed to be i.i.d., thus the acceptance ratios
of all requesters in a grid are the same probability Sд(pr). Then we
can define the sampling probability of PWBi :

Pr[PW Bi] =
∏

r ∈Rt
PW Bi

Sд (pr)
∏

r ∈Rt \Rt
PW Bi

(1 − Sд (pr)),

where the first continued product is the probability of requesters

accepting the unit prices and the second continued product means

the probability of requesters rejecting the unit prices. We use

PWBi � Bt to represent that PWBi is sampled from Bt .

Now we define the expected total revenue for the platform.

Definition 6 (Expected Total Revenue). For a time period t ,
given a set of issued tasks Rt , a set of available workersW t , a multiset
of unit prices P t for each r , and a set of acceptance ratios w.r.t P t for
|Rt | unit prices, the expected total revenue is

E[U (Bt) |P t] =
∑

PW Bi�Bt
U (PW Bi) Pr[PW Bi]

whereU (PWBi) is the total revenue of the i-th bipartite graph.

Example 3. Back to our Example 1, for each task/requester, we

assume that the acceptance ratios are the same as in Table 1. The

specific prices of the three tasks r1, r2, r3 are 3, 3, 2, respectively. All
possible bipartite graphs of Fig. 1b are shown in Fig. 2, where each

possible bipartite graph is sampled with probability Pr[PWBi]. For
example, the sampling probability of the second possible bipartite

graph is calculated by S(3)× (1−S(3))× (1−S(2)) = 0.5×(1− 0.5)×
(1 − 0.8) = 0.05. For each possible bipartite graph, the maximum

weighted bipartite matching is shown as red lines, andU (PWBi) is
the corresponding total revenue. Hence, given the unit prices {3, 3, 2},

the expected total revenue of Fig. 1b is 4.1.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tong et al.

Table 2: Summary of major notations.

Notation Description

W t ,Rt The set of workers and requesters

G The number of grids

vr The evaluation of requester r
dr The travel distance of request r
aw The radius of the acceptance range of workerw

Fд (p),Sд (p) The CDF of vr and the acceptance ratio of requester r

Bt The bipartite graph between workers and requesters

Et The edge set in the bipartite graph

U t The total revenue in time period t

In real-world spatial crowdsourcing applications, the platform

does not know the acceptance ratios of requesters in advance. The

acceptance ratios of requesters are hidden variables to be estimated.

And the platform always hopes to find a set of globally optimal

prices to maximize its expected total revenue. The goal stated above

can be formalized to the following problem.

Definition 7 (GDP Problem). For a time period t , given a set

of tasks Rt without knowing their acceptance ratios, a set of workers
W t , the GDP problem is to find a multiset of unit prices P t for each r
such that the expected total revenue E[U (Bt)|P t] is maximized.

Theorem 1. The GDP problem is NP-hard.

Table 2 lists the major notations used throughout the paper.

3 BASE PRICING

In this section we present base pricing, a baseline pricing strategy

that efficiently estimates the unknown demand (i.e., acceptance

ratios of requesters), and sets the same unit price for all the grids,

a.k.a. base price. A unified base price is reasonable when the supply

is sufficient, i.e., after each requester accepts the price, there is

always an available worker to serve it. It reflects the long-term

unit price, which is a conservative option when the platform has

no prior knowledge of the market. It can also serve as the initial

inputs for dynamic pricing, which we will elaborate on in Sec. 4.

3.1 Basic Idea

Base pricing first estimates the optimal unit prices that maximize

the expected total revenue in each grid and then takes the average

of these unit prices as the base price. When there is sufficient supply

for the tasks in a grid, the optimal price that maximizes the expected

total revenue in the grid is related to the Myerson reserve price [34],

which we explain as follows.

3.1.1 Optimal Price for Each Grid and Myerson Reserve Price.

For a given unit price p, a requester r in grid д will accept p with

the probability Sд(p) = Pr[vr > p] = 1 − Fд(p). If there is always
a worker who can finish r (i.e., sufficient supply), the expected

revenue of r can be expressed as drpS
д(p) (where orir locates in

grid д). Thus the expected total revenue of the requests in grid д
can be expressed as

∑
r drpS

д(p) = pSд(p) · ∑r dr . And we only

need to find the price (i.e., p
д
m) which maximizes pSд(p) because it

will also maximize the expected total revenue in grid д.
Further assume the demand distribution Fд(p) is Monotone Haz-

ard Rate (MHR) distributions, meaning that Fд(p) is twice differ-
entiable and the hazard rate function F ′д(p)/(1 − Fд(p)) is mono-

tone non-decreasing, where F ′д(p) is the first-order derivative of
the cumulative distribution function of vr . Then the price p

д
m =

argmaxp pS
д(p) is often named as the Myerson reserve price [34],

as shown in Fig. 3a. The function pSд(p) is concave, which can be

(a) Revenue curve. (b) Price estimation.

Figure 3: An illustration of base pricing.

deduced by the properties of MHR [9]. There exists a value p
д
m such

that pSд(p)increases when p < p
д
m and decreases when p > p

д
m .

Hence the Myerson reserve price p
д
m is the unique maximizer. Note

that the assumption on MHR distributions is mild, because MHR

distributions are common, which include normal, exponential, and

uniform distributions [9, 11].

We next introduce how to estimate p
д
m for each grid.

3.1.2 Estimating Optimal Price for Each Grid. Accurate calcula-

tion of the Myerson reserve price p
д
m for a give grid д relies on the

continuous revenue curve (i.e., pSд(p) given p). Yet it is difficult to

obtain the revenue curve for each grid д. To estimate p
д
m efficiently

and effectively, we choose a candidate set of prices (denoted by

P
д

cand
) to sample the acceptance probability Sд(p) and apply the

best sample price that maximizes pŜд(p) as pдm , where Ŝд(p) is the
sample mean. The procedure is illustrated in Fig. 3b.

3.1.3 Determining Base Price. The base pricepb is the arithmetic

mean of the estimated Myerson reserve prices {pдm } of all the grids.
3.2 Algorithm Details

Algorithm 1 shows the procedure of base pricing. We select pmin

and pmax as the bounds of the sample prices, and (1 + α) as the
multiplier between two successive sample prices. The parameters ϵ
and δ control the accuracy of the sampling, which will be discussed

in Sec. 3.3. In line 1, k represents the number of candidates to

estimate the Myerson reserve price. In lines 2-9, we estimate p
д
m for

each grid д from 1 to G. Specifically, in lines 5-6, price p is offered

to h(p) requesters who recently have issued tasks. Then we observe

their decisions of acceptance or rejection to update the acceptance

ratio (the number of accepted requesters over h(p)). In line 7, we

add the current price p and its observed acceptance ratio Ŝд(p) into
the candidate set P

д

cand
. Then we generate the next sample price in

line 8. In line 9, we choose the price which maximizes pŜд(p). Ties
are broken by choosing the smaller price, since it usually represents

a higher acceptance ratio. Finally the base price pb is output as the

arithmetic mean of the estimated {pдm }.
Example 4. Suppose pmin = 1, pmax = 5, α = 0.5, ϵ = 0.2, and

δ = 0.01. Thenk = 4. The sample prices in P
д

cand
are 1, 1.5, 2.25, 3.375.

For some д, we sample price p = 1 for h(p) = 335 times. Suppose when

we offer the price of 1 to 335 requesters, 300 requesters accept the price.

Then Ŝд(1) = 0.9. Further suppose we get all the Ŝд(p) corresponding
to each sample price as 0.9, 0.85, 0.75, 0.4. Thus we set p

д
m = 2.25.

Remarks.We choose successive sample prices based on a multi-

plier (1+α). The performance guarantee of such a sampling scheme

is analyzed in Sec. 3.3. However, other step sizes also apply. If the

Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based Approach SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Algorithm 1: Base Pricing

input :pmin ,pmax ,α , ϵ,δ
output :pb

1 k ← � ln(pmax /pmin)
ln(1+α) 	;

2 for д ← 1, . . . ,G do

3 p ← pmin ,P
д

cand
← ∅;

4 while p ≤ pmax do

5 h(p) ← �(2p2/ϵ2) ln(2k/δ)	;
6 Use the price p for h(p) times and observe the

acceptance ratio Ŝд(p);
7 P

д

cand
← P

д

cand
∪ {(p, Ŝд(p))};

8 p ← (1 + α)p;
9 p

д
m ← argmax(p, Ŝд (p))∈Pд

cand

pŜд(p);
10 return pb ← ∑

д p
д
m/G

Myerson reserve price p
д
m falls outside of [pmin ,pmax], the algo-

rithm returns pmin or pmax .

3.3 Algorithm Analysis

To estimate the Myerson reserve price for each grid д efficiently

and effectively, we want to test the sample prices with a small num-

ber (i.e., h(p)) of requesters while Ŝд(p) is approximated with high

probability. The efficiency and effectiveness of our algorithm is

guaranteed by the following theorems. As the theorems are appli-

cable for each grid д, we omit the superscript for ease of notation.

Theorem 2. Let p′ denote the best price among Pcand , i.e., p
′ =

argmax(p, Ŝ (p))∈Pcand pS(p). With probability 1 − δ , the base pricing

algorithm finds pm such that pmS(pm) ≥ p′S(p′) − ϵ .

We need to set ϵ to be small to get p′ in Pcand . Yet an extremely

small ϵ may lead to too many samples. Based on Theorem 2, ϵ can

be set as αpmin minp S(p). This is because the absolute difference
between the pS(p) of two successive prices |pS(p) − (1 + α)pS((1 +
α)p)| is at least αpmin minp S(p), and we find price p such that

pS(p) ≥ p′S(p′) − ϵ , which ensures we find p′.
Whenwe choose successive sample prices based on themultiplier

(1 + α), we have the following theorem that bounds the accuracy

of our estimation compared with the optimal price (i.e., Myerson

reserve price) on the continuous interval.

