
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

TIK-Report
Nr.176, July 2003

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Jan Mischke, Burkhard Stiller

Specification of a Scalable Peer-to-Peer
Search Infrastructure

Jan Mischke, Burkhard Stiller:
Specification of a Scalable Peer-to-Peer Search Infrastructure

Version 1, July 2003

Computer Engineering and Networks Laboratory,
Swiss Federal Institute of Technology (ETH) Zurich

Institut für Technische Informatik und Kommunikationsnetze,
Eidgenössische Technische Hochschule Zürich

Gloriastrasse 35, ETH-Zentrum, CH-8092 Zürich, Switzerland

TIK Report Nr. 176

- 1 -

Specification of a Scalable Peer-to-Peer Search Infrastructur

Jan Mischke1 and Burkhard Stiller2,1

1 Computer Engineering and Networks Laboratory TIK, Swiss Federal Institute of Technology, ETH Zurich, Switzerland
2 Information Systems Laboratory IIS, University of Federal Armed Forces Munich, Germany

E-Mail: [mischke|stiller]@tik.ee.ethz.ch

Abstract

While scalable mechanisms for lookup of unique IDs in
peer-to-peer (P2P) systems have been found, scalability
remains an issue for P2P keyword search. One solution, the
SHARK algorithm, has been derived and outlined in [16]. In
this document, we provide a detailed specification of the
SHARK protocol and a thorough evaluation of its perfor-
mance. While providing rich keyword search functionality, it
is shown that SHARK can easily outperform Gnutella-like
networks by four orders of magnitude.

Keywords: P2P, Peer-to-Peer, Search, Scalability, Specifi-
cation

1 Introduction

While the concept of peer-to-peer networking dates back to
the origins of the Internet with Usenet as the most prominent
early P2P application, the world wide web that brought Inter-
net usage to the masses featured predominantly client/server
applications. Now, P2P networks are proliferating rapidly
again in areas like P2P computing (with Platform Computing,
Data Synapse, and United Devices constituting some of the
major players), collaboration (Groove, Next Page, Consil-
ient), trading (OpenWebs, WorldStreet), network testing
(Porivo, Prompt2U), but maybe on the largest scale in file-
sharing (Gnutella, KaZaA, eDonkey, Overnet).

However, the problem of service or object discovery on
remote peers has, as of now, not been satisfactorily solved.
While web search engines like Google demonstrate the power
and ease of centralized search, it cannot always be adopted
for P2P systems. On the one hand, legal issues led to the shut-
down of Napster’s central search server. On the other hand,
avoiding the need for central infrastructure and, hence, the
associated investments, administration costs, and legal as
well as social implications like censorship, is one of the main
driving forces behind the current P2P idea.

In contrast to common perception, P2P networks are highly
extensible, but scalability is a serious issue. Extensibility
describes the ease of extending a network such as to accom-
modate new users and additional demand. Scalability
demands that the efficiency of a network remain high at very
large scales. The composition of P2P networks out of edge
nodes or peer resources only makes them highly extensible:
new resources are added along with every new user or peer.
Scalability, however, is difficult to achieve. Completely
decentralized search in a network with potentially millions or
even billions of peers usually incurs vast communication and
connection overhead limiting the efficiency of large net-
works. Particularly for home or dialup users, bandwidth is

still the most expensive and scarcest resource. The bandwidth
overhead incurred for the aggregate number of messages that
have to be exchanged for a search request thus gains particu-
lar importance. Memory and processing power overhead is to
a good degree determined by the amount of state information
to be kept on each node, particularly for routing information
and connections to other nodes in the network - remember
that the number of possible connections between peers grows
with the factorial of the number of nodes.

Entirely random networks like Gnutella are inherently not
scalable: they conceptually rely on flooding the entire net-
work with messages to find objects, i.e., contacting all or a
major part of all nodes and asking for the desired information.

More sophisticated approaches have been devised based on
the concept of structured overlay networks and structured
lookup tables, called distributed hash tables (DHTs). The IP
end-to-end connectivity of peers can be used to establish and
maintain virtual links between peers. The entirety of virtual
links and peer nodes forms an overlay network on top of the
Internet. DHTs construct highly structured overlays like
rings, hierarchies, or Euclidean spaces. They subsequently
assign (usually numerical) names to both, nodes and objects,
and establish an order of names following the overlay struc-
ture. Once such an order of nodes, objects, and virtual links is
established, the structural information can be exploited to
efficiently route lookup requests to the nodes where the
objects are stored.

Unfortunately, current DHTs are thus limited to pure
lookup of exactly specified unique names. Search based on
keywords remains impossible. Usually, a user will want to
specify what she is looking for in terms of keywords. Rich
search allows the user to describe keywords and meta-data
properties of the objects she is looking for. Furthermore,
range searches for an entire class or range of objects within
certain limits are possible. For instance, a user could look for
a certain genre of music in music filesharing or for all medi-
cations for a specific disease in a medical expert system.
Additionally, multiple dimensions of meta-data are highly
desirable; in the example, the user might not only want to
specify a music genre, but also a certain time of release as a
second dimension to narrow down the search.

SHARK (Symmetric Hierarchy Adaption for Routing of
Keywords) presents a scalable solution to rich P2P search. It
is based upon structuring the overlay network and the search
space into a multidimensional symmetric redundant hierar-
chy. Yet it fully supports rich search queries, i.e., search based
on meta-data of multiple dimensions and varying granularity
as well as range searches. SHARK is primarily targeted at
file-sharing applications but can as well be used for all other

- 2 -

P2P service and object discovery problems, e.g., in P2P trad-
ing and collaboration.

As an outline to this document, Section 2 gives an over-
view over related work before Section 3 recaps the SHARK
algorithm as presented in [16]. Section 4 identifies the most
important use cases and gives a detailed specification. After
briefly presenting the implementation architecture in Section
5, a thorough evaluation is provided in Section 6 before Sec-
tion 7 concludes.

2 Background and Related Work

A complete design space and methodology to design dis-
tributed search systems has been presented in [15] and led to
the development of SHARK as one of the few possible
entirely novel approaches to P2P search. It is important to
separate functional and structural aspects of P2P lookup and
search systems. In the functional dimension, there are three
essentially different functionalities a lookup/search system
can provide. First, there are pure keyword search systems
mapping keywords onto unique names. Examples include
web search engines, mapping keywords onto URLs, and, to a
lesser extent, INS/TWINE [4], mapping keywords onto hash
IDs that may or may not exist in the network. Second, there
are lookup or name routing mechanisms that take unique
names as an input and lookup or route towards the corre-
sponding objects; examples include distributed hash tables
like Chord [2]. Finally, there are keyword lookup/routing
schemes that combine the first two systems and find or route
towards objects directly based on keywords. SHARK takes
this approach.

In the structural dimension, there are several fundamen-
tally different approaches to perform either of the three map-
pings used for keyword search, lookup/name routing, or key-
word lookup/routing, respectively. Search systems can try a
computation, apply central tables, replicate all information
necessary for search on all nodes, choose a distributed table,
or a hybrid approach combining several of the above at dif-
ferent stages. Distributed tables can exhibit a clear structure
aligned to the overlay network topology as for the DHTs, be
completely randomly distributed, or rely on some structure
for either the overlay or the table information without align-
ing them.

As SHARK may show structural or functional similarity
with one or the other existing system, but not both at the
same time, it is an entirely novel concept filling a major and
interesting gap in the design space.

2.1 Functionally Related Systems

There are several other systems applying SHARK’s com-
bined keyword lookup/routing approach. Napster applies a
central server and is thus not well suited for pure P2P net-
works.

Random network approaches like Gnutella, expanding
ring search [30], or random walk [12] show severe scalability
limitation as they contact all or a major part of all nodes to
retrieve information.

Several attempts have been made to address this issue.
Interest-based shortcuts [27] can be created in arbitrary

topologies based on past successful responses to exploit
interest locality and support semantic clustering. Similarly,
guide rules are proposed in [7] to create associative overlays
and limit flooding to peers who have at least one item in
common with the requestor. Peers maintain indices of their
direct neighbors’s files in [30]. This can effectively spare the
last hop in a flooding strategy and, hence, result in better
bandwidth efficiency. Various variants of Bloom filters have
been proposed to aggregate and compress information on
resources in the direction of each neighbor to improve rout-
ing efficiency. Prinkey [19] proposes Bloom filters in tree
topologies with aggregated signatures of a branch, i.e. the
Bloom filter bits represent the hashed keywords present in a
tree branch. LimeWire modifies the proposal to cope with
arbitrary topologies by adding the number of hops to a
resource when propagating the keyword routing information
[24]. Crespo and Garcia-Molina [8] suggest to store and
propagate the number of matching documents for each key-
word, either together with the number of hops to a document
(hop count routing indices), or weighting the number of doc-
uments with a cost function depending on the distance (expo-
nentially weighted routing indices). Unfortunately, none of
these systems can scale as well as structured networks,
assuming a sufficiently stable environment so that the over-
head for managing a structured overlay remains within
bounds.

Perhaps most closely related to SHARK is TerraDir [26],
which builds a classic keyword tree. However, it appears
impossible to define the complete ontology of object descrip-
tions down to the last leaves that TerraDir assumes. Finally,
in [18], a multi-dimensional categorization hierarchy is man-
aged by category servers and queries are processed by a hier-
archy of meta index servers, index servers, and base servers.
For both approaches, their hierarchical nature and, hence,
different roles of nodes, make them unsuitable for pure P2P
applications.

2.2 Structurally Related Systems

AGILE [14] describes the concept of a symmetric redun-
dant hierarchy with groups of interest like SHARK, even
though only one-dimensional in the AGILE case. However,
its hash-based intermediate hierarchy levels limit it to lookup
only.

Even though not described this way by the respective
authors, Pastry [10], Tapestry [31], and Kademlia [13] essen-
tially build one-dimensional symmetric redundant lookup
hierarchies. In Pastry [10] and Tapestry [31], content names
and IP addresses of nodes are hashed onto the same numeri-
cal identifier (ID) space; this allows name routing when
making that node responsible for holding a resource or a link
to it that is closest to the resource in the ID space. The hierar-
chy is created through a digit representation of the ID to a
base value and an association of each digit with one hierar-
chy level, starting from the last (Tapestry) or the first digit
(Pastry), respectively. Kademlia [13], commercially
deployed in Overnet, follows the same basic approach but
uses a bit- (rather than digit-) representation of IDs to enable
prefix matching via XORing bit strings. All three of them are

- 3 -

entirely built on the notion of unique hash-based numerical
IDs for objects and cannot be applied for keyword search.

Chord [2] hashes resource names and node IP addresses to
a 128-bit ID. The IDs are arranged in a circle with the prede-
cessor node of a resource ID being responsible for providing
the resource or a link to it. Fingers are used as short-cuts to
prevent the name routing mechanism from moving around
the circle in unit steps. In CAN (Content Addressable Net-
work, [20]), hashing is similarly applied to map resource
names onto an ID in a d-dimensional torus. Nodes distribute
responsibility for the ID space among themselves and main-
tain virtual links to all direct neighbors in the torus. Queries
for a name, i.e. ID, can then at each node easily be routed
into the optimum direction. As the symmetric redundant
hierarchies presented above, Chord and CAN are highly scal-
able, but rely on numerical identifiers that restrict their use to
lookup only.

For scalability reasons, SHARK also builds a structured
topology, but departs from the notion of numerical IDs. It
constructs a multidimensional symmetric redundant hierar-
chy of meta-data at the top level, while relying on random
networks at the bottom level. This avoids an over-structuring
of the network in light of the frequent changes typically
occurring in P2P networks.

3 Searching with SHARK

This section describes the construction and operation of
SHARK. Section 3.1 defines important concepts and outlines
the scenario we assume. Sections 3.2 and 3.3 define and
illustrate the meta-data and the overlay network structure,
respectively. Both are well-aligned to subsequently enable
efficient search and query routing (Section 3.4). Finally, the
actual construction and management of the overlay network
is described in Section 3.5.

3.1 Scenario and Definitions

Consider a peer-to-peer network consisting of a set of
nodes connected via a set of links

 (cf. Figure 1). We call the

neighborhood of node Ni. Each node Ni stores a set of

objects that constitute to the unique objects in

the entire P2P network , where

 due to replication of identical objects onto

several nodes. An object is described through meta-data

. The peer offering an object is called the

object owner, a peer providing a link to an object to alleviate
search is called indexer.

