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ABSTRACT

This paper advocates a strict compositional and hybrid ap-
proach for obtaining key (performance) metrics of embedded
systems. At its core the developed methodology abstracts
system components by either flow-oriented and purely an-
alytic descriptions or by state-based models in the form
of timed automata. The interaction among the heteroge-
neous components is modeled by streams of discrete activity-
triggers. In total this yields a hybrid framework for the
compositional analysis of embedded systems. It supplements
contemporary techniques for the following reasons: (a) state
space explosion as intrinsic to formal verification is limited to
the level of isolated components; (b) computed performance
metrics such as buffer sizes, delays and utilization rates are
not overly pessimistic, because coarse-grained purely ana-
lytic models are used for components only which conform
to the stateless model of computation. For demonstrating
the usefulness of the presented ideas we implemented a cor-
responding tool-chain and investigated the performance of
a two-staged computing system, where one stage exhibits
state-dependent behavior only coarsely coverable by a purely
analytic and stateless component abstraction.

Categories and Subject Descriptors

C.4 [Performance of systems]: Modeling techniques

General Terms
Performance, Design, Verification

Keywords
Performance Analysis, Timed Automata, Real-Time Calcu-
lus, Hard Real-Time Systems

1. INTRODUCTION
When it comes to guarantees w. r. t. system behaviors, the

latter must be analyzed by thorough and sound mathemat-
ical methods. Testing and simulation are in general not
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sufficient since they are not exhaustive. Timed automata
[1] are well accepted for analyzing real-time systems, see
e. g. [14]. However, the finite state/transition system to
be derived from some high-level model tends to grow expo-
nentially w. r. t. the number of clocks and clock constants.
Therefore, the detailed analysis of a complex system may
be hampered in practice, if not impossible at all. In con-
trast, purely analytic (or stateless) methods such as pro-
vided by the Real-Time Calculus [17, 19], SymTA/S [10]
or MAST [8] solely depend on solutions of closed form ex-
pressions, yielding a very good scalability w. r. t. the size of
systems to be analyzed. But, this advantage leads to se-
rious drawbacks: (a) analytic methods are limited to the
computation of a few specific system measures and (b) each
method is restricted to a specific model to which the sys-
tem specification under analysis must be translated, which
in general may lead to overly conservative analysis results.
To overcome these shortcomings, this paper aims to combine
purely analytic and state-based performance analysis meth-
ods. Employing state-based evaluation approaches only for
those system components, where state-less analysis delivers
overly pessimistic results will maintain scalability.
In the present work we have chosen to combine TA (Timed
Automata) and RTC (Real-Time Calculus), as the former is
widespread for verification of real-time systems and RTC is
a very general analytic performance analysis approach, see
[17, 5, 19]. However, we would like to point out that the pre-
sented method is not limited to RTC. The coupling of TA
with other analytic performance evaluation frameworks such
as any method from classical real-time analysis or SymTA/S
can be reduced to a special case of what is discussed here.

Coupling the Modular Performance Analysis framework
(MPA) [19] which is based on RTC [17] and Uppaal [18]
for the joint analysis of embedded real-time systems is far
from trivial, since (a) the RTC lacks a concrete execution
semantics unlike TA, (b) TA can not be verified by evalu-
ating closed form expressions, nor can one in general derive
an analytic description from them and (c) RTC and TA not
even share the same time domain. TA operate on the con-
ventional time-line, whereas the RTC operates on stream
abstractions that are defined on time intervals. To over-
come this obstacles this paper provides the following contri-
butions:

• A pattern is described allowing to convert abstract
stream models such as PJD (periodic with jitter) or
time-interval based models used in RTC to a network
of co-operating TA (Sec. 4.1).



• Correctness and exhaustiveness is proven, i. e., the TA
solely generate traces conforming to the abstract stream
model, and does this for all conformant traces (Sec. 4.1.3).

• A pattern is described to automatically derive abstract
stream models (such as PJD or those used in the con-
text of RTC) from a TA-based system model (Sec. 4.2).

• Finally the paper also presents an implementation and
analyzes an exemplarily chosen system (Sec. 5).

2. RELATED WORK
There are several other approaches known which also tackle

the combination of RTC-based analytic and state-based mod-
els for system-wide performance analysis. The authors of
[16] bridge the gap between a state-based methodology and
the RTC-method as discussed in Sec. 3. However, contrary
to this paper the work of [16] is based on event count au-
tomata (ECA) [6]. With ECA the user must specify the min-
imum and maximum number of event arrivals taking place
while the ECA resides in the respective location. For trans-
lating an RTC-based abstract stream representation into an
ECA the authors use the principle of a ring buffer. Each
counter represents the number of events associated with the
respective number of unit intervals. When it comes to the
interfacing of ECA with RTC, i. e., one needs to derive ab-
stract stream representations as used in RTC-curves from
ECA specifications, the authors of [16] suggest the usage
of observer ECA. They use binary search for extracting the
maximum and minimum number of events seen in a win-
dow size ∆ via reachability analysis. In [15] it is shown how
the above approach can be employed within a hybrid frame-
work, allowing to obtain key performance metrics of embed-
ded systems by combining RTC and ECA-based analysis.
However, our usage of TA appears to be more beneficial,
since contrary to ECA they have an explicit notion of time,
whereas ECA advance in a lock-step fashion. In addition,
in our work we solely require one observer automaton for a
complete staircase function defined over all time intervals ∆
rather than one observer per discrete window size ∆.

