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ABSTRACT
For modern computer systems, both performance and power
consumption must be considered to reduce the mainte-
nance cost for quality of service guarantees. This paper
proposes efficient and effective power management schemes
for heterogeneous clusters. Distinct from existing heuristic
approaches, we propose power management schemes with
approximation factor guarantees, compared to the opti-
mal power management. Our greedy power management
schemes have 1.5-approximation or 2-approximation guaran-
tees depending on the complexity. We also propose dynamic-
programming approach which can trade the quality of the
resulting solutions with different time/space complexity.
Simulation results wrt different power consumption models
show that the proposed schemes are effective for the mini-
mization of the power consumption for large scale clusters.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—quality of ser-

vice guarantees, heterogeneous clusters

General Terms
power management, soft real-time systems

Keywords
dynamic voltage scaling

1. INTRODUCTION
In the recent years, power and energy consumption has

become key concerns in server clusters or data centers. For
example, a high-performance server with 300Watt power
consumption consumes 2628 kiloWatt hours. Therefore,
within one year, the annual power cost of the server is
around $263, if the electricity cost is $0.1 per kiloWatt hour.
Even without considering the cost of the power delivery
subsystems and the cooling facility, for maintaining a cluster

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

with hundreds of servers, the electricity cost is significant.
Another fact is that the performance per watt remains
roughly flat over time [1], although advanced hardware
technology has improved the performance per hardware
dollar. As a result, the electricity cost of server clusters
will be more than the hardware cost and become a major
fraction of the total cost of ownership.

To reduce the power consumption without sacrificing the
performance, power-aware and energy-efficient scheduling
has been extensively explored in the literature.For homo-
geneous server clusters with identical servers, Chase et
al. [2] develop a load balancing framework to dynamically
turn on/off servers, Xu et al. [10] propose algorithms to
determine the number of servers to turn on by applying
both DVS and DPM, and Wierman et al. [9] explore how
to balance the mean energy consumption and the mean
response time under processor sharing scheduling.

Considering the popularity of heterogeneous clusters,
power management for heterogeneous server clusters under
quality of service (QoS) guarantees has been recently ex-
plored in [6, 8, 4]. Specifically, Wang and Lu [8] develop
a power management algorithm to order heterogeneous
servers in a pre-defined order. After deciding the activation
and deactivation of servers, Lagrange Multiplier Method is
applied to decide the execution frequency. Similarly, for
servers with discrete speeds, Rusu et al. [6] use two tables for
deciding which servers to be activated and which frequency
levels to be executed. Moreover, Guerra et al. [4] model the
problem as an integer linear programming (ILP) problem by
applying ILP solvers with high complexity to get a table for
storing decisions for different workloads under pre-defined
granularity.

For most commercial computing systems, the available
frequency levels are fixed. As a result, the approaches
in [8] might not be suitable, in which using a higher
available frequency level might sacrifice the optimality.
Because storing decisions in tables requires exponential
space complexity in the worst case, researchers in [4, 6]
discretize the possible amount of the to-be-served workload
into pre-defined granularity and derive the scheduling tables
based on the granularity. As a result, the quality of
the derived solution heavily depends on the granularity.
Moreover, if a server in the cluster is out of service due
to some maintenance reasons, recomputing the scheduling
tables by applying algorithms in [4, 6] might be time-
consuming.

This paper explores the power management problem for
heterogeneous clusters under QoS constraints. Distinct



Figure 1: An example for a web server cluster

from the heuristic approaches in [4, 6, 8], we propose
algorithms to provide different approximation guarantees for
power consumption minimization under different time/space
complexity. By considering systems with discrete frequency
levels on servers, our schemes can be applied for general
power consumption models and QoS models. Our greedy
power management schemes have 1.5-approximation or 2-
approximation guarantees depending on the complexity.
Our dynamic-programming approach can trade the quality,
in terms of power consumption, of the resulting solutions
with the time/space complexity. As our approaches do not
rely on global tables, they are more robust against failure of
servers. If building a scheduling table is necessary for system
designers, our proposed dynamic programming approach
can be applied and extended to build tables with different
granularity. Simulation results show that the proposed
schemes are effective for minimizing the power consumption.
The rest of this paper is organized as follows: Section 2

provides system models and problem definition along with
hardness analysis. Section 3 presents our greedy power
management schemes with different approximation factor
guarantees. Section 4 demonstrates how to use dynamic
programming to trade the quality of the derived solution
with the time/space complexity. Simulation results are
presented in Section 5. Section 6 concludes this paper.

2. SYSTEM MODELS

2.1 System model
We consider a cluster with a front-end server, which

arbitrarily distributes workload of requests to a cluster of
back-end servers. The front-end server is assumed not
to participate in processing any requests, but only to
decide the power states of back-end servers and how to
distribute the requests to those back-end servers that are
activated. Figure 1 illustrates an example for a cluster of
web servers. The cluster consists of M heterogeneous back-
end servers, denoted by m1,m2, . . . ,mM , providing CPU-
bounded services. The heterogeneity comes from different
hardware architectures, different manufacturing techniques,
different vendors, etc. However, all these M back-end
servers have the same functionality, i.e., a request can be
served in any of these back-end servers. As a result, once
a back-end server is activated (turned on), it can serve any
assigned request.
To satisfy the performance requirement, the cluster has

to provide its services under some quality of service (QoS)
constraint. Due to heterogeneity of back-end servers,
the performance of servers mi and mj at frequency f
might be different. To have the same performance index

under different servers, each server mi is associated with a
performance co-efficient αi such that αif is the throughput
(in terms of executed number of cycles or requests per time
unit) of server mi at frequency f .