3.2 Meta-data Structure

We impose a structure on the meta-data that is essential for
the construction and operation of SHARK. We require meta-

data to be hierarchical so that .

l is the number of levels in the hierarchy, yields a first-

level categorisation of the object while add finer

granularity to the categorisation. Finally, is a string

expression that further specifies the object within the lowest-
level category. We allow multiple dimensions for the meta-
data hierarchy,

where d1 denotes the number of dimensions on level 1,

, the number of dimensions on level 2, and so on.

Note that the dimensionality on each level i can in the most
general case be different depending on the higher level cate-

gory chosen.

Figure 2 illustrates this meta-data structure. As music file

sharing is currently the most popular application for P2P
search, we have based the example on music categorisation

from allmusic.com. M11 yields the top-level music genre,

that is further divided into subgenres M21. In the second

dimension M12, music is classified by decade of release, then

by more granular timing M22. M0 is the search string, e.g.,
‘John Patton: Let ‘em roll’. As stated above, applications
may choose to add dimensionality just for certain categories,
e.g., add an ‘instrumentation’ dimension to ‘rock&roll’ in
addition to subgenres and timing.

Other applications can simply develop other schemes for
different scenarios like categorisations of objects in medicine

SN Ni i 1..n={ }=

L lij{ }=

Figure 1: SHARK: Terms and Definitions

NA

NB

SNA

lAB

{oAk}

SNi Nj li j∃{ }=

Oi oik{ }=

Otot Oi
i n≤
∪ : oj{ }= =

Otot Oi

i 1=

n

∑≤

Mj M Oj()=

Mj Mj
1

Mj
2

.. Mj
l

 Mj
0

;, , ,()=

Mj
1

Mj
2

.. Mj
l, ,

Mj
0

Mj
1 = Mj

11 Mj
12 .. Mj

ld1, , ,()

Mj
2 = Mj

21 Mj
22 .. Mj

2d2 Mj
1(), , ,()

 …

d2 Mj
1()

Mj
i 1–

Figure 2: Multidimensional Meta-Data Hierarchy (illustr.)

M11

New Orleans Big Band Bop Cool Hard Bop Soul Avantgarde Fusion Latin

40s
50s

60s

70s
80s
90s
00s

60-62

63-65

67-69

M21

M22M12

M0

R
oc

k&
R

ol
l

Bl
ue

s

C
ou

nt
ry

Ja
zz

R
oo

ts

- 4 -

or jurisdiction. For multi-purpose networks, a higher level
can easily be added to first distinguish, in the example,
among music, medicine, and jurisdiction. For illustration
purposes, we restrict ourselves in the following to two
dimensions and levels without loss in generality; further lev-
els and dimensions can be added at the discretion of the
application developer.

3.3 Overlay Structure

SHARK arranges nodes into a multidimensional symmet-
ric redundant hierarchy (SRH). The overlay topology exactly
matches the structure of the query meta-data such as to
exploit the alignment for query routing. Figure 3 illustrates
the topology.

Each node is assigned to a group-of-interest (GoI) accord-
ing to the objects it stores and to its prior request behaviour
(cf. Section 3.5). Each GoI represents a leaf in the hierarchy.

A Symmetric Redundant Hierarchy (SRH) is constructed

as follows. Let denote a position on level

one of the hierarchy, a position

on level 2. The values pij numerically represent the respec-

tive meta-data information mij. Node A in the figure would
then be a member of the GoI on leaf position

. The SHARK SRH adds redundancy to

the hierarchy so that all peers have symmetric roles in the
overlay; i.e., each peer can assume the role of the root of the
network or be on any other level. This improves fault toler-
ance and load balancing as there is no single node acting as a
root, and waives the necessity of central infrastructure, hence
removing the largest roadblocks for an adoption of hierarchi-
cal structures in P2P networks. Each node NA on a leaf posi-

tion also assumes partial

responsibility for the parent positions , the

parent’s parent, and so on up to the root (in the two level
case, the parent’s parent is identical to the root). Hence, each
node is virtually replicated on every level of the hierarchy
(cf. dark grey nodes in Figure 3). The partiality of the
responsibility results from two reasons. First, many different

peers share the same parent position, thus inherently distrib-
uting the load of that position among themselves. Second, a
node only maintains links to a subset of the positions on the
respective next lower level in the hierarchy. As indicated in
the figure, those positions form the relevant level-i-subset for

a node NA that differ from position in only one dimen-

sion. We have chosen this approach to limit state information
on the nodes as well as the maintenance burden when nodes
join or leave the network, thus increasing scalability of the
system at the cost of only one additional hop for query rout-
ing per level (cf. Section 3.4). Let N(P) denote a node on
position P and bij the number of different positions on level i

in dimension j. Then an arbitrary node NA maintains the fol-
lowing neighborhood within the hierarchy:

The routing table that NA maintains is straightforward: it

comprises the meta-data descriptions of the positions indi-
cated above (and shown in the figure) and the IP addresses

and ports of the respective nodes in as corresponding

next hops.
Within the leaf GoIs, peers maintain links to further neigh-

bors , as indicated in the figure. The overlay network at

this stage is, however, unstructured or random. It has been
shown that such networks exhibit a power-law distribution of
links [23]. It would be possible to further optimise the net-
works within the GoIs through associative overlay network
techniques or the like. This, however, can be done separately
from this work.

3.4 Search and Query Routing

Search for objects in SHARK is based on query routing. A
query is defined through a meta-data

description Mq of the desired object(s) and thresholds tstruct

and trand for the minimum required similarity of object and

query description for the structured and the string expression
part of the meta-data description, respectively. SHARK
returns a set of query
answers

where is a similarity metric. The
development of reasonable similarity metrics is orthogonal
to and hence not focus of this work. A most simple approach
is an exponential transform of the edit distance
DE (cf. [11], p.300ff, p.83).

Note that in the SHARK system presented throughout this
document, the subset relation in the query answer definition
could be replaced through an equality; future extensions,
however, may incorporate possibilities to retrieve partial

Figure 3: Multidimensional Symm. Redundant Hierarchy

(2,3)

(7,2)

Node A

Neigbors of Node A

Further peers

Link in overlay

Level L1

Level L2

Dimension L1D1

Dimension L2D1

Dim
en

sio
n

L 1
D 2

Dim
en

sio
n

L 2
D 2

P 1() p11 p12,()=

P 2() p11 p12 p21 p22, , ,()=

PA 7 2 2 3, , ,()=

PA
2() pA

11 pA
12 pA

21 pA
22, , ,()=

PA
1() pA

11 pA
12,()=

PA
i()

SNA
h N pA

11 pA
12 pA

21 i, , ,() N pA
11 pA

12 j p, A
22, ,()

N pA
11 k,() N l p, A

12() i j k l ℵ
i b22 j b21 k b12 l b11≤,≤,≤,≤

;∈, , ,;

;;{

}

=

SNA
h

SNA
R

Q Mq tstruct trand, ,()

QA Mq() Oik S M
jl

Oik() Mq
jl,[] tstruct j l,()

S M0 Oik() Mq
0,[] trand≥

;∀,≥












⊆

0 S≤ Ma
jl Mb

jl,() 100%≤

DE–()exp

- 5 -

results to further increase scalability in situations with fre-
quent replication.

With the query meta-data structure and the overlay topol-
ogy aligned and defined as above, queries can efficiently be
routed towards relevant content or, more generally, objects.
When a node NA initiates or receives a query
Q(Mq,tstruct,trand), it sends or forwards it, respectively, to all
neighbors whose position meta-data exhibits a similarity
with Mq greater than the threshold tstruct. It further adds
information (lc,dc) on the current level and dimension in the

hierarchy that has been resolved to avoid duplication of
effort. With a certain pruning probability pp, the requesting
or currently forwarding node may already itself be on the
correct position for the next hop, so that some hops can be
avoided. The process is repeated until the query is either
aborted due to a lack of suitable categories or until it reaches
the corresponding leaf position in the hierarchy. From there
on, it is flooded throughout the GoI along the random power-
law network. Figure 4 shows the formalized algorithm.
Every node that caches a link to an object with sufficiently
high similarity (greater than trand) returns that link to the
requestor.

The final flooding can be avoided under certain circum-
stances. If partial results are sufficient, it can be replaced by a
number of techniques like random walk or expanding ring
search [12]. Alternatively, peers in a GoI can maintain links
to all or a major part of all objects corresponding to that GoI.
Bloom filters can be used to compress the potentially high
amount of state information required [22], [24]. However, in
order to ensure maintainability of the system, this approach
should only be applied when the rate of object insertion and
removal is significantly lower than the query rate. All of
these improvements are orthogonal to the SHARK concept
and will not be considered in more detail here.

Structure and query routing mechanism in SHARK have
been designed to inherently allow range queries. Usually,
only one category or position will correspond to a given
query. However, if a user wants to search multiple categories
at once, he can simply use a disjunctive combination to spec-

ify the respective , provided the similarity metric has

been appropriately chosen to support combinations. Simi-
larly, he can use wildcards like ‘*’ to initiate an incomplete
request and search, e.g., for Bop Jazz regardless of time of
release. SHARK automatically resolves the query into multi-
ple replicas where required to incorporate range queries.
Finally, it is obvious that wildcards and other rich query

descriptions can also be used for , yielding a part of or

even all objects in a certain category.
It is obvious that for the query routing to work, object

links previously have to be correctly integrated into the net-
work and to be maintained as nodes join or leave the overlay.
This will be described in detail in Section 4.5.

3.5 Adaptive Semantic Clustering

The categorisation strongly relates to the specific applica-
tion. For instance, an extensive music categorisation has
been proposed in [17], and ways to automate the classifica-
tion process are explored in [1]. While the application devel-
oper, hence, defines the (initial) categorisation hierarchy,
SHARK provides means for adaptive semantic clustering of
nodes.

When a node NA joins the network, its objects {oAk}
determine the initial GoI it is assigned to. The insertion algo-
rithm examines the meta-data descriptions M(oAk), starting

at the top level and first dimension M11(oAk). At each level
and dimension, the maximum number of objects with identi-
cal meta-data determines the position in SHARK for the new
node.

This way, SHARK achieves a semantic clustering of nodes
into groups of interest that share similar objects. Further-
more, the overlay adapts over time according to nodes’ que-
ries. When a node NA initiates a query QAi and receives
responses QAAk, it stores the meta-data of the first object

QAA1 in a local FIFO queue qF with an additional absolute
maximum time-to-live TTLqF for its elements. The same
algorithm used for node categorisation also examines the
meta-data in qF. Whenever the number of identical meta-data

Mjl on any level and dimension exceeds a threshold tVN, NA

inserts an additional virtual node NA,vn into an arbitrary child

GoI of Mjl, using the same procedure as for real node inser-
tion. Vice versa, whenever the number of identical meta-data

Mjl in qF that lead to the creation of a virtual node falls
below a threshold tdel<tVN, the virtual node is deleted. As in
AGILE, the use of virtual nodes serves two purposes. First, it
allows SHARK to semantically adapt over time; nodes move
towards the content or objects they like and request. Further
queries will be served more efficiently as the requestor NA

can initiate a query through its virtual node NA,vn directly
within the appropriate GoI (or, at least, at a well-suited par-
ent). Second, virtual nodes achieve fairness in the P2P sys-
tem and help cater for heterogeneous capabilities of peers.
Those peers initiating queries most frequently will eventu-
ally also carry the highest network burden due to the routing
and object insertion load on their virtual nodes. The TTLqF,

Figure 4: Query Routing (Pseudo Code)

function flood(Q); // floods the GoI

function forward(Q,lc,lc) {

if (dc==d(lc) && lc==l) {

flood(Q);
exit,

} // last level and dimension reached
else if (dc==d(lc)) { // last dimension on level

dc=0;

lc++; // set dimension 0 on next level

}
dc++;

For N in SNA
h(lc,dc) // Neighbors on (lc,dc)

if S[Mq
lc,dc, M(Plc,dc(N)] >= tstruct {

// Sufficient similarity with position?
Send(Q,lc,dc) to N;

}
}

if S[Mq
lc,dc, M(Plc,dc(NA)] >= tstruct

// can move down hierarchy on same node
forward(Q,lc,dc); // start at top

}

Mq
jl

Mq
0

- 6 -

in contrast, serves to avoid virtual node creation for nodes
with low query frequency or low uptime.

