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On the Use of Greedy Shapers in Real-Time Embedded Systems
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Traffic shaping is a well-known technique in the area of networking and is proven to reduce global buffer
requirements and end-to-end delays in networked systems. Due to these properties, shapers also play an
increasingly important role in the design of multiprocessor embedded systems that exhibit a considerable
amount of on-chip traffic. Despite the growing importance of traffic shapping in this area, no methods
exist for analyzing shapers in distributed embedded systems and for incorporating them into a system-
level performance analysis. Until now it was not possible to determine the effect of shapers on end-to-end
delay guarantees or buffer requirements in such systems. In this work, we present a method for analyzing
greedy shapers, and we embed this analysis method into a well-established modular performance analysis
framework for real-time embedded systems. The presented approach enables system-level performance
analysis of complete systems with greedy shapers, and we prove its applicability by analyzing three case
study systems.
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1. INTRODUCTION

In the area of broadband networking, traffic shaping is a well-known and well-studied
technique for regulating connections and avoiding buffer overflow in network nodes,
see, for example, Gringeri et al. [1998] or Rexford et al. [1997]. A traffic shaper in a
network node buffers the data packets of an incoming traffic stream and delays them
such that the output stream conforms to a given traffic specification. A shaper may
ensure, for example, that the output stream has limited burstiness or that packets
on the output stream have a specified minimum interarrival time. A greedy shaper
is a special instance of a traffic shaper that not only ensures an output stream that
conforms to a given traffic specification but also guarantees that no packets get delayed
longer than necessary.

Non-greedy shapers are able to keep packets longer than necessary in order to
smoothen the output traffic. For example, besides a maximal number of output packets
in a given time interval, one may also specify a minimal number in order to avoid a
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Fig. 1. Two systems with greedy shapers.

buffer underflow or to get a smoother output traffic. Therefore, shaping devices with
this property are sometimes called smoothers. They may keep a number of packets as a
reserve and send them in case of low input traffic. This way, a violation of the specified
minimal packet rate can be avoided. This article concentrates on greedy shapers.

By limiting the burstiness of the output stream of a network node, shapers typically
drastically reduce the buffer requirements on subsequent network nodes. In particular,
if some sort of priority scheduling is used on a network node to share bandwidth among
several incoming streams, then a limited burstiness of high-priority streams leads to
better responsiveness of low-priority streams.

In addition, under some circumstances, shaping comes for free from a performance
point of view. To be more specific, if the output stream of a node is shaped with a greedy
shaper to conform again to the input traffic specification, and if the buffer of the shaper
accesses the same memory as the input buffer of the node, then the end-to-end delay
of the stream and the total buffer requirements on the network node are not affected
by adding the shaper.

Due to these favorable properties, shapers also play an increasingly important role
in the design of real-time embedded systems. Modern embedded systems are often
implemented as multiprocessor systems with a considerable amount of on-chip traffic.

In this domain, we may identify two main application areas for traffic shaping.
First, shapers may be used internally to reshape internal traffic streams to reduce
global buffer requirements and end-to-end delays. Second, shapers may be added at
the boundaries of a system to ensure conformant input streams, thereby preventing
internal buffer overflows caused by malicious input. Figure 1 shows two simple example
systems from these two application areas.

Within the framework of Network Calculus Le Boudec and Thiran [2001] present
methods for analyzing the effects of traffic shapers in communication networks. But
to our best knowledge, none of the existing frameworks for modular system-level per-
formance analysis of real-time embedded system considers traffic shapers at this time,
see, for example, Pop et al. [2003], Richter et al. [2003], González Harbour et al. [2001]
or Chakraborty et al. [2003], or Thiele et al. [2000].

Only Richter et al. [2003] introduce a restricted kind of traffic shaping through
so-called event adaption functions (EAFs). However, EAF’s play a crucial role in the
method’s fundamental ability to analyze systems, and therefore, a designer has very
limited freedom to place or omit or parameterize EAF’s.
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In this work, we will extend the framework presented in Chakraborty et al. [2003] and
Thiele et al. [2000] to enable system-level performance analysis of real-time embedded
systems with traffic shapers. The first (and preliminary) results on greedy shapers
have been published in Wandeler et al. [2006]. It has to be noted that Le Boudec and
Thiran [2001] challenge the ability of the methods presented by Thiele et al. [2000] to
analyze traffic shapers, Schioler et al. [2005] even claim that it is not possible to analyze
traffic shapers within the framework of modular performance analysis [Chakraborty
et al. 2003; Thiele et al. 2000]. This article proposes a solution to these problems and
challenges.

The contributions of this work can be summarized as follows.

—We present a method for analyzing greedy shapers in multiprocessor embedded
systems.

—We embed this new analysis method into the well-established modular performance
analysis framework of Chakraborty et al. [2003] and Thiele et al. [2000]. This enables
system-level performance analysis of complete systems with greedy shapers, that is,
we may analyze end-to-end delay guarantees and global buffer requirements of such
systems.

—We prove the applicability of the presented methods by analyzing two small case
study systems with greedy shapers.

2. MODULAR PERFORMANCE ANALYSIS

In the domain of communication networks, powerful abstractions have been developed
to model flow of data through a network. In particular, Network Calculus [Cruz 1991]
provides a means to deterministically reason about timing properties of data flows in
queuing networks. Real-Time Calculus [Thiele et al. 2000] extends the basic concepts of
Network Calculus to the domain of real-time embedded systems, and Chakraborty et al.
[2003] proposes a unifying approach to Modular Performance Analysis with Real-Time
Calculus. It is based on a general event and resource model, allows for hierarchical
scheduling and arbitration, and takes computation and communication resources into
account.

