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Abstract—The trend to integrate multiple functionalities on the same
(off-the-shelf) hardware has made the selection of the right scheduling
algorithm and configuration difficult. This selection requires the designer
to validate any scheduling decision already during early design steps
on the target architecture, e.g., by using a reconfigurable scheduling
framework running in the user-space. In this paper, we first identify
the requirements that such a scheduling framework must fulfill. Then, we
propose SF3P: an open-source framework that meets these requirements.
To this end, we define an interface common to all scheduling algorithms
and separate the scheduling algorithm from its low-level implementation.
With these features, SF3P can not only prototype a scheduler at high
level of abstraction, but also execute the implemented task-set on specific
hardware. Furthermore, SF3P can hierarchically compose scheduling
algorithms, useful in the mixed criticality domain, and could also be
used to explore different scheduling policies in the system optimization
phase. We demonstrate these features by implementing SF3P on top of a
POSIX-compliant operating system on two different platforms: Raspberry
Pi and an Intel Core i7 desktop system.

I. INTRODUCTION

Scheduling theory is a well-studied topic in the real-time system
literature. Focusing on the logic and theoretical proof of scheduling
algorithms, they provide the application designer with a large design
space. To provide timing guarantees, one must carefully select the
types of algorithms such as event-based, time-triggered, preemptive
and non-preemptive and their parameters, such as priorities, slot sizes,
budgets etc. Theorical works often give little evidence of which
scheduling algorithm to choose and how to configure the selected
scheduling algorithm for a given application set. Even more, when
targeting commodity setups, i.e., systems with off-the-shelf hardware
and software components, timing guarantees will depend on the
operating system and the computer architecture. These dependencies
are often ignored in literature, even though they might affect the
selection of the scheduling algorithm. Recent design trends show a
move from federated to integrated architectures in which multiple
applications are being executed on the same computing platform [1].
Scheduling algorithms must be able to temporally isolate different
applications and offer perfomance guarantees, making the processes
of selecting the right scheduling algorithm even more complex.

In this work, we argue that choosing the right scheduling algo-
rithm and configuration for commodity setups requires the application
designer to begin validating all selections in the early design steps
on the target architecture, e.g., by prototyping different candidate
algorithms. These requirements can be met by prototyping candi-
date schedulers on different hardware platforms using a high-level
framework. To be useful and efficient, such a framework must

1) offer high-level building blocks, i.e., a classical scheduler library,
2) allow the design of custom schedulers with minimal effort,
3) enable the hierarchical composition of schedulers, and
4) have minimal requirements from the underlying software and

hardware components to increase compatibility.
Conventional implementations of scheduling algorithms either

modify the base of a standard kernel to provide support for new
scheduling techniques [2]–[5] or add new functionality in the form
of dynamically loaded kernel-space modules [6], [7]. This method-
ology is difficult to maintain and places strict requirements on the
underlying HW/SW platform and does not fulfill the previously stated
requirements for fast prototyping schedulers.

This paper presents the Scheduling Framework For Fast Prototyp-
ing1 (SF3P), which is an open-source framework that meets the above
discussed requirements by a unique combination of key features.
First, SF3P enables the comparison and verification of a large set
of configurations of the same scheduling algorithm by separating the
configuration from the implementation of the algorithm itself.Second,
SF3P includes a library of commonly used scheduling algorithms
and can be easily extended with custom schedulers. This is possible
because SF3P introduces a user-space scheduling layer with clearly
defined interface to low-level components. Third, SF3P allows many
meaningful hierarchical compositions of scheduling algorithms with
multiple levels. This is possible because of two design choices. SF3P
abstracts scheduling algorithms and streams of jobs by an entity called
runnable. It also defines an interface between runnables called criteria,
based upon which the scheduling algorithms make their scheduling
decisions. Finally, SF3P has wide compatibility because it resides
in the user-space and has minimal interaction with the kernel-space.
We demonstrate the effectiveness of SF3P by implementing it on top
of POSIX-compliant operating systems and targeting two different
platforms, namely an ARM-based Raspberry Pi [8] and an Intel Core
i7 desktop system. For a large set of task-sets, we measured the
performance of the framework in terms of the difference between
theoretical and observed schedulability. We found this difference to
be less than 1% for the desktop processor. Finally, we show the
advantages of the proposed framework, and the need for hierarchical
scheduling, by discussing a flight management software example from
our industrial partners.