Theorem 3. Let p∗ denote the optimal price on the continuous in-

terval [pmin ,pmax]. If α ∈ (0, 1), we havepmS(pm) ≥ (1−α)p∗S(p∗).
Finally, we show the approximation guarantee when using a

single base price pb for all grids.

Theorem 4. Let ALG represent the expected revenue achieved by

using the base price pb for all grids. LetOPT represent the maximum

expected total revenue obtained by setting p∗tд for time period t and
each grid д. Assume Gpmin ≥ pmax . Then ALG ≥ 1

eGOPT .

Complexity Analysis. It takes O(|Pcand |) time to decide the

price for each grid. Thus the time cost of base pricing isO(G |Pcand |).
Taking the base price as initial inputs, we further propose a

dynamic pricing strategy, which addresses changes from not only

unknown demand, but also limited and dependent supply.

Figure 4: Expected revenue with limited supply.

4 DYNAMIC PRICING

The aim of dynamic pricing is to increase the profit by setting

diversified prices for each grid based on the base price. In spatial

crowdsourcing, each grid can be regarded as a local market where

the demand (tasks) and the supply (workers) differ across grids. The

supply of multiple grids can be dependent because (i) each worker

can serve multiple grids yet (ii) each worker can only perform one

task at a time. In this section, we present MAPS, a matching-based

pricing strategy for spatial crowdsourcing to deal with the variety

of supply-demand and the dependency of supply among grids. We

elaborate on the basic idea, algorithm details and performance

guarantee of MAPS in sequel.

4.1 Basic Idea

Unlike base pricing, which assumes sufficient supply, MAPS sets

the optimal prices for grids with both sufficient and limited supply.

Inspired by works in the economy [9, 22], we propose an efficient

approximation of the expected revenue for grids with both sufficient

and limited supply (Sec. 4). Based on the approximation, MAPS

needs to estimate the unknown demand (i.e., acceptance ratio of

requesters) and determine supply to set the unit price for each

grid that maximizes the expected revenue. MAPS adopts an upper

confidence bound technique (UCB) [8] to boost the estimation of

acceptance ratios (Sec. 4.2.2). Since the supply of multiple grids is

dependent, MAPS incrementally optimizes the dependent supply

in each grid and sets the prices efficiently to maximize the expected

total revenue of all grids (Sec. 4.2.3).

4.2 Algorithm Details

We first present the approximation of expected revenue and the

pricing framework for limited supply. Then we detail the MAPS

scheme to estimate the demand and optimize the supply, respec-

tively, which finally decides the unit price for tasks in each grid.

4.2.1 Pricing with Limited Supply. The base pricing strategy in

Sec. 3 assumes sufficient supply, i.e., after each requester accepts the

price, there is always an available worker to perform the task. Yet

it is common that the supply in certain grids is limited, e.g., during

rush hours at transportation hubs. We need an approximation of

the expected revenue applicable to all supply situations.
In MAPS, we approximate the expected revenue using a demand

curve and a supply curve with the price ptд as the variable. The
demand curve is determined by

∑
r ∈Rtд drptдSд(ptд), where Rtд

and Sд(ptд) denote the set of taskswith their origins located inд and
the acceptance ratio w.r.t. price ptд , respectively. Without loss of
generality, we assume the distances of tasks dr1 ≥ dr2 ≥ . . .dr |Rtд | .

The supply curve is calculated as
∑ntд

i=1 drip
tд , i.e., the sum of the

top ntд revenue drip
tд , where ntд is the number of supply in grid д

that we need to specify. The demand curve can be considered as the

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tong et al.

expected revenue under the condition that the supply is sufficient.
The supply curve represents the revenue that ntд workers can yield
at most. Given the demand and the supply curves, the expected
revenue in time period t and grid д can be approximated as

Lд (ntд, ptд) = min(
∑

r ∈Rtд
drp

tдSд (ptд),
ntд∑
i=1

dri p
tд). (1)

The formal mathematical explanation of the approximation will

be presented in the proof of Theorem 10.

Based on such an approximation, there can be three cases to

derive the best unit prices, as illustrated in Fig. 4. In the first case,

the supply curve has a large slope (i.e., large amounts of workers

specified to serve tasks in grid д), indicating sufficient supply. This

is the case in Sec. 3 and the Myerson reserve price is the maximizer.

In the second and the third cases, there is limited supply (i.e., ntд <
|Rtд |). With a low unit price, there will be a shortage in supply.

With a high unit price, requesters tend to reject the price, but the

supply becomes sufficient. The second and the third cases differ in

the price which maximizes Lд(ntд ,ptд). Specifically, the Myerson

reserve price is still the maximizer in the second case, while the

price of the intersection applies in the third one. Note that these

maximizers can be derived only when ntд is specified.

Summary. Approximating the expected revenue in a grid using

the demand and the supply curves reduces the overhead of search-

ing for the optimal price (i.e., enumerating all the possible bipartite

graphs). Next we elaborate on how to estimate the demand curve

and adjust the supply curve such that the approximate expected

revenue of all grids
∑
д L

д(ntд ,ptд) is maximized.

4.2.2 Boosting Acceptance Ratio Estimation. One prerequisite

to set the price for each grid to maximize
∑
д L

д(ntд ,ptд) is to es-

timate the acceptance ratio Sд(p) in each grid д. In base pricing

(Sec. 3), a sampling strategy is applied. In MAPS, we boost the es-

timation of the acceptance ratios via the upper confidence bound

(UCB) [8], a technique for the multi-arm bandit (MAB) problem.

UCB combines exploration (passively acquiring new information

about Sд(p)) and exploitation (actively filtering prices ptд that are

unlikely to maximize the expected revenue given the current sup-

ply). Compared with the sampling process in base pricing, UCB

adopts a different score function to choose the appropriate price,

which only relies on a rough estimate of the acceptance ratios. It

needs fewer samples to decide the best unit price for a grid and is

more suitable when the acceptance ratios need frequent updating.

Mathematically, UCB is defined as the sample mean (for some

probability) plus a confidence radius. In our context, instead of

using the true acceptance ratio Sд(p), we use Ŝ(p) +
√

2 lnN
N (p) when

setting a price given specific supply in a grid. As UCB is identical

for each д, we omit the superscript. Ŝ(p) is the sample mean. N is

the number of requesters in д so far. N (p) is the number of times

we have used p in д. The radius
√

2 lnN
N (p) is zero when N (p) is zero.

As in base pricing, we still choose a price from a candidate set.

Based on the UCB defined above, we set a numerical score (index)

for each price and will choose the price with the largest index. The

index, denoted by Ĩ (p), is min(pŜ(p) + p
√

2 lnN
N (p) ,

∑ntд

i=1 dri p∑
r ∈Rtд dr

). It is
designed such that after testing necessary number of requesters, we

always find the price that maximizes Lд(ptд) w.r.t. the current ntд

and the true probability Sд(p) among all the candidate prices. We

analyze the performance guarantee of the UCB-based acceptance

ratio estimation in Sec. 4.3.1.

Note that the acceptance ratio of a grid may change over time

and we need to notify this change. MAPS determines the change

in the acceptance ratio Sд(p) via the statistically-significant devi-
ations [26]. Specifically, for some price, the number of accepted

requesters in д follow the binomial distribution with the probability

of Sд(p) for each tested price. If there is no change in Sд(p), the
binomial random variable takes value around the expected value

with high probability as long as there are enough samples. Thus

we flag a change if the number of accepted requesters is not within

mŜд(p)± 2

√
mŜд(p)(1 − Ŝд(p)) form requesters, where Ŝд(p) is the

acceptance ratio for the previousm requesters.

Summary. By replacing the estimation of the true acceptance

ratio Sд(p) with the UCB-based learning process, MAPS is able to

get the optimal price given a specific supply accurately with a small

number of sampling prices. The UCB-based strategy will be utilized

as a building block to derive the maximum expected revenue of

each grid given the supply (known) and the demand (unknown) of

all grids, as will be detailed in Algorithm 3.

4.2.3 Optimizing Dependent Supply and Dynamic Pricing. Our

goal is to maximize the approximate expected revenue of all grids∑
д L

д(ntд ,ptд), yet the supply in multiple grids can be dependent.

Therefore, we propose to jointly adjust the slopes of the supply

curves (see Fig. 4) for all grids to decide the appropriatentд and thus
the corresponding ptд that maximizes

∑
д L

д(ntд ,ptд). Note that
given a specific ntд , there exists a unique ptд maximizing Lд(ptд),
which will be found using the technique in Sec. 4.2.2. Eq. (1) can

be rewritten as
∑
д L

д(ntд). MAPS optimizes the dependent supply

by first maintaining a bipartite graph which represents the range

constraints and the dependency of supply, incrementally finding

a worker that most increases
∑
д L

д(ntд) without violating the

bipartite graph, and deriving the corresponding price ptд using the

UCB techniques introduced in Sec. 4.2.2.

We initialize the number of supply in each grid ntд as 0. In each

iteration, we try to add one worker to each grid. If the addition

for some д can be made, it corresponds to a match in the bipartite

graph. We choose the match that introduces the largest increase

in
∑
д L

д(ntд) among all the grids. That is, each grid reports its

increase if its ntд can be added by 1, then we choose the grid with

the largest increase, and truly add the corresponding ntд by 1.

Another viewpoint is that for each д, we have the demand curve

(i.e., the first term in Eq. (1)), and we adjust the slope of the supply

curve (i.e., the second term in Eq. (1)), and calculate the increase in

the expected total revenue. The increase in expected revenue for

each д is the maximum value based on the new supply curve minus

the one based on the old supply curve, which is the x-axis at first.

The new slope of the supply curve is the sum of the top ntд + 1

distances and the old one is the sum of the top ntд distances. At

last, we will choose the grid with the largest increase to add one

worker. Note that when the increase of some grid д becomes zero,

we ignore д in the next iteration, because the slope can only be

larger and the maximum will not change.

Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based Approach SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Algorithm 2: MAPS

input :Rt ,W t ,pmin ,pmax ,pb
output :P t

1 Construct the bipartite graph B(Rt ,W t);
2 Pre-matchingM ′ ← ∅, Max-heap H ← ∅;
3 for д ← 1, . . . ,G do

4 ntд ← 0 and insert ((д, 0,pb),∞) into H ;

5 while H is not empty do

6 ((д,ntдnew ,ptдnew),Δд) ← the root of H ;

7 remove the root from H ;

8 if Δд is not equal to ∞ then

9 ntд ← n
tд
new ;

10 Find an augmenting path for r ∈ Rtд and add the

match intoM ′;
11 if Δд is equal to 0 then

12 ptд ← p
tд
new ;

13 if ptд > pmax then

14 ptд ← pmax ;

15 else

16 if |Rtд | is equal to 0 or there is not an augmenting path

for any unassigned r ∈ Rtд then

17 insert ((д,ntдnew ,ptдnew), 0) into H ;

18 else

19 n
tд
new ← n

tд
new + 1;

20 calculate the p
tд
new and the new Δд using

Algorithm 3;

21 insert ((д,ntдnew ,ptдnew),Δд) into H ;

22 return P t ← {pt1, . . . ,ptG }

Algorithm 2 illustrates the main procedure. We use the base

price pb calculated by Algorithm 1 as the input. In line 1, we con-

struct the bipartite graph according to the sets of tasks and workers

by satisfying the range constraint. In line 2, we initialize the pre-

matchingM ′, which is used when we test if a new worker can be

assigned to a task of each д (i.e., the supply of д). The max-heap

consists of tuples, each with a triple (д,ntдnew ,ptдnew). The second
term records the new number of supply for д, and the third term

is the corresponding price. We use Δд to denote the key value of

the tripe, which represents the increase in Lд(ntд). The max-heap

can output the tuple (д,ntдnew ,ptдnew)with the largest Δд in O(loдG)
time. In all but the iteration we finally set the price for each grid, the

number of elements in H is always G. In line 4, we insert the tuple

of each grid into the heap. Their keys are set to positive infinity

so that we can update the key in the first G iterations. In lines 6-7,

we take and remove the tuple with the largest Δд . Line 8 is used to

avoid that the initialization of line 4 (where Δд is set to ∞) directly

finds a match in the first G iterations. This case should be avoided

because we have not updated the key using the true increase. In

lines 9-10, given the grid д with the largest Δд , we admit this match

and update the pre-matchingM ′. In line 11, if the largest Δд among

all the grids is zero, we then set the final price for each grid д in

Algorithm 3: Calculating the Maximizer

input :д,Rtд ,ntд , P ,pmax ,pmin ,α
output :pnew ,Δ

д

1 C ← ∑
r ∈Rtд drptд ,D ← ∑ntд

i=1 drip
tд ,N ← 0, Ĩnew ←

0,p ← pmax ;

2 foreach (p, Ŝ(p),N (p)) ∈ P do

3 N ← N + N (p);
4 while p ≥ pmin do

5 c(p) ← p
√

2 lnN
N (p) ;

6 if Ĩnew < min(pŜ(p) + c(p), DC p)) then
7 Ĩnew ← min(pŜ(p) + c(p), DC p);
8 pnew ← p;

9 p ← p/(1 + α);
10 return pnew ,Δ

д ← pnew Ŝ(pnew) − pold Ŝ(pold)

line 12 or line 14 without inserting any new tuple into H . In lines

16-21, we try to add a new worker to grid д and calculate their

increases in Lд , i.e., Δд . Specifically in lines 16-17, if we cannot

assign a task r in grid д to this worker, we set the increase to zero.

Otherwise in lines 19-21, we get the maximum increase Δд and the

corresponding new price p
tд
new using Algorithm 3, and insert the

tuple for further comparisons. Note that when calling Algorithm 3,

the latest statistics stored in P is used to set an optimal price. So

the algorithm does not need to contact new requesters and wait

for their responses. Algorithm 3 illustrates the procedure to calcu-

late the maximizer discussed in Sec. 4.2.2. All the statistics of д are

stored in P . We update Ŝ(p) and N (p) when receiving feedbacks of

the current prices (which are set in lines 12-14 of Algorithm 2). In

lines 2-3, we restore the number of requests shown so far in д. In
lines 5-9, we iterate prices from big to small and choose the price

with the maximum index (defined in Sec. 4.2.2).

Example 5. Back to our running example in Example 1. For sim-

plicity, we assume we have obtained the statistics about the acceptance

ratios as in Table 1. There are 16 grids in Example 1, where r1 and
r2 are in grid 9, and r3 is in grid 11. The bipartite graph is shown

in Fig. 1b. For grid 9,
∑
r ∈Rt9 drpS9(p) is demonstrated by the three

crosses in the first sub-figure in Fig. 5a.
∑
r ∈Rt11 drpS11(p) for grid

11 is shown in the second sub-figure in Fig. 5a. At first, nt9 and nt11

are both 0. Grid 9 reports its increase if nt9 = 1, which is 3. It can

be also viewed as the maximum of the minor one of the line and the

discretized demand curve (i.e., the three crosses). The increase for grid

11 is 1.6. After the first 16 iterations, H is updated with the increase of

each grid, as shown in the bottom-left in Fig. 5a. The omitted tuples

belong to grids without any task and the increases are set to be 0 in

lines 16-17 of Algorithm 2. Their prices are all set to the base price.

In the 17th iteration, we take the root ((9, 1, 3), 3) from H in line 6 of

Algorithm 2, admit its increase and find an augmenting path for r1
in grid 9 in line 10. M ′ will be updated to {r1,w1}. Since Δд is not

equal to 0, the algorithm goes to line 16. There is no augmenting path

for r2 in grid 9. So we insert ((9, 1, 3), 0) into H . And the dash line for

grid 9 will become solid, meaning we admit that its increase is the

largest one. At the beginning of 18th iteration, as showed in Fig. 5b,

the root of H is ((11, 1, 2), 1.6). We admit its increase and updateM ′

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tong et al.

(a) 17th iteration (b) 18th iteration

Figure 5: An example of dynamic pricing.

accordingly. In the end, all the Δд is zero. We gradually remove tuples

from H in line 7 and price the grids in line 12. The price for grid 9 is 3

and the price for grid 11 is 2, leading to a greater expected revenue.

Summary. MAPS dynamically sets the prices for each grid to

maximize the expected total revenue by incrementally adding work-

ers to the grid that induces the maximum increase in Eq. (1). MAPS

applies concepts of bipartite graph matching to maintain the range

constraints of supply and demand as well as the dependency of sup-

ply. Together with the approximation of the expected revenue and

the UCB-based acceptance ratio learning procedure, MAPS is able

to approach the optimal prices (i) without the need to enumerating

all possible worlds in an uncertain graph, (ii) without accurately

estimating the acceptance ratio beforehand and (iii) with consider-

ations for both sufficient and limited supply.

We also make two practical notes. (i) MAPS tends to set a higher

unit price for regions where workers are insufficient. This will

motivate more drivers to move to these regions, as with many

incentive mechanisms. (ii) A cap on the unit prices can be setting

bounded prices. Spatial smoothing can also be integrated to reduce

the gap of unit prices among neighbouring grids.

4.3 Algorithm Analysis

4.3.1 Analysis of UCB-based Acceptance Ratio Estimation. UCB

ensures that after a small number of tests, we always choose the

best possible price. Let p∗ denote the optimal price in the con-

tinuous interval [pmin ,pmax] w.r.t S(p) and the given ntд , i.e.,
p∗ = argmaxp∈[pmin,pmax] L

д(p). Note that p∗ must be in some

interval with bounds that are two successive prices in the candidate

set. Let p′ and p′′ denote the prices such that p′ ≤ p∗ ≤ p′′. Let p0
denote the larger price where the line and the curve intersect, i.e.,

p0S(p0) = Dp0/C and p0 > 0. If it is the first case (i.e., ntд ≥ |Rtд |)
in Fig. 4, let p0 = 0. We have the following theorem:

Theorem 5. Provided that N (p) > 8p2 lnN
(max(p′S (p′),p′′S (p′′))−pS (p))2

for any p > p0 except p
′ and p′′, with probability at least 1−O(N−4),

we choose p′ or p′′.
The requirements forN (p) is inversely proportional to the square

of p’s badness, i.e., max(p′S(p′),p′′S(p′′)) −pS(p). Meanwhile, lnN
term ensures the quick convergence to the best possible choice.

The proof mainly uses two useful properties of the designed

index, concluded with two lemmas below.

Lemma 6. For any p, the probability that pS(p) − c(p) < pŜ(p) <
pS(p) + c(p) is at least 1 − 2N−4.

Lemma 7. If N (p) > 8p2 lnN
(max(p′S (p′),p′′S (p′′))−pS (p))2 for any p >

p0 except p′ and p′′, the probability that pS(p) < pŜ(p) + c(p) <
max(p′S(p′),p′′S(p′′)) is at least 1 − 2N−4.

Table 3: Synthetic datasets.

Factor Setting

|W | 1250, 2500, 5k, 7500, 10k

|R | 5000, 10k, 20k, 30k, 40k

μ for temporal distribution 0.1, 0.3, 0.5, 0.7, 0.9

mean for spatial distribution 0.1, 0.3, 0.5, 0.7, 0.9

μ for demand distribution 1.0, 1.5, 2.0, 2.5, 3.0

σ for demand distribution 0.5, 1.0, 1.5, 2.0, 2.5

T 200, 400, 600, 800, 1000

G 5×5, 10×10, 15×15, 20×20, 25×25
aw 5, 10, 15, 20, 25

Scalability
|W | = |R | = 100k,200k,

300k,400k,500k

Since these inequalities all hold with high probability when the

conditions are satisfied, we may state them as deterministic ones

in the proof.