To measure quality of servers, we might either apply anal-
ysis for soft real-time systems for the (average) percentage
of requests that miss their timing constraints [6], or apply
Queueing Theory to guarantee the average response time,
e.g., M/M/1 model in [8] or M/G/1 PS model in [9]. For
example, as shown in [8], if the quality of service is on the
average response time under the M/M/1 queuing model, to
serve workload with average request rate λ on server mi,
the average response time at frequency f is 1

αif−λ
, where

αif is the number of requests finished per time unit. For
the rest of this paper, suppose that qi(f, λ) is the quality
of service provided by server mi at frequency f when the
average request rate assigned on server mi is with arrival
request rate λ. Note that, the metric of qi(f, λ) depends on
the definition of the QoS of a server.

The derivation of qi(f, λ) is not a focus of this paper. One
might apply existing results in the literature, e.g., [6, 9, 8].
We only assume that qi(f, λ) is not worse than qi(f − η, λ)
for any η > 0. In other words, this paper focuses on a
more general setting, in which for a fixed average request

rate assigned to a server, the QoS provided by the server is

not worse when the server is operated at a higher frequency.

2.2 Power consumption and DVS models
We consider servers with discrete dynamic voltage scaling

levels. The number of available frequency levels on servermi

is Ki. For brevity, we order the available frequency levels on
server mi from the lowest one to the highest. Let fi,j be the
j-th lowest available frequency for server mi, in which fi,1 <
fi,2 < · · · < fi,Ki

when Ki > 1. The power consumption for
server mi on frequency fi,j is P †

i,j .
When a server mi is activated, it must operate at least

at frequency fi,1. However, if it is not necessary to turn a
server on, we can deactivated the server (if it is activated)
to reduce the power consumption. If a server mi is not
activated, its power consumption is assumed to be a constant
P δ

i . If the power consumption at frequency fi,j is less than
fi,k for some k < j, we can simply remove the power-
inefficient frequency fi,k. Therefore, we consider systems
with P δ

i < P †
i,1 < P †

i,2 < · · · < P †

i,Ki
. As we cannot reduce

the power consumption P δ
i , it can be subtracted from the

power consumption P †
i,j . For the rest of this paper, we will

only focus on the manageable power consumption Pi,j of
server mi at frequency fi,j , in which Pi,j is P †

i,j − P δ
i .

When a server is activated for execution, both efficiency
and power consumption issues must be considered. For
example, if a server has high power consumption, activating
the server might consume too much power even though we
might not have to activate the other servers. On the other
hand, if a server has lower power consumption, activating
the server might not be enough, and, hence, we might have
to activate many servers to satisfy the QoS requirements.

As a result, we have to consider the power density of a
server, which is defined as the power consumption of the
server divided by the request rate it can serve under the QoS
requirement, denoted by R, of the cluster. Note that as we
focus on general settings of QoS requirement, R could be
average response time, average waiting time, or worst-case
response time, etc. Suppose that Li,j(R) is the (average)



j L1,j P1,j L2,j P2,j

1 1 3.2 1 4.5
2 2 3.8 2 5.6
3 3 4.8 3 6.9
4 4 8 7 15.4
5 5 15.5 10 38
6 6 28.8

(a) power profiles
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Figure 2: An example for power consumption and power
density of servers.

request arrival rate that server mi can serve at frequency
fi,j with quality of service no worse than R. That is,
qi(fi,j , Li,j(R)) is not worse than R. For example, if the
quality of service is the average response time in the M/M/1
queuing model, qi(fi,j , Li,j(R)) = 1

αifi,j−Li,j(R)
≤ R. For

notational brevity, for the rest of this paper, we will define
both Pi,0 and Li,0 as 0. As R is assumed to be a fixed
parameter, we will use Li,j to represent Li,j(R) for the rest
of this paper. Figure 2 illustrates an example for the power
consumption and the power density, in which the power
consumption is an increasing function of the average request
arrival rate but the power density is not.
Furthermore, we assume that the front-end server is

responsible for estimating the average request rate for
the next time interval for scheduling, and for distributing
the requests to back-end servers such that the quality of
service is satisfied and the power consumption is minimized.
Throughout this paper, we assume that the workload predic-
tion is known a priori, in which the average request rate of
the cluster is Λ, and our task is to decide the activation and
frequency levels of back-end servers to minimize the power
consumption under the QoS constraint.