With Real-Time Calculus, hard upper and lower bounds can be computed to vari-
ous performance measures in a real-time system, such as end-to-end delays of event
streams or buffer requirements. Hence, real-Time Calculus qualifies to analyze hard
real-time systems. This clearly distinguishes Real-Time Calculus from any probabilistic
performance estimation methods or from performance estimation through simulation.

The central idea of Modular Performance Analysis is to first build an abstract per-
formance model of the concrete system that bundles all information needed for per-
formance analysis with Real-Time Calculus. The abstract performance model thereby
unifies essential information the environment of the system, the available computa-
tion and communication resources, the application tasks (or dedicated HW/SW compo-
nents), as well as the system architecture itself.

Within the abstract performance model, environment models describe how a system
is being used by the environment: how often events (or function calls) will arrive; how
much data is provided as input to the system; and how many events and how much
data is generated in return by the system and fed back to the environment. Resource
models provide information about the properties of the computing and communication
resources that are available within a system, such as processor speed and communica-
tion bus bandwidth. Application task (or dedicated HW/SW component) models provide
information about the processing semantics that is then used to execute the various
application tasks or run the dedicated HW/SW components. Finally, the system model
captures information about the applications and the available hardware architecture,
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defines the mapping of tasks to computation or communication resources of the hard-
ware architecture, and specifies the scheduling and arbitration schemes used on these
resources.

Following, we introduce the basic concepts of Network and Real-Time Calculus.

2.1. Arrival Curves: A General Event Stream Model

A trace of an event stream can be described by means of a cumulative function R(s, t),
defined as the number of events seen on the event stream in the time interval [s, t).
While any R always describes one concrete trace of an event stream, a tuple α(�) =
[αu(�), αl(�)] of upper and lower arrival curves [Cruz 1991] provides an abstract event
stream model, representing all possible traces of an event stream.

The upper arrival curve αu(�) provides an upper bound on the number of events
seen on the event stream in any time interval of length �, and analogously, the lower
arrival curve αl(�) denotes a lower bound on the number of events in a time interval
�. R, αu and αl are related to each other such that

αl(t − s) ≤ R(s, t) ≤ αu(t − s) ∀s < t, (1)

with αl(0) = αu(0) = 0.
Arrival curves substantially generalize traditional event models, for example, as

sporadic, periodic, periodic with jitter, or any other arrival pattern with determinis-
tic timing behavior. For example, an event stream with a period p, a jitter j, and a
minimum inter-arrival distance d can be modeled by the following arrival curves.

αl(�) =
⌊

� − j
p

⌋
; αu(�) = min

{⌈
� + j

p

⌉
,

⌈
�

d

⌉}
. (2)

Besides being able to represent any message stream with known deterministic timing
behavior, it is also possible to determine arrival curves corresponding to any finite-
length message trace, obtained, for example, from observation or simulation.

Figure 2 shows some typical examples of arrival curves. The arrival curves in
Figure 2(a) model a strictly periodic event stream, while the arrival curves in
Figure 2(b) model a periodic event stream with jitter, and the arrival curves
in Figure 2(c) model a periodic event stream with bursts. The arrival curves in
Figure 2(d) model an event stream with more complex timing behavior. This event
stream may have short steep bursts or longer-lasting less steep bursts, and the
maximum long-term period does not equal the minimum long-term period. An event
stream with such a complex timing behavior can not be represented accurately by any
of the classical event arrival patterns.

2.2. Service Curves: A General Resource Model

Analogously to the cumulative function R(s, t), the concrete availability of a compu-
tation or communication resource can be described by a cumulative function C(s, t),
defined as the number of available resources, for example, processor or bus cycles,
in the time interval [s, t). To provide an abstract resource model, we define a tuple
β(�) = [βu(�), βl(�)] of upper, βu and lower βl, service curves. C, βu, and βl are related
to each other such that

βl(t − s) ≤ C(s, t) ≤ βu(t − s) ∀s < t, (3)

with βl(0) = βu(0) = 0.
Note that the preceding definition of lower service curves corresponds to the defini-

tion of strict service curves in Network Calculus [Le Boudec and Thiran 2001], while
the definition of upper service curves, as we have just given, is not used.
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Fig. 2. Arrival curves α(�) for standard event arrival patterns: (a) periodic; (b) periodic with jitter;
(c) periodic with bursts; (d) general.

Figure 3 shows some examples of service curves that model the resource availability
on processors or communication channels. The service curves in Figure 3(a) model a
resource with full availability, while the service curves in Figure 3(b) model a bounded
delay resource, as defined in Shin and Lee [2004]. The service curves in Figure 3(c)
model the resource availability of one slot on a time division multiple access (TDMA)
resource, and finally, the service curves in Figure 3(d) model a periodic resource, as
defined in Shin and Lee [2003].

2.3. From Components to Abstract Components

In a real-time system, an incoming event stream is typically processed on a sequence
of HW/SW components that we will interpret as tasks that are executed on possibly
different hardware resources.

Figure 4 shows such a component. An event stream R enters the component and is
processed using a hardware resource whose availability is modeled by C. After being
processed, the events are emitted on the component’s output, resulting in an outgo-
ing event stream R′, and the remaining resources that were not consumed are made
available to other components and are described by an outgoing resource availability
trace C ′.

The relations between R, C, R′, and C ′ depend on the component’s processing se-
mantics, and the outgoing event stream R′ will typically not equal the incoming event
stream R, as it may, for example, exhibit more or less jitter. Analogously, C ′ will differ
from C.

