
Gradient Clock Synchronization
in Wireless Sensor Networks

Philipp Sommer
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

sommer@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT
Accurately synchronized clocks are crucial for many ap-
plications in sensor networks. Existing time synchro-
nization algorithms provide on average good synchro-
nization between arbitrary nodes, however, as we show
in this paper, close-by nodes in a network may be syn-
chronized poorly. We propose the Gradient Time Syn-
chronization Protocol (GTSP) which is designed to pro-
vide accurately synchronized clocks between neighbors.
GTSP works in a completely decentralized fashion: Ev-
ery node periodically broadcasts its time information.
Synchronization messages received from direct neigh-
bors are used to calibrate the logical clock. The algo-
rithm requires neither a tree topology nor a reference
node, which makes it robust against link and node fail-
ures. The protocol is implemented on the Mica2 plat-
form using TinyOS. We present an evaluation of GTSP
on a 20-node testbed setup and simulations on larger
network topologies.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design

General Terms
Algorithms, Measurements

Keywords
Sensor Networks, Time Synchronization, Clock Drift,
Implementation, Experiments

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’09, April 13–16, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-371-6/09/04 ...$5.00.

1. INTRODUCTION
A wireless sensor network is a promising novel tool for

observing natural phenomena at large scale or high res-
olution. Without doubt, time is a first-class citizen in
wireless sensor networks. Without accurate time (and
similarly location) information, sensed data often loses
valuable context. Although one can imagine applica-
tions where the “when and where” of the sensed data is
of no great concern, a majority of applications will pre-
fer to tag the measured data with a timestamp. Such a
timestamp will only be meaningful if the nodes in the
wireless sensor network manage to have an adequate
agreement of time. Indeed, there are sensor networks
that can estimate the location of an event, simply by
using trilateration on an acoustic signal [22, 2].

In addition, time synchronization is significant as sen-
sor network protocols make use of time in various forms.
Media access control using TDMA needs accurate time
information, so that transmissions do not interfere. Sim-
ilarly, to save energy, sensor network protocols often
employ advanced duty-cycling schemes, and turn off
their radio if not needed [3]. An accurate time helps to
save energy by shortening the necessary wake-up guard
times.

Although each sensor node is equipped with a hard-
ware clock, these hardware clocks can usually not be
used directly, as they suffer from severe drift. No matter
how well these hardware clocks will be calibrated at de-
ployment, the clocks will ultimately exhibit a large skew.
To allow for an accurate common time, nodes need to
exchange messages from time to time, constantly ad-
justing their clock values.

Although multi-hop clock synchronization has been
studied extensively in the last decade, we believe that
there are still facets which are not understood well, and
eventually need to be addressed. One such issue is lo-
cality: Naturally, one objective in clock synchroniza-
tion is to minimize the skew between any two nodes in
the network, regardless of the “distance” between them.
This is known as global clock skew minimization. Indis-



�

� �

�

�

�
�

�

� �

�

�

�
�

	

�

�

� �

�

�

�
�

Figure 1: On the left we see a typical sensor network; edges between sensor nodes indicate a bidirec-
tional communication link. The center figure represents a tree-based synchronization protocol with
node 0 as reference clock (root), where every node in the tree synchronizes with its parent; in this
example we would expect nodes 4 and 6 to synchronize suboptimally even though they are direct
neighbors, because they are part of different subtrees. Finally, on the right we see the idea of a gra-
dient synchronization protocol: Every node synchronizes with all its neighbors in the communication
graph. No root node is necessary.

putable, having two far-away nodes well-synchronized
is a noble goal, but is it really what we require most?
In this paper, we argue that accurate clock synchro-
nization between neighboring nodes is often at least as
important. In fact, all examples mentioned earlier toler-
ate a suboptimal global clock synchronization: Guessing
the location of a commonly sensed acoustic signal needs
a precise clock synchronization between all the nodes
that are able to sense the signal. Similarly, in a MAC
layer that is optimized for throughput or energy, we
care that possibly interfering (neighboring) nodes have
a precise clock. In contrast, global skew is not of great
concern, it is perfectly tolerable if far-away nodes have
larger pair-wise error. This is known as local clock skew
minimization. Optimally, we would like to have a clock
synchronization protocol that is precise in the direct
neighborhood, and maybe a bit less so in the extended
neighborhood.

Current state-of-the-art multi-hop clock synchroniza-
tion protocols such as FTSP [14] are designed to opti-
mize the global skew. However, as we will show in this
paper, there is room for improvement regarding the lo-
cal skew. This is not really surprising, as FTSP and
similar protocols work on a spanning tree, synchroniz-
ing nodes in the tree with their parents, and ultimately
with the root of the tree. Neighboring nodes which
are not closely related in the tree, i.e., where the clos-
est common ancestor even is the root of the tree, will
not be synchronized well because errors propagate down
differently on different paths of the tree, see Figure 1.
Eliminating all the deterministic sources of errors, the
remaining two-hop error would be totally symmetric in
the best case [23]. Indeed, every hop will experience
some kind of inevitable random error δ. As randomly
distributed errors sum up according to the square-root
function on each hop, the expected error between head

and tail of a chain of k nodes is in the order of δ
√
k.

Therefore, two nodes that are not in the same subtree
rooted at the reference node are expected to experience
an error in the order of the square-root of their distance
in the tree.

In the theory community, clock synchronization has
been studied for many years, recently with a focus on
the local (also known as gradient) clock skew, e.g., [6,
12]. The goal of this paper is to investigate whether
these theoretical insights carry over to practice. In par-
ticular, in Sections 4 and 5, we will propose the Gra-
dient Time Synchronization Protocol (GTSP), a clock
synchronization protocol that excels primarily at local
clock synchronization. It is inspired by a long list of the-
oretical papers, originating in the distributed computing
community [9, 13, 24, 17], lately also being adopted by
the control theory community [21]. As such, GTSP is
completely distributed, relying only on local informa-
tion, requiring no reference node or tree construction.
We argue that this approach results in a better average
synchronization between neighbors while still maintain-
ing a tolerable global skew. A thorough evaluation of
our algorithm is performed on a testbed of Mica2 sensor
nodes, and by simulations (Sections 6-9).