2.3 Problem definition
This work explores power management for a heteroge-

neous cluster under the quality of service requirement R.
As the average request rate (workload) changes over time,
the power management must be done dynamically to cope
with dynamic rates. Suppose that the current average
request rate of the cluster is Λ. Our objective is a) to
activate/deactivate servers to distribute the average request
rate to those servers that are activated for execution, and
b) to decide the operation frequency of activated servers,
such that the power consumption is minimized and the QoS
requirement R is satisfied. For brevity, we denote the above
problem as the Power Management for hEterogeneous server

Clusters (PMEC) problem.
A solution S to the PMEC problem distributes Λ into

λ1(S), λ2(S), . . . , λM(S) and decides the frequency levels
s1(S), s2(S), . . ., sM(S) of these M back-end servers. A
solution S is said feasible for the PMEC problem if the rate
distribution is no less than Λ, i.e.,

P

M

i=1
λi(S) ≥ Λ, and

the frequency level on server mi is sufficient to provide the
quality of service requirement, i.e., λi(S) ≤ Li,si(S). For
brevity, we denote the power consumption of a solution S
by Φ(S), in which Φ(S) =

P

M

i=1
Pi,si(S). A solution S is said

optimal for the PMEC problem if its power consumption is
the minimum among the feasible solutions. For a solution,
if

P

M

i=1
Li,si(S) is no less than Λ, we can easily distribute

Li,si(S) average request rate to server mi when si > 0
without violating the QoS guarantee. Therefore, for the

rest of this paper, we only focus our discussions on how to
decide the frequency levels of servers to guarantee that the
solution S satisfies Li,si(S) ≥ Λ with adoption of the above
request distribution strategy.

If activating all the back-end servers at the highest
frequency level cannot satisfy the QoS requirement, one
has to augment the back-end servers, and there does not
exist any feasible solution for the PMEC problem. For
the rest of this paper, we focus on the optimality issue
by considering cases with

P

M

i=1
Li,Ki

≥ Λ. Obviously, the
studied problem is NP-hard, as it can be reduced to the
Knapsack problem. Due to the NP-hardness of the PMEC
problem, this paper pursues polynomial-time approximation
algorithms with worst-case guarantees on the quality of the
derived solutions. A ρ-approximation algorithm for the
PMEC problem (or, an algorithm with a ρ-approximation
factor) guarantees to derive solutions with at most ρ times
of the power consumption of the corresponding optimal
solutions [7].

3. GREEDY SCHEMES
This section presents our proposed greedy power man-

agement schemes for the PMEC problem. We will first
present the construction of a decision tree to decide whether
we should turn on a server, or accelerate or decelerate the
execution frequency of a server. Then, we will present
our proposed greedy power management schemes with a 2-
approximation factor, followed by improved schemes.

3.1 Constructing Decision Trees
Before presenting our proposed greedy power management

schemes, we will first describe the construction of a decision
tree for a server mi. Our proposed greedy power manage-
ment schemes will decide whether we should activate a server
for serving requests or accelerate a server for accommodating
more request rate.

For the decision tree Ti of server mi, suppose that each
vertex v of the tree has the following fields: density,
index, start, end, right, and left, in which density is the
increased power density of this selection, index is the index
of frequency level this vertex represents for, start (end,
respectively) is the low bound of the frequency level (highest
frequency level, respectively) used for the subtree rooted
by v, left (right, respectively) is the left-hand child (right-
hand child, respectively) of vertex v. For clarity, we will use
density(v), index(v), start(v), end(v), right(v), and left(v)
to present the corresponding values.

We use Algorithm 1, i.e., calling AlgorithmDT(mi, 0,Ki),
to construct Ti. In the specified range between frequency
level indexes a and b given as part of input parameters
of Algorithm DT, we find the index j∗ such that the
increased power density by operating at frequency fi,j∗

is the minimum, in which the increased power density

at frequency fi,j is defined as
Pi,j−Pi,a

Li,j−Li,a
. Then, for the

vertex (root of a sub-tree), we set density(v) to
Pi,j∗−Pi,a

Li,j∗−Li,a
,

index(v) to j∗, start(v) to a, end(v) to b, the right child
by calling DT(mi, j

∗, b) recursively, and the left child by
calling DT(mi, a, j

∗ − 1) recursively. If Algorithm DT is
called with a ≤ b, this is a termination condition, in which
we just simply return a null pointer. The construction of the
decision tree Ti for server mi takes O(K2

i ) time complexity
and has O(Ki) space complexity. Note that the decision



Algorithm 1 DT

Input: (mi, a, b);
Output: a decision tree in the feasible range [a, b] for server

mi;
1: if a ≤ b then
2: return null;
3: end if
4: construct a vertex v;

5: j∗ ← argmina<j≤b

Pi,j−Pi,a

Li,j−Li,a
; (break ties arbitrarily)

6: density(v)←
Pi,j∗−Pi,a

Li,j∗−Li,a
;

7: index(v)← j∗, start(v)← a, end(v)← b;
8: right(v)← DT (mi, j

∗, b);
9: left(v)← DT (mi, a, j

∗ − 1);
10: return v;

(0, 6, 1.6, 3)

(3, 6, 3.2, 4)

(4, 6, 7.5, 5)

(5, 6, 13.3, 6)

(0, 2, 1.9, 2)

(0, 1, 3.2, 1)

(a) T1

(0, 5, 2.2, 4)

(4, 5, 7.53̄, 5)(0, 3, 2.3, 3)

(0, 2, 2.8, 2)

(0, 1, 4.5, 1)

(b) T2

Figure 3: An example for the decision tree of the example
in Figure 1, where the numbers on a vertex denote its fields
start, end, density, and index accordingly.

trees of servers are constructed only once in off line.
Figure 3 illustrates an example for the decision tree for

the power consumption of a server presented in Figure 2.
Note that, if the power consumption is a convex function of
average request rate as the case in Figure 2, the resulting
decision tree is skew. Based on the definition of the decision,
we will have the following lemmas.