4.3.2 Analysis of MAPS. We will present bounds on the perfor-

mance of MAPS.

Theorem 8. MAPS always finds a feasible plan n′t and prices p′t
such that

∑
д L

д(n′tд ,p′tд) is at least (1− 1
e)maxnt ,pt

∑
д L

д(ntд ,ptд).
We first show Δд is decreasing with respect to д. Then we prove

the submodularity of L, which is redefined on the set of workers.

In each iteration we choose the maximum Δд among all the grids,

and this gives us a near optimal solution.

Lemma 9. For a fixed grid д, its Δд are decreasing each time in-

serted to the heap in the line 21 of Algorithm 2.

Theorem 10. Assume (1−Sд(ptд))∑ntд

i=1 drip
tд = O(dmax

√
ntд logm),

ALG ≥ (1 − 1
e)OPT − O(dmax

√
m logm), where dmax = maxr dr ,

andm = maxд |Rtд |.
The assumption ensures that the distances in each grid do not

vary too much, which often holds in practice. MAPS still functions

without the assumption of i.i.d. private valuations. However, the

performance guarantees might no longer hold. The i.i.d. assumption

is mild because (i) the spatiotemporal factors that determine the pri-

vate valuations in the same grid and time period are similar; and (ii)

each individual requester tends to make decisions independently.

ComplexityAnalysis. Initializing themax-heap costsO(GloдG).
For each iteration in the while loop, we take the root in O(loдG)
and find an augmenting path in O(|Et |), where |Et | denotes the
number of edges in the bipartite graph. There will be at most

min(|Rt |, |W t |) iterations. To calculate the next increase, Algo-

rithm 3 takes O(|Pcand |) time to iterate through the prices. The

total time will be O(GloдG +min(|Rt |, |W t |)(loдG + |Et |)|Pcand |).

5 EXPERIMENTAL STUDY

This section presents the performance of MAPS on both synthetic

and real-world datasets.

5.1 Experiment Setup

Synthetic datasets. Table 3 shows the parameters of the synthetic

datasets. Default settings are marked in bold. All locations are

generated within a square of 100 × 100 in the 2D coordinates. A

time period is 1 minute long. The start times of tasks and workers

are drawn from a normal distribution conditioned on the entire

Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based Approach SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Table 4: Real datasets.

Duration |W | |R | T G δw aw
#1 5pm-7pm 28210 113372

120 80 [5,10,15,20,25] 3km
#2 0am-2am 19006 55659

time span of interest, which we call the temporal distribution. We

vary the mean of the temporal distribution from 0.1 to 0.9. In each

time period, the origins of tasks and workers are generated from a

two-dimensional Gaussian distribution, which we call the spatial

distribution. The mean of the spatial distribution is calculated by

multiplying the values in Table 3 with a two-dimensional vector

(100, 100). The destinations of tasks are drawn from a uniform

distribution within the 100 × 100 square. Note that varying the

mean and the variance of the temporal and spatial distributions has

similar impact, i.e., affects the structure of bipartite graph. Hence

we omit the experiments on varying the variance of these two

distributions. We simulate the demand distribution via a normal

distribution with its mean varying from 1 to 3. Then the valuations

vr are drawn from each normal distribution w.r.t. the mean of д. We

restrict all the vr to [1, 5], so the distribution of vr is a conditional
probability distribution. We also experiment with other demand

distributions such as an exponential distribution. The results are

similar to those using a normally distributed demand (see Sec. D

for more details). We vary the radius aw of workers from 5 to 25.

We also vary the number of workers |W |, the number of tasks |R |,
the number of time periods T , and the number of grids G.

Real datasets.We use the taxi-calling data sampled from July

2016 to December 2016 in Beijing collected by a large-scale online

taxi-calling platform in China. The data are sampled from two rep-

resentative time of the day, i.e., 5 p.m. to 7 p.m., and 0 a.m. to 2 a.m.,

when there are usually huge demand and light demand of taxis,

respectively. The length of a time period is set to 60 second. We

consider locations within a rectangle with the bottom-left coordi-

nate of (116.30, 39.84) and the top-right coordinate of (116.50, 40.0).
Each grid covers an area of 0.02 longitudes by 0.02 latitudes and

there are 10 × 8 = 80 grids in total. The radius aw for each worker

is 3km. Note that for the real dataset, we cannot obtain the exact

valuations vr . However, the valuation vr should be higher than

the price if the requester accepts the price, and such information

can be obtained from the historical records. So we set vr to be a

random value greater than the set price, and vice versa. Since all

the parameters are fixed, we test the pricing strategies varying the

available duration of each worker.

Compared algorithms.We compare ourMAPS pricing scheme

with the following algorithms.

(1) BaseP. It is the strategy proposed in Sec. 3, which assumes

the unlimited supply and sets the same base price pb for all grids.

(2) SDR. It sets the price for a grid as the inverse of the supply-

demand ration in the grid times a coefficient. We empirically opti-

mize the coefficient on our datasets. SDR sets the price for a given

time period t and a grid д as 0.5pb |Rtд |/|W tд | if |Rtд | > |W tд |,
and the base price pb otherwise.

(3) SDE. It prices tasks via the supply-demand difference in

exponential function. Specifically, SDE sets the price for a given

time period t and a grid д as pb (1+ 2e |W tд |− |Rtд |) if |Rtд | > |W tд |,
and the base price pb otherwise.

(4) CappedUCB. It is the state-of-the-art pricing strategy pro-

posed by [9] to tackle the problem of limited supply in just one

market. We regard each grid as one single market and indepen-

dently decides the price of each grid. Specifically, the price for

grid д is argmaxpд min(|Rtд |pдSд(pд), |W tд |pд), equivalent to our
Eq. (1) when ntд = |W tд | and each dr = 1.

Metrics and implementation.We assess the performance of

the pricing strategies in terms of the output total revenue, running

time, and memory cost. All the algorithms are implemented in C++

and the experiments are performed with Intel (R) Core (TM) i7

3.80GHz CPU and 4GB main memory.

5.2 Experiment Results

We first present the results on the synthetic dataset with various

parameters, and then show the performance on the real datasets.

Effect of |W |.The first column of Fig. 6 shows the results of

varying the number of workers |W |. As |W | increases from 1250 to

10000, the revenues of all the pricing strategies increase, because

of the increasing amount of the finished requests,i.e., the supply

gradually matches the demand. Among the five strategies, MAPS

yields the highest revenue. Base pricing outperforms the other three

baselines, because it may already ensure the maximum expected

revenue for each task, which is optimal in grids with sufficient

workers. CappedUCB performs badly because it does not consider

the grids globally. As for running time, strategies except MAPS take

constant time. This is because MAPS needs to output a matching

result, and with the increase of |W |, the calculation of the match-

ing takes more time. However, its running time is acceptable, as

the running time spans all the T time periods, and is negligible

compared with the length of a time period. CappedUCB consumes

the most memory and that of other four strategies is similar. The

reason might be that CappedUCB needs to store more information

such as the number of tasks and workers in each grid. The costs of

all the five strategies are less than 10M .

Effect of |R |.The second column of Fig. 6 presents the results

of varying the number of requesters |R |. When |R | increases, all
strategies output a larger revenue, since there are more requests

that can be performed. When |R | is greater than 20000, the growth

stabilizes. This is because the total number of workers is fixed,

and it gradually becomes difficult to increase the revenue. Again

MAPS achieves the highest revenue. MAPS costs the most running

time because of the calculation of the matching result, and takes

acceptable memory consumption. The other four strategies take

constant running time. CappedUCB still costs the most memory.

Effect of μ of the temporal distribution for requests.The

third column of Fig. 6 shows the effect of the mean of the temporal

distribution for requests. The mean for the workers is fixed at

T /2. As the mean for requests approaches 0.5 (i.e., T /2), there is an
increase of the revenues in all the strategies but SDE. This is because

the mean values of tasks and workers gradually become close, and

the tasks and workers overlap more in time. Hence more workers

will satisfy the range constraint, contributing to more edges in

the bipartite graph and thus potentially a larger revenue. MAPS is

still the most effective one among the five pricing strategies. For

running time, when μ approaches 0.5, the time cost of MAPS gets

larger. This is because there are more edges in the bipartite graph.

Yet the time cost is still small when considering the T time periods.

For memory consumption, all consume less than 10M memory, and

CappedUCB consumes the most.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tong et al.

|W|

12
50

25
00

50
00

75
00

10
00

0

R
ev

en
ue

×105

0

5

10

15
MAPS
BaseP
SDR
SDE
CappedUCB

(a) Revenue of varying |W |
|R|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

R
ev

en
ue

×105

0

2

4

6

8

10
MAPS
BaseP
SDR
SDE
CappedUCB

(b) Revenue of varying |R |.
μ

0.
1

0.
3

0.
5

0.
7

0.
9

R
ev

en
ue

×105

1

2

3

4

5

6

7

8

9

MAPS
BaseP
SDR
SDE
CappedUCB

(c) Revenue of varying μ .

Mean

0.
1

0.
3

0.
5

0.
7

0.
9

R
ev

en
ue

×105

0

2

4

6

8

10
MAPS
BaseP
SDR
SDE
CappedUCB

(d) Revenue of varyingmean.

|W|

12
50

25
00

50
00

75
00

10
00

0

T
im

e(
se

cs
)

0

0.1

0.2

0.3

0.4

0.5

MAPS
BaseP
SDR
SDE
CappedUCB

(e) Time of varying |W |.
|R|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

T
im

e(
se

cs
)

0

0.1

0.2

0.3

0.4

0.5

0.6

MAPS
BaseP
SDR
SDE
CappedUCB

(f) Time of varying |R |.
μ

0.
1

0.
3

0.
5

0.
7

0.
9

T
im

e(
se

cs
)

0

0.1

0.2

0.3

0.4

0.5

0.6

MAPS
BaseP
SDR
SDE
CappedUCB

(g) Time of varying μ .