II. RELATED WORK

A wide variety of scheduling software has been proposed to solve
the resource allocation challenges that arrived with new scheduling
algorithms and hardware platforms. In the following, we discuss the
closest scheduling software by broadly classifying them into kernel
patches/modules, user-space/hierarchical frameworks.

We refer to any modification to a standard kernel’s resource
allocation software for supporting for new scheduling techniques as a
kernel patch. The LITMUSRT [2] patch, the SCHED_ DEADLINE
kernel patch [4], and the AQuoSA framework [5] are examples of
such kernel patches. All of them have in common that they are able
to provide high timing requirements for a small subset of scheduling
algorithms and platforms. Extending the proposed concepts to new

1http://www.tik.ee.ethz.ch/~euretile/scheduling



scheduling algorithms or operating systems could be costly since it
requires re-verification and re-testing of the kernel.

Instead of patching a kernel, new functionalities can also be added
in the form of dynamically loaded kernel-space modules. The Hijack
framework [6] intercepts system calls and hardware interrupts in
order to enforce real-time policies for user-space thread execution.
A similar approach is taken by the ExSched framework [7], which
allows user-space schedulers to be loaded as plugins to a kernel
module through a unified interface. Compared to our approach,
these frameworks support scheduling among multiple applications
instantiated as separate processes. However, their downside is that
they run, at least partly, in the kernel-space and could affect other
functionalities of the system and increase the instability of the system.
Furthermore, porting (or creating) kernel modules to new platforms
is typically more expensive than porting a user-space library.

By following a similar approach, user-space frameworks are the
most relevant to our work. They use a standard kernel without
additional modules and add a scheduling layer in the user-space.
The meta-scheduler framework described in [9] provides a portable
middleware layer component to implement real-time scheduling al-
gorithms. wuthreads [10] is a user-space threading library that
supports the hierarchical composition of schedulers by having a top-
level scheduler that assigns a global priority to each loaded low-level
scheduler. A user-space library implementing the clustered Earliest
Deadline First (EDF) algorithm is described in [11]. The authors
investigate the development of a user-space library for multi-core
systems, but do not state the costs to implement scheduling algorithms
other than the clustered EDF algorithm. Finally, the authors of [12]
show that complex mixed-criticality algorithms can be implemented
in the user-space with low overhead.

Frameworks that enable more than one scheduling policy to be en-
forced hierarchically have first been proposed in [13] by considering
two-level hierarchical schemas. The HLS framework proposed in [14]
provides the ability to compose multiple soft real-time schedulers by
having a predefined hierarchical structure with a fixed priority (FP)
scheduler on top. In [15], a composition method to derive timing
requirements for a hierarchy of schedulers supporting EDF and FP
schedulers is described. While these works focus mostly on provid-
ing timing requirements for hierarchical scheduling frameworks, we
focus on the challenges that arrive when practically implementing a
hierarchy of scheduling algorithms. The ExSched framework [7] also
supports 2-level hierarchies of FP and EDF schedulers. In contrast
to all previous works, SF3P permits the comparison, in terms of
performance and overhead, as well as the hierarchical composition
of arbitrary real-time schedulers over a wide variety of hardware and
software platforms.

III. BACKGROUND

Scheduling, i.e., the process of assigning resources to a workload
according to specific policies, can be characterized by a system model
M = (R,A,W ) consisting of a resource model R, a scheduling
algorithm A, and a workload model W . In this section, we will first
discuss the workload model W . Afterwards, we will summarize some
of the most common scheduling algorithms.

The basic unit of the considered workload model W is a task τ
Each instantiation of a task τ is called a job. Upon arrival, a job is said
to be eligible for being scheduled. We consider periodic tasks where
jobs are characterized by an average-case execution time Cavg, a
worst-case execution time Cwc, and a period P . A job might have an
associated relative deadline D, which defines the maximum allowed
time between its release and finish times. We call a task-set T feasible

under a given scheduling algorithm A if the algorithm will always
schedule every job τ ∈ T such that all deadlines are met.