Lemma 1. Given a vertex v in the decision tree Ti of

server mi. For any index j with start(v) < j ≤ index(v),
Pi,j + density(v)(Li,index(v) − Li,j) ≥ Pi,index(v).

Proof. By the definition of the decision tree, we have
Pi,index(v)−Pi,start(v)

Li,index(v)−Li,start(v)
= density(v) and

Pi,j−Pi,start(v)

Li,j−Li,start(v)
≥

density(v). This implies
Pi,index(v)−Pi,j

Li,index(v)−Li,j
≤ density(v).

Therefore, Pi,index(v) = Pi,j + Pi,index(v) − Pi,j ≤ Pi,j +
density(v)(Li,index(v) − Li,j).

Lemma 2. Given a vertex v in the decision tree Ti of

server mi. For any index j with index(v) < j ≤ end(v),
Pi,j − Pi,index(v)

Li,j − Li,index(v)

≥
Pi,j − Pi,start(v)

Li,j − Li,start(v)

.

Proof. Suppose that
Pi,j−Pi,index(v)

Li,j−Li,index(v)
<

Pi,j−Pi,start(v)

Li,j−Li,start(v)

for contradiction. This will lead to the conclusion that
Pi,index(v)−Pi,start(v)

Li,index(v)−Li,start(v)
>

Pi,j−Pi,start(v)

Li,j−Li,start(v)
, which contradicts

the construction of the decision tree.

3.2 Algorithm Greedy
By adopting the decision tree, we propose a greedy

algorithm, denoted as Algorithm Greedy, to decide the
activation and operation frequencies of servers. The pseudo-
code of Algorithm Greedy is presented in Algorithm 2. The
basic idea is to try to accommodate more request rate with
the smallest increased power density. We will start from the
case that none of the servers is activated at the beginning,

Algorithm 2 Greedy

Input: average request arrival rate Λ, M servers with
decision trees T1, . . . , TM , QoS requirement R;

Output: a feasible solution under QoS requirement R;
1: if Λ >

P

M

i=1
Li,Ki

then
2: return ”no feasible solution”;
3: end if
4: let S† be the solution by activating all servers at their

highest frequency levels;
5: set s′

i to 0 and vi to the root of tree Ti;
6: ℓ← 0;
7: while there exists vi 6= null do
8: i∗ ← argmin

1≤i≤M and vi 6=null
density(vi);

9: qi∗ ← Li∗,index(vi∗ ) − Li∗,start(vi∗ );
10: if ℓ+ qi∗ < Λ then
11: ℓ← ℓ+ qi∗ ;
12: s′

i∗ ← index(vi∗);
13: vi∗ ← right(vi∗);
14: else
15: let S′ be the solution by setting server mi∗ at

frequency level index(vi∗) and the others servers
mi at frequency level s′

i;
16: if S′ has less power consumption than S† then
17: S† ← S′;
18: end if
19: vi∗ ← left(vi∗);
20: end if
21: end while
22: return S† as the solution;

and, in each step, we try to activate or accelerate a server at
a power-efficient frequency level by using the given decision
trees of servers.

Initially, the frequency level s′
i of server mi is set to 0,

and the vertex vi of server mi in the decision tree is set
to the root of decision tree Ti. The variable ℓ is used to
record the amount of total request rate served by executing
at frequency level s′

i on server mi, i.e., ℓ is
P

M

i=1
Li,s′i

. While
there exists some non-null vi, we enter the loop to activate
or accelerate a server mi∗ , in which the increased power
density is the smallest in Step 8 in Algorithm 2. Clearly,
if we increase s′

i∗ to index(vi∗), we will set increase the
served request rate by Li∗,index(vi∗ ) − Li∗,(vi∗ ), abbreviated
by qi∗ . If ℓ + qi∗ is less than Λ, we set ℓ to ℓ + qi∗ , s′

i∗

to index(vi∗), and vi∗ to right(vi∗). Otherwise, we know
that the solution S′ by setting server mi∗ at frequency level
index(vi∗) and the others servers mi at frequency level s′

i

is a feasible solution for the PMEC problem. If S′ is better
than the best solution S† so far, we replace the best solution
S† with S′. Moreover, we also have to set vi∗ to left(vi∗)
for the case ℓ + qi∗ ≥ ℓ. The solution S† is then returned
when all vis are null for all servers mis.

The time complexity of Algorithm Greedy isO(M
P

M

i=1
Ki),

since each iteration in the while loop in Algorithm 2 takes
O(M) time and there are at most O(

P

M

i=1
Ki) iterations.

Take the input instance in Figure 1 for example. Suppose
that Λ is 9. For the first iteration in the loop of Algorithm
Greedy, we will greedily choose i∗ as 1 by updating ℓ to 3
and s1 to 3. The second iteration chooses i∗ as 2, and then
ℓ + q2 = 10 > Λ. Therefore, we have a solution S′ with
(s1, s2) = (3, 4) and 20.2 power consumption by updating v2

to the left child of the root of decision tree T2. In the third
iteration, we will then choose i∗ as 2 again by setting s∗

2 to
3 and ℓ to 6. For the next iterations, the algorithm goes to
the rightmost child of decision tree T1, and then ℓ+ qi∗ = 9,



where S′ in this case is with power consumption 35.7. As
a result, Algorithm Greedy will return the solution S† with
(s1, s2) = (3, 4) for this example.