Mean

0.
1

0.
3

0.
5

0.
7

0.
9

T
im

e(
se

cs
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

MAPS
BaseP
SDR
SDE
CappedUCB

(h) Time of varyingmean.

|W|

12
50

25
00

50
00

75
00

10
00

0

M
em

or
y(

M
B

)

4

5

6

7

8
MAPS
BaseP
SDR
SDE
CappedUCB

(i) Memory of varying |W |.
|R|

50
00

10
00

0

20
00

0

30
00

0

40
00

0

M
em

or
y(

M
B

)

4

6

8

10

12
MAPS
BaseP
SDR
SDE
CappedUCB

(j) Memory of varying |R |.
μ

0.
1

0.
3

0.
5

0.
7

0.
9

M
em

or
y(

M
B

)

4

5

6

7

8

9

10
MAPS
BaseP
SDR
SDE
CappedUCB

(k) Memory of varying μ .

Mean

0.
1

0.
3

0.
5

0.
7

0.
9

M
em

or
y(

M
B

)

3

4

5

6

7

8

9

10
MAPS
BaseP
SDR
SDE
CappedUCB

(l) Memory of varyingmean.

Figure 6: Results on varying |W |, |R |, μ in temporal distribution, andmean in spatial distribution.

Effect ofmean of the spatial distribution for requests.The

fourth column of Fig. 6 shows the results of varying the mean of

the spatial distribution. The mean of the spatial distribution is two-

dimensional and the x-axis represents the mean on the diagonal.

For example, the value of 0.1 on the x-axis means a vector (10, 10).
Similar to the results when varying the mean of the temporal dis-

tribution, the revenue of all the strategies increases when the mean

of the tasks’ origin is close to that of the workers’ origin. MAPS

yields the largest revenue and costs reasonable time and memory.

Effect of μ of the demand distribution for vr .The first col-
umn of Fig. 7 shows the results with different mean values of the

demand distribution. As the requesters’ valuations increases (i.e.,

they are willing to accept higher prices), the revenue also increases.

For different means of the distribution, MAPS always achieves the

highest revenue, validating the effectiveness of the UCB technique.

MAPS costs more time when μ gets larger, because the acceptance

ratios for some price increase and there is a need to assign more

workers to finish the accepted requests. MAPS is still efficient when

considering the average running time of each time period. For

memory consumption, all strategies cost reasonable memory.

Effect of σ of the demand distribution for vr .The second

column of Fig. 7 presents the results of varying σ of the demand

distribution. Note that the demand distribution is conditioned on

the interval [1, 5]. If the mean of the distribution used to simulate

the normal distribution is fixed at 2 (by default), the actual mean

values are bigger as σ increases. Hence, the revenues of all the

strategies increase. For running time and memory consumption,

their fluctuations are normal and acceptable.

Effect of T . The third column of Fig. 7 shows the result of vary-

ing T . Since all the strategies optimize in each time period, tech-

nically we can observe the best performance if they are all in one

time period. Hence, when the numbers of tasks and workers are

fixed, these numbers in each time period decrease as T increases,

and the revenues of all the strategies slightly decrease because

the optimization becomes weaker. In general, the running time of

MAPS decreases with the increasing ofT . The reason might be that

the numbers of tasks and workers in each time period decrease,

making the calculation of the matching result easier.

Effect of G. The fourth column of Fig. 7 shows the results of

varying the number of grids G. When G increases, each grid be-

comes smaller in size, because the size of the entire region of interest

is fixed. Consequently, we can perform finer-grained optimization.

The revenues first increase with G. G cannot be arbitrarily large,

otherwise the assumption that the valuations in one grid are i.i.d

samples may gradually become invalid, leading to inaccurate esti-

mation of the acceptance ratios. Thus, when G is greater than 100,

the revenues do not increase. When G increases, all strategies con-

sume more memory because they need to store more data. MAPS

performs the best and costs acceptable running time and memory.

Effect of aw .The first column of Fig. 8 shows the results with

different aw , which determines the edge set of the bipartite graph.

More edges result in more total revenue. MAPS is still the best in

terms of revenue. Yet since the means of the spatial distributions

Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based Approach SIGMOD’18, June 10–15, 2018, Houston, TX, USA

μ

1 1.
5 2 2.
5 3

R
ev

en
ue

×105

0

2

4

6

8

10

12
MAPS
BaseP
SDR
SDE
CappedUCB

(a) Revenue of varying normal μ .

σ

0.
5 1 1.
5 2 2.
5

R
ev

en
ue

×105

2

4

6

8

10

12
MAPS
BaseP
SDR
SDE
CappedUCB

(b) Revenue of varying normal σ .

T

20
0

40
0

60
0

80
0

10
00

R
ev

en
ue

×105

0

2

4

6

8

10

MAPS
BaseP
SDR
SDE
CappedUCB

(c) Revenue of varying T .

G

25 10
0

22
5

40
0

62
5

R
ev

en
ue

×105

0

2

4

6

8

10

12
MAPS
BaseP
SDR
SDE
CappedUCB

(d) Revenue of varying G .

μ

1 1.
5 2 2.
5 3

T
im

e(
se

cs
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MAPS
BaseP
SDR
SDE
CappedUCB

(e) Time of varying normal μ .

σ

0.
5 1 1.
5 2 2.
5

T
im

e(
se

cs
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MAPS
BaseP
SDR
SDE
CappedUCB

(f) Time of varying normal σ .

T

20
0

40
0

60
0

80
0

10
00

T
im

e(
se

cs
)

0

0.1

0.2

0.3

0.4

0.5

0.6

MAPS
BaseP
SDR
SDE
CappedUCB

(g) Time of varying T .

G

25 10
0

22
5

40
0

62
5

T
im

e(
se

cs
)

0

0.1

0.2

0.3

0.4

0.5

MAPS
BaseP
SDR
SDE
CappedUCB

(h) Time of varying G .

μ

1 1.
5 2 2.
5 3

M
em

or
y(

M
B

)

4

5

6

7

8

9
MAPS
BaseP
SDR
SDE
CappedUCB

(i) Memory of varying normal μ .

σ

0.
5 1 1.
5 2 2.
5

M
em

or
y(

M
B

)

4

4.5

5

5.5

6

6.5

7

7.5

8

MAPS
BaseP
SDR
SDE
CappedUCB

(j) Memory of varying normal σ .

T

20
0

40
0

60
0

80
0

10
00

M
em

or
y(

M
B

)

4

5

6

7

8

MAPS
BaseP
SDR
SDE
CappedUCB

(k) Memory of varying T .

G

25 10
0

22
5

40
0

62
5

M
em

or
y(

M
B

)

2

4

6

8

10

12

MAPS
BaseP
SDR
SDE
CappedUCB

(l) Memory of varying G .

Figure 7: Results on varying normal μ, normal σ , the number of time periods T , and the number of grids G.

of orir and lw are close to each other, the number of edges may

stop increasing when the radius reaches some value, leading to the

revenues becoming stable when aw is greater than certain value.

With the increase of aw , the time consumption of MAPS grows, as

the bipartite graph has more edges. The memory consumption of

the five strategies fluctuates within an acceptable range.

Scalability.The second column of Fig. 8 plots the results by in-

creasing |R | and |W | simultaneously at the same scale. The running

time of MAPS increases linearly and the other four strategies still

take constant time. Note that we record the total running time of

400 time periods, and the average running time of MAPS in each

time period is actually low. The memory costs of all strategies grow

almost linearly and are acceptable.

Real datasets. The last two columns in Fig. 8 present the per-

formance on the real-world datasets. The duration of workers is

another factor in supply. As workers are available for more time

periods, the quantity of supply increases. As we state in analyz-

ing the results of varying |R |, there exists a limit on the revenue

since the number of tasks is fixed. The revenues of all the strategies

become stable when the duration becomes long. CappedUCB per-

forms better than BaseP in the second dataset. This may be because

the supply is more limited in this dataset, where CappedUCB still

functions, while BaseP does not. MAPS is the best in effectiveness

on both datasets. Similar to the results in the scalability test, all the

strategies prove to be time-efficient and memory-efficient.

Summary of experimental results. (i) MAPS achieves the

largest revenue in both real-world and synthetic datasets. Base

pricing strategy outperforms some heuristics if we choose the base

price appropriately. (ii) All the pricing strategies have acceptable

time and memory costs. (iii) MAPS is scalable in time and space on

the dataset of size of the order 106.

6 RELATEDWORK

6.1 Pricing in Spatial Crowdsourcing

Tasks in spatial crowdsourcing can be processed in a batch at the

end of one time period [20, 21, 27, 39, 44], or be immediately as-

signed [38, 41–43]. We focus on the former mode. Some pioneer

works have considered the effect of prices in spatial applications

[7, 32]. In [7], prices are obtained based on the profiles of work-

ers and requesters, which are used as inputs to find a matching

between workers and requests to maximize the revenue. However,

we aim to optimize the prices to maximize the expected total rev-

enue. In [32], an incentive mechanism in spatial crowdsourcing is

proposed. However, it differs from our work in three-fold: (i) [32] is

designed for crowdsensing, a special case of crowdsourcing, where

a task is to collect data at a location. We focus on the more generic

spatial crowdsourcing applications. (ii) The objective of [32] is to

maximize the data quality, while we aim to maximize the expected

total revenue. (iii) The number of workers in [32] is fixed, while we

optimize the number of workers in each grid.