2. RELATED WORK
Clearly, clock synchronization has been studied ex-

tensively, long before the advent of wireless sensor net-
works. The classic solution is an atomic clock, such as
in the global positioning system (GPS). Equipping each
sensor node with a GPS receiver is feasible, but there
are limitations in the form of cost and energy. Moreover,
line of sight to the GPS satellites is needed, limiting the
use to outdoor applications.

Classical clock synchronization algorithms rely on the
ability to exchange messages at a high rate which may



not be possible in wireless sensor networks. Traditional
time synchronization algorithms like the Network Time
Protocol (NTP) [16] are due to their complexity not well
suited for sensor network applications. Moreover, as
their application domain is different, they are not accu-
rate enough for our purpose, even in a LAN they may
experience skew in the order of milliseconds.

Sensor networks require sophisticated algorithms for
clock synchronization since the hardware clocks in sen-
sor nodes are often simple and may experience signif-
icant drift. Also, in contrast to wired networks, the
multi-hop character of wireless sensor networks com-
plicates the problem, as one cannot simply employ a
standard client/server clock synchronization algorithm.

As research in sensor networks evolved during the last
years, many different approaches for time synchroniza-
tion were proposed. Römer presents a system [19] where
events are time-stamped with the local clock. When
such a timestamp is passed to another node, it is con-
verted to the local timestamp of the receiving node.

Reference Broadcast Synchronization (RBS) [5] ex-
ploits the broadcast nature of the physical channel to
synchronize a set of receivers with one another. A refer-
ence node is elected within each cluster to synchronize
all other nodes. Since differences in the propagation
times can generally be neglected in sensor networks, a
reference message arrives at the same instant at all re-
ceivers. The timestamp of the reception of a broadcast
message is recorded at each node and exchanged with
other nodes to calculate relative clock offsets. RBS is
designed for single-hop time synchronization only. How-
ever, nodes which participate in more than one cluster
can be employed to convert the timestamps between lo-
cal clock values of different clusters. Pulses from an
external clock source attached to one node, for example
a GPS receiver, can be treated like reference broadcasts
to transform the local timestamps into UTC.

The Timing-sync Protocol for Sensor Networks
(TPSN) [7] aims to provide network-wide time synchro-
nization. The TPSN algorithm elects a root node and
builds a spanning tree of the network during the ini-
tial level discovery phase. In the synchronization phase
of the algorithm, nodes synchronize to their parent in
the tree by a two-way message exchange. Using the
timestamps embedded in the synchronization messages,
the child node is able to calculate the transmission de-
lay and the relative clock offset. However, TPSN does
not compensate for clock drift which makes frequent re-
synchronization mandatory. In addition, TPSN causes
a high communication overhead since a two-way mes-
sage exchange is required for each child node.

These shortcomings are tackled by the Flooding-Time
Synchronization Protocol (FTSP) [14]. A root node
is elected which periodically floods its current time-

stamp into the network forming an ad-hoc tree struc-
ture. MAC layer time-stamping reduces possible sources
of uncertainty in the message delay. Each node uses a
linear regression table to convert between the local hard-
ware clock and the clock of the reference node. The
root node is dynamically elected by the network based
on the smallest node identifier. After initialization, a
node waits for a few rounds and listens for synchroniza-
tion beacons from other nodes. Each node sufficiently
synchronized to the root node starts broadcasting its
estimation of the global clock. If a node does not re-
ceive synchronization messages during a certain period,
it will declare itself the new root node.

The Routing Integrated Time Synchronization proto-
col (RITS) [20] provides post-facto synchronization. De-
tected events are time-stamped with the local time and
reported to the sink. When such an event timestamp is
forwarded towards the sink node, it is converted from
the local time of the sender to the receiver’s local time
at each hop. A skew compensation strategy improves
the accuracy of this approach in larger networks.

A completely distributed synchronization algorithm
was proposed in [25]. The Reachback Firefly Algorithm
(RFA) is inspired from the way neurons and fireflies
spontaneously synchronize. Each node periodically gen-
erates a pulse (message) and observes pulses from other
nodes to adjust its own firing phase. The authors re-
port that a synchronization accuracy of 100μs can be
achieved with this approach. RFA only provides syn-
chronicity, nodes agree on the firing phases but do not
have a common notion of time. Another shortcoming
of RFA is the fact that it has a high communication
overhead.

The fundamental problem of clock synchronization
has been studied extensively and many theoretical re-
sults have been published which give bounds for the
clock skew and communication costs [13, 17]. Srikanth
and Toueg [24] presented a clock synchronization algo-
rithm which minimizes the global skew, given the hard-
ware clock drift.

The gradient clock synchronization problem was first
introduced by Fan and Lynch in [6]. The gradient prop-
erty of a clock synchronization algorithm requires that
the clock skew between any two nodes is bounded by the
distance (uncertainty in the message delay) between the
two nodes. They prove a lower bound for the clock skew
of Ω(d+ logD

log logD ) for two nodes with distance d, whereD
is the network diameter. This lower bound also holds if
delay uncertainties are neglected and an adversary can
decide when a sync message will be sent [15]. Recently,
Lenzen et al. [10] proposed a distributed clock synchro-
nization algorithm guaranteeing clock skewO(logD) be-
tween neighboring nodes while the global skew between
any two nodes is bounded by O(D).