4 Specification of SHARK

Building on the concept described so far, this section gives
a detailed specification of SHARK. We first define the rout-
ing table structure of SHARK (Section 4.1) and the general
message format (Section 4.2) before we analyse use case
(Section 4.3 - 4.11): node insertion, node removal, object
insertion, object removal, query (incl. query answer), routing
table repair, GoI split and GoI insertion, and actual object
transfer. Finally, in Section 4.12, we define all messages of
the SHARK protocol in detail, including their fields and for-
mats.

4.1 Routing Table

Figure 5 illustrates the structure of the routing table (RT).
A variable number of levels can be accommodated. For each

level, there are one or more dimensions, and each level l and
dimension d holds up to b(l,d) different meta-data catego-
ries. On each level l, the number of meta-data categories that
an actual node A’s routing table has to deal with depends on
A’s meta-data description on the previous level l-1; in the
example, a node in the “rock&roll” category may have to
support more or fewer sub-genres than a node in the “jazz”
category.

Each field (l,d,j) in the routing table comprises three data

items: the corresponding meta-data description and

two alternative next hops. The choice of two next hops cre-
ates additional redundancy in the system for increased fault
tolerance. For a node to be stored as next hop in a field
(l,d,j), it has to match the current node A’s meta-data
descriptions in all previous dimensions and on all higher lev-
els.

4.2 Message format

The message format used in SHARK is shown in Figure 6.
The header includes a version field, a type field to distin-

guish different messages, and a body length indicator as the

length of the message body and its fields depend on the mes-
sage type and actual content being sent. Finally, the header
additionally includes a message ID that is 16 Byte long like
in Gnutella [6] and can be generated locally on a peer by,
e.g., a random number generator or by hashing the message
concatenated by the initiator address and a time stamp. The
purpose of the ID is to uniquely identify each message for
two reasons. First, flooding is used in the random network
part of SHARK, requiring the ID for loop detection and for
discarding duplicate messages. Second, as receive and send
queues will be used for communication, the ID serves to
associate incoming replies with previous requests sent.

4.3 Node Insertion

Figure 7 shows the message sequence chart (MSC) for
node insertion in SHARK. At the top of the figure, the par-
ties involved in the use case are shown: joining node and first
to last hop in the overlay as well as the last hop’s potential
children and its random neighbors. The arrows denote mes-
sages to be sent, with the message type on top of the arrow
and its fields below. In boxes are process instructions to be
run locally on a peer node. The vertical arrangement from
top to bottom relates to timing: events in the upper part of the
figure occur prior to events below. Usually, several different
cases have to be distinguished for a use case, e.g., whether an
error occurs or not. These cases are named ’legs’ in the MSC
and are separated by dotted lines.

New nodes can easily join the SHARK overlay using
essentially the same routing mechanisms as queries. When a
node A wants to join, it sends an
insert_node_request with the first level and dimen-
sion meta-data description of its own GoI to an arbitrary
node in the system about which it learned out of band. The
contacted node B returns an insert_node_reply and
transfers its first routing table row, i.e., the row of meta-data
categories and next hops on the first level in the first dimen-
sion. As A has no means of handling potential faults in the
routing table yet, it is up to B to first test the most critical
entry. Hence, before sending the reply, B matches A’s meta-
data with its routing table fields to determine the next hop for
node insertion C. It tests if C is alive with a ping message and
pong reply. Should C be down, B tries the redundant entry in
its RT or, if necessary, proceeds with the RT repair mecha-
nism described in Section 4.8.

In order to avoid frequent insertion and removal of unsta-
ble nodes, A connects to the network through B as a proxy
for a time-out period τ (see also Section 4.7), before being
fully integrated into the overlay network. This procedure
helps keep the maintenance overhead low [9]. Measurements
suggest that in Gnutella-like networks, roughly 50% of ses-
sions last for less than an hour, whereas the longer sessions
tend to last for many hours or days [25]. Once the time-out
has been exceeded, B integrates A into its RT, either filling
the redundant empty position if still empty or replacing the
least-recently seen alive entry. A, in turn, copies the entire
RT row it received to set up the first row of its own RT.

The process then continues by A sending an
insert_node_request to C, providing the first-level,
second-dimension meta-data description of its own GoI. A

Figure 5: Routing Table

Level
1
2
3
.
.
.

n

Dimension 1 2 3 ... d(1)

M
et

a
da

ta

1
 2

 ..
. b

(1
,1)

Mj
ld

Figure 6: Message Format

Message Body
Ver-
sion

Type
Body

Length

0 1 2 20Byte offset

Header (20 Byte)

Message ID

18

- 7 -

also indicates the position(l,d) currently relevant for routing
so that C be able to determine which RT row to return and to
use for further routing/testing of entries. As before, C inte-
grates A into its RT and A copies C’s RT row. The routing for
node insertion continues until it reaches the last hop G on a
position(lG,dG) that has no suitable entry in its RT any more

to match A’s meta-data description on that level.

If position(lG,dG) represents G’s leaf GoI, i.e., G has no
further children in its RT below that position, A is integrated
into the random network of that GoI through an
insert_node_reply_rn, transmitting G’s neighbors in

the random network to A. Furthermore, G forwards

A’s insert_node_request to all nodes in so that

they learn about A and integrate it into their random neigh-
borhood (illustration simplified in Figure 7). A selects ran-
dom nodes from the various insert_node_reply_rn it

receives to build up its own random neighborhood .

If G has further children but no match for A, A becomes
the first node to fill a previously empty GoI. As usual, G
transmits its last RT row so that A can integrate it. A then has
to inform its new siblings, i.e., all other children XYZ of G

Figure 7: SHARK MSC Node Insertion

(***) Leg Last hop

1st contact/
hop B

MSC 'Node
Insertion'

2nd hop C ... Last hop G

...

G's children XYZ
if available

insert_node_request
[initiator = A]
[position = (1,1)]
[M11(A)]

Start timer τ

SNR
XYZ

...

New node A

(*) Leg
Connect via
proxy

[RT row (1,1)]

insert_node_reply

ping
pong

Last hop?

insert_node_request

[initiator = A]
[position = (1,2)]
[M12(A)]

(**) Leg Not
last hop

[RT row (1,2)]

insert_node_reply
pong

Last hop?
ping

..

Insert A in RT after
timeout τ and further test

Update RT

Insert A in RT

Update RT

insert_node_request

[initiator = A]
[position = (l,d)]
[Mld(A)]

Last hop?

Insert A in RT

..

Wait for timer

(***a) Leg G has
no children

[neighbors = n]
[node 1 .. n]

insert_node_reply_rn

(***b) Leg G has
children[RT row (l,d)]

insert_node_reply

Update RT
announce_node

[initiator = A]
[position = (l,d)]
[Mld(A)] Insert A in RT

flood[announce_node]

[initiator = A]
[position = (l,d)]
[Mld(A)]

Update RT

Forward insert node
request to SNR

G

(***) Leg Last hop

1st contact/
hop B

MSC 'Node
Insertion'

2nd hop C ... Last hop G

...

G's children XYZ
if available

insert_node_request
[initiator = A]
[position = (1,1)]
[M11(A)]

Start timer τ

SNR
XYZ

...

New node A

(*) Leg
Connect via
proxy

[RT row (1,1)]

insert_node_reply

ping
pong

Last hop?

insert_node_request

[initiator = A]
[position = (1,2)]
[M12(A)]

(**) Leg Not
last hop

[RT row (1,2)]

insert_node_reply
pong

Last hop?
ping

..

Insert A in RT after
timeout τ and further test

Update RT

Insert A in RT

Update RT

insert_node_request

[initiator = A]
[position = (l,d)]
[Mld(A)]

Last hop?

Insert A in RT

..

Wait for timer

(***a) Leg G has
no children

[neighbors = n]
[node 1 .. n]

insert_node_reply_rn

(***b) Leg G has
children[RT row (l,d)]

insert_node_reply

Update RT
announce_node

[initiator = A]
[position = (l,d)]
[Mld(A)] Insert A in RT

flood[announce_node]

[initiator = A]
[position = (l,d)]
[Mld(A)]

Update RT

Forward insert node
request to SNR

G

Insert A in RT

Check objects: closer to A?

(***b1) Leg object
transfer required

[owner = O]
[M(object)]
[obj_hash]

[replication = 0]

replicate_link

Store links

Remove links

Mj
lGdG

SNG
R

SNG
R

SNA
R

- 8 -

below position(lG,dG) through an announce_node mes-
sage so that they learn of A’s existence and subsequently be
able to correctly route to A’s GoI. XYZ flood the
announce_node message throughout their respective
GoIs, and every member updates its RT accordingly. Finally,
objects may have previously been inserted that closer match
A’s GoI than their current indexer’s one. The nodes informed
of A’s arrival hence check their object links and transfer them
to A if required. A replicate_link message is used for
this purpose rather than an insert_object_request as
no routing is necessary and also to avoid an unnecessary
insert_object_reply message.

As a possible design alternative, nodes could recursively
forward the insert_node_request to the next hop
rather than sequentially relying on node A. However, this
would significantly complicate the issue of inserting A only
after a time-out, and it would also require to send A’s poten-
tially long meta-data description entirely in each message.
Furthermore, A needs a reply from each hop anyway. We
will use the recursive message forwarding for query and
object insertion, where the concerns described above do not
apply in the same way.

During the entire node insertion process, there will usually
be considerable choice of possible neighbors. In order to
minimize latency, the overlay network should be mapped as
closely as possible to the physical network [32]. It is possible
to adapt network proximity mechanisms like [5] for use in
SHARK.

4.4 Node Removal

It will help stabilise SHARK if a node correctly removes
itself from the network rather than dying quietly. Contem-
plate Figure 8 for a specification. A leaving node A has to
transfer the object links it has and inform relevant neighbors
of its departure. If A is well integrated into a GoI and has a
non-empty set of neighbors in the random network part

(), it simply sends its object links to arbitrary

neighbors within with a replicate_link mes-

sage, setting the initiator of the request to the object owner so
that the link stored will point to the correct node. Subse-
quently, A notifies its departure to its neighbors with a
remove_node message. The neighbors can then choose to
establish new links among themselves to compensate A’s
leave. Should A be the last or only member of its GoI, it first
informs all sibling GoIs of its departure so that they can
delete A from their RT and so that they know that this GoI
has become empty. Then, A sends replicate_link
messages to its siblings for storage of its links.

4.5 Object Insertion

In order for an object to be found, it is required that it has
been inserted or published to that GoI before (Figure 9).
When an owner A wants to make an object available, he
assigns a SHARK-conform meta-data description M(object)
and initiates an insert_obj_request. The insert
request is routed through the hierarchy analogous to query or
node insertion routing. When it reaches its last hop G in the

correct leaf GoI, G stores a link to the object. Furthermore, it
sends a replicate_link message to r neighbors to
ensure appropriate replication, where r is a replication
parameter set by A. G sets a new to avoid recursive-

ness. If , it forwards to the last neighbor a modi-

fied request . It may

happen that the insert_obj_request has not yet
reached the correct leaf GoI at G, i.e., G has children below
the current routing position but none of them matches the
request because the correct GoI is still empty. In this case, G
simply proceeds as above and inserts the object into its own
leaf GoI. The node insertion process described in Section 4.3
makes sure that the object link will be moved once a first
member of the correct GoI arrives. G confirms object inser-
tion with an insert_obj_reply and indicates the GoI
that the object has been inserted into by providing its own
meta-data.

SNA
R ∅≠

SNA
R

Figure 8: MSC Node Removal

Leaving
node A

MSC 'Node
Removal'

SNR
A A's siblings

XYZ
...