The authors of [7] present an approach, where a system to
be analyzed is mapped to a process network which is ana-
lyzed via a compositional response time analysis [10]. The
resulting periodic event stream models and the computed
response times serve as parameters for pre-defined TA. The
high-level descriptions of system properties to be checked are
also transformed into TA. Finally, the use of standard model
checking procedures allows to check, whether the system
model fulfils the desired properties or not. The approach
differs from the new results in this paper as the system is
not decomposed into components which exhibit substantial
state-dependent behavior and those which can be analyzed
using analytic approaches. Instead, state-based behavior is
not explicitly taken into account.

The authors of [11] also address the combination of RTC-
based components and TA. For including the abstract stream
representation used in RTC into TA-based system models
one operates on an array of clocks. Each clock is associ-
ated with the number of events produced so far, as well as
with a minimal and maximal number of events to be gener-
ated within the respective time interval length. For deriv-
ing RTC-based stream representations from the combined
model, the authors suggest the usage of observer automata
and binary search on the maximal and minimal number of

events that appear within any time interval of length ∆,
which is in fact similar to the idea of [16]. As one operates
on a finite set of time-interval lengths ∆ only, it is not clear
when to stop with the translation of an abstract event stream
representation into a TA and vice versa. The use of observer
automata that investigate single time-interval lengths only
implies that one either needs one observer automaton with
its local clock for each interval length, or one must execute a
full state space exploration for each of the interval lengths.
Also on the side of the event generating automaton, the
number of clocks may be prohibitively large because one ba-
sically needs one clock per upper and lower bound for the
number of events seen on the stream within the resp. time
interval ∆. The approach described in this paper attempts
to overcome these limitations by using a compositional leaky
bucket representation of event streams.

3. BACKGROUND THEORY
Definitions: In the following, we will make use of a few no-
tations that are described next:

(a) A timed action is a pair (t, a) where a is some edge label
and t ∈ R≥0 some non-negative time stamp. In particular,
we will consider the edge-label event, either signalling the
incoming/outgoing of some event into/from some TA.

(b) A timed trace τ := (a1, t1); (a2, t2); . . . is a sequence
of timed actions ordered by increasing time stamps, s.t.
ti ≤ ti+1 for i ≥ 1.

(c) For addressing the evaluation of a clock x or a counter b
at some time t we will use the notation x(t) or b(t). We will
also use the clock identifier instead, namely in cases where
the concrete point in time t is clear.

Real-Time Calculus (RTC) [17, 5] extends the classical Net-

work Calculus, see e. g. [4], towards analyzing distributed
(hard) real-time systems. Contrary to other analysis tech-
niques, streams and their counting functions are not de-
fined on the time domain, but on the time-interval domain.
At first we define now the differential counting function
R : R≥0 × R≥0 → R≥0 which yields the number of events
seen on a timed trace in the interval [s, t]. Such functions
can be bounded by upper and lower arrival curves αu and
αl defined in the time-interval domain:

α
l(t − s) ≤ R(s, t) ≤ α

u(t − s) with 0 ≤ s ≤ t (1)

Thus, αu(∆) and αl(∆) bound the maximal and minimal
number of events arriving in any interval [s, t] of length
∆ := t − s. We denote such functions defined on the time-
interval domain as RTC-conformant. Analogously one may
also define an upper and lower bound for the availability
of resources, where C(s, t) is the corresponding differential
accumulative function for the amount of available resource
units in the time interval [s, t]. βu(∆) and βl(∆) are the cor-
responding upper and lower bounds in time-interval domain,
denoted as upper and lower service curves. They determine
upper and lower bounds on the available resource in any
interval [s, t] of length ∆ := t − s.

In a pure RTC-based modeling approach event arrival and
service curves provide the inputs to a single analysis com-
ponent. For computing the corresponding bounds α′{u,l}

for the outgoing event stream and β′{u,l} for the remaining
resources one commonly applies operators of min-plus and
max-plus algebra, see [17, 19]. Overall, this component-



based analysis methodology allows to obtain (hard) bounds
on job delays, buffer sizes and utilization of hardware units,
either for a single component or for complex systems.

With TA one can only make use of discrete variables,
rather than continuous ones. Hence, we consider systems
with discrete numbers of events or resource units, where on
the level of RTC this refers to staircase functions. One of
the major results of this paper is the transformation between
the time-interval domain to the time domain, independent
of whether the corresponding curves represent events or re-
sources units. In the following, we will therefore generi-
cally speak of upper and lower curves γu and γl, address-
ing RTC-conformant event-based or resource-based staircase
functions. The complexity we will face is the fact, that the
bonding functions γu and γl in time-interval domain implic-
itly define a possibly infinite set of timed traces, namely all
traces the differential counting function R or C of which is
bounded in the sense of Eq. 1.

Timed Automata: We follow the concept of timed safety
automata as found in the model checker Uppaal [2, 3]. We
briefly re-capitulate some related constructs.

(a) Cooperation via shared variables: Variables can be de-
clared on the level of a network of TA, allowing the individ-
ual TA to read and manipulate them.

(b) Rendez-vous mechanisms: Uppaal makes use of channels
and signals. In fact this implements different rendez-vous
mechanisms for jointly executing edges within different TA
and thus allowing the composition of individual TA into a
network of co-operating TA. By following Uppaal’s nomen-
clature we will also often speak of sender and receivers when
referring to the synchronization of TA. One may distinguish
the following concepts:

– Binary synchronization: A sending and a receiving TA
synchronizes on the joint execution of two dedicated
edges, one from the sender, whose edge is labeled by a
channel id and an exclamation mark, and one from the
receiver, whose edge is labeled by the same channel id,
but extended with a question mark. For simplicity we
speak of sending- and receiving edges (see the event! and
event?-labeled edges in the TA of Fig. 2(B) and 2(C)).