3. SYSTEM MODEL
In this section, we introduce the system model used

throughout the rest of this paper. We assume a network
consisting of a number of nodes equipped with a hard-
ware clock subject to clock drift. Furthermore, nodes
can convert the current hardware clock reading into a
logical clock value and vice versa.

3.1 Hardware Clock
Each sensor node i is equipped with a hardware clock
Hi(·). The clock value at time t is defined as

Hi(t) =
∫ t
t0

hi(τ) dτ + Φi(t0)

where hi(τ) is the hardware clock rate at time τ and
Φi(t0) is the hardware clock offset at time t0.

It is assumed that hardware clocks have bounded drift,
i.e., there exists a constant 0 ≤ ρ < 1 such that

1− ρ ≤ h(t) ≤ 1 + ρ

for all times t. This implies that the hardware clock
never stops and always makes progress with at least
a rate of 1 − ρ. This is a reasonable assumption since
common sensor nodes are equipped with external crystal
oscillators which are used as clock source for a counter
register of the microcontroller. These oscillators exhibit
drift which is only gradually changing depending on the
environmental conditions such as ambient temperature
or battery voltage and on oscillator aging. This allows
to assume the oscillator drift to be relatively constant
over short time periods. Crystal oscillators used in sen-
sor nodes normally exhibit a drift between 30 and 100
ppm.1

3.2 Logical Clock
Since other hardware components may depend on a

continuously running hardware clock, its value should
not be adjusted manually. Instead, a logical clock value
Li(·) is computed as a function of the current hardware
clock. The logical clock value Li(t) represents the syn-
chronized time of node i. It is calculated as follows:

Li(t) =
∫ t
t0

hi(τ) · li(τ) dτ + θi(t0)

where li(τ) is the relative logical clock rate and θi(t0)
is the clock offset between the hardware clock and the
logical clock at the reference time t0. The logical clock is
maintained as a software function and is only calculated
on request based on a given hardware clock reading.

1ppm = parts per million. An oscillator with 100 ppm run-
ning at 1 MHz drifts apart 100μs in one second.

4. SYNCHRONIZATION ALGORITHM
In this section, we describe our distributed clock syn-

chronization algorithm. The basic idea of the algorithm
is to provide precise clock synchronization between di-
rect neighbors while each node can be more loosely syn-
chronized with nodes more hops away.

In a network consisting of sensor nodes with perfectly
calibrated clocks (no drift), time progresses at the same
rate throughout the network. It remains to calculate
once the relative offsets amongst the nodes, so that they
agree on a common global time. However, real hardware
clocks exhibit relative drift in the order of up to 100 ppm
leading to a continually increasing synchronization error
between nodes.

Therefore, it is mandatory to repeat the synchroniza-
tion process frequently to guarantee certain bounds for
the synchronization error. However, precisely synchro-
nized clocks between two synchronization points can
only be achieved if the relative clock drift between nodes
is compensated. In structured clock synchronization al-
gorithms all nodes adapt the rate of their logical clock
to the hardware clock rate of the reference node. This
approach requires that a root node is elected and a tree
structure of the network is established. Synchroniza-
tion algorithms operating on structured networks have
to cope with topology changes due to link failures or
node mobility.

In a clock synchronization algorithm which should be
completely distributed and reliable to link and node fail-
ures, it is not practicable to synchronize to the clock
of a reference node. Therefore, our clock synchroniza-
tion algorithm strives to agree with its neighbors on the
current logical time. Having synchronized clocks is a
twofold approach, one has to agree both on a common
logical clock rate and on the absolute value of the logical
clock.

4.1 Drift Compensation
We define the absolute logical clock rate xi(t) of node
i at time t as follows:

xi(t) = hi(t) · li(t)
Each node i periodically broadcasts a synchronization

beacon containing its current logical time Li(t) and the
relative logical clock rate li(t). Having received beacons
from all neighboring nodes during a synchronization pe-
riod, node i uses this information to update its absolute
logical clock rate as follows:

xi(tk+1) =

(∑
j∈Ni xj(tk)

)
+ xi(tk)

|Ni|+ 1
(1)

where Ni is the set of neighbors of node i.



It is important to note that in practice node i is unable
to adjust xi itself since it has no possibility to measure
its own hardware clock rate hi. Instead, it can only
update its relative logical clock rate li = xi

hi
as follows:

li(tk+1) =

(∑
j∈Ni

xj(tk)
hi(tk)

)
+ li(tk)

|Ni|+ 1
(2)

We have to show that using this update mechanism
all nodes converge to a common logical clock rate xss
which means that:

lim
t→∞xi(t) = lim

t→∞hi(t) · li(t) = xss,∀i
We assume that the network is represented as a graph
G(V,E) with the nodes as vertices and edges between
nodes indicating a communication link between the two
nodes. Using matrix multiplication the update of the
logical clock rates performed in Equation (1) can be
written as:

x(t+ 1) = A(t) · x(t)
where the vector x = (x1, x2, . . . , xn)T contains the log-
ical clock rates of the nodes. The entries of the n × n
matrix A are defined in the following way:

aij =
{ 1
|Ni|+1 {i, j} ∈ E
0 otherwise

where |Ni| is the degree of node i. Since all rows
of matrix A sum up to exactly 1, it is row stochastic.
Initially, the logical clock of each node i has the same
rate as the hardware clock (xi(0) = hi(0)) since the
logical clock is initialized with li(0) = 1. It can be
shown that all the logical clock rates will converge to a
steady-state value xss:

lim
t→∞x(t) = xss1 (3)

The convergence of Equation (3) depends on whether
the product

∏∞
t=0A(t) of non-negative stochastic ma-

trices has a limit. It is well-known that the product
of row stochastic matrices converges if the graph cor-
responding to matrices A(t) is strongly connected [26,
4].