A scheduling algorithm’s role is to select a job to run from a set
of eligible jobs according to predefined criteria at the appropriate
times. Scheduling algorithms may be broadly classified as time-
triggered or event-triggered algorithms. Event-triggered scheduling
can be further differentiated as either priority-based or not. Lastly,
priority-based algorithms can have either static (assigned per task)
or dynamic (assigned per job) priorities. An additional distinction
between algorithms is whether they are preemptive, meaning that jobs
which are being executed can be interrupted before they have finished.
The concepts adopted in the proposed scheduling framework are valid
for static- and dynamic-priority algorithms, as well as non-preemptive
and preemptive scheduling algorithms. We will focus on four classical
scheduling algorithms, namely Earliest Deadline First (EDF), Fixed
Priority (FP), First-in-First-Out (FIFO), and Time Division Multiple
Access (TDMA).

We also consider valid hierarchical compositions of schedulers.
Such a composition can be represented as a tree where the top-
level node represents the shared resource, the leaf nodes represent
a workload, and all other nodes represent a specific scheduling
algorithm. Fig. 1 illustrates the scheduling model of a hierarchical
composition of three scheduling algorithms: EDF, FIFO, and FP. This
configuration will be explained in detail in Section V-D.

resource

FP scheduler

EDF scheduler FIFO scheduler

worker se t 1 worker se t 2

Fig. 1. Hierarchical Scheduling System with EDF, FP, and FIFO.

IV. CHALLENGES AND DESIGN APPROACH

In this section, we present the challenges and design approach of
SF3P through a real-world example sourced from our industrial part-
ners. Flight Management Software (FMS) is responsible for several
on-board functions on an airplane. In particular, it reads different
sensors, fuses the sensor data, and computes different parameters
to localize the airplane’s position. The localization data is used
for multiple purposes, such as planning the flight trajectory and
computing the nearest airport. We study a subset of these tasks which
belong to five task-groups named sens_a, sens_c, loc_a, loc_c, and
nearest_airport. Each task-groups also has a criticality. According to
the official manuals, tasks belonging to sens_a, sens_c and loc_a have
criticality level B, while tasks belonging to loc_c and nearest_airport
have a lower criticality level D. As first proposed in [16], under
nominal conditions all jobs must meet their deadlines. Under some
exceptional conditions, jobs of tasks with lower criticality level must
start to miss deadlines before affecting jobs of higher criticality levels.

To meet the requirements of the mixed-criticality task-set, one
may begin by proposing the scheduler configuration shown in Fig. 2a.
The resource is partitioned into TDMA slots, one of which is assigned
to the FMS application. Within this slot, a fixed priority scheduler is
used to prioritize tasks of the higher criticality-level B. Within each
priority, an EDF scheduler is used to maximize the schedulability
of the tasks of that priority. Similarly, one may also propose the
configuration shown in Fig. 2b, where only one EDF scheduler is used
to schedule all of the FMS tasks. At the outset, it is not clear how to
implement these configurations on top of a standard operating system
nor how much of the design can be re-used for one configuration to
the other. We aim to solve these problems with SF3P.
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Fig. 2. Examples of Hierarchical Configurations

The goal of this work is to provide the system designer with
a tool that enables the fast evaluation of scheduling algorithms on
specific hardware platforms. As discussed with the flight management
software, this exploration also includes hierarchical compositions of
different schedulers. There are two key challenges in the design
of SF3P. The first challenge, i.e., the hierarchical composition of
scheduling algorithms, is met by introducing two abstract concepts,
namely runnables and criteria. A runnable abstracts the external
interface of a scheduling algorithm and a concrete workload in a sense
that it enables a scheduling algorithm to perform its decisions based
on a set of runnables instead of a set of eligible jobs. In addition,
every runnable has an attached criteria encapsulating the parameters
that might be used by a scheduling algorithm. We will detail these
abstract concepts in the next section. Note that not all compositions
of scheduling algorithms might make sense. For instance, in [17],
it is argued that schedulers with the strictest timing requirements
should be scheduled near the top of the hierarchy. We account for
these restrictions by allowing time-sharing scheduling algorithms to
be only scheduled below other time-sharing scheduling algorithms.

We do not focus on deriving timing guarantees for different hier-
archical configurations. Neither do we claim that our proof-of-concept
implementation achieves real-time performance on any (general-
purpose) operating system. Instead, our primary focus is on how to
decouple the high-level functional description of the (hierarchical)
schedulers from the system-dependent low-level implementation. We
envisage that such a framework will complement the understanding
of schedulers, particularly in the mixed criticality domain, where
experimental evidence can precede (currently unknown) theoretical
results.