– Broadcast channels: One sender synchronizes with up to
n receivers. This refers to the situation where one sender
executes a sending edge, which can be understood as the
emission of a signal and where between 0 and n receivers
execute a receiving edge, which can be interpreted as the
instantaneous reception of this broadcast signal. It is
important to note, that all at the time enabled receiving
TA have to execute their respective receiving-edge
(see the event! and event?-labeled edges in the TA of
Fig. 3(A–C)).

(c) Location invariants: A location can only be entered once
its invariant holds. For the execution of an edge this yields
that besides the enabling condition also the invariant of the
target location must hold.

(d) Urgent and committed locations: Within urgent locations
no time passes. Thus the system has to execute any down-
streamed transition in zero time once the urgent location is
entered. In case this is not possible the TA-system dead-
locks. In Uppaal urgent locations are marked accordingly
(see the right location of the TA of Fig. 3(C); the locations
marked with a circle are the initial ones).
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Figure 1: Overview of hybrid analysis method

(e) Customized operators: The TA depicted in this paper
are not always syntactically correct, e. g. the if-statement
employed by us has to be implemented in Uppaal with the
?-operator of ANSI C. For the max- and min-operator one
needs to define individual functions as part of Uppaal’s sys-
tem declaration.

4. THE APPROACH
In the following we will develop a scheme for interfacing

RTC-conformant staircase curves with TA-based system de-
scriptions. The developed strategy consists of two indepen-
dent parts (Fig. 1), which will be discussed separately: (i)
we show how-to implement staircase input curves by a net-
work of TA denoted as input generator. (ii) we discuss how
to derive staircase output curves from TA-based system
specifications. This way, upstream as well as downstream
system components could be analyzed on the basis of RTC.

4.1 Input generator
For interfacing RTC-conformant curves to TA the ap-

proach has to translate time-interval-based functions into
TA-based representations of possibly infinitely many timed
streams. The main idea for achieving this is based on the
observation that the interval-based bounding functions γu

and γl can be modeled by sets of individual staircase func-
tions combined by the (nested) application(s) of minimum or
maximum; details on modelling input curves with staircase
functions follow in Sec. 4.1.5. Each of the involved stair-
case functions γ

{u,l}
i is guarded by its own TA, where LTA i

guards lower curve γl
i and UTA i guards upper curve γu

i . The
network of co-operating UTA and LTA emits a dedicated,
instantaneous signal event to the environment, where this
signal can be used for stimulating a user-defined TA-based
model description which represents some component of the
system under analysis. Emission of the event-signal has to
be done in such a way that one is capable of producing each
timed trace tr := ((event, t0), . . . (event, tn) . . .) of event-
signals whose differential counting function is bounded by
γ{u,l}. For keeping the discussion as simple as possible, we
will start now with the most simple case, where γ{u,l} are
defined by a single staircase-function each.

4.1.1 Linear input pattern

We define an upper or lower staircase function as follows:

γ
{u,l}(∆) := N

{u,l} +

—

∆

δ{u,l}

�

(2)

where in our approach each is guarded by its own timed
automaton denoted UTA, LTA respectively. Binary syn-
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Figure 2: Linear pattern: Input curves and their TA-based implementation

chronization enforces UTA and LTA to produce only those
traces which contain at least γl(∆) and at most γu(∆) event
signals for any interval of length ∆ ∈ R≥0.

For exemplification please refer to the curves depicted in
Fig. 2. The parameter Nu can be understood as burst capac-
ity, which describes the number of events producible in zero
time according to curve γu. The parameter δ{u,l} specifies
the minimum/maximum distance of two successive events

with respect to curve γ{u,l} . The absolute values of param-
eter N l of the lower curve can be understood as the fictitious
numbers of δl delays before event emission has to be enforced
every δl time unit. The above constants provide the values
for the free parameters in UTA and LTA.

The implementation of UTA and LTA is shown in Fig. 2(B)
and 2(C). Each of them employs its own clock x, counter
b, and its constants BMAX and Delta (Fig. 2(D)). The
edge-guards (green) steering the execution of the different
edges, clock resets (blue), variable updates (blue) and signal
sending and reception (light blue) are specified next to the
respective edge. Location invariants (light purple) are stated
next to the affected location. UTA and LTA cooperate by
synchronizing on sending and receiving signal event, which
enforces the joint execution of the event! and the event?-
labeled edges in the two TA. The non-deterministic emis-
sion of events (= sending and receiving of the event-signal
by LTA and UTA) is possible as long as for the UTA b > 0
holds. On the other hand emission of the signal event has to
take place once the local variable b of LTA reaches its local
threshold BMAX, which is enforced by the location invari-
ant b <= BMAX∧x <= Delta. It is also important to note
that for b = 0 and the production of an event LTA resets its
local clock x, whereas UTA does so once b = BMAX holds
and the signal event is sent.

The proof of correctness and completeness is briefly sketched
now, where concise details will follow once we are dealing
with more complex RTC-conformant event curves.

(A) Correctness w. r. t. the upper and lower bound :

1. Binary synchronization enforces that the linear input
generator can only produce traces with at most Nu +
⌊ ∆

δu ⌋ timed event-actions seen on any interval of length
∆. This is because event emission is blocked once b of
UTA equals 0 and because for b = Nu and an event
emission UTA’s local clock x is reset.

2. The invariant defined on LTA’s initial location enforces
that after (N l + 1) · δl time unit an event is emitted
and from now on at least every δl time unit. Therefore,
every trace produced by the input generator contains
at least γl(∆) timed event-actions for any interval ∆.

(B) Completeness: The input generator allows non-deterministic
production of events, bounded by γu and γl as indicated
above. By contradiction it can easily be shown, that all
timed event traces where UTA blocks clearly violate the
upper bound if one would have seen an extra event on any
of these positions. Thus all traces which are not producible
by the input generator are clearly not contained in the set
of traces defined by γu and γl.