4.2 Offset Compensation
Besides having all nodes agreed on the rate the logical

clock is advanced, it is also necessary to synchronize
the actual clock values itself. Again, the nodes have to
agree on a common clock value, which can be obtained
by calculating the average of the clock values as for the
drift compensation. A node i updates its logical clock
offset θi as follows:

θi(tk+1) = θi(tk) +
∑
j∈Ni Lj(tk)− Li(tk)
|Ni|+ 1

(4)

However, using the average of all neighbors as the new
clock value is problematic if the offsets are large. During
node startup, the hardware clock register is initialized to
zero, resulting possibly in a huge offset to nodes which
are already synchronized with the network. Such a huge
offset would force all other nodes to turn back their
clocks which violates the causality principle. Instead, if
a node learns that a neighbor’s clock is further ahead
than a certain threshold value, it jumps to the neighbors
clock value.

By employing this bootstrap mechanism, a node join-
ing the network gets synchronized quickly with the rest
of the network. In the worst case it can take up to O(D)
time to have all nodes loosely synchronized, where D is
the diameter of the network. Since the logical clock rate
of a node which recently joined the network may not be
synchronized with the network yet, its clock value will
start to drift apart immediately after the initial syn-
chronization point. The resulting synchronization er-
ror is bounded by the hardware clock drift accumulated
during a synchronization interval.

4.3 Computation and Memory Requirements
Computation of the logical clock rate involves floating

point operations. Since most sensor platforms support
integers only, floating point arithmetic has to be em-
ulated using software libraries which are computation
intensive. However, since the range of the logical clock
rate is bounded by the maximum clock drift, compu-
tations can greatly benefit from the use of fixed point
arithmetic.

Besides the computational constrains of current sen-
sor hardware, data memory is also very limited and the
initial capacity of data structures has to be specified
in advance. The synchronization algorithm requires to
store information about the relative clock rates of its
neighbors which are used in Equation (2). Since the
capacity of the data structures is limited, the maximal
number of neighbors a node accounts for in the calcu-
lations is also limited and a node possibly has to dis-
card crucial neighbor information. However, ignoring
messages from a specific neighbor does still lead to con-
sensus as long as the resulting graph remains strongly
connected. Since the capacity constraints are only a
problem in very dense networks, it is very unlikely that
a partitioning of the network graph is introduced.

4.4 Energy Efficiency
Radio communication consumes a large fraction of the

energy budget of a sensor node. While the microcon-
troller can be put into sleep mode when it is idle, thus
reducing the power consumption by a large factor, the
radio module still needs to be powered to capture incom-
ing message transmissions. Energy-efficient communi-



cation protocols, e.g., [18], employ scheduled radio duty-
cycling mechanisms to lower the power consumption
and thus prolonging battery lifetime. Since the exact
timing when synchronization messages are sent is not
important, GTSP can be used together with an energy-
efficient communication layer. In addition, a node can
estimate the current synchronization error to its neigh-
bors from the incoming beacons in order to dynamically
adapt the interval between synchronization beacons. If
the network is well synchronized, the beacon rate can be
lowered to save energy. The communication overhead of
GTSP is comparable with FTSP since both algorithms
require each node to broadcast its time information only
once during a synchronization period.

5. IMPLEMENTATION
This section describes the implementation of our gra-

dient clock synchronization algorithm on the Mica2 sen-
sor nodes using the TinyOS operating system.

5.1 Target Platform
The hardware platform used for the implementation

of the algorithm is the Mica2 sensor node from Cross-
bow. It features an ATmega128L low-power microcon-
troller from Atmel with 4 kB of RAM, 128 kB program
ROM and 512 kB external flash storage. The CC1000
radio module has been designed for low-power appli-
cations and offers data rates up to 76.8 kBaud using
frequency shift keying (FSK).

The ATmega128L microcontroller has two built-in 8-
bit timers and two built-in 16-bit timers. The Mica2
board is equipped with two different quartz oscillators
(32 kHz and 7.37 MHz) which can be used as clock
sources for the timers. Timer3 is configured to operate
at 1/8 of the oscillator frequency (7.37 MHz) leading to
a clock frequency of 921 kHz. Since Timer3 is sourced by
an external oscillator it is also operational when the mi-
crocontroller is in low-power mode. We employ Timer3
to provide our system with a free-running 32-bit hard-
ware clock which offers a precision of a microsecond.
This approach on the Mica2 node offers better clock
granularity as compared to more recent hardware plat-
forms which lack a high frequency external oscillator,
see Table 1.

Platform CPU clock Quartz crystal
Mica2 8 MHz 32 kHz, 7.37 MHz
IRIS 8 MHz 32 kHz, 7.37 MHz
TinyNode 8 MHz 32 kHz
Tmote Sky 8 MHz 32 kHz

Table 1: Comparison of clock sources for com-
mon sensor network hardware platforms.

5.2 TinyOS Implementation
The implementation of GTSP on the Mica2 platform

is done in TinyOS 2.1. The protocol implementation
provides time synchronization as service for an applica-
tion running on the mote. The architecture of the time
synchronization component and its relation to other sys-
tem components is shown in Figure 2.

Application

Time Sync

Radio Hardware Clock

Time Synchronization Component

Logical Clock

Figure 2: Architecture of the time synchroniza-
tion service and its integration within the hard-
ware and software platform. Arrows indicate
the flow of information between different com-
ponents.

The TimeSync module periodically broadcasts a syn-
chronization beacon containing the current logical time
Li(t) and the relative logical clock rate li(t). Each node
is overhearing messages sent by neighboring nodes. The
timestamp contained in the synchronization beacons is
used to update the current offset between the hardware
and the logical time and the rate of the logical clock
according to Equations (2) and (4). The hardware and
logical time when the most recent synchronization bea-
con of each neighbor has been received is stored in a
neighbor table.