V. ABSTRACT SCHEDULING MODEL

In this section, we present an abstract model of a scheduling
framework that consists of a set of hierarchically organized scheduling
algorithms. By abstracting the scheduling model from the actual im-
plementation, we aim to achieve flexibility in the sense that scheduling
algorithms can be (almost) arbitrarily connected and new scheduling
algorithms can be added without significant costs. We tackle this
problem in two steps. First, a unified interface is introduced enabling
the arbitrary composition of scheduling algorithms. Afterwards, the
operation semantics of a workload and a scheduling algorithm are
described based on the introduced interface.

A. Abstract Scheduling Entity
As shown in Section IV, the hierarchical composition of schedul-

ing algorithms with multiple levels is an indispensable feature of
modern scheduling systems. However, current scheduling frameworks
are mostly focused on two hierarchical levels, require kernel-space
extensions, or are inflexible in the sense that they only support
predefined compositions of schedulers. In contrast, modern scheduling

TABLE I. EVENTS EXCHANGED BETWEEN TWO RUNNABLES.

Event Sender Receiver Description

activate parent child child obtains access to shared resource.
deactivate parent child child loses access to shared resource.
ready child parent child becomes eligible to run, i.e., it has

an eligible job to execute.
finished child parent child is no longer eligible to run, i.e., it

has no more eligible jobs to execute.
update child parent child’s criteria has changed (e.g., by a new

job arrival). The parent might have to re-
evaluate its scheduling decision.

systems must be flexible, e.g., a scheduler must be able to simultane-
ously schedule other schedulers and tasks. We achieve this flexibility
in our framework by first defining a unified interface that abstracts
the external interfaces of a scheduler and a workload.

We call an entity that might be scheduled by a scheduler a
runnable. A runnable r represents either a scheduler or a worker
whereby a worker is a collection of eligible jobs of a certain task. In
other words, there exists exactly one worker per task. The scheduling
model can then be represented by a tree of runnables whereby each
leaf node represents a worker and all other nodes represent schedulers.
A runnable r has an attached criteria c, which is an encapsulation of
parameters that might be used by a parent to prioritize amongst its
children. The parameters might include a (static) priority, a period,
an arrival time, and an absolute deadline. Having the notion of a
criteria enables the scheduler to schedule other runnables based on
their criteria, thus to equally handle schedulers and tasks. A runnable
can ask for the criteria of its children and send the events activate
and deactivate to the children. Similarly, a runnable can send the
events ready, finished, and update to its parent, see Table I for a
description of the events.

B. Operation Semantics
After having specified a unified interface between two runnables,

next, we discuss the operation semantics of a runnable by differentiat-
ing between worker and real-time scheduler. Due to space constraints,
we will only discuss event-triggered schedulers. By having an abstract
operation semantics, we aim to isolate the functional description
of the scheduling model from the actual implementation, enabling
a predictive behavior of the scheduling system independent of the
implementation details.
Worker. Fig. 3a sketches the operation semantics of a worker. The
worker is in the idle state if it has no eligible jobs, in the ready state
if it has eligible jobs but has not been activated, and in the active
state if it has been activated (by the parent). The worker can start
executing the next eligible job by calling function executeJob and
preempt the execution of the current executing job by calling function
preemptJob.
Real-Time Scheduler. A real-time scheduler s operates on two lists
of runnables. Runnables in the ready list are eligible to run and sorted
according to predefined parameters of the runnables’ criteria. For
instance, in case of FP, the parameter of interest is the priority, while
in case of a FIFO scheduler it is the arrival time. The top element
points to the runnable that should be activated in case the scheduler
is activated and the criteria of scheduler s points to the criteria of
the top element. The idle list contains all runnables that are assigned
to scheduler s, but not eligible to run. The operation semantics of a
(preemptive) real-time scheduler is outlined in Fig. 3b. Similar to a
worker, the scheduler is in the idle state if every child is in the idle
state, in ready state if at least one child is in a ready state, and in the
active state if any child is in the ready state and the scheduler has
been activated. In case the scheduler is non-preemptive, the scheduler
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Fig. 3. Operational Semantics for Worker and Scheduler entities.

would only be able to switch from active to ready state when the
current job has finished its execution.

C. Correctness
We will now describe the basic properties to be satisfied in order

to faithfully represent the above discussed semantics. We will later
show that our implementation fulfills these criteria. The use of the
abstract entity runnable enables us to list these properties inductively
at the unit of a scheduler as follows.