4.1.2 Convex and concave input pattern

Now we extend the discussion to cases where the input
functions γl or γu are modeled as the maximum or minimum
of a set of staircase functions:

γ
u(∆) := min

i
(γu

i (∆)) ; γ
l(∆) := max

i
(0, γ

l
i(∆)) (3)

where γ
{u,l}
i (∆) is defined as stated in Eq. 2 but now with

their individual pairs of parameters N
{u,l}
i , δ

{u,l}
i . For exem-

plification one may refer to the curve(s) depicted in Fig. 3.
In accordance with Eq. 3, as well as with the scenario of
Fig. 3 it is required that for all i < j holds:

|N
{u,l}
i | < |N

{u,l}
j |; δ

{l,u}
i > 0; δ

l
i > δ

l
j and δ

u
i < δ

u
j (4)

Basic idea of the approach: The bound imposed by curve

γ
{u,l}
i will be guarded by UTA and LTA i, respectively. Co-

operation among the UTA and LTA has to be organized in
such a way, that it complies with the minimum and maximum-
operation as employed in Eq. 3. Due to the usage of mini-
mum and maximum the following conditions apply:

(1) Minimum-condition: The input generator may emit
timed action (event, t) ⇐⇒ ∀bi(t) ∈ Bu : bi(t) > 0,
where Bu is the set of the UTA-local b-variables such
that i ∈ {1, K} with K as the number of UTA.

(2) Maximum-condition: The input generator has to emit
timed action (event, t) ⇐⇒ ∃bi ∈ Bl ∧ ∃xi ∈ Cl such
that bi(t) = |N l

i | ∧ xi(t) = δl
i, where Bl is the set of the

LTA-local b-variables, Cl is the set of their local clocks
and δl

i the period for incrementing xi, with i ∈ {1, L}
where L is the number of LTA.

The above operations are implemented on the basis of broad-
cast channels and location invariants as explained now.

The implementation is shown in Fig. 3. To be as generic
as possible we make use of Uppaal’s concept of templates,
s. t. clock x, constants BMAX, Delta, and the counter b of
the TA shown in sub-figure (A) and (B) are local entities
only, and will be indexed accordingly. The instances of sub-
figure (A) and sub-figure (B) implement the single LTAs
and UTAs of the network, respectively. The TA shown in
sub-figure (C) is the scheduler employed for governing event-
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Figure 3: Convex,concave pattern: Input curves and their TA-based implementation

emission, which is necessary since instead of binary synchro-
nization we are using now Uppaal’s concept of broadcast
channels, where full synchronization among the UTAs and
LTAs has to be enforced. For bounding the number of pro-
ducible events each instance of an UTA and LTA periodically

increments its local counter bi as before, namely every δ
{u,l}
i

time units by executing the respective edge, which we de-
note as clock-tick edge from now on; it is the top edge of
TA template (A) or (B). The emission of an event can now
only take place if the minimum-condition applies, whereas
event emission is enforced if the maximum-condition holds.
In any case event emission yields an update of local counter
bi which allows each UTA and LTA to track event produc-
tion accordingly. Following these principles, minimum and
maximum-condition are implemented as follows:

(1) Implementation of the minimum-condition has to do
with location invariant Sync = K defined for the target
location of the event!-edge of the scheduler (Fig. 3) and
the increment of global variable Sync, as done by each
UTA when executing its event?-edge.

(2) Implementation of the maximum-condition has to do
with the location invariants defined for each LTA, where
the violation can only be circumvented by the scheduler
executing its event!-edge at the respective point in time.

The usage of the unique label event within all TA guarantees
the joint execution of the event!-edge of the scheduler and
all event?-edges of the LTA and UTA, respectively. Thus
either all event-edges are jointly executed or none, which
yields the nice feature that an input generator of the above
kind deadlocks if upper and lower bounding functions are not
consistent. This case can easily be verified by model check-
ing a corresponding query. Finally one may note that as
before LTA i resets its local clock xi once bi = 0 and event
emission takes place. UTA i does so once bi = BMAXi

holds and event emission occurs. In the following we will
reason formally about the correctness and completeness of
this more complex pattern.

4.1.3 Correctness and completeness of the pattern

Theorem 1. The input generator represents each timed
event trace tr the differential counting function Rtr(s, t) of
which is bounded according to Eq. 1 with the upper and lower
bounding functions γu and γl as defined by Eq. 3 and 4.

This will be shown by proving the invulnerability of up-
per and lower bound (A) and by proving the completeness
of the input generator w. r. t. the set of producible timed
event-traces (B).

(A) Invulnerability of the upper and lower bound

Lemma 1. Any trace tr producible by the input generator
which is a network of fully synchronizing and parameterized
UTA, is bounded by the staircase function γu as defined in
accordance to Eq. 3 and 4.

Proof. According to the above discussion the parame-
ters Nu

i and δu
i of an UTA i correspond to the parameters of

the respective step-function γu
i . It is easy to see that UTA i

allows the production of at most Nu
i +

j

∆

δu
i

k

) events and that

with bi = 0 it blocks event production. Minimum-condition
as defined above gives, that for any ∆ ∈ R≥0 the max. num-

ber of events producible is bounded by min
i

(Nu
i +

j

∆

δu
i

k

). It

is important to note that for bi(t0) = |Nu
i | an event genera-

tion resets clock xi, such that the above equation yields an
upper bound for the number of producible events. This is
exactly what was defined for γu in Eq. 3 and 4.

For exemplification please refer to the graph of Fig. 3: for
intervals of size t and with y events produced UTA 3 blocks
event production until its clock x expires. From now on
event production is bounded by γu

3 (green curve) due to the
minimum-operation realized by synchronizing the UTA.