By overhearing synchronization beacons a node will
learn when a node joins its neighborhood. When no
beacon messages were received from a node for several
consecutive beacon intervals, the link to this node is as-
sumed to be broken and the node is removed from the
neighbor table. The capacity of the neighbor table is
limited by the data memory available on the node. An
upper bound for the required capacity is the maximum
node degree in the network. However, as long as the re-
sulting network graph stays connected it is possible to
ignore synchronization beacons from a specific neigh-
bor. The default capacity of the neighbor table in our
implementation is set to 16.

Furthermore, the time interval between synchroniza-
tion beacons can be adapted dynamically. This allows
to increase the frequency of beacons during the boot-
strap phase or when a new node has recently joined
the network. On the other side, if the system is in the
steady-state, i.e., all nodes are quite well synchronized
to their neighbors, reducing the number of sent beacons
can save energy.



BYTE 1 BYTE 2 BYTE 3 BYTE 4

BYTE_TIME

t
b1 b2 b3 b4t1 t2 t4t3

SFD BYTE 1 BYTE 2

t
b1

BYTE 3

t1

Figure 3: Timestamping at the MAC Layer: An interrupt (solid arrow) is generated if a complete
byte is received by the CC1000 radio chip. Dashed arrows indicate the time when the interrupt
handler takes the timestamp for the current byte (left). Packet oriented radio chips like the CC2420
generate a single interrupt when the start frame delimiter (SFD) has been received (right).

5.3 MAC Layer Timestamping
Broadcasting time information using periodic beacons

is optimal in terms of the message complexity since the
neighbor is not forced to acknowledge the message as in
sender-receiver synchronization schemes (e.g., TPSN).
However, the propagation delay of a message cannot be
calculated directly from the embedded timestamps. Ex-
changing the current timestamp of a node by a broad-
cast introduces errors with magnitudes larger than the
required precision due to non-determinism in the mes-
sage delay. The time it takes from the point of time
where the message is passed to the communication stack
until it reaches the application layer on a neighboring
node is highly non-deterministic due to various sources
of errors induced in the message path [8, 7]. Reduc-
ing the main sources of errors by time-stamping at the
MAC layer is a well-known approach, e.g., the FTSP
time-stamping scheme [14]. The current timestamp is
written into the message payload right before the packet
is transmitted over the air. Accordingly, at the receiver
side the timestamp is recorded right after the preamble
bytes of an incoming message have been received.

Byte-oriented radio chips, e.g., the CC1000 chip of
the Mica2 platform, generate an interrupt when a com-
plete data byte has been received and written into the
input buffer. The interrupt handler reads the current
timestamp from the hardware clock and stores it in the
metadata of the message. However, there exists some
jitter in the reaction time of the interrupt handler for
incoming radio data bytes.

The concurrency model of TinyOS requires that asyn-
chronous access to shared variables has to be protected
by the use of atomic sections [11]. An interrupt signaled
during this period is delayed until the end of the atomic
block. To achieve clock synchronization with accuracy
in the order of a few microseconds, it is inevitable to
cope with such cases in order to reduce the variance
in the message delay. Therefore, each message is time-
stamped multiple times both at the sender and receiver
sides.

The radio chip generates an interrupt at time bi when
a new data byte has arrived or is ready to be transmit-
ted. The interrupt handler is invoked and reads the cur-

rent hardware clock value at time ti as shown in Figure
3. The time it takes the radio chip to transmit a single
byte over the air is denoted by the BYTE_TIME. This
constant can be calculated directly from the baud rate
and encoding settings of the radio chip. Due to the fact
that it takes BYTE_TIME to transmit a single byte,
the following equation holds for all timestamps:

bi−1 ≤ ti − BYTE_TIME
Using multiple timestamps, it is hence possible to

compensate for the interrupt latency. A better estima-
tion for the timestamp of the i-th byte can calculated
as follows:

t′i = min(ti, t′i+1 − BYTE_TIME)
The timestamps of the first six bytes are used to es-

timate the arrival time of a packet. A single timestamp
for this packet is then calculated by taking the aver-
age of these timestamps. Packet-oriented radio chips as
the CC2420 (MicaZ or TmoteSky) or the RF230 (IRIS
mote) unburden the microcontroller from handling ev-
ery byte transmission separately. Instead, a single inter-
rupt is generated when the start frame delimiter (SFD)
has been received. Subsequent bytes of the payload are
written directly into the FIFO receive buffer. There-
fore, compensating jitter in the interrupt handling time
is not possible with packet-oriented radio chips.

Three Mica2 nodes were used to calibrate the MAC
layer time-stamping. One node is continuously trans-
mitting messages to the receiver node. Both nodes raise
an output pin when the interrupt handler responsible
for the time-stamping is executed. This corresponds to
the points in time when a byte is time-stamped. The
output pins are connected by wires to the input pins of
a third node which is configured to trigger an interrupt
on a rising edge. The time difference between the send
and receive interrupts corresponds to the transmission
delay. In this measurement setup, the propagation de-
lay is ignored since it is very small for typical sensor
networks, i.e., less than 1μs for a distance of 300 me-
ters. By exchanging roughly 70,000 calibration packets,
an average transmission delay of 1276 clock ticks with a



standard deviation of 1.95 ticks was observed. Figure 4
shows the variance observed in the measurements of the
transmission delay. It can be clearly seen that large er-
rors in the transmission delay are introduced without a
sophisticated mechanism to compensate for the latency
in the interrupt handling.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  10  20  30  40  50  60

M
ea

su
re

m
en

ts

Ticks

Figure 4: Measurements of the latency in the
interrupt handling for the Mica2 node.