3.3 Analysis of Algorithm Greedy
Based on Algorithm Greedy, we have the following lemma

for feasible solutions.

Lemma 3. For any feasible solution, there must be at least

one activated server mi with frequency level higher than s′
i.

This lemma comes from the definition of s′
i in Algorithm

Greedy where we can guarantee that
P

M

i=1
Li,s′i

< Λ at any
moment.
For the optimal solution S∗ (it exists but is unknown),

suppose that s∗
i is the assigned frequency level of server mi.

Note that if server mi is not activated for serving requests
in S∗, then s∗

i is set as 0. By Lemma 3, there must be at
least one faster server mi in solution S∗, in which s∗

i > s′
i.

We now analyze the power consumption of the derived
solution of Algorithm Greedy, compared to the power
consumption of solution S∗. We first decompose optimal
solution S∗ by running Algorithm Greedy in the loop
between Step 7 and Step 21 in Algorithm 2 as follows:

• If the condition ℓ+ qi∗ < Λ in Step 10 in Algorithm 2
is false and s∗

i ≥ index(vi∗) > s′
i∗ , let this server be

mk∗ and break the loop before Step 19 in Algorithm 2.
• Let s♭

i (v♭
i , respectively) be the frequency level s′

i (vi,
respectively) before breaking the loop.
• Let D∗ be density(vi∗), which is the increased power

density when we break the loop.

Let S♭ be the solution by activating server mi at frequency
levels s♭

i with average request rate Li,s♭i
. Moreover, let

S♯ be the solution by activating server mk∗ at frequency
level index(vk∗) with average request rate Lk∗,index(vk∗ ) and

the other servers mis at frequency levels s♭
i with average

request rate Li,s♭i
. For brevity, let s♯

i (s
♭
i , respectively) be the

frequency level of server mi in solution S♯ (S♭, respectively).
By the definition of S♯ and S♭, we know that

Φ(S♯)− Φ(S♭) ≤ Φ(S∗). (1)
We use the example in Figure 2 for demonstrating how

to construct S♭ and S♯. Suppose that S∗ is with (s∗
1 , s

∗
2) =

(2, 4). For constructing S♯ and S♭, we have the situation
that ℓ + qi∗ ≥ Λ in the second iteration of the loop, and
then we know that s∗

2 = 4 ≥ index(v2∗) = 4 ≥ s′
2 = 4.

Therefore, solution S♯ is with (s♯
1, s

♯
2) = (3, 4) and solution

S♭ is with (s♭
1, s

♭
2) = (3, 0).

Lemma 4. Solution S♯ is a feasible solution for the PMEC

problem, and the power consumption Φ(S♯) is no less than

the power consumption Φ(S†) of the solution S† derived from

Algorithm Greedy.

Proof. By definition, we know that
P

M

i=1
Li,s♭i

< Λ and

Lk∗,index(vk∗ ) +
P

i=1,...,M and i 6=k∗ Li,s
♯
i
≥ Λ. Moreover,

solution S♯ is the same as solution S′ in Step 15 in Algorithm
2, if we do not break the loop (which is the case of Algorithm
Greedy). Therefore, we also know that Φ(S†) ≤ Φ(S♯).

Based on Lemma 4, to show the 2-approximation factor
of Algorithm Greedy, we will simply show

Φ(S♯) ≤ 2Φ(S∗). (2)
By the feasibility of solution S∗ and infeasibility of

solution S♭, we have the following lemma.

Lemma 5.
P

M

i=1
Li,s∗i

≥ Λ >
P

M

i=1
Li,s♭i

.

Proof. By the feasibility condition of solution S∗, we
know that

P

M

i=1
Li,s∗i

≥ Λ. As solution S♭ is infeasible, we

also know that Λ >
P

M

i=1
Li,s♭i

.

By comparing solutions S♭ and S∗, we divide these M
back-end servers into two sets K1 and K2, in which

K1 ←
˘

mi | s
∗

i < s♭
i

¯

, (3a)

K2 ←
˘

mi | s
♭
i ≤ s∗

i

¯

. (3b)
For sets K1 and K2, the following lemmas show important
properties resulting from the decision trees.

Lemma 6. For any server mi in set K1, we have

Pi,s♭i
≤ Pi,s∗i

+D∗
“

Li,s♭i
− Li,s∗i

”

.

Proof. Suppose that v♭
i (v∗

i , respectively) is the vertex
in the decision tree Ti in which index(v♭

i ) (index(v∗
i ),

respectively) is s♭
i (s∗

i , respectively). By the definition of
solution S♭, we have D∗ ≥ density(v♭

i ). Then we have three
cases:

• v∗
i is in the subtree of v♭

i : By Lemma 1 and D∗ ≥
density(v♭

i ), we know that the statement stands.
• v♭

i is in the subtree of v∗
i : By Lemma 2 and D∗ ≥

density(v♭
i ), we know that D∗ ≥ density(v♭

i ) ≥
P
i,s♭i

−Pi,s∗i

L
i,s♭i

−Li,s∗i

, which proves the statement.