Lemma 2. The network of LTAs enforces the generation
of events s. t. for any trace tr producible by the input gener-
ator Rtr(s, t) ≥ γl(t−s) for 0 ≤ s ≤ t holds with Rtr(s, t) as
the differential event-counting function of tr and s, t ∈ R≥0.

Proof. Due to the maximum-operation it seems appro-
priated to argue over the index of the LTA currently enforc-
ing the generation of events and the size of the intervals:
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
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(A) Trace generated by UTAs
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· δl
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

b1(0) = 0
x1(0) = 0



b1(t0) = |N l
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x1(t0) = δl
1



bi(tk) = |N l
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xi(tk) = δl
i

(B) Trace enforced by LTAs

Figure 4: Timed event-traces and evaluations of bi(τ ) and xi(τ )

• 0 ≤ ∆ < (|N l
1| + 1) · δl

1 : For intervals of this length
event emission does not need to be enforced. Thus by
choosing the parameters of LTA 1 accordingly the in-
put generator is capable of delaying event emission up
to (|N l

1| + 1)·δl
1 time units, since starting with b1 = 0 it

is exactly this amount of time which it takes for LTA 1
to reach its event generation threshold (b1 = BMAX1

with BMAXi = |N l
i |) and the local clock x1 expiring

(x1 = Delta1, with Deltai = δl
i) given that no event

has been emitted before. This implies also why clock
x1 needs to be reset when emitting an event in case of
b1 = 0 (cf. Fig. 3(A))

• (|N l
k|+1)·δl

k ≤ ∆ < (|N l
k+1|+1)·δl

k+1 : For each inter-
val of this length LTA k bounds the minimum number

of emitted events to N l
k +

j

∆

δl
k

k

, with N l
k ≤ 0. This is

because when holding its threshold (bk = BMAXk =
|N l

k|) and with the local clock xk expiring (xk = δl
k)

LTA k enforces the generation of an event and form
now on every δl

k time units (see location invariant of
the UTA of Fig. 3(A)). This goes on until LTA k + 1
holds its threshold BMAXk+1 and its local clock xk+1

expires.

• (|N l
k+1| + 1) · δl

k+1 ≤ ∆ < ∞: For intervals of this
size we may use the same argument as above, but now
starting with LTA k + 1.

The last question to think of is whether states where bi =
|N l

i | and xi = δl
i holds are reachable. Given the initial con-

figuration with bi = 0 and for |N l
i−1| < |N l

i | and δl
i−1 > δl

i

this is evident.

For exemplification refer to Fig. 4(B) which illustrates a
trace produced by the LTAs. Let event generation take place
at time te and let b1(te) = 0 afterwards s. t. clock x1 is set
to zero. After another (|N l

1| + 1) · δl
1 time units where no

event emission took place b1 = |N l
1| and x1 = δl

1 will hold
which immediately enforces event generation (here at time
t0). From now on this is done at least every δl

1 time units,
until b2 = |N l

2| and x2 = δl
2 holds which enforces event pro-

duction now every δl
2 time units. In general this means that

once started LTA i − 1 enforces the event generation every
δl

i−1 time units. This goes on until bi = |N l
i | and xi = δl

i

holds, which forces LTA i to take over event production,
e. g. at time tk as shown in Fig. 4(B).

(B) Completeness of the pattern

This issue needs only to be discussed w. r. t. the UTA; the
completness w. r. t. γl is already contained in lemma 2.

Lemma 3. The network of co-operating UTAs is capable
of producing any trace tr the cumulative function of which
is bounded by γu.

This will be shown by contradiction.

Proof. One may assume that there is a timed trace tr

bounded by γu, but it can not be produced by the network
of UTAs. From this it follows that there must be a timed
action (t, e) where the UTAs are blocked, but the production
of an additional event would not be contradictory to γu. Let
(t, e) ∈ tr but (t, e) 6∈ trTA, where trTA is a trace producible
by the input generator with the same prefix as tr a priori to
the occurrence of (t, e). Let t := tj + ǫ, it must hold that
there ∃bi ∈ B, s.t. bi(tj + ǫ) = 0, otherwise one would be
able to produce an event. Let tj be now the earliest point
in time for tr where bi(tj) = 0 holds and let t0 < tj be the
last point in time where bi(t0) = Nu

i was satisfied, which is
exactly what we have illustrated in Fig. 4. The choice of i

and the blocking of events implies now that for the blocking
period ǫ it must hold tj +ǫ < tk, where tk is the next time bi

is incremented and the generation of an event would not be
blocked anymore. From this it follows that for the number
of events Rtr(t0, tj + ǫ) seen on tr in the interval [t0, tj + ǫ]
it must hold:

R
tr(t0, tj +ǫ) = N

u
i +

—

(tj + ǫ − t0)

δu
i

�

+1 = γ
u
i (tj+ǫ−t0)+1,

otherwise bi would not be 0. Obviously this violates the
bound imposed by γu, since at time point tj the number
of events is bounded by γu

i which is the current minimum
and truly smaller than Rtr(t0, tj + ǫ). Thus from Rtr(0, tj +
ǫ) > γu we can conclude that such a trace tr does not exist.
Concerning the assumption that t0 was the last point in time
where bi(t0) = Nu

i was satisfied and that for tk: bi(tk) = 0
must hold, one may note that for the initial point in time
we have bi(0) := Nu

i and that bi must be zero at tj , since
otherwise UTA would not block event emission by violating
the minimum-condition.

4.1.4 Extended input generators

In practice systems may not show strictly concave or con-
vex patterns. For example, the overall upper input or out-
put curves may have decreasing step widths, or the lower
curve may be characterized by increasing ones. Due to
space restrictions we will briefly indicate how one can resolve
such situations when coupling RTC-conformant curves with
down-streamed TA.