SNR
XYZ

replicate_link

[initiator = O]
[obj_hash]
[M(object)]
[replication = 0]

For
each
object
A is

indexer
for:

[initiator = A]
[n=SNRA]
[SNRA]

remove_node
Store links

Remove A
from (random

part of) RT

(*) Leg
SNR

A ≠ Ø

(**) Leg
SNR

A = Ø

Pick new neigh-
bor from SNR

A

[initiator = A]
[n = 0]

remove_node

Remove A
from (structured

part of) RT

[initiator = A]

flood[remove_node]

Remove A
from (structured

part of) RT
replicate_link

[initiator = O]
[obj_hash]
[M(object)]
[replication = r]

For
each
object
A is

indexer
for:

replicate_link

[initiator = O]
[obj_hash]
[M(object)]
[replication = r-x]

Leaving
node A

MSC 'Node
Removal'

SNR
A A's siblings

XYZ
...

SNR
XYZ

replicate_link

[initiator = O]
[obj_hash]
[M(object)]
[replication = 0]

For
each
object
A is

indexer
for:

[initiator = A]
[n=SNRA]
[SNRA]

remove_node
Store links

Remove A
from (random

part of) RT

(*) Leg
SNR

A ≠ Ø

(**) Leg
SNR

A = Ø

Pick new neigh-
bor from SNR

A

[initiator = A]
[n = 0]

remove_node

Remove A
from (structured

part of) RT

[initiator = A]

flood[remove_node]

Remove A
from (structured

part of) RT
replicate_link

[initiator = O]
[obj_hash]
[M(object)]
[replication = r]

For
each
object
A is

indexer
for:

replicate_link

[initiator = O]
[obj_hash]
[M(object)]
[replication = r-x]

Figure 9: MSC Object Insertion

Owner A MSC 'Object
Insertion'

1st hop(s) B 2nd hop(s) C

... ...

...

...

Last matching
hop(s) G

...

SNR
G

insert_obj_request

[initiator = A]
[position = (1,1)]
[obj_hash]
[M(object)]
[t_struct]
[replication = r]

insert_obj_request
insert_obj_request

..
replicate_link

[initiator = A]
[position = (1,2)]
[obj_hash]
[M(object)]
[t_struct]
[replication = r]

[initiator = A]
[position = (l,d)]
[obj_hash]
[M(object)]
[t_struct]
[replication = r]

[initiator = A]
[obj_hash]
[M(object)]
[replication = r-x]

replicate_link

..

insert_obj_reply

[M(G)]
[initiator = G]

Store obj_hash
and t_struct

Store link

r' 0=

r SNG
R>

replicate_link r' r SNG
R–=()

- 9 -

For the routing, A specifies a threshold tstruct for minimum
keyword match in the hierarchy. This way, or by leaving
some fields in the meta-data description empty, an object link
may be routed to and inserted into several GoIs. A stores the
tstruct it set and the object hash that uniquely identifies the
object for potential later removal (see next section).

4.6 Object Removal

Reciprocal to the object insertion, an owner A may want to
stop offering a certain object. A can choose to just stop the
offering; the object transfer process described in Section 4.9
will make sure that all links to the object will be removed
over time. Alternatively, A can explicitly revoke the object as
specified in Figure 10. A starts routing a remove_object
message through the network, specifying the same meta-data
and tstruct as for the insertion to make sure that the same
paths are taken. Once the message reaches its last hop G, G
floods it throughout its GoI. For the flooding, it is sufficient
to identify the object links to be removed by the object hash
and the owner. In analogy to the object insertion, should G be
the last hop for the request yet still have children further
down the hierarchy, G forwards the remove_object
message to all children that, in turn, flood it throughout their
GoIs.

4.7 Query

Query routing has already been explained in Section 3.4.
For completeness, Figure 11 provides the corresponding
message sequence chart. Requestor A specifies the query
through its meta-data description including the keyword

string M0 and starts routing it through the overlay. The query

may be duplicated if multiple matches occur on a level. Once
a query reaches the last matching hop G, G floods it
throughout its GoI and, in analogy to the object insertion pro-
cess (see Section 4.5), forwards it for further flooding to all
its children if it has any below the current routing position.
For the forwarding, G augments the position(l,d) indicator in
the message so that its children do not in vain try to match
the same position again (which would lead to an infinite loop
of messages). Every node storing links to an object matching

M0 returns them in a query_answer message.
Figure 11 also shows how a new node N that has not yet

been fully integrated into the overlay, i.e., whose time-out
period τ after initial contact to SHARK has not yet exceeded
(cf. Section 4.3), can query for objects. It simply sends a
query_proxy message to its first contact A who subse-
quently acts as requestor for the query. A subsequently for-
wards all answers to N.

Figure 11: MSC Query

Requestor A

query_proxy

[initiator = A]
[M(query)]
[t_struct]
[t_rand]

MSC
'Query'

1st hop(s) B 2nd hop(s) CNew node N

... ...

Cache Indexers and
Results for Object Transfer

query_answer

[indexer]
[n_objects = n]
n * [
[obj_hash]
[M(object)]
[Owner = O]]

(*) Leg New
node connects
through proxy I

...

...

Last matching
hop(s) G

...

SNR
G

...

G's children XYZ
(if available)

...

SNR
XYZ

query

[initiator = A]
[position = (1,1)]
[M(query)]
[t_struct]
[t_rand]

query

[initiator = A]
[position = (1,2)]
[M(query)]
[t_struct]
[t_rand]

query

[initiator = A]
[position = (l,d)]
[M(query)]
[t_struct]
[t_rand]

..

[initiator = A]
[M0(query)]
[t_rand]

flood[query]

query

[initiator = A]
[position = (l,d)]
[M(query)]
[t_struct]
[t_rand]

[initiator = A]
[M0(query)]
[t_rand]

flood[query]

query_answer

[n_objects = n]
n * [
[obj_hash]
[M(object)]
[Owner = O]

(***) Leg New
node connects
through proxy II

Cache Indexers and
Results for Object Transfer

(**) Leg
Normal
Operation

Requestor A

query_proxy

[initiator = A]
[M(query)]
[t_struct]
[t_rand]

MSC
'Query'

1st hop(s) B 2nd hop(s) CNew node N

... ...

Cache Indexers and
Results for Object Transfer

query_answer

[indexer]
[n_objects = n]
n * [
[obj_hash]
[M(object)]
[Owner = O]]

(*) Leg New
node connects
through proxy I

...

...

Last matching
hop(s) G

...

SNR
G

...

G's children XYZ
(if available)

...

SNR
XYZ

query

[initiator = A]
[position = (1,1)]
[M(query)]
[t_struct]
[t_rand]

query

[initiator = A]
[position = (1,2)]
[M(query)]
[t_struct]
[t_rand]

query

[initiator = A]
[position = (l,d)]
[M(query)]
[t_struct]
[t_rand]

..

[initiator = A]
[M0(query)]
[t_rand]

flood[query]

query

[initiator = A]
[position = (l,d)]
[M(query)]
[t_struct]
[t_rand]

[initiator = A]
[M0(query)]
[t_rand]

flood[query]

query_answer

[n_objects = n]
n * [
[obj_hash]
[M(object)]
[Owner = O]

(***) Leg New
node connects
through proxy II

Cache Indexers and
Results for Object Transfer

(**) Leg
Normal
Operation

Figure 10: MSC Object Removal

Owner A MSC 'Object
Removal'

1st hop(s) B 2nd hop(s) C

... ...

...

...

Last matching
hop(s) G

...

SNR
G

remove_object

[initiator = A]
[position = (1,1)]
[obj_hash]
[M(object)]
[t_struct]

remove_object

remove_object

..
[initiator = A]
[position = (1,2)]
[obj_hash]
[M(object)]
[t_struct]

[initiator = A]
[position = (l,d)]
[obj_hash]
[M(object)]
[t_struct]

[initiator = A]
[obj_hash]

flood[remove_object]

Remove link

Read t_struct
from table

...

G's children
XYZ

...

SNR
XYZ

[initiator = A]
[obj_hash]

flood[remove_object]

Remove link

(**) Leg G has
no children
below current
position

(***) Leg G has
children below
current position

(*)

remove_object

[initiator = A]
[position = (l,d)+]
[obj_hash]
[M(object)]
[t_struct]

- 10 -

4.8 Routing Table Repair

Faults may occur when routing messages through the
SHARK overlay. We assume that the network communica-
tion applied confirms receipt of a message so that faults can
easily be detected by the absence of such confirmation. For
instance, UDP could be used as a lightweight protocol for
message exchange, but confirmation messages would have to
be returned for fault detection.

Figure 12 shows how SHARK proceeds when a fault
occurs. As a first step, the sender node A simply picks the

redundant entry for the next hop from its RT and re-transmits
the message. Should the redundant entry fail as well, A sends

a RT_repair_request to its GoI neighbors . As

all member of a GoI have equivalent routing tables, all of
them can offer replacements for the faulty nodes via an
RT_repair_reply message. A integrates the replace-
ments into its RT and tries sending again. Should all offered
alternative entries fail as well, A re-inserts itself into the
SHARK overlay as described in the MSC node insertion,
thus establishing an entirely new routing table.

4.9 Object Transfer

Once a requestor A has found a desired object, he usually
wants to have it transferred. For that purpose A sends a
request_object message directly to the object owner,
specifying the desired object by its object hash (see Figure
13). The owner returns a message which includes an object
handle. It is up to the application using SHARK to define
what this handle is and how to interpret it. For short informa-
tion objects, e.g., it could be the object itself, whereas for
long data files, it may be a detailed download instruction. If
the owner does not or no longer offer the desired object, it
sets an error flag. Requestor A then has the faulty link
removed at the indexer through a report_stale_link
message.

4.10 GoI split

As more and more nodes join the network, they fill and
grow the existing GoIs. In order to avoid too large GoIs that
limit scalability, SHARK measures GoI sizes and actively
triggers nodes to split large GoIs into several smaller ones by
using an additional level of the hierarchy or the meta-data
descriptions, respectively. Figure 14 shows the correspond-
ing MSC.

Whenever a message is flooded throughout a GoI on a cur-
rent leaf position(l,d) in the hierarchy, starting at a node A, a

Figure 12: MSC Routing Table Repair

Next Hop B
(on l,d)

UDP (message = query,
insert_obj_request,
remove_object) or
ping

MSC 'Routing
Table Repair'

SNR
ANode A

...

UDP (confirm) or
pong

(**) Leg
Successful
Routing

(*)

(***) Leg
Fault (No
Reply)

Pick redundant next hop
in RT and

proceed as in (*)

(****) Leg
All Redundant
Trials Fail

...
RT_repair_request

[initiator = A]
[position = (l,d)]
[Mld]

RT_repair_reply

[#entries = n]
[n *
[RT entry]]

Proceed as in (*)

(*****) Leg No
correct entry
in SNR

A

Proceed as in
MSC Node Insertion (*)

Update RT

Next Hop B
(on l,d)

UDP (message = query,
insert_obj_request,
remove_object) or
ping

MSC 'Routing
Table Repair'

SNR
ANode A

...

UDP (confirm) or
pong

(**) Leg
Successful
Routing

(*)

(***) Leg
Fault (No
Reply)

Pick redundant next hop
in RT and

proceed as in (*)

(****) Leg
All Redundant
Trials Fail

...
RT_repair_request

[initiator = A]
[position = (l,d)]
[Mld]

RT_repair_reply

[#entries = n]
[n *
[RT entry]]

Proceed as in (*)

(*****) Leg No
correct entry
in SNR

A

Proceed as in
MSC Node Insertion (*)

Update RT

SNA
R

Figure 13: MSC Object Transfer

Leg Request
Succesful

Requestor A Owner O Indexer

request_object

[initiator = A]
[obj_hash]

transfer_object

[obj_hash]
[object_handle]

Leg Request
Unsuccesful

Remove link

MSC 'Object
Transfer'

transfer_object

[obj_hash]
[error = true]

report_stale_link

[obj_hash]
[owner = O]

(*)

Try further links
as in (*)

Leg Request
Succesful

Requestor A Owner O Indexer

request_object

[initiator = A]
[obj_hash]

transfer_object

[obj_hash]
[object_handle]

Leg Request
Unsuccesful

Remove link

MSC 'Object
Transfer'

transfer_object

[obj_hash]
[error = true]

report_stale_link

[obj_hash]
[owner = O]

(*)

Try further links
as in (*)

Figure 14: MSC GoI Split

Flood
Originator A

MSC 'GoI
Split'

SNR
A Nodes in A's

GoI
... ...flood[...]

[TTL]
Check TTL

(**) Leg
TTL = 0

flood[...]