Dynamic pricing has been recently introduced in some spatial

crowdsourcing companies such as Uber [3]. They prices tasks by

considering the total number of drivers and requesters in a region

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tong et al.

a
w

5 10 15 20 25

R
ev

en
ue

×105

0

2

4

6

8

10

12
MAPS
BaseP
SDR
SDE
CappedUCB

(a) Revenue of varying aw .

|W|(|R|)

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

R
ev

en
ue

×107

0

0.5

1

1.5

2

2.5

3

MAPS
BaseP
SDR
SDE
CappedUCB

(b) Revenue of scalability test.
δ
w

5 10 15 20 25

R
ev

en
ue

×106

2.6

2.8

3

3.2

3.4

3.6

3.8

MAPS
BaseP
SDR
SDE
CappedUCB

(c) Revenue of Beijing data#1.
δ
w

5 10 15 20 25

R
ev

en
ue

×106

1

1.2

1.4

1.6

1.8

2

2.2

MAPS
BaseP
SDR
SDE
CappedUCB

(d) Revenue of Beijing data#2.

a
w

5 10 15 20 25

T
im

e(
se

cs
)

0

0.2

0.4

0.6

0.8

1

1.2

MAPS
BaseP
SDR
SDE
CappedUCB

(e) Time of varying aw .

|W|(|R|)

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

T
im

e(
se

cs
)

0

200

400

600

800

MAPS
BaseP
SDR
SDE
CappedUCB

(f) Time of scalability test.
δ
w

5 10 15 20 25

T
im

e(
se

cs
)

0

200

400

600

800

1000

MAPS
BaseP
SDR
SDE
CappedUCB

(g) Time of Beijing data#1.
δ
w

5 10 15 20 25

T
im

e(
se

cs
)

0

10

20

30

40

50

60

70

MAPS
BaseP
SDR
SDE
CappedUCB

(h) Time of Beijing data#2.

a
w

5 10 15 20 25

M
em

or
y(

M
B

)

4

5

6

7

8

9
MAPS
BaseP
SDR
SDE
CappedUCB

(i) Memory of varying aw .

|W|(|R|)

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

M
em

or
y(

M
B

)

10

20

30

40

50

60

70
MAPS
BaseP
SDR
SDE
CappedUCB

(j) Memory of scalability test.
δ
w

5 10 15 20 25

M
em

or
y(

M
B

)

5

10

15

20

25

30

35
MAPS
BaseP
SDR
SDE
CappedUCB

(k) Memory of Beijing data#1.
δ
w

5 10 15 20 25

M
em

or
y(

M
B

)

10

12

14

16

18

20

22

MAPS
BaseP
SDR
SDE
CappedUCB

(l) Memory of Beijing data#2.

Figure 8: Results on varying the radius of workers aw , scalability test, and real data.

during a time period. However, such a pricing strategy neglects the

fact that a driver may serve requesters in multiple grids. By jointly

optimizing the supply in multiple dependent grids, our solution

tends to set prices that yield a larger expected total revenue.

6.2 Dynamic Price Mechanism Design

Online posted price mechanisms assume there is only one inter-

action between requesters and the platform; the platform declares

its price and the requester decides whether to accept the price or

not. Researchers have proposed competitive pricing strategies with

fixed supply [9, 13, 29], which are inapplicable in our problem.

In the resource allocation markets [23, 28], requesters have pref-

erences for different workers, which can be expressed by a bipartite

graph. The tenet is to find the equilibrium prices or market clearing

prices (i.e., the demand equals supply), which is a different objective.

Our work is also related to revenue maximization in operation

research [12]. Some works [35] assume nonparametric demand

functions such as MHR distributions. Others [9, 22, 37] design tech-

niques such as multi-arm bandit approaches to learn the demand

function with limited supply. Our work adopts the parametric ones,

which admit that the parameters (e.g., the price in our problem) in

the structure of the demand function. However, previous works

only assume a single market with number of supply fixed, while we

consider multiple markets with the number of supply adjustable.

7 CONCLUSION

In this paper, we propose theGlobal Dynamic Pricing (GDP) problem

for spatial crowdsourcing , which is challenging due to (i) unknown

acceptance probabilities of a given price for each task, (ii) limited

and (iii) dependent supply among multiple grids. To solve the GDP

problem, we first present a base pricing strategy that sets a unified

base price by estimating the acceptance probabilities. We further

develop MAPS, a matching based dynamic pricing strategy that

optimizes the dependent supply and is able to approximately set the

optimal prices for markets with limited supply and unknown accep-

tance probabilities of task requesters. We show through extensive

evaluations that MAPS is both effective and efficient.

ACKNOWLEDGEMENT

We are grateful to anonymous reviewers for their constructive com-

ments on this work. Yongxin Tong, Libin Wang and Bowen Du’s

works are partially supported by the National Science Foundation

of China (NSFC) under Grant No. 61502021 and 61532004, National

Grand Fundamental Research 973 Program of China under Grant

2014CB340300, the Base Construction and Training Program Foun-

dation for the Talents of Beijing under Grant No. Z171100003217092,

and the Science and Technology Major Project of Beijing under

Grant No. Z171100005117001. Lei Chen’s work is partially sup-

ported by the Hong Kong RGC GRF Project 16207617, the National

Science Foundation of China (NSFC) under Grant No. 61729201,

Science and Technology Planning Project of Guangdong Province,

China, No. 2015B010110006,WebankCollaboration Research Project,

and Microsoft Research Asia Collaborative Research Grant. Zimu

Zhou and Bowen Du are the corresponding authors of this paper.

Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based Approach SIGMOD’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] 1999. Seamless. https://www.seamless.com/.
[2] 2006. OpenStreetMap. https://www.openstreetmap.org.
[3] 2009. Uber. https://www.uber.com/.
[4] 2011. Gigwalk. http://www.gigwalk.com.
[5] 2012. Didi Chuxing. http://didichuxing.com/.
[6] 2013. Waze. https://www.waze.com/.
[7] Mohammad Asghari, Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, and

Yaguang Li. 2016. Price-aware Real-time Ride-sharing at Scale: An Auction-based
Approach. In GIS 2016. 3:1–3:10.

[8] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of
the Multiarmed Bandit Problem. Machine Learning 47, 2-3 (2002), 235–256.

[9] Moshe Babaioff, Shaddin Dughmi, Robert D. Kleinberg, and Aleksandrs Slivkins.
2011. Dynamic Pricing with Limited Supply. ACM Transactions on Economics
and Computation 3, 1 (2011), 4:1–4:26.

[10] Moshe Babaioff, Shaddin Dughmi, and Alex Slivkins. 2011. Detail-free, Posted-
Price Mechanisms for Limited Supply Online Auctions. In Workshop on Bayesian
Mechanism Design 2011.

[11] Richard E. Barlow, Albert W. Marshall, and Frank Proschan. 1963. Properties of
Probability Distributions with Monotone Hazard Rate. The Annals of Mathemati-
cal Statistics (1963), 375–389.

[12] Omar Besbes and Assaf J. Zeevi. 2009. Dynamic Pricing Without Knowing
the Demand Function: Risk Bounds and Near-Optimal Algorithms. Operations
Research 57, 6 (2009), 1407–1420.

[13] Avrim Blum, Vijay Kumar, Atri Rudra, and Felix Wu. 2003. Online Learning in
Online Auctions. In SODA 2003. 202–204.

[14] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. 2007. Maximiz-
ing a Submodular Set Function Subject to a Matroid Constraint. In IPCO 2007.
182–196.

[15] Lei Chen and Cyrus Shahabi. 2016. Spatial Crowdsourcing: Challenges and
Opportunities. IEEE Data Engineering Bulletin 39, 4 (2016), 14–25.

[16] Zhao Chen, Rui Fu, Ziyuan Zhao, Zheng Liu, Leihao Xia, Lei Chen, Peng Cheng,
Caleb Chen Cao, Yongxin Tong, and Chen Jason Zhang. 2014. gMission: A
General Spatial Crowdsourcing Platform. PVLDB 7, 13 (2014), 1629–1632.

[17] Anand Inasu Chittilappilly, Lei Chen, and Sihem Amer-Yahia. 2016. A Survey of
General-Purpose Crowdsourcing Techniques. IEEE Transactions on Knowledge
and Data Engineering 28, 9 (2016), 2246–2266.

[18] Fan R. K. Chung and Lincoln Lu. 2006. Survey: Concentration Inequalities and
Martingale Inequalities: A Survey. Internet Mathematics 3, 1 (2006), 79–127.

[19] Nilesh N. Dalvi and Dan Suciu. 2007. Management of Probabilistic Data: Founda-
tions and Challenges. In PODS 2007. 1–12.

[20] Dingxiong Deng, Cyrus Shahabi, and Ugur Demiryurek. 2013. Maximizing the
Number of Worker’s Self-selected Tasks in Spatial Crowdsourcing. In GIS 2013.
324–333.

[21] Dingxiong Deng, Cyrus Shahabi, and Linhong Zhu. 2015. Task Matching and
Scheduling for Multiple Workers in Spatial Crowdsourcing. In GIS 2015. 21:1–
21:10.

[22] Nikhil R. Devanur and Jason D. Hartline. 2009. Limited and Online Supply and
the Bayesian Foundations of Prior-free Mechanism Design. In EC 2009. 41–50.

[23] Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazirani.
2008. Market Equilibrium via a Primal-dual Algorithm for a Convex Program. J.
ACM 55, 5 (2008), 22:1–22:18.

[24] Eugene F. Fama. 1998. Market Efficiency, Long-term Returns, and Behavioral
Finance1. Journal of Financial Economics 49, 3 (1998), 283–306.

[25] Hector Garcia-Molina, Manas Joglekar, Adam Marcus, Aditya G. Parameswaran,
and Vasilis Verroios. 2016. Challenges in Data Crowdsourcing. IEEE Transactions
on Knowledge and Data Engineering 28, 4 (2016), 901–911.

[26] Shawn R. Jeffery, Minos N. Garofalakis, and Michael J. Franklin. 2006. Adaptive
Cleaning for RFID Data Streams. In VLDB 2006. 163–174.