In cases where non-concave and non-convex patterns occur
only finitely often within an arriavl curve, one can handle
this by simply making use of subsets of UTA, LTA and lo-
cal synchronization for obtaining local minima and maxima.
For implementing this one solely needs to encapsulate the
respective sets of co-operating LTA or UTA in their own
sub-system. These subsystems can be implemented analo-
gously to the pattern illustrated above, but requiring slightly
adapted TA-specifications w. r. t. the employed thresholds.

For RTC-conformant curves with periodic repetition of non-
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Figure 5: Observer automata for deriving upper and lower output curves

concave and non-convex patterns, one may employ an UTA,
LTA which implement the upper and lower long term rate
of the respective streams.

4.1.5 Complexity issues related to input modelling

Complexity of model checking TA is exponentially bounded
by the number of clocks and clock constants [1]. Thus it is
straight forward to see that the efficiency of the approach is
closely related to the number of staircase functions employed
for modeling lower and upper input curves.

In the following we propose a simple method that per-
mits to approximate a general arrival curve α with the con-
vex/concave combination of just a few staircase functions.
The approach first approximates the arrival curve by a so
called periodic with jitter event arrival model, and then de-
rives the parameters for the corresponding staircase curves

γ
{u,l}
i . The periodic with jitter event model (or PJD model

in short) is commonly used in literature and is a simple rep-
resentation for the arrival of events in streams [19]. It is
specified by a parameter triple (p, j, d), where p denotes the
period, j the jitter and d the minimum inter-arrival time of
events in the modeled stream.

Arrival curves are in general more expressive than PJD
models. However, every arrival curve can be conservatively
approximated by a PJD model [12]. Given an arrival curve
α to feed into a TA-based component, we first use the algo-
rithm described in [12] to approximate α with a PJD model.
Subsequently, we convert the PJD parameters to a set of

appropriate parameters N
{u,l}
i and δ

{u,l}
i that are used to

specify the input generator for the TA-based component as
described in Section 4.1.2.

The upper bound described by a PJD model can be rep-
resented by the minimum of at most two staircase functions
γu
1 and γu

2 . In particular, two staircase functions are needed
if d > 0 ∧ d > p − j, while only one staircase function
suffices otherwise. For the lower bound of a PJD model one
staircase function γl is always sufficient. The parameters of
the staircase functions are computed as follows:

• Case d = 0 ∨ d ≤ p − j :

Nu :=
l

j

p

m

+ 1; N l := −
l

j

p

m

; δu := δl := p

• Case d > 0 ∧ d > p − j : Nu
1 := 1; δu

1 := d;

Nu
2 :=

l

j

p

m

+ 1; N l := −
l

j

p

m

; δu
2 := δl := p

Note that an exact representation of a PJD model by means
of staircase functions γu

1 , γu
2 and γl is not always possible

under the assumptions that the parameters N
{u,l}
i are in-

tegers and that at each event arrival the counters bi are
decreased by one unit: In such a representation the first
step of a staircase function has always the same width as
all following steps, or in other words, we cannot horizon-

tally shift the staircase functions γ
{u,l}
i with respect to each

other. However, in such cases the staircase curves derived
by means of the above formulae will still provide a conserva-
tive approximation of the PJD model. If we generalize the
assumption such that at each event arrival the counters bi

are decreased by ei units, where ei is a positive integer, an
exact representation of any PJD model by means of at most
three staircase functions is always possible. For the sake of
conciseness we omit the formulae for the parameters of γu

1 ,
γu
2 and γl for this more general case.
While the approximation of arrival curves with PJD mod-

els represents a simple way to coarsely bound an event stream
with few staircase functions, in the presented hybrid analysis
approach the interface between RTC and TA is of course not
limited to PJD curves. Any other algorithm that correctly
bounds an arrival curve α with an arbitrary number of stair-

case functions γ
{u,l}
i can be used as an interface between the

two domains.
Now that we have described the interfacing from RTC-

based model descriptions to TA, we will discuss the interfac-
ing from TA-systems back to RTC-conformant performance
models.

4.2 Obtaining output curves from TA systems
We extract a set of staircase functions γ′u

i and γ′l
i which

allow to construct an overall output curve γ′{u,l} by means of
minimum and maximum operators, respectively. For achiev-
ing this goal, we couple the system under analysis including
the input generator with a set of observing TA. Checking
reachability queries for these TA-systems allows to derive

the parameters N
{u,l}
i and δ

{u,l}
i that uniquely characterize

γ′u
i and γ′l

i . In the following we will first describe the TA
that are used to verify individual staircase parameters. Af-
ter that, we will describe the overall composition strategy
for constructing a valid output curve γ′{u,l}(∆).



For implementing the above procedure we will employ the
observers TA depicted in Fig. 5:

(a) Maximum burst size: An upper bound for the maximum
number of events that the system can generate simultane-
ously can be verified by means of the observer depicted in
Fig. 5(A) and the query1: A[] (count<=estimate).

(b) Maximal distance between two successively emitted events:
We can verify a bound on the maximum pause time be-
tween two output events by employing the observer shown in
Fig. 5(B) and the query A[] (pause imply x<=estimate).

(c) Arbitrary upper staircase curve γ′u
i : For obtaining an

individual staircase function we employ the observer TA of
Fig. 5(C) which witnesses the violation or invulnerability of
the respective curve. The witnessing TA moves into the lo-
cation violation, once the respective curve is violated, i.e.
the actual system produces too many events. Thus one sim-
ply needs to query for the reachability of location violation

(A[] (not violation)). In other words, given some stair-
case parameters Nu

i and δu
i , we can determine whether the

corresponding staircase function is a valid upper bound in
time-interval domain of the produced event stream.