[TTL] Check TTL

group_exceeding_limits

(*)

Count announcements

(***) Leg # group_
exceeding_limits >
tmin_affected

flood[splitGoI]

[TTL+5]
flood[splitGoI]

[TTL+5]

flood[announce_node]

[initiator = A]
[position = (l,d)+1]
[Mld+(A)]

flood[announce_node]

[initiator = A]
[position = (l,d)+1]
[Mld+(A)]

Insert A in RT
Check objects: closer to A?

Proceed as in MSC Node Insertion Leg(***b1)

Start random timers

(****) Leg Timer
node X finished; GoI
Mld+*(X) populated

insert_node_request
[initiator = X]
[position = (l,d)+1]
[Mld+(X)]

Proceed as in MSC Node Insertion Leg (***)

(*****) Leg GoI
Mld+*(X) not
populated

flood[announce_node]

[initiator = X]
[position = (l,d)+1]
[Mld+(X)]

Insert node in RT
Check objects: closer to node?

Proceed as in MSC Node Insertion Leg(***b1)
*(l,d)+ = (l,d+1) or (l+1,1) i

- 11 -

time to live (TTL) field in the flood[...] message is decreased
by one at every instance of forwarding. When a node
receives a message with TTL=0, it sends a
group_exceeding_limits announcement to A. Node
A counts these announcements; when their number exceeds a
threshold tmin_affected, it floods a request split_group
through the GoI to split the group. Nodes thus obtain the
information required to know when GoI-splitting is sensible.
Once a split_group message has been sent, all nodes
within that GoI stop sending
group_exceeding_limits announcements to avoid
the message at subsequent flooding events. A then consults
its own meta-data description to determine its position on the
next lower level in the hierarchy (l+1,d) (or (l,d+1)) that was
previously entirely unoccupied. A becomes the first member
of that GoI and informs its former neighbors by flooding an
announce_node message. The neighbor nodes update
their RT with A’s new position and check whether the object
links they store need to be moved to A just as in the MSC
Node Insertion, leg (***b1). They also start random timers.
Once a timer has finished at a node B, B determines its new
position on the next lower level. If the corresponding GoI has
already a member (e.g., A), it initiates an
insert_node_request, and is inserted into its new GoI
like in the MSC Node Insertion, leg (***). Should B’s target
GoI not yet be populated, it proceeds just like A before by
becoming the first member and informing of this fact
through an announce_node message. Once all timers
have finished, all nodes of the split GoI have moved to their
new positions one level further down the hierarchy.

4.11 GoI Insertion

The GoI split mechanism explained in the previous section
requires that the meta-data hierarchy and the corresponding
descriptions of nodes and objects extend in their granularity
beyond what is currently actually used in the overlay struc-
ture and for routing.

Alternatively or in addition, the categorisation itself can
adapt over time. A node A can create a new category GoInew

with an insert_GoI_request as indicated in Figure 15.
A automatically becomes the first member of GoInew. The
routing procedure for insert_GoI_request is identical
to the node insertion mechanism. After successful creation of
GoInew, A sends an announce_GoI to all sibling GoIs, i.e.,
the children of the last routing hop, or to the parent GoI if no
siblings yet exist. Within the sibling GoIs (or the parent GoI),
the announce_GoI is flooded so as to notify all peers of
GoInew that may become involved in routing toward it.
Recipients of this message update their meta-data hierarchy
and routing tables. They also ask their users if they want to
be part of the new GoI and, if so, start the required node
insertion. For the object links they hold, they contact the
object owners and ask them about reclassification of the
objects into GoInew. If the owner’s answer is positive, the
corresponding object is transferred.

Potential requestors to GoInew learn about its existence

through an extended announce_GoI_all message. We
expect new category creation to happen in local bursts, with

peers trying to add segmentation to one area of the multidi-
mensional hierarchy. In order to accumulate several category
insertions, a creator A waits with the group announcement
for a time-out tcat. In the mean time, it caches all
announce_GoI messages it receives from its siblings or
children. After tcat has expired, it efficiently floods the
announce_GoI_all message including all cached
announcements from one level above the last one on down-
ward by using wildcards for all lower levels and dimensions
in the routing mechanism. All other creator nodes whose new
GoI has been announced this way clear their caches. A new
timer starts, and after it expires, another aggregate
announce_GoI_all message is flooded from one more
level higher on downward. This process continues up to the
root of the overlay network when all nodes are informed of
all recent updates. Nodes receiving an
announce_GoI_all message update their meta-data
hierarchies accordingly.

A flooding of the announce_GoI_all message could
be avoided under certain circumstances or in some applica-
tions. If a linear order can be imposed on SHARK categories
along all dimensions and on all levels, requestor peers do not
need to be notified about a new category insertion. Consider
the following example. SHARK is used for a P2P based
newspaper article archive. GoIs are built by date of appear-
ance of an article in one dimension and by first letter of the
author name in another dimension. GoIs can be searched by
title. A total linear order can be imposed on both dimensions:
increasing date and lexicographic order in the alphabet,
respectively. Say, a user initiates a query

Q(M11=‘06/23/2002’,M12=‘Duck’,M0=’Money’,80%,70%).
It is irrelevant for the user whether there is only a bin for
‘2002’ or whether there also exists a bin for 06/2002, the
request will be routed correctly; the same applies to a bin ‘A-
F’ or a bin ‘D’, respectively.

- 12 -

Figure 15: MSC GoI Insertion

1st contact/
hop B

MSC 'GoI
Insertion'

2nd hop C ... Last hop G

...

G's children XYZ

insert_GoI_request

[initiator = A]
[position = (1,1)]
[M11(GoI_new)]

SNR
XYZ (or

SNR
G)

...

New node A

(*)

[RT row (1,1)]

insert_GoI_reply

ping
pong

Last hop?

insert_node_request

[initiator = A]
[position = (1,2)]
[M12(A)]

(**) Leg Not
last hop

[RT row (1,2)]

insert_node_reply
pong

Last hop?
ping

..

Insert A in RT

Update RT

Insert A in RT

Update RT

insert_node_request

[initiator = A]
[position = (l,d)]
[Mld(A)]

Last hop?

Insert A in RT

..

(***) Leg Last hop

[RT row (l,d)]

insert_GoI_reply

Update RT
announce_GoI

[initiator = A]
[position = (l,d)]
[Mld(GoI_new)]

Update meta-data hierarchy

flood[announce_GoI]

[initiator = A]
[position = (l,d)]
[Mld(GoI_new)]

Insert A in RT

...

Object Owners O1st contact/
hop B

MSC 'GoI
Insertion'

2nd hop C ... Last hop G

...

G's children XYZ

insert_GoI_request

[initiator = A]
[position = (1,1)]
[M11(GoI_new)]

SNR
XYZ (or

SNR
G)

...

New node A

(*)

[RT row (1,1)]

insert_GoI_reply

ping
pong

Last hop?

insert_node_request

[initiator = A]
[position = (1,2)]
[M12(A)]

(**) Leg Not
last hop

[RT row (1,2)]

insert_node_reply
pong

Last hop?
ping

..

Insert A in RT

Update RT

Insert A in RT

Update RT

insert_node_request

[initiator = A]
[position = (l,d)]
[Mld(A)]

Last hop?

Insert A in RT

..

(***) Leg Last hop

[RT row (l,d)]

insert_GoI_reply

Update RT
announce_GoI

[initiator = A]
[position = (l,d)]
[Mld(GoI_new)]

Update meta-data hierarchy

flood[announce_GoI]

[initiator = A]
[position = (l,d)]
[Mld(GoI_new)]

Insert A in RT

...

Object Owners O

(****) Leg Node and
Object Transfer

(*****) Leg
Announce_all (timer
finished)

insert_node_request

[initiator = XYZ]
[position = (l,d)]
[Mld(GoI_new)]

[neighbors = n]
[node 1 .. n]

insert_node_reply_rn
Insert XYZ in RT

Update RT

reclassify_object_request

[initiator = XYZ]
[position = (l,d)]
[Mld(GoI_new)]

Check object

reclassify_object_reply

[answer = true/false]

Update object meta-data
Proceed with insert_obj_request if necessary

Start timer t_cat

[announce_
position = (l,d)_a]
[#GoIs = n]
n * [
[initiator]
[position =
(l,d)_GoI_new]
[Mld(GoI_new)]]

announce_GoI_all

Start timer t_cat Start timer t_cat + rand()

Update meta-data hierarchy

Aggregate msgs Aggregate announce_GoI_all messages

[announce_
position = (l,d)_a-]
[#GoIs = n]
n * [
[initiator]
[position =
(l,d)_GoI_new]
[Mld(GoI_new)]]

announce_GoI_all

...

Prompt user for node reclassification

flood[announce_GoI_all]

flood[announce_GoI_all]

(****) Leg Node and
Object Transfer

(*****) Leg
Announce_all (timer
finished)

insert_node_request

[initiator = XYZ]
[position = (l,d)]
[Mld(GoI_new)]

[neighbors = n]
[node 1 .. n]

insert_node_reply_rn
Insert XYZ in RT

Update RT

reclassify_object_request

[initiator = XYZ]
[position = (l,d)]
[Mld(GoI_new)]

Check object

reclassify_object_reply

[answer = true/false]

Update object meta-data
Proceed with insert_obj_request if necessary

Start timer t_cat

[announce_
position = (l,d)_a]
[#GoIs = n]
n * [
[initiator]
[position =
(l,d)_GoI_new]
[Mld(GoI_new)]]

announce_GoI_all

Start timer t_cat Start timer t_cat + rand()

Update meta-data hierarchy

Aggregate msgs Aggregate announce_GoI_all messages

[announce_
position = (l,d)_a-]
[#GoIs = n]
n * [
[initiator]
[position =
(l,d)_GoI_new]
[Mld(GoI_new)]]

announce_GoI_all

...

Prompt user for node reclassification

flood[announce_GoI_all]

flood[announce_GoI_all]

insert_node_request

[initiator = XYZ]
[position = (l,d)]
[Mld(GoI_new)]

[neighbors = n]
[node 1 .. n]

insert_node_reply_rn
Insert XYZ in RT

Update RT

reclassify_object_request

[initiator = XYZ]
[position = (l,d)]
[Mld(GoI_new)]

Check object

reclassify_object_reply

[answer = true/false]

Update object meta-data
Proceed with insert_obj_request if necessary

Start timer t_cat

[announce_
position = (l,d)_a]
[#GoIs = n]
n * [
[initiator]
[position =
(l,d)_GoI_new]
[Mld(GoI_new)]]

announce_GoI_all

Start timer t_cat Start timer t_cat + rand()

Update meta-data hierarchy

Aggregate msgs Aggregate announce_GoI_all messages

[announce_
position = (l,d)_a-]
[#GoIs = n]
n * [
[initiator]
[position =
(l,d)_GoI_new]
[Mld(GoI_new)]]

announce_GoI_all

...

Prompt user for node reclassification

flood[announce_GoI_all]

flood[announce_GoI_all]

- 13 -

4.12 Message Types, Fields, and Formats

Table 1 summarizes the message types used in the
SHARK MSCs. Along with the message types and their

encoding, the table gives a brief description of the message
usage and specifies the issuer of the message, its final desti-
nation, and the way it is delivered to its destination.

Table 2 presents the lengths and body fields for the differ-
ent SHARK message types. The version number is currently
obviously 1 for all messages. The body length is the sum of
the lengths of each field contained in the message. All mes-

sages requiring flooding have been aggregated in one part of
the table as the same basic mechanism for flooding can be
used for all of them.