6. EVALUATION
In the following sections of this paper, we evaluate

the performance of the Gradient Time Synchronization
Protocol (GTSP). Evaluating clock synchronization al-
gorithms is always an issue since various performance
aspects can be evaluated, e.g., precision, energy con-
sumption, or communication overhead. In this paper,
we restrict our evaluation to the precision achieved by
the synchronization algorithm. Measuring the instan-
taneous error between logical clock of different nodes is
only possible at a common time instant, e.g., when all
nodes can observe the same event simultaneously. A
general practice when evaluating time synchronization
algorithms for sensor networks is to transmit a mes-
sage as a reference broadcast. All nodes are placed in
communication range of the reference broadcaster. The
broadcast message arrives simultaneously at all nodes (if
the minimal differences in the propagation delay are ne-
glected) and is time-stamped with the hardware clock.
The corresponding logical clock value is used to cal-
culate the synchronization error to other nodes. Two
different metrics are used throughout the evaluation in
this paper: the Average Neighbor Error measures the
average pair-wise differences in the logical clock values
of nodes which are direct neighbors in the network graph
while the Average Network Error is defined as the av-
erage synchronization error between arbitrary nodes.

7. TESTBED EXPERIMENTS
We evaluated the implementation of GTSP by exper-

iments on a testbed which consists of 20 Mica2 sensor
nodes. Experiments with the identical setup are also
performed for FTSP which is the standard time syn-
chronization protocol in TinyOS. All nodes are placed
in close proximity forming a single broadcast domain.
In addition, a base station node is attached to a PC to
log synchronization messages sent by the nodes. To fa-
cilitate measurements on different network topologies, a
virtual network layer is introduced in the management
software of the sensor nodes. Each node can be config-
ured with a whitelist of nodes from which it will further
process incoming messages, packets from all other nodes
are ignored. Using this virtual network layer different
network topologies can be enforced by software.

The base station periodically broadcasts probe mes-
sages to query the current logical time of all the nodes.
The interval between time probes is uniformly distributed
between 18 and 22 seconds. To reduce radio collisions
with time synchronization messages, nodes do not reply
with the current time value. Instead, the current lo-
cal timestamp and the estimated logical timestamp are
logged to the external flash memory.

7.1 Experimental Results for GTSP
At the begin of the experiment, the configuration pa-

rameters for GTSP were set for all nodes. The synchro-
nization algorithm was started on every node at random
during the first 30 seconds of the experiment. Synchro-
nization beacons are broadcasted every 30 seconds. The
offset threshold parameter is set to 10. Therefore, a
node adjust its logical clock value if the logical clock of
a neighbor is further ahead than 10μs. Right after the
initialization all nodes have zero logical clock offset and
the rate of the logical clock corresponds to the hardware
clock rate. We denote the period between synchroniza-
tion beacons by P and the network diameter by D. It
takes up to D · P time until all nodes raised their log-
ical clock to the value of the node having the highest
hardware clock value. After having received the second
beacon from a neighboring node, nodes can estimate the
rate of the neighbor’s logical clock (relative to the local
hardware clock). To reduce the effects of jitter in the
message delay, the estimated clock rates of the neigh-
bors are filtered by a moving average filter with α = 0.6.
The experiments lasted for approximately 6 hours which
resulted in around 1000 time probes logged to the flash
storage of the sensor nodes. The measurement results
for GTSP on a ring of 20 Mica2 nodes is depicted in
Figure 5. It can be seen that GTSP achieves an average
synchronization error between neighbors of 4.0μs after
the initialization phase has been completed (t > 5000s).
The average network synchronization error is 14.0μs for



 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

N
ei

gh
bo

r S
yn

ch
ro

ni
za

tio
n 

E
rr

or
 (u

s)

Time (s)

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

N
et

w
or

k 
S

yn
ch

ro
ni

za
tio

n 
E

rr
or

 (u
s)

Time (s)

Figure 5: Average neighbor (4.0μs) and network synchronization errors (14.0μs) measured for GTSP
on a ring of 20 Mica2 nodes.

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

N
ei

gh
bo

r S
yn

ch
ro

ni
za

tio
n 

E
rr

or
 (u

s)

Time (s)

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

N
et

w
or

k 
S

yn
ch

ro
ni

za
tio

n 
E

rr
or

 (u
s)

Time (s)

Figure 6: Average neighbor (5.3μs) and network synchronization errors (7.7μs) measured for FTSP
on a ring of 20 Mica2 nodes.

the same interval. For our testbed setup consisting of
20 nodes placed in a ring, it takes roughly 30 minutes
until the algorithm converges which is comparable to
the convergence time of FTSP, see next subsection.

7.2 Comparison with FTSP
The same network topology was used to compare the

performance of GTSP with FTSP which is considered
to be the state-of-the-art time synchronization protocol
for wireless sensor networks. The default parameter set-
tings from TinyOS 2.1 were used for FTSP, see Table 2.
The measurement results for FTSP on a ring of 20 nodes
are shown in Figure 6. The time it takes FTSP to syn-
chronize all nodes to the reference node highly depends
on the network diameter and the placement of nodes in
the network. Again, the time synchronization algorithm
is started on all nodes in a random sequence during the
first 30 seconds of the experiment. Newly initialized

nodes do not send synchronization beacons during an
initial period which is determined by the ROOT_TIMEOUT
parameter. If no other beacons are received during that
period, a node declares itself as the new root node and
starts broadcasting beacons. Therefore, multiple root
nodes are present right after the beginning of the ex-
periment. When a node learns about another root node
with a lower identifier than the current root, it switches
its root node and adapts its regression table to the log-
ical time of the new root node. If the regression ta-
ble contains more than ENTRY_SEND_LIMIT entries, the
node retransmits the logical clock of its current root
node. Due to this behavior of FTSP, it takes roughly
30 minutes until all nodes are synchronized to a com-
mon logical clock in our setup. We argue that GTSP
provides better synchronized clocks during the initial-
ization phase of the algorithm compared to FTSP since
clock values are propagated immediately through the