(d) Arbitrary lower staircase curve γ′l
i : For obtaining an

individual lower staircase function we employ observer TA
of Fig. 5(D) and use the same principle as described above:
Given some parameters N l

i and δl
i, we can determine whether

the corresponding staircase function is a valid lower bound
in time-interval domain of the produced event stream.

(e) Long-term rates: In order to construct output curves

γ′{u,l} that approximate the system behavior well also for
large time intervals, we need to make sure that we follow
the long-term event output rate. The largest δu

i and the
smallest δl

i of any valid upper and lower output staircase
function, respectively, denote upper and lower bounds on
the long term rate of the output. The principle of efficiently
verifying that a given staircase function represents this up-
per or lower bound will be explained by means of γ′u

i . The
procedure for γ′l

i is analogous and is omitted for conciseness.
We will verify that for all intervals the difference between the
maximum number of events allowed by γ′u

i and the maxi-
mum number of events producible by the system is bounded
by a constant D. If this is the case then a tight upper bound
on the long-term rate of the system is found. To do so
one may employ the observer depicted in Fig. 5(E). In this
automaton the variable i (initialized with Nu

i ) tracks the
difference between γ′u

i and the system output. If there is a
trace that never reaches the location drift, it means that
γ′u

i represents a tight upper bound for the long-term rate.
Such a trace can be found as counterexample to the query:
count -> drift.2

Now, we will describe how the TA introduced above can
be used to construct valid upper and lower bound curves
γ′{u,l}(∆) of the system output. There are many possibil-
ities and the following list summarizes only a few of them,
especially those used in the Case Study:

• A binary search on estimate (see (a) and (b)) yields
the maximum burst size and the maximal pause time,
respectively.

1In Uppaal A[] stands for ’always invariantly’.
2In Uppaal -> stands for ’always eventually leads to’.
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(A) System architecture

Freq2

x <= ETfast

Freq1

x <= ETslow

inEvent?
e++
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(B) TA model for CPU1

Figure 6: Layout and TA-based submodel

• These values can be used to determine one degree of
freedom (of the available two) of an upper or lower
staircase automaton, see (c) and (d). For example,
using the maximal burst size from (a) and a binary
search on the remaining parameter δu

i in the automa-
ton of (c) yields an upper staircase function γ′u

i that
characterizes the maximal burst rate.

• Fixing any of the two free parameters in the automata
of (c), (d) and performing a binary search on the other
yields a valid upper and lower staircase bound, respec-
tively.

• Using the automaton of (c) with a large initial burst ca-
pacity Nu

i and performing a binary search on δu
i leads

to a tight upper bound on the maximal long term rate.

• One may determine a convex hull of the lower and a
concave hull of the upper (unknown) RTC-curves of
the event stream by calculating a sequence of stair-
case functions. For example in case of an upper curve,
we start with the curve that characterizes the maxi-
mal burst rate. The interval ∆ where it just matches
the system behavior can be determined using a coun-
terexample construction. This point is then the start-
ing point of the next staircase function. The sequence
ends if the long term rate is met, see (e).

• All constructed valid upper and lower staircase func-
tions can be combined to a valid bounding curve by
minimum and maximum operations, respectively.

5. CASE STUDY
The considered system is shown in Fig. 6(A). It consists

of three tasks T1, T2 and T3 that run on two distinct proces-
sors CPU1 and CPU2. The three tasks process two incoming
event streams SA and SB which are periodic streams with
large jitters that lead to bursts. SA and SB are specified by
the parameter triples pA = 7ms, jA = 28ms, dA = 1ms and
pB = 7ms, jB = 23ms, dB = 6ms, respectively. CPU2 im-
plements a preemptive fixed-priority scheduling policy with
T2 having higher priority than T3. The execution of each
task on its respective CPU takes 106 cycles. CPU2 operates
at a constant frequency of 350MHz. CPU1 implements a
load-dependent frequency adaptation. In particular, it op-
erates at 166MHz if there are less than 4 events in its input
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Figure 7: Curves associated with the case study

buffer, and at 500MHz otherwise. The goals of the perfor-
mance analysis are to characterize the event output of T1,
to determine the maximum delays and backlogs that events
can experience at the single tasks, and to find the maximum
end-to-end delay for stream SA. In this case study we will
compare three different approaches: First we analyze the
described system with the abstraction of RTC only using
the MPA Toolbox [13, 19]. Subsequently, we carry out the
analysis with the presented hybrid analysis approach, where
we model the state-dependent behavior of CPU1 as TA and
analyze CPU2 with RTC. Finally, we verify the performance
of the system by means of a dedicated TA model according
to the method described in [9], which permits to exploit the
simple periodic nature of the input streams.

For the hybrid analysis approach, we first represent the
input stream SA by the combination of three staircase func-
tions γu

1 , γu
2 and γl. Using the equations of Sec. 4.1.5 we

get the parameters Nu
1 := 1, δu

1 := 1, Nu
2 := 5, δu

2 := 7,
N l := −4 and δl := 7 for the staircase functions. The cor-
responding event curve αSA

is shown in Fig. 7(A). Given
these parameters we automatically create the input gener-
ator as described in Sec. 4.1.2. In order to increase the
efficiency of the analysis, we merge the input generating net-
work of TA into a single automaton and simplify it slightly
by considering that Nu

1 = 1, that is, for γu
1 we do actually

not need a counter variable b, but just a clock to enforce
a minimum distance δu

1 between consecutive events. This
input generator is then coupled with the automaton shown
in Fig. 6(B) which models the load-dependent behavior of