Table 1: Message Types

Enco
ding Type Description Issuer Path Destination
0x10 insert_node_ request Insert new (real or virtual) node into the SHARK overlay User/ servent routed -

0x11 insert_node_ reply Transmit next hop and part of routing table Contacted node 1-to-1 Joining node

0x12 insert_node_reply_rn Transmit neighbors in random network neighborhood Contacted node 1-to-1 Joining node

0x13 announce_node Announce existence of node in previously unoccupied GoI New node A 1-to-many A’s siblings

0x14 remove_node Notify neighbors of departure Leaving node A 1-to-many A’s nei-ghbors

0x20 insert_obj_req Insert new object link on indexing nodes Object owner routed r nodes in GoI

0x21 insert_obj_reply Confirm object insertion in GoI First indexer 1-to-1 Owner

0x22 replicate_link Replicate object link within GoI or transfer link First indexer 1-to-many r nodes in GoI

0x23 remove_object Remove object links from indexing nodes Object owner routed Indexing node

0x30 query Route query to corresponding GoI(s) Requestor routed Node in GoI

0x32 query_answer Return links of matching objects Indexing node 1-to-1 Re-questor

0x33 query_proxy Send query through proxy Reques-tor 1-to-1 Proxy

0x40 insert_GoI_ request Route node establishing a new GoI to target destination Inserting node routed -

0x41 insert_GoI_ reply Transmit next hop and part of routing table Contacted node 1-to-1 Inserting node

0x42 announce_GoI Locally announce new GoI GoI inserting node A 1-to-many
A’s siblings/ par-
ent

0x43 announce_GoI_all Globally announce new GoI(s) with caching Any node (timer) routed All children GoIs

0x40 reclassify_object_request Prompt for object reclassification after GoI split/insertion Indexing node 1-to-1 Object owner

0x41 reclassify_object_answer Reclassify objects after GoI split or insertion Ohject owner 1-to-1 Indexing node

0x50 group_exceeding_limits Notify of large GoI size Any node in GoI 1-to-1 Node A

0x60 flood[query] Flood query in GoI Node A flood GoI

0x61 flood[announce_node] Flood announce_node in GoI Node A flood GoI

0x62 flood[remove_node] Flood remove_node in GoI Node A flood GoI

0x63 flood[remove_object] Flood remove_object in GoI Node A flood GoI

0x64 flood[splitGoI] Flood notification that GoI should split Node A flood GoI

0x65 flood[announce_GoI] Flood announce_GoI in GoI Node A flood GoI

0x66 flood[announce_GoI_all] Flood announce_GoI_all in GoI Node A flood GoI

0x72 RT_repair_request Request update for stale routing table entry Repairing node A 1-to-many A’s neighbors

0x73 RT_repair_reply Transmit routing table entries to requestor for repair A’s neighbor 1-to-1 Node A

0x80 request_object Request transfer of found obj. Request. 1-to-1 Owner

0x81 transfer_object Transfer object or object handle to requestor Owner 1-to-1 Requestor

0x82 report_stale_link Notify indexer of stale link Requ-estor 1-to-1 Indexer

- ping ICMP echo request to test if neighbor is alive Routing node 1-to-1 Next hop

- pong ICMP echo reply to confirm being alive ping recipient 1-to-1 Ping originator

Table 2: Messages

Ver. Type Body Length [Byte] Body fields

1 insert_node_ request 6 + 2 + variable initiator | position(l,d) | meta_data_pos Mld

1 insert_node_ reply variable routing_table_row

1 insert_node_reply_rn n * 6 #neighbors | rt_entry1 | rt_entry2 ...

1 announce_node 6 + 2 + variable initiator | position(l,d) | meta_data_pos Mld

1 remove_node n * 6 #entries | rt_entry1 | rt_entry2 ...

1 insert_obj_req variable initiator | position(l,d) | obj_hash | meta_data | t_struct | replication

- 14 -

Table 3 explains the body fields contained in the SHARK
messages in more detail, including their lengths in Byte, their
formats, and brief descriptions. Some fields require some
more explanation, particularly the meta-data. Assuming the
meta-data hierarchy has been defined by the application
developer in sufficient depth and breadth, its structure and
entries are known to all peers. Hence, a user could easily

select exact categories for his requests from lists or menus,
rather than trying his own descriptions. In this case, SHARK
can translate the category descriptions into numeric index
positions in the hierarchy and use these positions rather than
string expressions for routing, reducing the processing load
for routing and the message sizes. This dual way of specify-

1 insert_obj_reply 8 + 6 + variable initiator | meta_data

1 replicate_link variable initiator | obj_hash | meta_data | replication

1 remove_object variable position(l,d) | obj_hash | meta_data | t_struct

1 query variable initiator | position(l,d) | meta_data | t_struct | t_rand

1 query_answer variable indexer | n_objects | n * [obj_hash | meta_data | Owner]

1 query_proxy variable initiator | position(l,d) | meta_data | t_struct | t_rand

1 insert_GoI_ request 6 + 2 + variable initiator | position(l,d) | meta_data_descr Mld

1 insert_GoI_ reply variable routing_table_row

1 announce_GoI 6 + 2 + variable initiator | position(l,d) | meta_data_descr Mld

1 announce_GoI_all 2 + 2 + n * var. announce_position(l,d) | #GoIs | n * [initiator | position (l,d) | meta_data Mld]

1 reclassify_ object_request 6 + 2 + variable initiator | position(l,d) | meta_data_descr Mld

1 reclassify_ object_answer 1 answer

1 group_exceeding_limits 0 -

1 flood[query] 1+8+6+var.+1 TTL | msg_ID | initiator | meta_data M0 | t_rand

1 flood[announce_node] 1+6+2+variable TTL | initiator | position(l,d) | meta_data_pos Mld

1 flood[remove_node] 1+6 TTL | initiator

1 flood[remove_object] 6+16 initiator | obj_hash

1 flood[splitGoI] 1 TTL

1 flood[announce_GoI] 6 + 2 + variable initiator | position(l,d) | meta_data_descr Mld

1 flood[announce_GoI_all] 2 + 2 + n * var. announce_position(l,d) | #GoIs | n * [initiator | position (l,d) | meta_data_descr Mld]

1 RT_repair_request 6 + 2 + variable initiator | position(l,d) | meta_data_pos Mld

1 RT_repair_reply n * 6 #entries | n * [rt_entry]

1 request_object 6 + 16 initiator | obj_hash

1 transfer_object variable obj_hash | flag_error | object_handle

1 report_stale_link 16 + 6 obj_hash | owner

Table 2: Messages

Ver. Type Body Length [Byte] Body fields

Table 3: Message Fields

Field
Length
[Byte] Format Description

initiator, owner, indexer 6 ipv4:port IP address and port of peer that initiated the message (or owns/indexes object)

position(l,d) 1 + 1 Byte Position (dimension d on level l) last resolved by routing engine on forwarding peer

announce_position(l,d) 1+1 Byte Position from which downward announce_GoI_all message is currently being flooded

#neighbors 1 Byte Number of neighbors being sent in RT_repair_reply or insert_node_reply_rn

#GoIs 2 Integer Number of new GoIs being announced in announce_GoI_all message

n_object 2 Integer Number of object links in query_answer

rt_entry 6 ipv4:port IP address and port of routing table entry

obj_hash 16 Integer MD5 hash of object serving as a unique identifier of that object

t_struct 1 Byte
t_struct/255*100%: Minimum required match of query with meta_data description of potential
next hop in hierarchy, so that request is forwarded

t_rand 1 Byte
t_rand/255*100%: Minimum required match of query meta_data_M0 (see below) with
meta_data description M0 of object so that object link is returned to requestor

replication 1 Byte Number of desired replicas when inserting an object link for redundancy / fault tolerance

- 15 -

ing categories is reflected in the fields meta_data_pos
(index-based specification) and meta_data_descr (string-
based specification), where the latter one obviously has to be
used for new GoI insertion. Just like the categorisation on
each hierarchy level and dimension, the same dual descrip-
tion mode can also be applied to the entire classification path
from the root to the leaves: meta_data(opt1) is based on
index usage whereas meta_data(opt2) is based on string
descriptions. SHARK is designed to correctly handle both of

them. Note that the description M0 within a GoI obviously
always has to be a keyword expression.

5 Implementation

SHARK has been implemented in [21] on Windows XP in
Java such as to be easily portable to other platforms. As a
proof of concept, the software implements the overall archi-
tecture, the communication infrastructure, a correct handling
and dispatching of all message types, and the use cases node
insertion, object insertion, and query.

Figure 16 illustrates the module structure. To allow for an
easy exchange of communication mechanisms, a ’SHARK
Node’ passes all messages to the ’SHARK Communicator’.
The ’Communicator’ parses the messages and has them sent
as a byte array in a UDP packet via a ’Sender’. A ’Receiver’
thread listens for incoming messages and passes them on to a
’Dispatcher’. Acknowledgements for previously sent mes-
sages and reply messages are fed into a message queue that is
read by the ’Communicator’. Reply messages are forwarded
to the ’SHARK Node’ for further handling if appropriate.
Acknowledgements, in contrast, can directly be handled by
the ’Communicator’; the absence of an acknowledgement
leads to a re-send of the respective message or to an excep-
tion if two consecutive trials fail. The ’Dispatcher’ takes care
of all incoming requests from other nodes and starts appro-

priate handler threads. These handlers apply ’SHARK Node’
functionality like routing, object link storage, or object trans-
fer to process requests. Each ’SHARK Node’ maintains state
information, most notably the routing table and the object
links it is responsible for as required to appropriately handle
requests.

6 Evaluation

We provide a detailed evaluation of SHARK in this sec-
tion. After taking a closer look at the hierarchy structure and
its dependence on network size and meta-data categories in
Section 6.1, we investigate the scalability of queries in Sec-
tion 6.2. We then evaluate the cost of overlay network man-
agement in Section 6.3 before summing up in Section 6.4.

6.1 Multidimensional Hierarchy Structure

The number of nodes, the meta-data categories, and the
distribution of nodes to GoIs determine the hierarchy struc-
ture created in SHARK. Particularly relevant for subsequent

answer 1 Boolean Object in newly inserted GoI? (yes/no)

TTL 1 Byte Time to live counter in flooding messages

flag_error 1 Byte Indication that object not available on owner

object_handle variable applicat.-def. Actual object found and to be transferred, or respective object handle, opaque to SHARK

meta_data M0 2 + vari-
able

Integer: String
Keyword (or keyword expression with wildcards, AND, OR) describing an object within its
GoI; preceeded by 2-Byte length indication

meta_data_pos Mld 2 Integer Index number of meta-data (of query or object or node) on position(l,d)

meta_data_descr Mld 2+2+
variable

Index(Int.):
Length(Int.):
Descr.(String)

Description of new GoI, together with length indication of the description and new index num-
ber in RT on position(l,d)

meta_data (opt1)
1+
2+var.+2
+ n*(2+2)

see right
flag_opt1=true | meta_data M0 | #entries | n * [position(an,bn) | meta_data_pos Manbn]
Meta-data of an object/request/node in terms of the succession of index positions of its de-
scription

meta_data (opt2)
1+2+var.
2+ n*
(2+var)

see right
flag_opt1=false | meta_data M0 |#entries| n * [position(an,bn) | meta_data_descr Man,bn]
Meta-data of an object/request/node in terms of the succession of meta-data description on
each level/dimension

routing_table_row
2 +
n*(2+6)

see right
#entries | n * [meta_data_pos | rt_entry]
Routing table row with total number of entries, for each entry the meta_data index position and
the routing table entry

Table 3: Message Fields

Field
Length
[Byte] Format Description

Figure 16: Implementation Structure

Receiver (thread)

msg msg msg msg

SHARKMessageCommunicator

Dispatcher

Sender

Node

Handler (thread)

Handler (thread)

Handler (thread)

Routing Table

Object
Object

Object

msg

msg

- 16 -

subsections are the number levels, the degree of imbalance,
and the occupation of GoIs.

For the disposition of nodes to GoIs, we have modeled two
distributions: a uniform distribution (most simple case) and a
bi-modal Zipf distribution. It has been observed many times
(cf., e.g., [11]) that document popularity follows a Zipf distri-
bution, and it is reasonable to make the same assumption for
category or GoI popularity. A Zipf distribution ranks objects
by popularity and yields the probability that a request is

made for an object with a certain rank i as .