 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

N
ei

gh
bo

r S
yn

ch
ro

ni
za

tio
n 

E
rr

or
 (u

s)

Time (s)

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

N
ei

gh
bo

r S
yn

ch
ro

ni
za

tio
n 

E
rr

or
 (u

s)

Time (s)

Figure 7: Neighbor synchronization error between Node 8 and Node 15 on the ring of Figure 8 for
GTSP (left) and FTSP (right). GTSP achieves an average error of 2.8μs with a standard deviation
of 2.1μs for t>5000s. FTSP achieves an average error of 15.0μs with a standard deviation of 12.4μs
for t>5000s.

network. Although not in the focus of this paper, this
may be an advantage of GTSP in dynamic networks.
After FTSP has converged at t > 5000s, we measured
an average neighbor synchronization error of 5.3μs and
a network error of 7.7μs.

Protocol parameter Value
Synchronization period 30s
ROOT_TIMEOUT 5
IGNORE_ROOT_MSG 4
ENTRY_SEND_LIMIT 3

Table 2: Protocol parameters for FTSP.

FTSP implicitly creates an ad-hoc tree on the net-
work graph by flooding the network with the logical
time of the root. Only synchronization beacons con-
taining a higher sequence number are added to the re-
gression table, other packets are ignored. Therefore, the
ring network depicted in Figure 8 is split into two sub-
trees rooted at Node 1. The leaves of these subtrees are
Node 8 and Node 15, respectively. Although Node 8
is receiving synchronization beacons from Node 15, this
time information is ignored since it contains the same
sequence number as previously received from Node 20.
Therefore, Node 8 and Node 15 do not synchronize to
each other in contrast to the local synchronization ap-
proach presented in GTSP. Figure 7 shows the synchro-
nization error between Node 8 and Node 15 for both
protocols. Our measurement results show that GTSP
provides a better neighbor synchronization compared
to FTSP. One might argue that this ring example looks
“cooked-up” and that a ring topology does not happen
often in practice. While this is true, we insist that the

point we make is valid in general, as many reasonable
network topologies (e.g., uniform random distribution,
grid topology) do not allow a tree embedding with low
stretch. In any sensible network topology, FTSP will
have neighboring nodes that have a tree distance in the
order of the diameter of the network. Therefore, the
effects shown in Figure 7 will always occur in real-world
network topologies even though at a smaller scale. Ex-
periments on a 4x5 grid topology with FTSP showed
that neighboring nodes can have a large stretch (e.g.,
we experienced a stretch up to 13) when the node iden-
tifiers are assigned randomly and nodes were started in
a random order.

1

6

7

14

2

3

16

11

18

9

5

10

19

17

13

4

12

20

15

8

Figure 8: The ring synchronization problem: Al-
though Node 8 and Node 15 are direct neighbors
in the ring, they are leaves of two different sub-
trees rooted at Node 1.

8. SIMULATIONS
In addition to the experiments performed on the test-

bed, we implemented GTSP in a network simulator [1].
Simulating an algorithm can never supersede an exper-
imental evaluation on a testbed since it is infeasible to
simulate the exact behavior of the hardware (e.g., inter-
rupt latency, interferences). However, simulations are
a good way to gain a first impression on how the algo-
rithm performs on a large scale network.



 1

 10

 100

 1000

 10000

 100000

 10  20  30  40  50  60  70  80  90  100

N
ei

gh
bo

r S
yn

ch
ro

ni
za

tio
n 

E
rr

or
 (u

s)

Nodes

Grid
Ring
List

 1

 10

 100

 1000

 10000

 100000

 10  20  30  40  50  60  70  80  90  100

N
et

w
or

k 
S

yn
ch

ro
ni

za
tio

n 
E

rr
or

 (u
s)

Nodes

Grid
Ring
List

Figure 9: Average neighbor (left) and network synchronization errors (right) measured by simulations
of the Gradient Time Synchronization Protocol (GTSP) on different network topologies.

For the simulation of the sensor nodes, we modeled
the hardware clock of a node in software. At the start
of a simulation run, each node is initialized with a ran-
dom hardware clock drift of 30 ppm and a random start
value. Although MAC layer time-stamping schemes (see
Section 5.3) can reduce large variances in the trans-
mission delay, there always remains some jitter in the
message delay which affects the time synchronization.
For the simulations the variances in the message delay
are modeled by a normally distributed random variable
with zero mean and a standard deviation of 2. We mea-
sured the average synchronization error between neigh-
bors and the average network-wide synchronization er-
ror for different network topologies. For each network
setting we averaged the errors over 10 different simula-
tion runs. The results are depicted in Figure 9.

The algorithm performs best when the nodes form a
grid which has the smallest network diameter amongst
the studied topologies. Not surprisingly, the worst clock
accuracy is achieved when the nodes are placed in a
line, forming a network with maximal diameter. The
simulation results clearly show that the synchronization
error between neighbors is increasing with the network
diameter.

9. CONCLUSION AND FUTURE WORK
Sensor network applications can greatly benefit from

synchronized clocks to perform data fusion or energy-
efficient communication. A perfect clock synchroniza-
tion algorithm should fulfill a handful of different prop-
erties at the same time: precise global and local time
synchronization, fast convergence, fault-tolerance, and
energy-efficiency. Classical time synchronization algo-
rithms used in wireless sensor networks strive to opti-
mize the global clock skew. However, we argue that

many practical applications will benefit from minimiz-
ing local clock skew.