Max delay [ms] Max buffer [events]

T1 T2 T3 EEA T1 T2 T3

RTC 29 8 28.6 31.9 5 3 5

Hybrid 25 5.5 17.2 30.5 5 2 3

TA 25 4.6 14.3 27.9 5 2 3

Table 1: Results of Performance Analysis

RTC Hybrid TA

Total run-time < 1s 11min 1h

Table 2: Run-times for Performance Analysis

CPU1. In this automaton we use the signals inEvent and
outEvent to distinguish between ingoing events coming from
the Event Source A and outgoing events sent to T2. Buffer1
of CPU1 is modelled by means of a local counter variable e.
The two locations Freq1 and Freq2 represent the processing
of events at low and high frequency, respectively, with corre-
sponding processing times ETslow and ETfast. The signal
hurry belongs to an urgent channel which is always ready for
synchronization. This construct enforces greedy event pro-
cessing. At this point we apply the heuristic of Sec. 4.2 to
get arrival curves that bound the output of the TA subsys-
tem, where we choose to represent the upper bound as the
minimum of three staircase functions and the lower bound
with just one staircase function. The resulting pair of ar-
rival curves is then used as input for the RTC analysis of
CPU2. For the analysis of the maximum delay on CPU1 in
the hybrid setting, we customize the automaton of Fig. 6(B)
following the ideas of [9].

Table 1 summarizes the results of the performance analy-
sis. The worst-case end-to-end delay of stream SA is denoted
as EEA. Note that in general for a sequence of components
the worst-case end-to-end delay can be smaller than the sum
of the individual worst-case delays. While in the abstrac-
tions of RTC and TA this phenomenon can be captured for
EEA, this is not possible in the hybrid approach.

As can be seen in the table, in terms of accuracy the
hybrid approach is clearly better than the pure RTC analysis.
In particular, the conservativeness of the results is highly
reduced, with a maximum delay and backlog at T2 that
are 31% and 33% lower with respect to the RTC analysis,
respectively. For the delay and the backlog at T3, the hybrid
approach achieves values that are 40% lower compared to the
pure RTC analysis.

The reason for the better results can be understood by
looking at Fig. 7, where we employed the RTC-related la-
beling, i.e. the α-curves refer to input streams of events,
the α′-curves to their outgoing counterparts and the β- and
β′-curves to the ingoing and outgoing streams of available
resources, respectively. A pure RTC-based analysis of the
above scenario cannot capture the load-dependent behavior
of CPU1. Hence, one has to assume that the processor al-
ways operates at 500MHz in the best case and at 166MHz
in the worst case. This assumption corresponds to using the
service curves βuCPU1

RTC and βlCPU1
RTC (cf. Fig. 7(A)) for the

analysis of CPU1. This yields conservative worst-case pro-
cessing load predictions captured by α′u

1,RTC for T2. How-
ever, a TA-based analysis of CPU1 produces tighter input
bounds captured by α′u

1,Hybrid for the RTC analysis of T2.
This leads to smaller worst case delay guarantees, as shown
in Fig. 7(B) and 7(C).



The last line of Table 1 contains the exact values for the
worst-case performance of the system. These values are de-
termined by means of the dedicated TA model for the entire
system. As can be seen in the table, the results for the hybrid
analysis approach are slightly more conservative. The reason
is that the concave (convex) hull determined as bound for
the output event stream of T1 does slightly over- (under)-
approximate the real behavior of the system. The graphs of
Fig. 7 do not show arrival and service curves for the exact
internal behavior of the system, as these interfaces are not
intrinsic to the dedicated TA model.

The higher degree of accuracy of the hybrid analysis method
in comparison to the pure analytic RTC approach has its
price, namely a substantially longer run-time, as can be seen
in Table 2. This becomes worse if one keeps in mind that
we already decided to bound the output curves by a con-
vex (concave) pattern of three staircase functions only. In
case of requiring a higher degree of accuracy one needs to
adapt the proposed scheme in order to detect non-convex
and non-concave patterns and its additional staircase func-
tions. But this once again comes along with clearly higher
computation times. Nevertheless, the run-times achieved for
the hybrid approach are still significantly better compared
to the verification of the pure TA model.

6. CONCLUSION
In this paper we developed a hybrid analysis methodol-

ogy by coupling analytic (state-less) RTC- and state-based
TA analysis. The presented technique is based on the obser-
vation that the stream abstractions via RTC-curves can be
obtained by composing individual staircase functions linked
through minimum and maximum operations. When con-
structing TA representations of RTC-curves, the developed
technique guards each staircase function by its own TA,
where the building of maximum and minmum is implemented
by synchronizing the respective groups of TA. In the reverse
direction, the parameters of tight staircase functions must
be found by employing the respective observer TA in a bi-
nary search based algorithm.

The proposed methodology limits state space explosion as
intrinsic to formal verification to the level of isolated (sub)-
components, since losely coupled TA-based component de-
scriptions can be analyzed in isolation, combined by interfac-
ing the respective RTC-conformant output and input curves
(cf. Fig 1). For maintaining scalability state-based analysis
should only be applied for those components, where RTC-
based analysis delivers overly pessimistic results. As demon-
strated by the case-study such cases are found when dealing
with components showing strict state-dependent behaviours.
Overall such a strategy will thereby avoid to pessimistically
over-approximate system’s overall performance metrics, but
still maintaing scalability of the proposed methodology.

As the RTC-based stream abstractions are more general
than the widely used PJD (periodic with jitter) abstractions,
the proposed method also leads to hybrid methods that com-
bine TA-based timing verification of single components with
classical real-time analysis, e.g. MAST [8] or Symta/S [10].
In particular, PJD-models can directly be modeled using 3
staircase functions.
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