1) Whenever a scheduler is in active or ready state, then its criteria
must be equal to the criteria of the head of its ready list, which has
been prioritized according to the scheduler’s parameters.

2) A scheduler can be in the idle state only when all child runnables
are in the idle state.

3) When a scheduler is in the ready state, at least one of the child
runnables must be in the ready state.

4) When a scheduler is in the active state, exactly one of the child
runnables must be in the active state.

D. Hierarchical Example
In order to illustrate the previously described operation semantics,

we revisit the scheduling model outlined in Fig. 1 and analyze it in
detail. The scheduling system consists of a FP scheduler that serves an
EDF and a FIFO scheduler. Each worker set consists of an unspecified
number of workers. A sample execution of the considered scheduling
system is outlined in Fig. 4. First, an eligible job arrives at a worker
from set 2, which causes all involved schedulers to re-evaluate their
criteria. Afterwards, the FP scheduler selects the FIFO scheduler to
be activated, which then activates its child worker, which executes its
job. The execution is interrupted by another job that arrives at worker
from set 1, which again causes a re-evaluation of the criteria of the
EDF and FP schedulers. After deactivating the FIFO scheduler, the
FP scheduler activates the EDF scheduler, which then activates the
worker from set 1. Finally, after the worker from set 1 has finished,
the FP scheduler will re-activate the worker from set 2, in order for
it to complete its job.

VI. PORTABLE IMPLEMENTATION WITH POSIX
Following the goal to isolate the functional description of the

scheduling framework from the actual implementation, we described
in the previous section the abstract operation semantics of a scheduler

FP

EDF

FIFO

worker set 2

worker set 1

evaluate criteria scheduling decision execute

active ready

occupying CPU: 

not occupying CPU: 

p
re

em
p
ti

o
n

time

Fig. 4. Sample execution a system sketched in Fig. 1. For readability, the
length of the execute segments has been shortened.

and a worker. The proposed operation semantics might be imple-
mented in different ways depending on the demands of the system.
In this section, we discuss a specific implementation of the framework
using the API specified by the POSIX standard. The POSIX standard
is supported by a wide variety of operating systems including many
variants of Unix and RTOS.

The overall goal of this work is to explore and compare different
(hierarchical) scheduling models in an efficient manner. In this
context, efficiency means exploring the different design options in a
fast, safe, and reasonably accurate manner. We argue that a user-space
library is the only viable choice if the designer wants to compare
various scheduling models in early design steps. When testing and
comparing new scheduling algorithm prototypes, the main concern
is the relative performance of different schedulers amongst each
other, not the absolute performance. Even though the kernel-space can
provide high timing guarantees, it might not be feasible for prototying
schedulers before the specific software and hardware environments
have been fully specified. Protyping schedulers in the user-space has
low requirements and offers greater interoperability.

In order to implement a scheduling framework in the user-space,
an operating system must provide support for three functionalities.
First, the concurrent execution of multiple entities, as provided by a
concurrency manager. Second, the concurrency manager must be able
to schedule the individual entities according to their priority, which
is dynamic. Finally, timers are required to support time-triggered
schedulers. Minimally, the operating system must support preemptive
priority scheduling and the pthread_* functions.

Given a POSIX-compliant operating system, we implement SF3P
as a set of interacting threads with different priorities and manipulate
the priorities to select the worker to execute. A priority-based (kernel-
level) scheduler will then select the highest-priority unblocked thread
for execution.

Each worker and scheduler is implemented as a separate POSIX
thread. To handle job arrivals, an additional entity called dispatcher is
introduced. The dispatcher is a separate POSIX thread that communi-
cates with the workers upon the arrival of a job. The priority of each
scheduler is tied to its hierarchical level. Suppose that the system
has N levels of schedulers, then the top-level scheduler receives
priority L1, all schedulers of the second-level receive priority L2,
until all schedulers of the N -th level receive priority LN with2

L1 > L2 > . . . > LN . In addition, the dispatcher has priority
LN+1, the active worker has priority LN+2 and all other workers
have priority LN+3, again with LN > LN+1 > LN+2 > LN+3,
see Fig. 5. Whenever a scheduler finishes its role of updating the
criteria and signaling the parent and child runnables, the scheduler
thread blocks itself. This allows the lower-priority worker threads to

2We use the “>” to denote the “higher-priority-than” relationship.
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execute in-between scheduling decisions.
We like to think of the basic operation principle in two phases:

a bottom-up criteria update phase, and a top-down activation phase.
At the start, all runnables are in the idle state. Then, the dispatcher
receives a job from a specific worker, which moves into the ready
state and thus signals to its parent runnable. The runnable updates
the criteria and moves into the ready state. This recursive process
continues until the top most runnable. Subsequent to this bottom-to-
top criteria update phase, the top most runnable activates its selected
child runnable, moving the child from the ready state to the active
state. This recursive process continues from parent to child till the
worker with the new job is reached. After this top-down activation
phase, this worker is moved into the active state, and its priority raised
to LN+2. Finally, the worker starts to execute its new job.