For Modular Performance Analysis with real-time calculus, we model such an
HW/SW component as an abstract component, as shown in Figure 5. Here, an ab-
stract event stream α(�) enters the abstract component and is processed using an
abstract hardware resource β(�). The output is, again, an abstract event stream α′(�),
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Fig. 3. Services curves β(�) for standard resource patterns: (a) complete; (b) bounded delay; (c) TDMA;
(d) periodic resource.
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Fig. 4. A concrete component processing an event stream on a resource.

and the remaining resources are expressed, again, as an abstract hardware resource
β ′(�).

Internally, an abstract component is specified by a set of relations that relate the
incoming arrival and service curves to the outgoing arrival and service curves, such
that

α′ = fα(α, β); β ′ = fβ(α, β). (4)
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Again, these relations depend on the processing semantics of the modeled component
and must be determined such that α′(�) correctly models the event stream with event
trace R′ and β ′(�) correctly models the resource availability C ′.

As an example of an abstract component, consider a concrete component that is
triggered by the events of an incoming event stream. A fully preemptable task is
instantiated at every event arrival in order to process the incoming event, and active
tasks are processed in a greedy fashion in first in, first out order while being restricted
by the availability of resources. Such a component can be modeled as an abstract
component with the following internal relations1 [Chakraborty et al. 2003].

α
′u
GP = min{(αu ⊗ βu) � βl, βu}. (5)

α
′l
GP = min{(αl � βu) ⊗ βl, βl}. (6)

β
′u
GP(�) = inf

�≤λ
{βu(λ) − αl(λ)}+ ∀� ≥ 0. (7)

β
′l
GP(�) = inf

0≤λ≤�
{βl(λ) − αu(λ) ∀� ≥ 0}. (8)

Such components are very common in the area of real-time embedded systems, and we
will refer to them as Greedy Processing (GP) components.

2.4. Abstract Performance Models

To analyze the performance of a concrete system, we need to capture its essential
properties in an abstract performance model that consists of a set of interconnected
abstract components. First, all concrete system components are modeled using their
abstract representation (as described in the preceding section). Then, the arrival-curve
inputs and outputs of these abstract components are interconnected to reflect the flow
event streams through the system.

When several components of the concrete system are allocated to the same hardware
resource, they must share this resource according to a scheduling policy. In the per-
formance model, the scheduling policy on a resource can be expressed by the way the
abstract resources β are distributed among the different abstract components.

1See the Appendix for a definition of ⊗ and �. Note that these relations are only valid with arrival and
service curves that are based on differential cumulative functions R(s, t) and C(s, t) that extend to the whole
time domain. The preceding tight relations are not valid with only the arrival and service curves Cruz [1991]
defined for the positive time domain (R(0, t) and C(0, t)).
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(c) tasks with generalized processor sharing (GPS) scheduling; (d) tasks with time division multiple access
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For example, consider preemptive fixed-priority scheduling: Abstract component A
with the highest priority may use all available resources on a hardware, whereas
abstract component B with the second-highest priority only gets the resources that
were not consumed by A. This is modeled by using the service curves β ′

A that exit A as
input to B. For some other scheduling policies, such as GPS or TDMA, resources must
be distributed differently, while for some scheduling policies, such as EDF, different
abstract components with tailored internal relations (see Equation (4)), must be used.
Some examples of how to model different scheduling policies are depicted in Figure 6.

2.5. Analysis

In the performance model of a system, various performance measures can be computed
analytically [Le Boudec and Thiran 2001; Chakraborty et al. 2003].

For instance, for a GP component, the maximum delay dmax experienced by an event
is bounded by

dmax ≤ sup
λ≥0

{inf{τ ≥ 0 : αu(λ) ≤ βl(λ + τ )}}
def= Del (αu, βl). (9)

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 1, Publication date: March 2012.



On the Use of Greedy Shapers in Real-Time Embedded Systems 1:9

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

Δ

dmax
bmax

αu

βl

Fig. 7. Delay and backlog obtained from arrival and service curves.

When processed by a sequence of GP components, the total end-to-end delay experi-
enced by an event is bounded by

dmax ≤ Del
(
αu, βl

1 ⊗ βl
2 ⊗ · · · ⊗ βl

n

)
. (10)

On the other hand, the maximum buffer space bmax that is required to buffer an
event stream with arrival curve α in the input queue of a GP component on a resource
with service curve β is bounded by

bmax ≤ sup
λ≥0

{αu(λ) − βl(λ)} def= Buf (αu, βl). (11)

When the buffers of consecutive components access the same shared memory, the total
buffer space is bounded by

bmax ≤ Buf
(
αu, βl

1 ⊗ βl
2 ⊗ · · · ⊗ βl

n

)
. (12)

In Figure 7, the relations between α, β, dmax, and bmax are depicted graphically. From
this figure, we see that dmax and bmax are bounded by the maximum horizontal and
maximum vertical distance between the upper arrival curve and the lower service
curve, respectively. This corresponds to the intuition that dmax and bmax occur when the
maximum load arrives at the time of minimum resource availability.

3. PERFORMANCE ANALYSIS OF GREEDY SHAPERS

From now on, we will consider one-sided cumulative functions only, that is, R(t) ≡
R(0, t) and C(t) ≡ C(0, t). In other words, we suppose that event streams start at t = 0
and we consider the positive time domain only.

In Figure 8, a greedy shaper component is depicted shaping an incoming event
stream R(t) with a shaping curve σ . After being shaped, the events are emitted on the
component’s output, resulting in a shaped outgoing event stream R′(t).