In this paper, we presented the Gradient Time Syn-
chronization Protocol (GTSP) which is a completely
distributed time synchronization protocol. Nodes pe-
riodically broadcast synchronization beacons to their
neighbors. Using a simple update algorithm, they try to
agree on a common logical clock with their neighbors. It
can be shown by theoretical analysis that by employing
this algorithm, the logical clock of nodes converge to a
common logical clock. GTSP relies on local information
only, making it robust to node failures and changes in
the network topology.

Experiments on a testbed setup of 20 Mica2 nodes and
simulations showed that the remaining synchronization
error between neighbors is small while still maintaining
an acceptable global skew. Furthermore, we have shown
that GTSP can improve the synchronization error be-
tween neighboring sensor nodes compared to tree-based
time synchronization protocols.

The goal of this paper is to bridge the gap between
theory and practice in the area of clock synchronization
for sensor networks. The proposed time synchronization
protocol is intended to be used as the ground for further
research in this area.

10. ACKNOWLEDGMENTS
We would like to thank Nicolas Burri, Branislav Kusy

and Christoph Lenzen for their comments and sugges-
tions which helped us to improve this paper. Further-
more, we thank the anonymous reviewers for their valu-
able comments.

11. REFERENCES
[1] Sinalgo - Simulator for Network Algorithms.

http://dcg.ethz.ch/projects/sinalgo/.



[2] M. Allen, L. Girod, R. Newton, S. Madden, D. T.
Blumstein, and D. Estrin. VoxNet: An
Interactive, Rapidly-Deployable Acoustic
Monitoring Platform. In IPSN ’08: Proceedings of
the 7th international conference on Information
processing in sensor networks, 2008.

[3] N. Burri, P. von Rickenbach, and R. Wattenhofer.
Dozer: Ultra-low Power Data Gathering in Sensor
Networks. In IPSN ’07: Proceedings of the 6th
international conference on Information
processing in sensor networks, 2007.

[4] M. Cao, A. S. Morse, and B. D. O. Anderson.
Reaching a Consensus in a Dynamically Changing
Environment: Convergence Rates, Measurement
Delays, and Asynchronous Events. SIAM J.
Control Optim., 47(2), 2008.

[5] J. Elson, L. Girod, and D. Estrin. Fine-Grained
Network Time Synchronization using Reference
Broadcasts. In OSDI ’02: Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation, 2002.

[6] R. Fan and N. Lynch. Gradient Clock
Synchronization. In PODC ’04: Proceedings of the
twenty-third annual ACM symposium on
Principles of distributed computing, 2004.

[7] S. Ganeriwal, R. Kumar, and M. B. Srivastava.
Timing-sync Protocol for Sensor Networks. In
SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor
systems, 2003.

[8] H. Kopetz and W. Ochsenreiter. Clock
Synchronization in Distributed Real-Time
Systems. IEEE Trans. Comput., 36(8), 1987.

[9] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[10] C. Lenzen, T. Locher, and R. Wattenhofer. Clock
Synchronization with Bounded Global and Local
Skew. In 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2008.

[11] P. Levis. TinyOS Programming.
http://csl.stanford.edu/~pal/pubs/tinyos-
programming.pdf.

[12] T. Locher and R. Wattenhofer. Oblivious
Gradient Clock Synchronization. In 20th
International Symposium on Distributed
Computing (DISC), 2006.

[13] J. Lundelius and N. A. Lynch. An upper and
lower bound for clock synchronization.
Information and Control, 62(2/3):190–204, 1984.

[14] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi.
The Flooding Time Synchronization Protocol. In
SenSys ’04: Proceedings of the 2nd international

conference on Embedded networked sensor
systems, 2004.

[15] L. Meier and L. Thiele. Brief announcement:
Gradient clock synchronization in sensor
networks. In PODC ’05: Proceedings of the
twenty-fourth annual ACM symposium on
Principles of distributed computing, 2005.

[16] D. Mills. Internet Time Synchronization: the
Network Time Protocol. IEEE Transactions on
Communications, 39(10):1482–1493, Oct 1991.

[17] R. Ostrovsky and B. Patt-Shamir. Optimal and
Efficient Clock Synchronization Under drifting
Clocks. In PODC ’99: Proceedings of the
eighteenth annual ACM symposium on Principles
of distributed computing, 1999.

[18] J. Polastre, J. Hill, and D. Culler. Versatile Low
Power Media Access for Wireless Sensor
Networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked
sensor systems, 2004.

[19] K. Römer. Time Synchronization in Ad Hoc
Networks. In MobiHoc ’01: Proceedings of the 2nd
ACM international symposium on Mobile ad hoc
networking & computing, 2001.

[20] J. Sallai, B. Kusy, A. Ledeczi, and P. Dutta. On
the scalability of routing integrated time
synchronization. 3rd European Workshop on
Wireless Sensor Networks (EWSN), 2006.

[21] L. Schenato and G. Gamba. A distributed
consensus protocol for clock synchronization in
wireless sensor network. 46th IEEE Conference on
Decision and Control, 2007.

[22] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh,
B. Kusy, A. Nádas, G. Pap, J. Sallai, and
K. Frampton. Sensor network-based countersniper
system. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked
sensor systems, 2004.

[23] P. Sommer and R. Wattenhofer. Symmetric Clock
Synchronization in Sensor Networks. In ACM
Workshop on Real-World Wireless Sensor
Networks (REALWSN), 2008.

[24] T. K. Srikanth and S. Toueg. Optimal Clock
Synchronization. J. ACM, 34(3), 1987.

[25] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh,
and R. Nagpal. Firefly-Inspired Sensor Network
Synchronicity with Realistic Radio Effects. In
SenSys ’05: Proceedings of the 3rd international
conference on Embedded networked sensor
systems, 2005.

[26] J. Wolfowitz. Products of Indecomposable,
Aperiodic, Stochastic Matrices. Proceedings of the
American Mathematical Society, 14(5), 1963.