• v∗
i and v♭

i are in the left and right subtree of some
vertex V in Ti: By combining the above two cases, we
know that Pi,s♭i

≤ Pi,index(v) + D∗(Li,s♭i
− Li,index(v))

and Pi,index(v) ≤ Pi,s∗i
+D∗(Li,index(v)−Li,s∗i

). Hence,
the statement also holds for this case.

Lemma 7. For any server mi in set K2, we have

Pi,s∗i
≥ Pi,s♭i

+D∗
“

Li,s∗i
− Li,s♭i

”

.

Proof. We use the same notations used in the proof of
Lemma 6. By the definition of solution S♭, we only have
the case, where v∗

i is in the subtree of v♭
i . Moreover, we

know that D∗ ≤
Pi,j−P

i,s♭i
Li,j−L

i,s♭i

for any index j with index(v♭
i ) <

j ≤ end(v♭
i ). As v∗

i is in the subtree of v♭
i , we only have

index(v♭
i ) = s♭

i ≤ s∗
i ≤ end(v♭

i ). Clearly, the statement
holds for both s♭

i = s∗
i and s♭

i ≤ s∗
i .

Based on the above lemmas, we show the approximation
factor of Algorithm Greedy in the following theorem.

Theorem 1. Algorithm Greedy is a polynomial-time 2-
approximation algorithm for the PMEC problem, provided

that all Li,js on server mi at frequency fi,j are given.

Proof. We will first prove Φ(S♭) ≤ Φ(S∗). By Lemma 6,
we know that

X

mi∈K1

Pi,s♭i
≤

X

mi∈K1

Pi,s∗i
+D∗(Li,s♭i

− Li,s∗i
) (4)

Based on Lemma 5, we have
X

mi∈K1

Li,s♭i
− Li,s∗i

< Λ−
X

mi∈K2

Li,s♭i
−

X

mi∈K1

Li,s∗i

≤
X

mi∈K2

Li,s∗i
−

X

mi∈K2

Li,s♭i
.

(5)



Algorithm 3 E-Greedy

Input: average request arrival rate Λ, M servers with
decision trees T1, . . . , TM , QoS requirement R;

Output: a feasible solution under QoS requirement R;

1: let Ŝ be the solution derived from Greedy;
2: for i← 1; i ≤M ; i← i+ 1 do
3: for j ← 1; j ≤ Ki; j ← j + 1 do
4: let S′ be the solution by activating server mi at

frequency fi,j and the other servers by calling
Algorithm Greedy with arrival rates Λ− Li,j ;

5: if S′ is feasible and Φ(S′) < Φ(Ŝ) then

6: Ŝ ← S′;
7: end if
8: end for
9: end for
10: return Ŝ as the solution;

As a result, by Lemma 7, we know

Φ(S♭) <
X

mi∈K1

Pi,s∗i
+

X

mi∈K2

(Pi,s♭i
+D∗(Li,s∗i

− Li,s♭i
))

≤
X

mi∈K1

Pi,s∗i
+

X

mi∈K2

Pi,s∗i
= Φ(S∗). (6)

Therefore, based on Equation (6) and Equation (1), we know
that Φ(S♯) ≤ 2Φ(S∗), which proves the 2-approximation
factor of Algorithm Greedy.
Because the time complexity of Algorithm Greedy is

O(M
P

M

i=1
Ki), we reach the conclusion that Algorithm

Greedy is a polynomial-time 2-approximation algorithm for
the PMEC problem.

3.4 Algorithm E-Greedy
Based on the 2-approximation of Algorithm Greedy, we

are going to present an improved greedy algorithm, called
Algorithm E-Greedy. The approach is to force a server mi

to run at a specified frequency fi,j , and then the rest M −
1 servers are used to serve the rest Λ − Li,j request rate.
Among all (at most

P

M

i=1
Ki feasible) solutions under the

above restriction, we return the best one. The algorithm is
illustrated in Algorithm 3.

Theorem 2. Algorithm E-Greedy is a polynomial-time

1.5-approximation algorithm for the PMEC problem, pro-

vided that all Li,js on server mi at frequency fi,j are given.

Proof. The time complexity is O(M(
P

M

i=1
Ki)

2). We
now focus on the approximation factor. Again, let solutions
S†, S∗, S♭, and S♯ as defined in Section 3.3. Consider the
solution S′ by restricting server mk∗ running at frequency
level s♯

k∗ , where k
∗ is defined while constructing solution S♯.

Let π be P
k∗,s

♯
k∗

. Here are two cases:

• π < 1

2
Φ(S∗): Along with Equation (6) and π ≥

Φ(S♯)− Φ(S♭) , we have
Φ(S†) ≤ Φ(S♭) + π < 1.5Φ(S∗).

• π ≥ 1

2
Φ(S∗): We know that Φ(S∗) − π is the optimal

power consumption for using the M − 1 servers except
mk∗ for serving Λ − L

k♯,s
♯
i
. Hence, due to the 2-

approximation factor of Algorithm Greedy, we have
Φ(S′) ≤ π + 2(Φ(S∗)− π) ≤ 1.5Φ(S∗).

Since Φ(Ŝ) is less than or equal to the above two cases, the
theorem is proved.