To enable analysis of systems with greedy shapers in the Modular Performance
Analysis framework, we need to introduce a new abstract component that models a
greedy shaper, as depicted in Figure 9. Here, an abstract event stream α(�) enters
the abstract greedy shaper component to be shaped with shaping curve σ . Thus, the
shaped output is, again, an abstract event stream α′(�). Analogously to Equation (4),
we consequently need to find relations that relate the incoming arrival curves to the
outgoing arrival curves in order to specify such an abstract greedy shaper component,
such that

α′ = fGS(α, σ ). (13)
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Fig. 8. A concrete greedy shaper that is shaping a concrete event stream.

Fig. 9. An abstract greedy shaper that is shaping an abstract event stream.

Following, we will first explain the behavior and implementation of concrete greedy
shapers. We will then introduce the internal relations that define an abstract greedy
shaper component.

3.1. Concrete Greedy Shapers

A greedy shaper with a shaping curve σ delays events of an input event stream such
that the output event stream has σ as an upper arrival curve. Additionally, a greedy
shaper ensures that no events get delayed any longer than necessary.

Greedy shapers can therefore be used to ensure that an event stream is upper-
bounded by an upper arrival curve αu. For this, the event stream R is input to a greedy
shaper with shaping curve σ ≤ αu. The output event stream R′ of the greedy shaper is
then upper-bounded by αu.

To analyze the behavior of a greedy shaper, consider a greedy shaper with shaping
curve σ which is subadditive and with σ (0) = 0. Assume that the shaper buffer is
empty at time 0 and that it is large enough so that there is no event loss. The meaning
of subadditivity, in this context and in relation to whether this property restricts the
class of shapers that can be analyzed, will be discussed in Section 3.3.

Le Boudec and Thiran [2001] prove that for an event trace R to input such a greedy
shaper, the output event trace R′ can be computed as

R′ = R ⊗ σ. (14)

In practice, a greedy shaper with a shaping curve of

σ (�) =
⌊

min
∀i

{(bi) + ri�}
⌋

(15)

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 1, Publication date: March 2012.



On the Use of Greedy Shapers in Real-Time Embedded Systems 1:11

ALGORITHM 1: Leaky bucket greedy shaper with bucket size b and filling rate r.
Given:
A clock c ∈ R≥0 that is continuously running and that can be reset to c = 0.

Initialize:
reset clock c = 0;
reset bucket fill level f = b;

while true do
blocking read of event e from FIFO input buffer;
f = min{ f + c · r, b};
send event e;
f = f − 1;
reset c = 0;
wait max{0,

1− f
r };

end while

and with σ (0) = 0 can be implemented using a cascade of so-called leaky bucket greedy
shapers. Every leaky bucket greedy shaper is a greedy shaper with a shaping curve
of σi(�) = 
(bi) + ri�� and can be implemented using some sort of leaky bucket, with
bucket size bi, that is filled (instead of emptied) at a constant rate of ri. If an event
arrives at such a leaky bucket greedy shaper, it can pass the shaper immediately if the
fill level of the bucket is larger than or equal to 1. Otherwise, the event gets delayed
until the bucket is filled enough. Finally, every event that is sent on the output of the
shaper reduces the bucket fill level by 1.

At such a leaky bucket stage, the first 
bi� events of a burst can pass without any
delay. But further events of the burst will be delayed and can only pass at a rate of
ri. If no events arrive for some time, the bucket will eventually be full again, allowing
another burst of 
bi� events to pass.

Algorithm 1 shows the pseudocode to implement a leaky bucket greedy shaper. Ini-
tially, the bucket is full, and the clock is reset to c = 0. Then, the shaper does a blocking
read on its first in, first out input buffer. If an event is available on the first in, first
out input buffer, it is immediately sent to the shaper output, but before sending the
event, the new bucket fill level f is computed as the sum of the last-computed bucket
fill level and the amount c · r by which the bucket got filled since the last clock reset,
and hence, the last update of the fill level. The fill level is thereby limited by the bucket
size b. Immediately after sending the event, the bucket fill level is reduced by 1, and
the clock is reset to c = 0. If necessary, the shaper then waits until the bucket fill level
is larger than or equal to 1 again before doing the next blocking read on its first in,
first out input buffer.

Figure 10 depicts a shaping curve that can be implemented by a cascade of two
leaky buckets. The first leaky bucket has a bucket size of b1 = 1 and a leaking rate of
r1 = 1/4, while the second leaky bucket has a bucket size of b2 = 2.8 and a leaking rate
of r2 = 1/15.

It is also possible to implement greedy shapers with more complex shaping curves
than that of Equation (15). For this, the greedy shaper needs to consider the history of
sent events and compare it against the shaping curve to determine the next point in
time when an event can pass the shaper. The implementation of such a greedy shaper
typically would be more complex than a simple cascade of leaky bucket greedy shapers,
and therefore, in practice, one would approximate a complex shaping curve with a
shaping curve as defined in Equation (15).
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Fig. 10. A greedy shaper that is implemented by a cascade of two leaky bucket stages and the resulting
total shaping curve.
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Fig. 11. Cascade of a processing component and a greedy shaper that reshapes the output event stream.

In practice, one of the simplest examples of a shaper is the play-out buffer that is
read at a constant rate. Play-out buffers are widely used in multimedia processing, and
can be implemented by a single leaky bucket greedy shaper.