Now, let a new job of a different worker arrive. The dispatcher,
having a higher priority, preempts the executing worker, and begins
the recursive criteria update. If the top most runnable selects the
new worker, it must first deactivate the previous worker before
activating the new one. With these features, we can assert that
our implementation can faithfully model the operation semantics
presented in the previous section.

It should be noted that many POSIX-compliant OS’s also im-
plement fair scheduling algorithms. However, these can be bypassed
with root privileges, giving the developer unrestricted access to setting
thread priorities and controlling their execution.
Correctness. We will now briefly describe how the above implemen-
tation ensures the correctness properties described in Section V-C.
Whenever a new job arrives, the dispatcher thread ensures that
the appropriate runnables move to state ready if they are idle and
update their criteria if necessary. The higher priority of the dispatcher
thread allows it to preempt any active worker to register a new job.
This bottom-up criteria update phase implemented by each runnable
satisfies Properties 1 to 3. Whenever the top-most scheduler decides
to change the currently active worker, one scheduler at each level of
the hierarchy activates exactly one of its child runnables, satisfying
Property 4.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
framework. The goal is to answer the following questions. a) How
much does the overhead introduced by the proposed framework
distort the behavior of a scheduling algorithm? b) How is the
overhead affected by the individual components of the scheduling
framework? c) How much does the overhead increase with the number
of hierarchical levels? To answer these questions, we evaluate the
performance of various task-sets on two different target platforms.
Finally, we revisit the flight managemen system and evaluate the
impact of different scheduling configurations on the performance

metrics.
Setup. In order to demonstrate the portability of the SF3P, we use two
testing environments. The first is a desktop environment, consisting
of an eight-core, 3.4 GHz Intel i7 running the 3.5.0-17-generic Linux
Kernel. The second, an embedded environment, is a Raspberry Pi
(RPI) model B rev 2 with a 700 MHz ARM V6 processor running the
3.6.11 kernel. During all evaluations, the operating system’s run-level
is lowered to 1 so that only essential system services were running,
and the framework’s CPU affinity is set to one processor.

If not specified otherwise, the used compiler is G++ 4.7.2 with
optimization level O2 for the desktop platform, and G++ 4.6.3 again
with optimization level O2 for the Raspberry Pi. Furthermore, the
simulation time is set to 10 seconds in all experiments.
Scheduler Performance. The goal is to quantify how much the
overhead introduced by the proposed scheduling implementation
distorts the behavior of the scheduling algorithm. In particular, we
measure the deadline miss ratio, i.e., the fraction of jobs which miss
their deadlines, and compare it to known theoretical results for EDF
and Rate Monotonic, a particular FP algorithm with priorities tied
to task periods. We generate 1500 random task-sets. The number of
tasks per task-set is uniformly distributed from 5 to 50 and a task is
randomly classified as either a short or a long task. Execution times
are uniformly distributed from 5ms to 10ms for short tasks and from
40ms to 50ms for long tasks. The periods of the tasks are set so that
the system utilization is uniformly distributed from 20% to 100%.
This choice of task parameters ensures that the expected number of
job arrivals per unit time is the same for all task-sets. The relative
deadlines of tasks are assumed to be equal to the period of the task.
Afterwards, the task-set is scheduled under EDF, FP, and FIFO both
on the desktop platform and the Raspberry Pi.

For each generated task-set, Fig. 6 shows the deadline miss ratio
as a function of the utilization for both platforms. For the desktop
computer, the highest utilization at which a deadline is missed for
EDF is 100%. Task-sets with utilization of even 99.9% meet all their
deadlines. This indicates that SF3P is very close to the theoretical
bound of 100% [18]. However, there is a larger number of deadline
misses on the Raspberry Pi. The worse performance on the Raspberry
Pi was expected, among other things, because of the much higher cost
of context switching. However, when the experiment is repeated with
the periods and execution times scaled by a factor of 10, which lowers
the relative weight of context switching, the results closely resemble
that of the desktop.
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(c) FIFO, desktop.
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(d) EDF, Raspberry Pi.
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(f) FIFO, Raspberry Pi.