Algorithm 4 DP

Input: ǫ, average request arrival rate Λ, M servers, QoS
requirement R, solution of Algorithm Greedy Ψ(S†);

Output: a feasible solution under QoS requirement R;

1: P ♭
i,j ←

j

2MPi,j

ǫΦ(S†)

k

∀1 ≤ i ≤M, 1 ≤ j ≤ Ki;

2: for p← 0; ; p← p+ 1 do
3: for i← 1; i ≤M ; i← i+ 1 do
4: derive Ψi(p) by Equation (9) and Equation (10);
5: end for
6: if ΨM(p) ≥ Λ then
7: P ′ ← p;
8: back-track the dynamic programming entries from

ΨM(P ′) to find the solution Sǫ contributing
toΨM(P ′);

9: return solution Sǫ;
10: end if
11: end for

4. DYNAMIC PROGRAMMING
This section provides a fully polynomial-time approxima-

tion scheme (FPTAS) for the PMEC problem by applying
dynamic programming. An FPTAS for the PMEC problem
is a (1 + ǫ)-approximation algorithm with polynomial-
time complexity by treating 1

ǫ
as an input parameter for

any positive ǫ. Unless NP = P, fully polynomial-time
approximation schemes are the best in terms of polynomial-
time approximation algorithms with worst-case guarantees.

Suppose that Φ(S†) is power consumption of the solution
derived by applying Algorithm Greedy in Section 3. To
derive (more precise) approximated solution, we first derived
the rounded power consumption P ♭

i,j as follows:

P ♭
i,j =

—

2MPi,j

ǫΦ(S†)

�

, (7)

where ǫ is a user-specified parameter for the tolerable
approximation factor. Then, we perform dynamic program-
ming based on the rounded power consumption. Suppose
that Ψi(p) is the maximum average request rate that can be
served by using only servers m1,m2, . . . ,mi with rounded
power consumption no more than p. Hence, for brevity, for
1 ≤ i ≤M , we define

Ψi(p) = −∞ when p < 0. (8)
Suppose that jp is the frequency level j with P ♭

1,j ≤ p <
P ♭

1,j+1 for j < K1. Furthermore, when p is no less than K1,
let jp be K1. The boundary condition of Ψ1(p) for p ≥ 0 is:

Ψ1(p) = Li,jp . (9)
Then, for i ≥ 2, the value of Ψk(p) can be calculated by the
following recursive function:

Ψi(p) =
Ki
max
j=0

˘

Ψi−1(p− P ♭
i,j) + Li,j

¯

. (10)

Suppose that P ′ is the minimum value with ΨM(P ′) ≥ Λ.
By back-tracking the dynamic programming table, we can
derive a solution Sǫ with

P

M

i=1
P ♭

i,sǫi
= P ′ and

P

M

i=1
Li,sǫi

≥
Λ, in which the frequency level on server mi in the solution
is sǫ

i . Algorithm 4 presents the dynamic programming,
denoted by Algorithm DP, in which the detail for back-
tracking is omitted due to space limitation.

The following theorem shows that the quality of the
derived solution Sǫ from the above dynamic programming is
not too far away from the optimum, even in the worse case.

Theorem 3. Deriving Sǫ takes O
`

MKmax
ǫ

+MKmax

´

time

complexity and O
`

M

ǫ
+M

´

space complexity, where Kmax

is maxi=1,2,...,M Ki. For any input instance with feasible



solution S∗,

Φ(Sǫ) ≤ (1 + ǫ)Φ(S∗).

Proof. By the optimality of the dynamic programming,
it is not difficult to see that

M
X

i=1

P ♭
i,sǫi
≤

M
X

i=1

P ♭
i,s∗i

. (11)

Then, by Equation (7) and Equation (11), we have
M

X

i=1

2MPi,s♭i

ǫΨ(S†)
≤M +

M
X

i=1

2MPi,s∗u

ǫΨ(S†)
(12)

⇒ Φ(Sǫ) ≤
ǫΦ(S†)

2
+ Φ(S∗) ≤1 (1 + ǫ)Φ(S∗), (13)

where ≤1 comes from the fact Φ(S†) ≤ 2Φ(S∗).
We now prove the complexity. Since the dynamic pro-

gramming algorithm returns a solution with P ′ =
P

M

i=1
P ♭

i,sǫi
.

The space complexity is hence

O(MP ′) = O

„

2MΦ(Sǫ)

ǫΦ(S∗)
+M

«

= O

„

M

ǫ
+M

«

. (14)

Similarly, the time complexity is O(MKmax
ǫ

+ MKmax)
since the time complexity for deriving an entry Ψi(p) is
O(Ki).

5. PERFORMANCE EVALUATION
This section provides performance evaluation for the

proposed power management schemes, including Greedy,
E-Greedy, and DP. To demonstrate the generality of our
approach, three QoS models are applied, i.e., the M/M/1 [8]
queuing model, the M/G/1PS [9] queuing model, and a soft
real-time model similar to[6]. All results in this experiment
are mean values of 10 different runs on an Intel Xeon CPU
with 3.06GHz.