[27] Leyla Kazemi and Cyrus Shahabi. 2012. GeoCrowd: Enabling Query Answering
with Spatial Crowdsourcing. In GIS 2012. 189–198.

[28] Frank Kelly. 1997. Charging and Rate Control for Elastic Traffic. European
Transactions on Telecommunications 8, 1 (1997), 33–37.

[29] Robert D. Kleinberg and Frank Thomson Leighton. 2003. The Value of Knowing
a Demand Curve: Bounds on Regret for Online Posted-Price Auctions. In FOCS
2003. 594–605.

[30] Guoliang Li, Jiannan Wang, Yudian Zheng, and Michael J. Franklin. 2016. Crowd-
sourced Data Management: A Survey. IEEE Transactions on Knowledge and Data
Engineering 28, 9 (2016), 2296–2319.

[31] Guoliang Li, Yudian Zheng, Ju Fan, Jiannan Wang, and Reynold Cheng. 2017.
Crowdsourced Data Management: Overview and Challenges. In SIGMOD 2017.
1711–1716.

[32] JiaXu Liu, Yudian Ji, Weifeng Lv, and Ke Xu. 2017. Budget-Aware Dynamic
Incentive Mechanism in Spatial Crowdsourcing. Journal of Computer Science and
Technology 32, 5 (2017), 890–904.

[33] Mohamed Musthag and Deepak Ganesan. 2013. Labor Dynamics in a Mobile
Micro-task Market. In CHI 2013. 641–650.

[34] Roger B. Myerson. 1981. Optimal Auction Design. Mathematics of Operations
Research 6, 1 (1981), 58–73.

[35] Paat Rusmevichientong, Benjamin Van Roy, and Peter W. Glynn. 2006. A Non-
parametric Approach to Multiproduct Pricing. Operations Research 54, 1 (2006),
82–98.

[36] Yaron Singer and Manas Mittal. 2013. Pricing Mechanisms for Crowdsourcing
Markets. InWWW 2013. 1157–1166.

[37] Adish Singla and Andreas Krause. 2013. Truthful Incentives in Crowdsourcing
Tasks Using Regret Minimization Mechanisms. In WWW 2013. 1167–1178.

[38] Tianshu Song, Yongxin Tong, Libin Wang, Jieying She, Bin Yao, Lei Chen, and
Ke Xu. 2017. Trichromatic Online Matching in Real-Time Spatial Crowdsourcing.
In ICDE 2017. 1009–1020.

[39] Hien To, Gabriel Ghinita, and Cyrus Shahabi. 2014. A Framework for Protecting
Worker Location Privacy in Spatial Crowdsourcing. PVLDB 7, 10 (2014), 919–930.

[40] Yongxin Tong, Lei Chen, and Cyrus Shahabi. 2017. Spatial Crowdsourcing:
Challenges, Techniques, and Applications. PVLDB 10, 12 (2017), 1988–1991.

[41] Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. 2016.
Online Minimum Matching in Real-Time Spatial Data: Experiments and Analysis.
PVLDB 9, 12 (2016), 1053–1064.

[42] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen. 2016. Online
Mobile Micro-Task Allocation in Spatial Crowdsourcing. In ICDE 2016. 49–60.

[43] Yongxin Tong, Libin Wang, Zimu Zhou, Bolin Ding, Lei Chen, Jieping Ye, and Ke
Xu. 2017. Flexible Online Task Assignment in Real-Time Spatial Data. PVLDB 10,
11 (2017), 1334–1345.

[44] Luan Tran, Hien To, Liyue Fan, and Cyrus Shahabi. 2018. A Real-Time Framework
for Task Assignment in Hyperlocal Spatial Crowdsourcing. ACM Transactions on
Intelligent Systems and Technology 9, 3 (2018), 37:1–37:26.

A PROOF OF THEOREM 1

Proof. We will use the reduction from the classical 3-SAT prob-

lem to the decision version of GDP problem.

An instance of 3-SAT is a formula in conjunctive normal form

(CNF), containingm clauses and n variables. Each clause has three

literals, either positive or negative. The decision problem is whether

there is an assignment of truth value for each variable such that

the formula is satisfiable. To make a polynomial-time reduction, we

first explain how to map the input of a 3-SAT instance to that of

GDP, and then prove that the 3-SAT problem has a yes answer if

and only if there is a pricing strategy such that the total revenue is

m.

Formally, the formula ϕ = C1∧C2∧ · · · ∧Cm . For each clauseCi ,
there is a workerwi . For each clauseCi = ai ∨bi ∨ ci , there will be
three requests corresponding to the literals. For each positive one,

the requester has the valuation vr = 1 and the distance dr = 1. For

each negative one, the requester has the valuation vr = 2 and the

distance dr = 0.5. Note that now the valuation vr is a deterministic

value (i.e., requester will accept any price which is no more than

vr) and the revenue has no expectation. It is also easy to see that

when we want to complete some request, pricing at its valuation

will be the best strategy. If ai and ¬ai both appear in the formula,

the requesters representing them will locate in the same region (e.g.,

grid in our problem), which alsomeans that platformsmust offer the

same price to them. The workerwi representing clause Ci locates
in a position such that he/she can only complete the three requests

which represent the literalsCi contains. The transformation can be

done in polynomial time.

Given a satisfiable formula, we will show there is a pricing strat-

egy such that the maximum total revenue ism. For clauseCi , there
is at least one literal which is true. If ai is true, we will price the
requests representing ai and ¬ai 1, and if ¬ai is true, we will price
them both 2 (i.e., same price for the grid contains ai and ¬ai). This
will ensure that either ai or ¬ai is true, worker for clause Ci can
finish it and gain a revenue of 1 (i.e., 1× 1 when ai is true or 2× 0.5

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tong et al.

when ¬ai is true.). They can not be true at the same time since we

do offer the same price for requests representing ai and ¬ai . Each
worker can finish one request and the maximum total revenue is

m. The converse is also true. Since there arem workers, each must

complete one request with the revenue of 1. If we price the grid

containing ai and ¬ai 1, we will assign true to ai , and if we price it
2, we will assign false to ai . Since each worker can complete one

request, each clause must be true and the formula is satisfiable.

�

B PROOFS OF BASE PRICING

B.1 Proof of Theorem 2

Proof. We begin with hoeffding inequalities.

Fact 1. (Hoeffding Inequality). Let X1, . . . ,Xn be independent

random variables bounded by [0,1]. Let X̄ =
∑
i Xi/n. Pr[X̄ −E[X̄] >

ϵ] = Pr[E[X̄] − X̄ > ϵ] ≤ e−2ϵ 2n .

Let xr be the random variable which is 1 if r accepts the price,
and 0 otherwise. When we try price p, xr can be seen as a Bernoulli

random variable, which is 1 with probability S(p) (if p < vr), and 0

with probability F (p) (if vr ≤ p). Notice that the expected value of

Ŝ(p) is S(p). Using Hoeffding inequality, we sample the price p h(p)
times and obtain

Pr[Ŝ(p) − S(p) > ϵ

2p
] ≤ e−ϵ 2h(p)/2p2 ≤ δ/2k .

. The last inequality is derived by replacingh(p)with �(2p2/ϵ2) ln(2k/δ)	.
For any price p ∈ Pcand with pS(p) < p′S(p′) − ϵ , but p chosen

as pm , at least one of the two cases occur: pŜ(p) > pS(p) + ϵ/2 or
p′Ŝ(p′) < p′S(p′) − ϵ/2. Otherwise we could chain the opposites of

the two inequalities and the fact that pŜ(p) > p′Ŝ(p′) (for p chosen

as pm) to deduce the contradiction. In detail,

pŜ(p) ≤ pS(p) + ϵ/2 ≤ p′S(p′) − ϵ/2 ≤ p′Ŝ(p′).
Due to the union bound, at least one of these two cases happen

with a probability at most δ/k . Still using union bound, the event of

at least one such price p ∈ Pcand happens with probability at most

δ . Taking the complement of the event, we complete the proof. �

B.2 Proof of Theorem 3

Proof. There exists some p0 ∈ Pcand such that p0 < p∗ <
(1+α)p0. Theorem 2 tells us that with high probability, if p0S(p0) >
(1 + α)p0S((1 + α)p0), our choice pm is p0, otherwise it is (1 + α)p0.
So we have the following inequalities:

pmS(pm) ≥ p0S(p0) ≥ p0S(p∗) ≥ p∗S(p∗)
1 + α

≥ (1 − α)p∗S(p∗).
�

B.3 Proof of Theorem 4

Proof. As it is sufficient to prove the ratio for any t , we omit

the superscript t .
We first derive the upper bound of OPT . If we suppose all the

requesters accept the prices, OPT must be smaller than the maxi-

mum weights of the matching. LetM∗ and R∗ denote the matching

and the corresponding set of tasks. We have OPT ≤ ∑
r ∈R∗ drp∗д .

For the lower bound of ALG, consider a matching algorithm

which only ensures M∗; that is, if any requester r ∈ R∗ in the

matching rejects the price pb , its neighbor workerw w.r.t.M∗ will
not serve the other tasks. For each instance of the possible bipartite

graph, since our algorithm achieves the maximum weights, ALG
must be greater than the expected revenue of this algorithm. We

have

ALG ≥
∑
д

∑
r ∈R∗tд

pbS
д(pb)dr

=
∑
д

∑
r ∈R∗tд

∑
д p

д
m

G
Sд(

∑
д p

д
m

G
)dr

≥
∑
д

∑
r ∈R∗tд

dr

∑
д p

д
mSд(pдm)
G

≥ 1

e

∑
д

∑
r ∈R∗tд

dr

∑
д p

д
m

G

≥ 1

eG

∑
д

∑
r ∈R∗tд

drp
∗д

≥ 1

eG
OPT .