More recent studies [28] of P2P networks like Gnutella sug-
gest a bi-modal Zipf distribution with constant (α1=0) popu-

larity up to an inflection point. Further studies experiment
with exponential distributions but do not parameterize on the
network size [29]. We choose α2=1, which corresponds to
the original version in [11] and is the average reported in
[28], and we set inflection at tinf=1% of possible GoI ranks.
With the number of GoIs or categories ncat, the relative GoI
popularity becomes

Figure 17 evaluates the effect of node distribution to GoIs
on the SHARK hierarchy. The dashed line shows the average

number of hierarchy levels assuming a uniform distribution
of nodes to GoIs, two dimensions on each level with 8 meta-
data categories per dimension (i.e., 64 meta-data categories
per level), and GoI splitting at group sizes larger than 500
nodes. Roughly 30,000 nodes can be supported with one
hierarchy level, more than a million with two levels. The
solid line represents the result for a bi-modal Zipf distribu-
tion of nodes to GoIs. As some groups are significantly more
popular than other groups, splitting occurs earlier in some

parts of the hierarchy, leading to imbalances, where we
assumed splitting to result in, again, 8 by 8 subgroups, and a
Zipf distribution of nodes to subgroups within a higher-level
group. While the error bars in the figure show the maximum
and minimum number of levels, the solid line is an average
across all GoIs, weighted by their respective sizes in terms of
number of nodes. Clearly, a meta-data hierarchy that
achieves as uniform as possible a distribution of nodes to
GoIs is advantageous. However, even in the more typical
Zipf-case, the average level number remains well below
three even at a million nodes and increases only logarithmi-
cally.

The choice of meta-data structure, most notably the num-
ber of categories per level, is evaluated in Figure 18, assum-
ing a bi-modal Zipf distribution for nodes to GoIs and com-
paring maximum GoI sizes of 100 and 500 nodes,
respectively. It is obvious that the number of levels falls with

growing GoI size and with growing number of categories per
level. In the following, we will always assume a maximum
GoI size of 500 nodes and 64 meta-data categories per level
unless otherwise stated.

The final issue we are interested in regarding the SHARK
hierarchy is the number of GoIs that are available yet remain
empty due to a low popularity. This has a significant effect
on node insertion cost due to the additionally required
announcements (cf. Section 4.3). Figure 19 shows the frac-
tion of unoccupied GoIs for both, a maximum GoI size of
500 and of 100 (solid and dotted lines, respectively). Both
are identical for the first few hundred nodes during the filling
of the first hierarchy level with nodes. While some 10% of
GoIs subsequently remain empty for the smaller GoI size due
to ongoing group splitting, the ratio of empty GoIs is identi-
cal zero for the larger group size: a sufficient number of
nodes is statistically available upon splitting to provide
members even for the less popular groups. Figure 19 also
presents the even more important ratio of node insertion,
object insertion, or query requests that are targeted to empty
GoIs (dashed and dash-dotted lines, respectively). As empty
GoIs are also the least popular ones, this ratio is identical
zero or close to zero for all network sizes larger than a few
hundred nodes.

p Qi() 1 iα⁄∼

p i()
c

ncattinf
α2 α1–

iα2
-------------------------------------- ; i ncattinf>

c

iα1
------ ; i ncattinf>









c

;

1

iα1
------ ncattinf

α2 α1– 1

iα2

i 1=

ncattinf

∑+

i ncattinf=

ncat

∑
1–

=

=

Figure 17: Hierarchy Levels

10
3

10
4

10
5

10
6

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

N

A
ve

ra
ge

 H
ie

ra
rc

hy
 L

ev
el

s

Uniform, 64, 500
Zipf, 64, 500

Figure 18: Hierarchy Levels

0 50 100 150 200 250
2

2.5

3

3.5

4

4.5

Categories per Level

A
ve

ra
ge

 H
ie

ra
rc

hy
 L

ev
el

s

Zipf, 500
Zipf, 100

- 17 -

6.2 Cost of Queries

For the cost of queries, we consider the aggregate number
of messages necessary to resolve a query as it determines
bandwidth needs, and the request pathlength as the key
driver of latency. We also evaluate the node degree due to its
relevance for processing power and memory demand. For
completeness, the message size can be obtained from Table
2.

6.2.1 Aggregate Number of Query Messages

The number of messages for a query is

, where hh is the number of hops in the

hierarchy and n(GoI) is the number of nodes in the GoI con-
tacted, as a message is passed to any node in the GoI due to

flooding1. With the pruning probability pp as in Section 3.4
and the definition of nstep as the maximum number of total
steps in the hierarchy, i.e., in the balanced case, the number
of levels times the number of dimensions on each level, hh

becomes

Figure 20 visualises the number of messages in SHARK,
assuming a bi-modal Zipf distribution of queries and nodes
to categories as usual, a pruning probability pp equal to the

relative frequency of the most popular category, and a hierar-
chy with two levels and two dimensions per level. magg sig-
nificantly drops with the number of categories and grows
sub-linear when the number of categories is increased with
additional nodes.

Figure 21 compares magg for SHARK (solid line) and
Gnutella (dotted line), assuming, as usual, Zipf popularity, 64
categories per level, and a maximum GoI size of 500. In
addition, it is assumed that the meta-data hierarchy is suffi-

ciently deep to allow for GoI splitting, and that the Gnutella
reference case has a sufficiently large time to live. In small
networks, while the GoIs are being filled, SHARK achieves
roughly an order of magnitude improvement over Gnutella.
Once considerable GoI splitting occurs, the bandwidth
demand in SHARK grows sub-logarithmic rather than linear
as in Gnutella. This represents the key achievement of
SHARK.

6.2.2 Request Pathlength

We will now look at the average number of hops required
to find an object (or multiple objects matching a query) as a
proxy for query latency. [23] shows that node connectivity in
a Gnutella network (i.e., random network), follows a bi-
modal power law distribution, where the probability pl that a
node has i links remains constant up to 10 links:

1. This assumes a loop-free GoI topology. While this will usually not be the
case, it does not essentially change the results of the analysis, as we made
the same assumption for the Gnutella reference case.

Figure 19: Ratio of Unoccupied GoIs

10
2

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N

F
ra

ct
io

n
of

 U
no

cc
up

ie
d

G
oI

s
an

d
of

 R
eq

ue
st

s
to

 T
he

se

Fraction Empty GoIs, max-size = 500
Fraction Requests to Empty GoIs, max-size = 500
Fraction Empty GoIs, max-size = 100
Fraction Requests to Empty GoIs, max-size = 100

magg hh n GoI()+=

hh nstep 1 pp–()nstep ipp 1 pp–()i

i 1=

nstep 1–

∑+=

10
0

10
5

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

10
8

Categories
Nodes

M
es

sa
ge

s

Figure 20: Number of Messages for a Query

Figure 21: Aggregate Messages for a Query

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N

A
gg

re
ga

te
 N

um
be

r
of

 M
es

sa
ge

s
fo

r
a

Q
ue

ry

SHARK
Gnutella

pl i()

c1

10
α1

----------- i 10≤;

c1

iα1
------ i 10>;











=

- 18 -

where α1 and c1 can be determined from

and , and is the average number of links.

The average number of hops within a GoI
becomes

where

is the conditional probability that i additional nodes are
contacted at hop h given that k nodes have been contacted at
the previous hop h-1. This is equivalent to the probability
that k nodes have a total of k+i connections (i additional
contacted nodes, k backward links to the nodes of the
previous hop). Each node j contacted at hop h-1 has νj
connections with probability pl(νj); the product of the
individual probabilities yields the probability of the overall
constellation.

The calculation can be vastly simplified assuming a con-

stant average node connectivity :

where nincr(h) is the incremental number of nodes contacted
at hop h

hmax is the maximum number of hops in a GoI and can be
derived from

The request pathlength PLR within the entire SHARK is then
simply the number of hops in the hierarchy hh to reach a
certain GoI plus the average number of hops within that
GoI, averaged across all GoIs. The average obviously needs
to be weighted by the relative request frequencies to GoIs so
that the larger, more popular GoIs with unfortunately more
hops are queried more frequently.

Figure 22 compares the request pathlengths of SHARK
(solid line) and Gnutella (dotted line), with the same assump-
tions as for magg and based on a pruning probability pp=5%

and an average node connectivity . It is shown that
SHARK may even outperform the already benign logarith-
mic behaviour of Gnutella.

6.2.3 Node Degree

Figure 23 depicts the average node degree for a SHARK
node and is also representative of its routing table size. The

node degree accounts for 8 nodes on each level and in each

dimension plus neighbors in the random network
part. The number of levels is determined as in Section 6.1
and averaged across all nodes. The node degree first grows
while the first level of the hierarchy is being filled with
nodes to connect to, then remains constant at roughly 20
when the first level is complete, until it finally develops log-
arithmically as the networks grows further and GoI splitting
occurs. The node degree remains below 50 at a million
nodes.

6.3 Cost of Overlay Network Management

Other than random networks, SHARK incurs additional
cost for managing the hierarchical overlay network. We eval-
uate this cost along the use cases for normal operation: node
insertion, node removal, object insertion, object removal,
and GoI splitting, and we also take a look at the state infor-
mation to be kept on each node. For all evaluations, we

pl i()
i 1=

n

∑ 1=

ipl i()
i 1=

n

∑ l= l

hGoI pl i() i
n GoI()
------------------ p n2 j n1 i==()

2
j

n GoI()
------------------ p n3 k n2 j==() 3

k
n GoI()
------------------ ...+

n GoI() i– j–

∑+

⋅
j 1=

n GoI() i–

∑+

i 1=

n GoI()

∑=

p nh i nh-1 k==() p νj()
j 1=

k

∏
νj

∑= νj ℵ νj

j 1=

k

∑;∈ k i+=;

l

hGoI h
nincr h()
n GoI()
-------------------- hmax

n GoI() nincr h()
i 1=

hmax 1–

∑–

n GoI()
--+

h 1=

hmax 1–

∑=

nincr h()
1 ; h 0=

l ; h 1=

l l 1–()h 1– ; h 1>





=

nincr h() n GoI() nincr h() n GoI()≥
h 1=

hmax

∑,<
h 1=

hmax 1–

∑

hGoI

Figure 22: Request Pathlength

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

N

A
ve

ra
ge

 R
eq

ue
st

 P
at

hl
en

gt
h

SHARK
Gnutella

l 3.4=

Figure 23: Node Degree

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

40

45

50

N

A
ve

ra
ge

 N
od

e
D

eg
re

e

l 3.4=

- 19 -

assume a bi-modal Zipf popularity of GoIs, s=64 categories
per hierarchy level, a maximum GoI size before splitting of

500 nodes, a node connectivity , a link redundancy
upon object insertion r=3, and an average number of |o|=100
objects per node.

6.3.1 Cost of Node Insertion

The cost, i.e., the aggregate number of messages to insert a
node, is depicted in Figure 24. It accounts for an
insert_node_request, a ping, a pong, and an
insert_node_reply message to be sent at each hop as

well as for the final insert_node_request and

 insert_node_reply_rn messages. For reason-
ably large networks, the cost develops logarithmically up to
some 35 messages in systems of one million nodes. A signif-
icantly higher cost is incurred in young networks as they
grow toward the first GoI splitting. As described in Section
4.3, when a new node is the first member of a previously
empty GoI (cf. Section 6.1), it has to announce its existence
throughout the entire parent GoI. Furthermore, some object
links may need to be transferred to the now occupied GoI.
For the transfer probability, we considered the average rela-
tive popularity of empty groups within the parent GoI.

6.3.2 Cost of Node Removal

In non-growing networks, node removals occur as fre-
quently as node insertions. The cost for node removals
includes one transfer message for each object link and one
message to inform each neighbor in the random network,
largely independent of network size as shown in Figure 25.
In small networks, a leaving node may result in the affected
GoI becoming empty. In this case, the leaving node has to
inform all nodes in the parent GoI of its departure. Also,
transferring links becomes slightly more expensive, as it
involves link redundancy to be re-established; hence the
slightly higher cost up to roughly 100 nodes.

6.3.3 Cost of Object Insertion

Object insertion results in a number of messages equal to
the number of hops in the SHARK hierarchy, hh, plus one

answer message, and further messages to replicate the link
and create redundancy. Figure 26 depicts the total assuming a

pruning probability pp=5% as before. It grows logarithmi-

cally with the size of the network and remains very low com-
pared to the cost of queries.

6.3.4 Cost of Object Removal

Object removal messages take exactly the same path as
queries and, hence, incur exactly the same cost. However,
usually, object links are not explicitly revoked at all, but stale
links are identified and removed when attempting to transfer
objects.