3.2. Reshaping Comes For Free

An interesting property of greedy shapers is that reshaping does not increase delay or
buffer requirements. That is to say, if an event stream R(t) that is constrained by the
upper arrival curve αu is the input to a processing component, as depicted in Figure 11,
and if a greedy shaper with shaping curve σ ≥ αu is used to reshape the output
event stream, then the maximum delay experienced by any event is not increased by
adding the greedy shaper, that is, dmax, tot = dmax, GP. Moreover, if the greedy shaper
with shaping curve σ ≥ αu and the input buffer to the processing component access the
same shared memory, then the total buffer requirement is also not increased by adding
the greedy shaper, that is, bmax, tot = bmax, GP. These properties are sometimes referred
to as “greedy shapers come for free” [Le Boudec and Thiran 2001].

3.3. Abstract Greedy Shapers

In order to embed greedy shapers into the Modular Performance Analysis framework,
we need to determine the relation per Equation (13) that connects input and output
arrival curves. This way, we can analyze distributed embedded systems that contain
greedy shapers as components and determine worst-case bounds on end-to-end delays,
throughput, and buffer sizes. Therefore, the challenges posed in Thiele et al. [2000]
and Schioler et al. [2005] concerning the possibility of modeling traffic shapers in the
framework of Modular Performance Analysis (MPA) are solved.
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THEOREM 3.1 (ABSTRACT GREEDY SHAPERS). Assume an event stream that is modeled
as an abstract event stream with arrival curves [αu, αl] serves as input to a greedy shaper
with a subadditive shaping curve σ with σ (0) = 0. Then, the output of the greedy shaper
is an event stream that can be modeled as an abstract event stream with arrival curves

αu′
GS = αu ⊗ σ, (16)

αl′
GS = αl ⊗ (σ�σ ). (17)

Further, the maximum delay and the maximum backlog at the greedy shaper are
bounded by

dmax,GS = Del (αu, σ ), (18)
bmax,GS = Buf (αu, σ ). (19)

PROOF. To prove Equation (16), we use the fact that R � R is the minimum upper
arrival curve of a cumulative function R, and we use the properties

( f � g) � h = f � (g ⊗ h),
( f ⊗ g) � g ≤ f ⊗ (g � g),

proven in Le Boudec and Thiran [2001]. We can then compute

R′ � R′ = (R ⊗ σ ) � (R ⊗ σ )
= ((R ⊗ σ ) � R) � σ

= ((σ ⊗ R) � R) � σ

≤ (σ ⊗ (R � R)) � σ

≤ (σ ⊗ αu) � σ

= (αu ⊗ σ ) � σ

= αu ⊗ σ.

To prove Equation (17), we use the fact that R�R is the maximum lower arrival
curve of a cumulative function R, and we use the property

( f ⊗ g)�(h ⊗ j) ≥ ( f �h) ⊗ (g� j),

which we prove in the Appendix. We can then compute

R′�R′ = (R ⊗ σ )�(R ⊗ σ )
≥ (R�R) ⊗ (σ�σ )
≥ αl ⊗ (σ�σ ).

To prove Equation (18), we compute

d(t) = inf{τ ≥ 0 : R(t) ≤ R′(t + τ )}
= inf{τ ≥ 0 : 0 ≤ inf

0≤u≤t+τ
{σ (t + τ − u) + R(u) − R(t)}}

≤ inf{τ ≥ 0 : 0 ≤ inf
0≤u≤t

{σ (t − u + τ ) − αu(t − u)}}
≤ inf{τ ≥ 0 : 0 ≤ inf

0≤v
{σ (v + τ ) − αu(v)}}

= inf{τ ≥ 0 : sup
0≤v

{αu(v) − σ (v + τ )} ≤ 0}

= sup
0≤�

{inf{τ ≥ 0 : αu(�) ≤ σ (� + τ )}}.
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To prove Equation (19), we compute

b(t) = R(t) − R′(t) = R(t) − (σ ⊗ R)(t)
= R(t) − inf

0≤u≤t
{σ (t − u) + R(u)}

= R(t) + sup
0≤u≤t

{−σ (t − u) − R(u)}

= sup
0≤u≤t

{R(t) − R(u) − σ (t − u)}

≤ sup
0≤u≤t

{αu(t − u) − σ (t − u)}

= sup
0≤v≤t

{αu(v) − σ (v)}

≤ sup
0≤�

{αu(�) − σ (�)}.

Theorem 3.1 supposes that the shaping curve σ is subadditive. As defined in the Ap-
pendix, we have σ (a)+σ (b) ≥ σ (a+b) for all a, b ≥ 0, in this case. In order to understand
whether this is a restriction, let us consider a time interval of length a + b. If σ is not
subadditive, then we could find some partition of this interval into two subintervals
of length a and b such that σ (a + b) > σ (a) + σ (b). Remember that σ (�) bounds the
number of output events in any time interval of length �. Therefore, in any interval of
size a + b, we can not have more events than σ (a) + σ (b). As a result of this discussion,
we conclude that σ (a + b) can be lowered without changing the behavior of the shaper.
In other words, the specification of the shaping curve σ was not tight, that is, it could
be lowered without any change of the shaper behavior. This opens the question of how
we can determine a “tight” subadditive shaping curve from a given one which is not
subadditive. According to the Appendix, the tightest subadditive shaping curve is given
by the subadditive closure σ . If the given shaping curve σ is not subadditive, then it
should be replaced by σ before applying Theorem 3.1.

Equations (16) and (17) can now be used as internal relations of an abstract greedy
shaper, and Equations (18) and (19) can be used to analyze delay guarantees and buffer
requirements of greedy shapers in a performance model.