5.1 Simulation Setting
To evaluate how heterogeneity affects the power consump-

tion, a 4-tuple (fi,max, ci, αi, βi) is used to compute the
power consumption. Variables fi,max, ci, αi and βi are
random variables within range [1, 4], [20, 80], [200, 400], and
[2, 5], denoting the maximum speed, the constant power
consumption, the CPU performance coefficient, and the
frequency coefficient of server mi, respectively. The power
consumption of a deactivated server is assumed to 0. The
operating frequencies are discretized into 10 scaling levels
by uniform distribution within range (0, fi,max). The power
consumption for server mi at frequency f is Pi(f) = ci+βi ·
f3, as adopted in [8, 3, 5] as well. For evaluation, we evaluate
cases with 100 and 200 back-end servers, considering three
QoS models as follows.
M/M/1 Queuing Model [8]: In this model, the

average response time is used as the QoS constraint. As
a result, Li,j(R) = fi,j · αi −

1

R
where R is the average

response time given for the QoS control. Since R only
introduces constant offset, the setting of R only has minor
effect. Therefore, we set R as 1 in our experiment. For
comparison, we also simulate an algorithm extended from
the TP-CP-OP algorithm developed in [8] which assumes
continuous frequencies. To find a feasible solution for
discrete frequencies, the closest upper frequency on each
server is used

”
denoted as R-TP-CP-OP.

M/G/1 PS Queuing Model [9]: In this model, job
arrivals to the servers follow a Poisson distribution. The
QoS constraint is the mean response time E[R] = 0.38 sec.

The resulting Li,j(R) = (µ ·r− 1

E[R]
) 1

fi,j
where 1/µ = 38ms

is the mean job-execution time and r =
fi,j

fi,max
is the speed

ratio of the execution speed to the maximum speed of server
mi. We do not compare with the approaches in [9] since they
focus on homogeneous servers.

Soft Real-Time Request (SRR) Model: The SRR
model is similar to the one in [6] and considers only dynamic
requests. The execution time of a request follows a normal
distribution with mean λ = 24.5ms and deviation δ =
60ms. The deadline of a request is D = 200ms. The
QoS constraint is that the probability of all requests that
will not miss their deadlines is R = 95%. The Li,j(R) is
thus defined as the maximal Li,j such that the probability
of Li,j · λ < fi,j · D is 0.95. In this experiment, we use
the inverse cumulative distribution function of the normal
distribution (Li,j ·λ,

p

Li,j · δ2) coupled with a binary search
to find Li,j(R).

To vary the average request rate, we first compute
the maximum tolerable request rate Λmax of the cluster,
P

M

i=1
Li,Ki

(R). For an input average request rate Λ, the
load ratio is defined as Λ

Λmax
. A lower bound of the optimal

solution is computed as the baseline, which is obtained by
adding density(vi∗)ℓ

Λ−ℓ

qi∗
to the solution when Algorithm 2

hitting the condition ℓ+ qi∗ ≥ Λ. For comparison, all power
consumption reported are normalized with respect to the
computed lower bounds.

5.2 Simulation Results
Figure 4 illustrates the normalized power consumption of

a 100-server cluster for the aforementioned three models. As
shown in the figure, our schemes reasonably approximate
the lower bounds for all cases. In general, better results
are achieved when the load ratio increases. Especially
for cases of load ratio larger than 0.5, our schemes derive
solutions that consume less than 3% additional power
consumption for all three models, compared to the lower
bounds. The second observation is that since Algorithm
R-TP-CP-OP uses a fixed order of servers according to
high workload (80% of the maximal average request rate
on servers), the decision for activating servers might be
only sub-optimal, as depicted in Figure 4a. Note that, in
Figures. 4b and 4c, we only compare our results with the
computed lower bounds, because the approaches presented
in [9, 6] apply exhaustive search and exact method to
compute the optimum, respectively, the complexity of which
constrains these approaches to clusters with small scales.

We also present the impact of the ǫ to Algorithm DP for all
three QoS models in Figure 5 for a cluster with 200 servers.
As expected, the smaller ǫ, the better approximation is
obtained, at the cost of longer computation time. One
observation is that that impact of varying the ǫ becomes
more significant as the load ratio increases. The reason is
that with a larger load, the exploration space is larger, and
a higher ǫ would result in more errors for rounding down the
power consumption in (7). From the figure, we can conclude
that 0.05 is a proper value for ǫ. Further smaller values are
not necessary.

Figure 6 depicts the computation time of our algorithms
for a 200-server cluster. As shown in the figure, the time
to compute a solution for this cluster is reasonably fast
for all three algorithms. Algorithm GREEDY takes only
a few milliseconds while the slowest one, i.e. Algorithm
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Figure 4: Normalized power consumption of a 100-server cluster for the three QoS models with ǫ = 0.05 for Algorithm DP.
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Figure 5: Varying the ǫ for all three models for a 200-server cluster.
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Figure 6: Computation time for all three models for a 200-server cluster.

E-GREEDY, is still in the range of seconds. Note that
the computation time for Algorithm R-TP-CP-OP is not
included, because it takes hours even for the 100-server case.
From this figure, we can conclude that our algorithms are
also suitable for time-critical large-scale clusters.

6. CONCLUSION
This paper explores the power management problem for a

heterogeneous cluster to minimize the power consumption
while guaranteeing quality of service constraints. We
propose approximation algorithms to provide tradeoffs of
approximation guarantees in power consumption minimiza-
tion with time/space complexity. Simulation results show
that the proposed schemes are effective for minimizing the
power consumption.
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