The third inequality is because of the concavity of the function

pSд(p). The fifth one is because we assume Gpmin ≥ pmax . The

fourth one can be derived by the following fact.

Fact 2. Let F be any MHR distribution with support on [0,∞]. Let
pm = argmaxp pS(p). S(pm) ≥ 1/e . [10]

�

C PROOFS OF DYNAMIC PRICING

C.1 Proof of Lemma 6

Proof. By Hoeffding inequalities, Pr[Ŝ(p) − S(p) > c(p)
p] =

Pr[S(p) − Ŝ(p) > c(p)
p] ≤ e−2c2(p)N (p)/p2 = N−4. The last equal-

ity is derived by replacing c(p) with p
√

2 lnN
N (p) . �

C.2 Proof of Lemma 7

Proof. The first inequality can be derived by Lemma 6. For the

second, we have pŜ(p)+c(p) < pS(p)+2c(p) = pS(p)+2p
√

2 lnN
N (p) <

max(p′S(p′),p′′S(p′′)) − pS(p), where the last inequality can be

obtained by replacing N (p). �

C.3 Proof of Theorem 5

Proof. We discuss three cases showed in Fig. 4.

For the first one where D ≥ C and p0 = 0, from Lemma 7, we

have pŜ(p) + c(p) < max(p′S(p′),p′′S(p′′)) for any p but p′ and p′′.
For any p such that p < p′ ≤ p∗, since Dp/C < Dp′/C < Dp′′/C
and pŜ(p)+ c(p) < max(p′S(p′),p′′S(p′′)), p’s index is smaller than

that of p′ (or p′′) and we cannot choose such p. For any p such that

p > p′′ ≥ p∗, since we havepŜ(p)+c(p) < max(p′S(p′),p′′S(p′′)) <
Dp/C , we know the smaller term of its index is pŜ(p)+c(p), and we
will choose p′ or p′′, since pŜ(p) + c(p) < max(p′S(p′),p′′S(p′′)) ≤
max(p′Ŝ(p′) + c(p′),p′′Ŝ(p′′) + c(p′′)), by Lemma 7.

Dynamic Pricing in Spatial Crowdsourcing: A Matching-Based Approach SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Figure 9: Proof of optimality.

For the second one and the third one, if p < p0, Dp/C is the

smaller term of its index due to the first inequality in Lemma 7.

Furthermore, as Dp/C < max(p′S(p′),p′′S(p′′)) ≤ max(p′Ŝ(p′) +
c(p′),p′′Ŝ(p′′) + c(p′′)), p′ or p′′ has larger index. For p0 ≤ p, the
analysis is similar to the first case; we cannot choose p for either

p < p′ or p > p′′. Note that there is no need to discuss p < p′ in
the third case, since p′ < p0 = p

∗.
�

C.4 Proof of Lemma 9

Proof. We will use coordinate geometry to give a proof. Some

redefined variables may cause a little abuse of notation, but they

will only be used in this proof.

Every two successive Δд is related to three lines. Without loss of

generality, let k1,k2,k3 denote their slopes. Since we add we add dr
in the decreasing order, we have k2−k1 > k3−k2.. They are showed
with the concave function in Figure 9. The intersections of these

lines and the concave function will be denoted byA,B,C , with their

corresponding function values y1,y2,y3. And note that A,B,C are

all at the right of the maximizer of the concave function. y2 − y1
will be the old Δд and y3−y2 is the new one. It is sufficient to prove

that under the condition that k2 − k1 > k3 − k2, y2 − y1 > y3 − y2
holds.

Claim 1. If k2 − k1 = k3 − k2, then y2 − y1 > y3 − y2.

Suppose this claim is true. We claim that when k2 −k1 > k3 −k2,
y2 − y1 > y3 − y2 holds as well. Indeed, if we reduce k1 by a tiny

small value so that k2 − k1 > k3 − k2, where k2 and k3 are fixed, y1
can only be smaller since Amoves downwards.

Now we will prove by contradiction when supposing y2 − y1 ≤
y3 − y2. Let A and B be fixed. Draw a line through B vertical to

x-coordinate. The line intersects with the line of slope k1 at F and

with the line of slope k3 at E. Through E draw a line parallel to the

line with the slope k1. The line intersects with the extension of line

AB atG . ThroughG draw the line perpendicular to EF , with its foot

denoted by D, and the line intersects with the line of slope k3 at H .

Through A draw the line perpendicular to EF , with its foot denoted

byQ . Let the x value of F be c . BF = c(k2 −k1) and BE = c(k3 −k2).
Since k2 −k1 = k3 −k2, BE = BF . ∠AFB = ∠GEB because EG ‖ AF .
With ∠ABF = ∠GBE, �BAF � �BGE. If y2 − y1 ≤ y3 − y2, the
y value of C must be between the y value of E and the y value

of D. Because C is on the line of slope k3, C must be on the line

segment EH . The slope of line BC is smaller than that of AB, which
contradicts with the concavity of the curve, soy2−y1 > y3−y2. �

C.5 Proof of Theorem 8

Proof. For each feasible plan nt = (nt1,nt2, . . . ,ntG), it must

correspond to a matching in the bipartite graph. This is because

each worker becomes the supply of some grid д requires that there

is an edge in the graph, and a worker can only be the supply of one

grid. Let us denote the set of tasks which are assigned to workers

by R′t . The ∑
д L

д(ntд) can be rethought as the function of R′t ,
rewritten as L(R′t). The value is calculated by counting ntд and

deriving each ptд for each д.
Lemma 9 tells us that in each grid д, each increase Δд is decreas-

ing. And in each iteration, we use max-heap to find the largest

increase among all grids. In a word, whenever there is a chance

to increase
∑
д L

д(ntд), we always choose the largest currently

possible value.

If we show that L(W ′t) is a monotone submodular set function,

our algorithm will give us a 1 − 1
e approximation by [14]. It is easy

to prove that it is monotone increasing, since one more worker

can only increase the function values. For submodularity, we need

to prove that for any R1 ⊆ R2 ⊆ Rt and r ∈ Rt \R2, L(R1 ∪ {r }) −
L(R1) ≥ L(R2 ∪ {r }) − L(R2). Suppose r is w.r.t. д, since the slope in
L(R1) is smaller than that of L(R2), we know the inequality holds

by the concavity of the curve. �

C.6 Proof of Theorem 10

Proof. We will not consider tasks in Rt that is beyond any

worker’s reachability, because neither ALG nor OPT can complete

these tasks. Given some pt , we first focus on the revenue for each

t . For some д, given price ptд , the total revenueU t is smaller than

min(∑r ∈Rtд drxrptд ,
∑ntд

i=1 drip
tд). Let random variables X and Y

denote the two terms. Noticing thatE[min(X ,Y))] ≤ min(E[X],E[Y]),
we have

E[U t |pt] ≤
∑
д

min(
∑

r ∈Rtд
drp

tдSд(ptд),
ntд∑
i=1

drip
tд)

=
∑
д

L(ntд ,ptд).

On the other hand, given any pt , we want to prove

E[U t |pt] ≥
∑
д

L(ntд ,ptд) − O(dmax

√
m logm).

For the first term in L, we use the general Chernoff bound [18]:

Fact 3. Let X1, . . . ,Xn be independent Bernoulli random vari-

ables, which is 1 with probability S . Let X =
∑n
i=1 dixi with di > 0.

Define ν =
∑n
i=1 d

2
i S . Pr[E[X] − X > ϵ] ≤ e

−2ϵ2
2ν .

Taking the inequality for X , we have

U t ≥
∑
д

∑
r ∈Rtд

drp
tдSд(ptд) − O(dmax

√
m logm)

with high probability. For the second term, we first observe that

E[U t |pt] ≥
∑
д

ntд∑
i=1

drip
tдSд(ptд).

This is because for the ntдth largest dri , they will be definitely

finished if they accept the price. Here we also assume the following

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Tong et al.

inequality holds: (1 − Sд(ptд))∑ntд

i=1 drip
tд ≤ O(dmax

√
ntд logm),

which is often true in practice. Combining these two, we will obtain

the result for the second term.

We know ALG chooses n′t and p′t which achieves at least (1 −
1
e)maxntд,ptд

∑
д L(ntд ,ptд). Let n∗t and p∗t denote the choices

of OPT . We have

ALG ≥
∑
д

L(n′tд ,p′tд) − O(dmax

√
m logm)

≥ (1 − 1/e)
∑
д

L(n∗tд ,p∗tд) − O(dmax

√
m logm)

≥ (1 − 1/e)
∑
д

E[U t |p∗t] − O(dmax

√
m logm)

= (1 − 1/e)OPT − O(dmax

√
m logm).

Designing L this way gives a good approximation for the ex-

pected revenue. Another approximate expression could be

min(|Rtд |Sд (ptд),ntд)∑
i=1

drip
tдSд(ptд).

We leave the analysis in future work. �

α

0.
5

0.
75 1 1.
25 1.
5

R
ev

en
ue

×105

2

3

4

5

6

7

8
MAPS
BaseP
SDR
SDE
CappedUCB

(a) Revenue of varying α

α

0.
5

0.
75 1 1.
25 1.
5

T
im

e(
se

cs
)

0

0.05

0.1

0.15

0.2

0.25

0.3

MAPS
BaseP
SDR
SDE
CappedUCB

(b) Time of varying α

α

0.
5

0.
75 1 1.
25 1.
5

M
em

or
y(

M
B

)

4

5

6

7

8

9

MAPS
BaseP
SDR
SDE
CappedUCB

(c) Memory of varying α

Figure 10: Results on varying α of exponential distribution.

D EFFECT OF α OF THE DEMAND
DISTRIBUTION OF vr

Fig. 10 presents the results of varying α of the exponential demand

distributions. As shown in the figures, MAPS still achieves the

largest revenue with reasonable time and memory cost. The results

are similar to those using demand following a normal distribution.