4. APPLICATIONS AND CASE STUDIES

In this section, we analyze the two system designs depicted in Figure 1. The analysis
results will clearly reveal the positive influence of greedy shapers on a system’s perfor-
mance and buffer requirements, when applied internally or on a system’s robustness,
when applied externally. We deliberately chose two small system designs that clearly
focus on the influence of the greedy shapers and does not dilute the analysis results
by any possibly hard recognizable influences of other system properties. Modular Per-
formance Analysis with Real-Time Calculus have already been used several times to
analyze bigger and more complex system designs [Chakraborty et al. 2003; Wandeler
et al. 2006], and the abstract greedy shapers can seamlessly be integrated into bigger
performance models.

4.1. Internal Shaping for System Improvement

Consider a distributed real-time system with two CPU’s that communicate via a shared
bus, as depicted on the left side in Figure 1. C PU1 and C PU2 both process an incoming
event stream S1 and S2, respectively, and send the resulting event streams S′′

1 and S′′
2

via the shared bus to other components. The shared bus implements a fixed-priority
protocol in which sending the events from C PU1 has priority over sending the events
from C PU2. Events that are ready to be sent get buffered in the communication network

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 1, Publication date: March 2012.



On the Use of Greedy Shapers in Real-Time Embedded Systems 1:15

interfaces CNI1 and CNI2 that connect C PU1 and C PU2, respectively, with the shared
bus.

In this system, S′′
1 may differ considerably from S1. For example, S′′

1 may be bursty
even when S1 is a strictly periodic event stream. This may happen, for example, if
other tasks, besides TS1, are executed on C PU1 using a TDMA scheduling policy, or
if FP scheduling is used and TS1 has a low priority. In both cases, the processor may
not be available to TS1 during some time interval in which all arriving events of S1 get
buffered, and it may be fully available to TS1 during a later time interval in which all
the buffered events will be processed and emitted, leading to a burst on S′′

1.
Now, suppose that event stream S′′

1 is bursty. Whenever a burst of events arrives on
S′′

1, the shared bus gets fully occupied until all buffered events of S′′
1 are sent. During

this period, event stream S′′
2 will receive no service, and S′′

2 will experience a delay
caused by the burstiness of S′′

1. Moreover, the buffer demand in CNI2 will increase
with the increasing burstiness of S′′

1.
In this system, it may be an interesting option to place a greedy shaper at the output

of C PU1 that shapes event stream S′
1. This greedy shaper will limit the burstiness of

S′′
1, and will, therefore, reduce the influence of C PU1 and S1 to the delay of S′

2 and to
the buffer requirements of CNI2.

To investigate the effect of adding greedy shapers to the system with internal reshap-
ing in Figure 1, we analyze it with Modular Performance Analysis, using the abstract
greedy shaper component that we introduced in Section 3.

We assume that S1 and S2 are both strictly periodic with a period p = 1ms. Further,
we model both CPU’s as bounded delay resources. The CPU may not be available to
process the tasks TSi for up to 5ms, but after this period of at most 5ms, the processor
is fully available and can process five events per ms (βu

CPU1 = βu
CPU2 = 5�[e/ms],

βl
CPU1 = βl

CPU2 = max{0,� − 5}[e/ms]), and the bus can send 2.5 events per ms (βu
BUS =

βl
BUS = 2.5�[e/ms]).
With this specification, we analyze the four different system designs that are depicted

in Figure 12. First, we analyze the system without greedy shapers (Figure 12(a));
secondly, we place a greedy shaper only at the output of C PU1 to shape S′

1
(Figure 12(b)); then, we place a greedy shaper only at the output of C PU2 to shape
S′

2 (Figure 12(c)); and finally, we add two greedy shapers to shape both S′
1, as well as

S′
2 (Figure 12(d)). We use the upper arrival curves αu

S1 and αu
S2 as shaping curves σ1

and σ2, respectively, and we assume that the buffers of the greedy shapers and the
corresponding processing tasks access the same memory.

Using the four performance models, we analyzed the maximum required buffer
spaces of the different buffers, as well as the end-to-end delays of both event streams S1
and S2. The results, computed with the Real-Time Calculus (RTC) Toolbox for Matlab
[Wandeler and Thiele], are shown in Table I.

From the results, we learn that placing greedy shapers helps to reduce the total buffer
requirements from 25 down to at most 14 events that need to be buffered. Moreover,
the greedy buffers also reduce the end-to-end delay of both event streams, namely by
7.4% for S1, and by a total of 40% for S2.

When we look at the results, we also recognize the well-known property of greedy
shapers that reshaping is for free. Since we use σ1 = αu

S1 and σ2 = αu
S2, the greedy

shapers effectively only reshape S1
1 and S2

2 , and therefore, the buffer requirements of
C PU1 and C PU2 are not affected by adding the greedy shapers.

4.2. Input Shaping for Separation of Concerns

Typical large embedded systems often process several event streams in parallel. To
achieve separation of concerns in such systems, they are often implemented using
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Fig. 12. Performance models for four system architecture scenarios with internal reshaping.

Table I. Effect of ReShaping

Buffer Delay
Shapers C PU1 C PU2 CNI1 CNI2 T ot S1 S2

none 6 6 4 9 25 5.4 9
S1 6 6 1 6 19 5 5.8
�% — — −75% −33% −24% −7.4% −36%
S2 6 6 4 4 20 5.4 8.6
�% — — — −56% −20% — −4.4%
both 6 6 1 1 14 5 5.4
�% — — −75% −89% −44% −7.4% −40%

time-triggered scheduling policies, or servers. While these scheduling policies help to
decouple the influence of the various event streams to each other, they often do not use
the available resources efficiently.

On the other hand, powerful methods were developed to analyze systems with event-
triggered scheduling policies, such as RM or EDF. In these systems, resources are used
efficiently, but on the downside, the various event streams may heavily influence each
other. Slight changes in the timing behavior of a high-priority stream may increase
the total delay of a lower-priority stream considerably, possibly leading to a missed
deadline or to buffer overflows somewhere in the system.