6.3.5 Cost of GoI splitting

While being irrelevant in a stable system state, GoI split-
ting occurs during phases of network growth to add further
hierarchy levels. Each event of splitting requires a
split_GoI message to be flooded to each of the n(GoI)
nodes in the group. For each of the s (s=64) new subgroups,
one node will become its first member and announce its pres-
ence to each of the n(GoI)-1 other nodes. In order to reach its
new target subgroup, each node follows the hierarchy one
level further down through an insert_node_request,
entailing a ping, a pong, and an insert_node_reply
message, and, finally, additional
insert_node_request and
insert_node_reply_rn messages to insert the node

l 3.4=

l

l 1+

Figure 24: Cost of Node Insertion

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

N

A
gg

re
ga

te
 N

um
be

r
of

 M
es

sa
ge

s
fo

r
N

od
e

In
se

rt
io

n

Figure 25: Cost of Node Removal

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

400

N

A
gg

re
ga

te
 N

um
be

r
of

 M
es

sa
ge

s
fo

r
N

od
e

R
em

ov
al

Figure 26: Cost of Object Insertion

10
0

10
1

10
2

10
3

10
4

10
5

10
6

4.5

5

5.5

6

6.5

7

7.5

8

N

A
gg

re
ga

te
 N

um
be

r
of

 M
es

sa
ge

s
fo

r
O

bj
ec

t I
ns

er
tio

n

- 20 -

into its new GoI. Finally, each node has to transfer each of its
links with a transfer probability

where the first factor is the percentage of object links that
moved to a certain subgroup and the second factor the
probability that these links in fact belong to any one of the
other subgroups. Overall, the number of messages for a GoI
split becomes

and is depicted in Figure 27 as a function of the maximum
GoI size. The figure also shows the cost for s=16 subgroups
upon splitting for comparison; clearly, a higher number of
subgroups leads to increased traffic due to node
announcements.

6.3.6 State Information

In addition to an evaluation of the number of messages for
different overlay management use cases as in the previous
paragraphs, it is also important to have a look at the informa-
tion to be kept in memory on each node. This information
comprises three parts: the additional redundancy in the rout-
ing table that does not form part of the node degree, the
object links to be stored, and the meta-data hierarchy. The
redundancy in the routing table is (at most) as large as the
node degree. The link information contains for each link,
with three redundant links per object, a 16-byte hash code,
the IP address and port of the respective owner, a numerical
categorisation into the meta-data structure

meta_data_pos, and a keyword description M0. The
meta-data hierarchy requires a description to be stored for
each GoI and each higher-level category. Note that storage of
the meta-data hierarchy could be avoided when routing
directly according to hierarchical keyword descriptions
meta_data_descr rather than their numerical represen-
tations meta_data_pos. The total state information per
node is plotted in Figure 28, conservatively assuming a meta-
data structure that is everywhere as deep as the maximum
number of levels in the hierarchy and 20 Bytes per category

description. It remains well below 1 MByte for networks as
large as 1 million nodes.

6.4 Total SHARK Bandwidth

Having evaluated the cost of query activities and overlay
network management separately in the previous two sec-
tions, it is now time to bring both together and assess the
overall bandwidth demand of the SHARK search system.
Figure 29 compares the aggregate number of messages per
node and day or second of Gnutella and SHARK in three
scenarios. Each scenario assumes a query frequency of 10
queries per day and node, while the rate of node departures
and re-insertions varies. In the first scenario (dash-dotted
line), it is set to one per day, in the second one (solid line) 0.1
per day, and finally 0.01 per day in the third one (dashed
line). It is easy to recognise the additional network manage-
ment overhead incurred as the rate of node joins and depar-
tures increases. However, even at one logout per node and
day, the management overhead remains relatively small com-
pared to the query activity. SHARK clearly exhibits an
improvement of several orders of magnitude over Gnutella
with only roughly one message per minute in a network of
one million nodes. It also demonstrates logarithmic or even
sub-logarithmic scalability as long as the meta-data hierarchy
can be defined and applied in sufficient depth.

ptransfer pZipf i() 1 pZipf i()–()
i 1=

s

∑=

nGoI_Split n GoI() s 7 ptransferr o+ +[] s–=

Figure 27: Cost of GoI Splitting

10
2

10
3

10
4

10
5

10
6

Maximum GoI Size

A
ve

ra
ge

 #
 M

es
sa

ge
s

fo
r

G
oI

 S
pl

itt
in

g

s = 64
s = 16

Figure 28: State Information per Node

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

N

K
B

yt
e

S
ta

te
 In

fo
rm

at
io

n
pe

r
N

od
e

(in
cl

. M
et

a-
D

at
a

H
ie

ra
rc

hy
)

Figure 29: Aggregate Number of Messages

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N

T
ot

al
 N

um
be

r
of

 M
es

sa
ge

s
pe

r
N

od
e

an
d

D
ay

SHARK 1% logout probability per day
SHARK 10% logout prob.

SHARK 100% logout prob.

Gnutella

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
ot

al
 N

um
be

r
of

 M
es

sa
ge

s
pe

r
N

od
e

an
d

S
ec

on
d

- 21 -

7 Conclusion

In this document, we have specified a novel approach to
P2P keyword search, SHARK. It builds on a multi-dimen-
sional meta-data structure to classify nodes and objects. A
multi-dimensional symmetric redundant hierarchy of GoIs is
built in accordance with the meta-data structure so as to
allow efficient keyword routing. By restricting flooding to
small semantic clusters or GoIs, it achieves vast performance
improvements of up to four orders of magnitude compared to
random networks like Gnutella.

We expect SHARK to be applied to a variety of applica-
tions. First and foremost, large-scale filesharing systems
command large user bases and would benefit from SHARK’s
scalability improvements. Furthermore, SHARK is well
suited for any application where the establishment of seman-
tic clusters and meta-data categories is viable. This includes
P2P trading systems, where advertisers can insert their trade
goods like classified ads according to object classifications
and price information. Knowledge marketplaces and expert
systems usually build a more or less granular ontology of
topics anyway that can straightforwardly be exploited by
SHARK to create an according structure. Finally, in collabo-
ration tools, users may create their own structures for docu-
ment classification, similarly to standard file systems. These
structures could also be matched by the SHARK topology
and could be updated at the users’ discretion.

Going forward, we would like to build a P2P trading appli-
cation on top of SHARK. Furthermore, a detailed investiga-
tion of security issues relating to SHARK or any other struc-
tured approach to P2P lookup and search would be helpful.
Denial of service attacks are a particular threat.

Acknowledgements
This work has been performed partially in the framework of the EU IST

project MMAPPS “Market Management of Peer-to-Peer Services” (IST-
2001-34201), where the ETH Zürich has been funded by the Swiss
Bundesministerium für Bildung und Wissenschaft BBW, Bern under Grant
No. 00.0275.

References

[1] J.J. Aucouturier, F. Pachet: Representing Musical Genre: A
State of Art; To Appear, Journal of New Music Research.

[2] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica:
Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications; ACM SIGCOMM, San Diego, CA, U.S.A.,
August 2001.

[3] M. Balazinska, H. Balakrishnan, D.
[4] Karger: INS/Twine: A Scalable Peer-to-Peer Architecture for

Intentional Resource Discovery; Pervasive 2002 - Interna-
tional Conference on Pervasive Computing, Zurich, Switzer-
land, August 2002.

[5] M. Castro, P. Druschel, Y. C. Hu, A. Rowstron: Exploiting net-
work proximity in peer-to-peer overlay networks; Future
Directions in Distributed Computing (FuDiCo), Bertinoro,
Italy, June 2002.

[6] Clip2: The Gnutella Protocol Specification v0.4;
http://www.clip2.com/GnutellaProtocol04.pdf (in May 2002).

[7] E. Cohen, A. Fiat, H. Kaplan: A case for associative Peer to
Peer Overlays; HotNets-I, Princeton University, Princeton,
NJ, U.S.A., October 28/29, 2002.

[8] A. Crespo, H. Garcia-Molina: Routing Indices For Peer-to-
Peer Systems; International Conference on Distributed Com-
puting Systems (ICDCS), Vienna, Austria, July 2002.

[9] V. Darlagiannis: Search in P2P Networks; Talk, Ipswich, UK,
December 2002.

[10] Druschel, Rowstron: Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems;
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, 2001.

[11] R. Korfhage: Information Storage and Retrieval; J. Wiley,
New York, U.S.A., 1997.

[12] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker: Search and repli-
cation in Unstructured Peer-to-Peer Networks; 16th ACM
International Conference on Supercomputing (ICS'02), New
York, U.S.A., June 2002.

[13] P. Maymounkov, D. Mazieres: Kademlia: A Peer-to-peer
Information System Based on the XOR Metric; 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS '02), Cam-
bridge, MA, U.S.A., March 2002.

[14] J. Mischke, B. Stiller: Peer-to-peer Overlay Network Manage-
ment Through AGILE; IEEE International Symposium on Inte-
grated Network Management (IM), Colorado Springs, CO,
U.S.A., March 2003.

[15] J. Mischke, B. Stiller: Design Space for Distributed Search
(DS)2 - A System Designers' Guide; ETH Zurich, Switzerland,
TIK Report Nr. 151, September 2002.

[16] J. Mischke, B. Stiller: Rich and Scalable Peer-to-Peer Search
with SHARK; Advanced Middleware Services (AMS), Seattle,
WA, U.S.A., June 2003.

[17] F. Pachet, D. Cazaly: A Classification of Musical Genre; Pro-
ceedings of Content-Based Multimedia Information Access
(RIAO) Conference, Paris, France, 2000.

[18] V. Papadimos, D. Maier , K. Tufte: Distributed Query Process-
ing and Catalogs for Peer-to-Peer Systems; Conference on
Innovative Data Systems Research (CIDR), Asilomar, CA,
U.S.A., January 2003.

[19] M. Prinkey: An Efficient Scheme for Query Processing on
Peer-to-Peer Networks ; http://aeolusres.home-
stead.com/files/index.html (August 23, 2002).

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker: A
Scalable Content-Addressable Network; ACM SIGCOMM,
San Diego, CA, U.S.A., August 2001.

[21] D. Reichle: Search in Peer-to-Peer Networks; Semester Thesis
TIK SA2003-34, ETH Zurich, Switzerland, July 2003.

[22] S. Rhea, J. Kubiatowicz: Probabilistic Location and Routing;
21st Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), New York, U.S.A.,
June 2002.

[23] M. Ripeanu, A. Iamnitchi, I. Foster: Mapping the Gnutella
Network; IEEE Internet Computing, Vol. 6, Nr. 1, Jan./Feb.
2002.

[24] C. Rohrs: Query Routing for the Gnutella Network, Version
1.0; http://www.limewire.com/developer/query_routing/key-
word%20routing.htm (September 3, 2002), May 16, 2002.

[25] S. Saroiu, P. Gummadi, S. Gribble: Measuring and Analyzing
the Characteristics of Napster and Gnutella Hosts; Multime-
dia Systems Journal, Vol. 8, Nr. 5, November 2002.

[26] B. Silaghi, S. Bhattacharjee, P. Keleher: Routing in the Terra-
Dir Directory Service; SPIE ITCOM'02, Boston, MA, U.S.A.,
July 2002.

[27] K. Sripanidkulchai, B. Maggs, H. Zhang: Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Sys-
tems; INFOCOM 2003, San Francisco, U.S.A., April 2003.

[28] K. Sripanidkulchai: The popularity of Gnutella queries and its
implications on scalability; http://www-2.cs.cmu.edu/~kun-
wadee/research/p2p/gnutella.html (available on Feb. 03,
2003).

[29] B. Yang, H. Garcia-Molina: Comparing Hybrid Peer-to-Peer
Systems; 27th International Conference on Very Large Data-
bases (VLDB), Roma, Italy, September 2001.

- 22 -

[30] B. Yang, H. Garcia-Molina: Improving Search in Peer-to-Peer
Networks; Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS), Vienna, Austria,
July 2002.

[31] B. Zhao, J. Kubiatowicz, A. Joseph: Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing; Techni-
cal Report UCB/CSB-01-1141, Computer Science Division,
U.C. Berkeley, U.S.A., April 2001.

[32] B. Zhao, A. Joseph, J. Kubiatowicz: Locality Aware Mecha-
nisms for Large-scale Networks; International Workshop on
Future Directions in Distributed Computing (FuDiCo), Berti-
noro, Italy, June 2002.