Fig. 6. Deadline miss ratio for three schedulers and two platforms.

The extensive results of Fig. 6 allow us to compare scheduling
algorithms for soft real-time systems. For instance, it is interesting to
observe the trend of the deadline miss ratio for the FIFO scheduler as



a function of the utilization, which, to the best of our knowledge, has
not been theoretically investigated. If deadline miss ratios up to 10%
can be tolerated, then a utilization of around 60% can be supported
by FIFO on the desktop computer.

Overall, for the appropriate range of task-set parameters, SF3P
does not distort the performance of the scheduler algorithms, and thus
enables comparing different choices. This confirms our claim that a
user-space library is a viable choice to compare various scheduling
models in early design stages.
Scheduler Overhead. Next, we quantify the overhead introduced
by the scheduling framework for various flat scheduling algorithms.
The role of SF3P is to execute worker threads. Anything else can
be considered as overhead. This overhead includes the registration
of new jobs, their insertion into the eligible queue, and enforcing
priority changes in case of a preemption or job completion. We
classify these components into two categories: scheduler and non-
scheduler overhead. The scheduler overhead is the time taken to
register new jobs at the appropriate positions in the eligible task-
queues. Depending on the complexity of the scheduling algorithm and
the number of tasks, this overhead could be either large or small. The
scheduler overhead is measured using the POSIX-CPU-timers for the
scheduler and dispatcher threads, normalized over the total run-time.
We use the same 1500 task-sets as in the previous experiment. Fig. 7
shows the measured scheduler overhead plotted against the overall
system utilization, for both platforms and for the three scheduling
algorithms. The following observations can be made:

1) Utilization-dependence: For all cases, the trend of the overhead
increases linearly with the utilization.

2) Scheduler-dependence: For either platform, all algorithms have
about the same overhead for the smallest utilization of 20%. The
increase in overhead with utilization is slower for FIFO than for
EDF and FP. Indeed, for the highest utilization, the overhead of
FIFO is up to 20% less than that of EDF and FP.

3) Platform-dependence: The overhead is much higher (around
25×) on the Raspberry Pi platform than on the desktop platform.

The non-scheduler overhead is the time taken by the lower-level
services and the operating system during the simulation. This over-
head might include constant background processes of the operating
system and the time to translate user-space decisions by SF3P to the
underlying concurrency manager. The non-scheduler overhead may
not directly be related to the design of SF3P, the task-set, or the
scheduling algorithm. We measure the non-scheduler overhead by
subtracting the total run-time from the sum of the POSIX-CPU-timers
for all POSIX threads in SF3P, normalized over the total run-time.
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(a) EDF, desktop.
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(c) FIFO, desktop.
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(d) EDF, Raspberry Pi.
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(e) FP, Raspberry Pi.
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(f) FIFO, Raspberry Pi.

Fig. 7. Scheduler overhead for three schedulers and two platforms.

For the same task-sets, the non-scheduler overhead is plotted in Fig. 8.
The following observations can be made:

1) Utilization- and scheduler-dependence: For either platform, the
non-scheduler overhead remains fairly constant across different
values of the utilization and the scheduling algorithm.

2) Platform-dependence: The non-scheduler overhead is much
higher (around 75×) on the Raspberry Pi platform than the
desktop platform.