To overcome this problem, greedy shapers may be placed at the input to such systems.
Every incoming event stream Si gets shaped with an individual shaping curve σi that
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Fig. 13. Performance models with external input shaping.

Table II. Effect of Input Shaping

Without Shaping With Shaping
d1 d2 d3 d1 d2 d3

j1 = 0 2.86 8.57 20 2.86 8.57 20
j1 = 0.1 2.86 8.57 28.57 2.96 8.57 20

�% 0 0 +43% +3.5% 0 0

corresponds to its design-time timing specification. The system can then be analyzed
using the design-time timing specifications, and at runtime, non-adherence of Si to its
timing specification will have no influence on the delay of any other event streams but
will, at most, increase the total delay of Si itself. Moreover, no buffers will overflow
inside the system. Instead, only the buffers of the greedy shapers themselves may
overflow. But since these buffers are clearly localized at the boundary of the system,
individual handling policies could easily be implemented.

Let’s assume a real-time system, as shown on the right side of Figure 1. Here, a
single CPU processes three event streams with a fixed-priority scheduling policy. The
high-priority stream S1 is strictly periodic with p1 = 5ms; the medium-priority stream
S2 is strictly periodic with p2 = 10ms; and the low-priority stream S3 is strictly periodic
with p3 = 20ms. The CPU processes 0.35 events per ms.

To illustrate the influence of greedy shapers at the input of such a system, we add
a jitter of j1 = 0.1ms to stream S1. We then analyze the effect of this to the end-to-
end delays of the three event streams, both without (as in Figure 13(a)) and with (as
in Figure 13(b)) greedy shapers. The results, computed using Modular Performance
Analysis, are shown in Table II.

Looking at the results, we clearly see the big influence of the little non-adherence of
S1 on the maximum delay of the completely independent stream S3, if no input shaping
is applied. On the other hand, we observe that input shaping effectively isolates the
influence of the malicious input stream S1 to the other present event streams. Now,
only S1 is affected by its own malbehavior.

4.2.1. Input Shaping for NRT Event Streams in Real-Time Systems. Inspired by the applica-
tion of greedy shapers for input shaping for separation of concerns, one could also use
greedy shapers to shape non-real-time event streams, as depicted in Figure 14. Here,
the non-real-time event streams, are processed with the highest priority, guaranteeing
a good reactivity and typically short delays, and the greedy shaper guarantees that
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Fig. 14. System model (a) and performance model (b) with input shaping for NRTtraffic.

the load created by the non-real-time events is limited, such that the real-time event
streams remain schedulable.

In such an application, the greedy shaper is an alternative to typical server imple-
mentations, such as the periodic [Sha et al. 1986] or the deferrable server [Strosnider
et al. 1995], and in a certain respect, the greedy shaper also behaves like a server. The
advantage of the greedy shaper, however, is its flexibility through the parameterizable
shaping curve σNRT. With an appropriate shaping curve, a shaper can, for example,
guarantee a reactive periodic service, such as the deferrable server, but additionally,
it may also allow a burst of service from time to time. Moreover, a greedy shaper is
typically easy to implement.

The main question that then arises in an application, as depicted Figure 14, is
how to dimension the greedy shaper. How should σNRT be chosen such that the maxi-
mum possible service to the non-real-time events is provided without jeopardizing the
schedulability of the real-time event streams?

In Wandeler and Thiele [2005], the theory of Real-Time Interfaces was first intro-
duced, providing methods for finding the maximum allowable shaping curve σNRT.
With Real-Time Interfaces, the maximum allowable non-real-time input load α′

NRT to
the system in Figure 14 can be computed as

αu
NRT, max = RT −α

(
αu

RT(� − dRT), βl
CPU

)
, (20)

with

RT −α(β ′, β)(�) = β(� + λ) − β ′(� + λ)
for λ = sup{τ : β ′(� + τ ) = β ′(�)}, (21)

where αu
RT models the maximum real-time input load, dRT denotes the relative deadline

of the real-time events, and βl
CPU models the minimum available service from the CPU.

The greedy shaper must then only enforce that the load on its output is limited by
αu

NRT, max, which is easily achieved by setting the shaping curve equal to this upper
bound. Without any loss, the shaping curve can even be ensured to be subadditive by
setting it equal to the subadditive closure of the following upper bound (see Appendix).

σNRT = αu
NRT, max. (22)

The methods presented in Wandeler and Thiele [2005] also allow for the computation
of σNRT for systems with more than one real-time event stream and for even more
complex systems with mixed and hierarchical scheduling.

As an example, consider a system similar to the one depicted in Figure 14 but with
three real-time event streams with decreasing priorities: RRT,1 has a period of 100ms,
a jitter of 40ms, and an execution demand of 25ms; RRT,2 has a period of 200ms, a jitter
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Fig. 15. Input shaping curve σNRT for the NRTtraffic in the example system.

of 150ms, and also an execution demand of 25ms; and RRT,3 has a period of 500ms and
an execution demand of 100ms. The relative deadlines of all real-time event streams
equal their periods. To compute the shaping curve σNRT for the non-real-time event
streams in this system, we use the methods presented in Wandeler and Thiele [2005]
and Equation (22).

From the result depicted in Figure 15, we learn that within this system, any non-
real-time event streams that are upper-bounded by σNRT will be served immediately
with the highest priority, that is, they will not be delayed by the input shaper. This is
the case if the input arrival curve αu

NRT, max is completely within the grey shaded area.
If there are events that contravene this upper bound, they will be delayed by the input
shaper to ensure schedulability of the real-time streams. This is the case if the input
arrival curve αu

NRT, max is tight and reaches the white area. The corresponding delay can
be computed using Equation (18).