Overhead of Multiple Hierarchy Levels. We now study the effect
of different levels of scheduler hierarchy on the overhead of the
framework. To this end, we generate 1500 task-sets, each with 32
tasks whose execution times are uniformly distributed from 10ms to
40ms and the utilization from 50% to 90%. These tasks are executed
in different EDF configurations which vary from 1 to 5 hierarchy
levels. One level of hierarchy means that all tasks are scheduled
under a single EDF scheduler. For two levels of hierarchy, the top-
level scheduler is EDF with two child EDF schedulers. Each of these
child schedulers has 16 tasks. The other configurations are similarly
created. Even though all configurations are equivalent in terms of
their functionality, they will have different overheads. We execute all
five configurations on both platforms and measured the scheduler and
non-scheduler overheads, see Fig. 9. On both platforms, the scheduler
overhead increases linearly with the levels of the hierarchy. However,
for five levels of hierarchy, the overhead may still be considered
acceptable: about 0.15% on the desktop and 2% on the Raspberry Pi.
On the other hand, the non-scheduler overhead remains fairly constant
for the different hierarchy levels. Indeed, this overhead is about the
same as we measured for the very different task-set in Fig. 8.
Hierarchical Scheduling for Multiple Criticality Levels. Consider
again the Flight Management Software (FMS) introduced in Sec-
tion IV. We implemented a subset of 11 tasks of the application
which are classified into two criticality levels: a higher level B and
a lower level D. We profiled the tasks on the desktop computer.
The difference between the tasks’ average- and worst-case execution
times, Cavg and Cwc, varies by a factor of 1.02 to 4, depending on
the task. The FMS application is isolated from another co-executing
application A which has an average utilization of 85%. If all jobs
execute for Cavg, all deadlines will be met. However, if they all
execute for Cwc, some deadlines will be missed. For this scenario, we
compare three different scheduler configurations: (C1) the hierarchical
scheduler configuration with three levels shown in Fig. 2a, (C2) a
hierarchical scheduler configuration with two levels shown in Fig. 2b,
and (C3) a flat EDF scheduler.

All three configurations were run on SF3P and the results can be
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(a) EDF, desktop.
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(b) FP, desktop.
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(c) FIFO, desktop.
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(d) EDF, Raspberry Pi.
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(e) FP, Raspberry Pi.
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(f) FIFO, Raspberry Pi.

Fig. 8. Non-scheduler overhead for three schedulers and two platforms.
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Fig. 9. Overhead of a hierarchical composition of EDF schedulers.

seen in Table II. It should be noted that only configurations C1 and C2
preserve the timing isolation across applications, since application A
has no deadline misses. Furthermore, C1 prioritizes higher criticality
tasks, as evidenced by the 0% deadlines misses of criticality level B.
In terms of performance, the overhead rises with increasing levels
of hierarchy, a clear trade-off between performance and temporal
isolation and applications and task-groups.

TABLE II. COMPARISON OF DIFFERENT CONFIGURATIONS FOR THE
WORST-CASE EXECUTION OF FMS.

Config. Deadline Miss Rate [%] Total Scheduling
Crit. level B Crit. level D Application A Overhead [%]

C1 0 28 0 0.71
C2 22 23 0 0.44
C3 5 7 12 0.38

A typical OS would only natively support a configuration like
C3, which clearly does not meet the requirements of mixed-criticality
scheduling. This highlights the need for a scheduling framework with
a hierarchical composition of schedulers.
Lessons Learned. The experimental results provide several key
insights. SF3P faithfully reproduces expected scheduler performance
for the appropriately chosen range of task-set parameters. Indeed, this
range is more conservative for the resource-constrained Raspberry Pi.
The decomposition of the overhead into scheduler and non-scheduler
components helps to separate two different aspects of the framework.
The scheduler overhead helps to select the right scheduler algorithm
and to identify the utilization that can be supported. In particular,
FIFO has a lower overhead than EDF and FP, but in all cases
the overhead increases linearly with utilization. The non-scheduler
overhead, which is independent of the scheduling algorithm, the
utilization, and levels of hierarchy, can be an important factor during
system optimization. When going from the desktop computer to the
Raspberry Pi, the scheduler overhead increases about 25× while the
non-scheduler overhead increases about 75×. On the Raspberry Pi,
the non-scheduler overhead is dominant. Thus, to improve real-time
performance on embedded platforms, it is necessary to optimize the
kernel mechanisms like context switches and interrupts.

VIII. CONCLUSIONS

In this paper, we presented the Scheduling Framework For Fast
Prototyping (SF3P), an open-source framework for fast prototyping of
complex scheduling algorithms. Recent design trends as, for instance,
the integration of multiple functionalities on the same hardware,
are supported by the ability to hierarchically compose scheduling
algorithms to execute tasks of multiple criticality levels. We define
a unified interface between scheduling algorithms and separate the
scheduling algorithm from the low-level implementation. SF3P is
designed to be in the user-space with minimal interface to the kernel-
space enabling a large variety of target platforms to be supported.
In particular, the effectiveness of SF3P is finally demonstrated by

implementing it on top of POSIX-compliant operating systems on
two different platforms, namely Raspberry Pi and an Intel Core i7
desktop processor.
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