5. CONCLUSIONS

We introduced a new method for analyzing greedy shapers and we embedded this
method into the Modular Performance Analysis framework of Chakraborty et al. [2003]
and Thiele et al. [2000], by introducing a new abstract component that models a greedy
shaper. This approach enables system-level performance analysis of real-time systems
with greedy shapers. We proved the applicability of the presented methods through
performance analysis of two case study systems with greedy shapers. In these case
study systems, we analyzed the detailed buffer requirements of all system components
and provided end-to-end delay guarantees for the processed event streams. The anal-
ysis thereby clearly revealed the positive influence of greedy shapers on the system’s
performance and buffer requirements.

APPENDIX

Min-Max Algebra

The operators ⊗, �, and � are defined as

( f ⊗ g)(�) = inf
0≤λ≤�

{ f (� − λ) + g(λ)}, (23)
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( f � g)(�) = sup
λ≥0

{ f (� + λ) − g(λ)}, (24)

( f � g)(�) = inf
λ≥0

{ f (� + λ) − g(λ)}. (25)

A curve f is subadditive if

f (a) + f (b) ≥ f (a + b) ∀a, b ≥ 0. (26)

The subadditive closure f of a curve f is the largest subadditive curve with f ≤ f
and is computed as

f = min{ f, ( f ⊗ f ), ( f ⊗ f ⊗ f ), . . .}. (27)

If f is interpreted as an arrival curve, then any trace R that is upper-bounded by f is
also upper-bounded by the subadditive closure f .

LEMMA 5.1. Given nonnegative, monotonic increasing functions f, g, h, j : R �→ R

with f (t) = g(t) = h(t) = j(t) = 0 for all t ≤ 0. Then

( f ⊗ g)� (h ⊗ j) ≥ ( f � h) ⊗ (g� j).

PROOF. We have, by definition of the operators,

( f ⊗ g)� (h ⊗ j) = inf
λ≥0

sup
0≤b≤λ

inf
0≤a≤�+λ

[ f (a) − h(b) + g(� + λ − a) − j(λ − b)].

We will consider three cases depending on the value of a.

—b ≤ a ≤ b + �:

inf
λ≥0

sup
0≤b≤λ

inf
b≤a≤b+�

[ f (a) − h(b) + g(� + λ − a) − j(λ − b)]

= inf
λ≥0

sup
0≤b≤λ

inf
0≤a′≤�

[ f (a′ + b) − h(b) + g(� + λ − a′ − b) − j(λ − b)]

≥ inf
λ≥0

inf
0≤b≤λ

inf
0≤a′≤�

[ f (a′ + b) − h(b) + g(� + λ − a′) − j(λ)]

≥ inf
λ≥0

inf
0≤b

inf
0≤a′≤�

[ f (a′ + b) − h(b) + g(� + λ − a′) − j(λ)]

= inf
0≤a′≤�

[inf
0≤b

( f (a′ + b) − h(b)) + inf
λ≥0

(g(� + λ − a′) − j(λ))]

=( f � h) ⊗ (g� j).

Note that we used variable substitutions and the relation

sup
a

{u(a) + v(a) } ≥ u(a0) + inf
a

{v(a)}.
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—b + � ≤ a ≤ � + λ:

inf
λ≥0

sup
0≤b≤λ

inf
b+�≤a≤�+λ

[ f (a) − h(b) + g(� + λ − a) − j(λ − b)]

= inf
λ≥0

sup
0≤b≤λ

inf
0≤a′≤λ−b

[ f (a′ + b + �) − h(b) + g(λ − b − a′) − j(λ − b)]

= inf
λ≥0

sup
0≤b′≤λ

inf
0≤a′≤b′

[ f (a′ + � + λ − b′) − h(λ − b′) + g(b′ − a′) − j(b′)]

≥ inf
λ≥0

inf
0≤b′≤λ

inf
0≤a′≤b′

[ f (a′ + � + λ − b′) − h(λ − b′)]

≥ inf
0≤b

inf
0≤a′

[ f (a′ + � + b) − h(b)]

= inf
0≤b

[ f (� + b) − h(b)]

= f � h.

—0 ≤ a ≤ b:

inf
λ≥0

sup
0≤b≤λ

inf
0≤a≤b

[ f (a) − h(b) + g(� + λ − a) − j(λ − b)]

= inf
λ≥0

sup
0≤b≤λ

inf
0≤a′≤b

[ f (b − a′) − h(b) + g(� + a′ + λ − b) − j(λ − b)]

≥ inf
λ≥0

inf
0≤b′≤λ

inf
0≤a′≤b

[g(� + a′ + λ − b) − j(λ − b)]

≥ inf
0≤λ

inf
0≤a′

[g(� + a′ + λ) − j(λ)]

= inf
0≤λ

[g(� + λ) − j(λ)]

=g� j.

Now we have

( f ⊗ g)� (h ⊗ j) ≥ min{( f � h) ⊗ (g� j), f � h, g� j}
= ( f � h) ⊗ (g� j).
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CHAKRABORTY, S., KÜNZLI, S., THIELE, L., HERKERSDORF, A., AND SAGMEISTER, P. 2003. Performance evaluation of
network processor architectures: Combining simulation with analytical estimation. Comput. Netw. 41, 5,
641–665.

CRUZ, R. 1991. A calculus for network delay. IEEE Trans. Inform. Theory 37, 1, 114–141.
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