Versioning Tree Structures by Path-Merging

Khaireel A. Mohamed, Tobias Langner, and Thomas Ottmann

Albert-Ludwigs-Universitdt Freiburg, D-79110 Freiburg, Germany
{khaireel,langneto,ottmann}@informatik.uni-freiburg.de

Abstract. We propose path-merging as a refinement of techniques used
to make linked data structures partially persistent. Path-merging sup-
ports bursts of operations between any two adjacent versions in con-
trast to only one operation in the original variant. The superiority of
the method is shown both theoretically and experimentally. Details of
the technique are explained for the case of binary search trees. Path-
merging is particularly useful for the implementation of scan-line algo-
rithms where many update operations on the sweep status structure have
to be performed at the same event points. Examples are algorithms for
planar point location, for answering intersection queries for sets of hori-
zontal line segments, and for detecting conflicts in sets of 1-dim IP packet
filters.

Subject Classifications: E.1 [Datal: Data Structures — trees; E.2 [Datal:
Data Storage Representations — linked representations; F.2.2 [Analysis
of Algorithms and Problem Complexity| Nonnumerical Algorithms
and Problems — Geometrical problems and computations.

Keywords: Partial persistence, path-merging, path-copying, node-
copying.

1 Introduction

A data structure supporting access to multiple versions is called a persistent
data structure, and to date, there are various problems in computer science
where such structures are often sought after. This is mainly due to their elegance
of maintaining a historical list of the ever-changing primary structure through
efficient update operations, and then providing convenient ways to get to the
archived data by means of well-designed access operations.

There are mainly two different degrees of persistence; partial and full. A par-
tially persistent structure allows only read access to previous versions, while a
fully persistent structure allows write access to earlier versions, on top of the
read access. In this article, we shall concentrate on the former degree of persis-
tence and discuss the two well-known, classical methods of making linked data
structures persistent, namely the ‘path-copying’ method and the ‘node-copying’
method. Our perusal of the two methods shall be applied primarily onto binary
search tree (BST) structures.

As their names suggest, the path-copying method reproduces an entire path
in the BST to effect a single update operation, while the node-copying method

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 101-[ITT2 2008.
© Springer-Verlag Berlin Heidelberg 2008

102 K.A. Mohamed, T. Langner, and T. Ottmann

copies only single nodes (one node in amortized average) per update operation.
An update operation creates a new persistent version in the BST. But ever
so often, in many domain specific applications, we find that we do not actually
require every single one of these versions. Suffice to keep only those versions that
we find essential and remove all others as they play no significant part in the
broader view of the application it ministers. However, we cannot simply delete
those non-essential intermediate versions, as in a partially persistent BST, nodes
in one version may share subtrees belonging to other versions.

Hence, we introduce our path-merging technique to show how we can com-
prehensively collate and properly link the non-essential intermediate versions to
keep only those versions we think are essential. The correctness of our technique
leads to the cost savings in both time and space when compared to the original
methods it overlays.

2 Implications of Access Operations in Partially
Persistent Structures

Following a series of successful update operations on a partially persistent linked
data structure 7, we can acquire and assemble a previously persisted version
with an access operation. For the purpose of our deliberations, we shall exploit
7 as a partially persistent binary search tree (BST), where an access operation
refers to a search for an item or items in 7, at some past version v; given a query
object g. The accessed set forms a path in 7 that starts at the root at v;, and
is extended one node at a time, ensuing an access heuristic until the desired
items matching the query ¢ are found. Particularly, we shall discuss the access
heuristic of Sarnak and Tarjan’s path-copying method [I] and Driscoll et al.’s
node-copying method [2], which will lead to the discourse of our path-merging
method later on in this article.

Let us first observe the importance of access operations in persistent data
structures when they are used to support surrogate applications.

2.1 Planar Point Location

The key to efficiently solve the planar point location problem is to build a sys-
tematically organized data structure to represent a planar subdivision S of n
edges. In order to report the face f of S that contains a given query point ¢, de
Berg et al. [3] showed how to decompose S into a trapezoidal map T'(S), which
uses O(n) space and answers the query in O(logn) time.

An alternative method introduced by Sarnak and Tarjan [I] is to use a par-
tially persistent RB-BST as an improvement over Cole’s [4] persistent representa-
tion of sorted sets. This also answers the same query in O(logn) time. The space
consumption, however, depends on the method of persistence; the path-copying
method takes up O(nlogn) space, while the node-copying method requires O(n)
storage.

Vertical lines are drawn through each vertex in S which split the plane into
O(n) slabs as shown in Fig. [[l(a). Each slab contains the edges of S, which are

Versioning Tree Structures by Path-Merging 103

associated to the faces just above them, ordered from bottom to top. An RB-
BST 7 is first built for the left-most slab to hold the sorted edges. Afterwhich,
a left to right sweep is carried out on all the slabs, stopping at each vertical
line and persisting 7 by creating one new version for every update operation.
The z-coordinate value of the vertical line is also augmented to the top-most
version pointer during the update operation, and these are indexed in another
balanced BST on a higher level. This vertical partitioning of the subdivision
gives us exactly 2n update operations; where at every vertical line, one edge is
deleted at version v; and one other edge is inserted at version v;4;.

Thus, to locate the face f in which ¢ lies, we first perform an O(logn) time
search on the upper level BST to locate the correct version of 7 corresponding
to the x-coordinate of ¢, and then access 7 at version v,, to perform a second
O(logn) time search using the y-coordinate of ¢ to determine the correct f.

|
J

Fig. 1. (a) Planar point location problem. (b) Stabbing range query g on a set of n
horizontal line-segments.

2.2 Range Query of Horizontal Line-Segments

We can apply a similar technique as we did before in handling the point location
problem with a persistent data structure when we are presented with a set S
of n horizontal line-segments. Given a vertical query range ¢, we are to report
all the line-segments in S that intersect ¢q. Again, we draw vertical lines at both
endpoints of each line-segment, splitting the plane into at most 2n — 1 slabs
as depicted in Fig. [[[b). Each slab contains the line-segments in S sorted in
ascending y order. We then perform an identical sweepline approach to build a
partially persistent RB-BST 7 on the slabs, such that at every encounter of the
vertical line [;, all line-segments whose left-endpoints match [; are inserted into
7 and all other line-segments whose right-endpoints match [; are deleted from
7. Every single one of these update operations creates a new version of 7, and
unlike the slabs in the point location problem, we tend to face an arbitrarily
many insertions and deletions per vertical line as we transit between adjacent
slabs during the sweep.

Using the resultant partially persistent structure, we can report the solution
in time O(logn + k), where k is the number of line-segments in S intersecting
the vertical range q. Like before, we first execute a binary search to access the
correct version v, of T where ¢ lies, and then perform a range query on 7 at v,
to return the active line-segments that intersect q.

104 K.A. Mohamed, T. Langner, and T. Ottmann

2.3 Essential and Non-essential Versions

Clearly, as evidenced by the two examples above, it is not necessary to persist
every single version, every time we perform an update operation. It is sufficient
to store only those versions that are the collective results of multiple update
operations after completely handling an event point. In other words, the ver-
sions that we persist must be substantially essential, such that all other versions
leading to an essential version will have no effect on the overall correctness of
the application that 7 serves. Thus, we should be able to omit the non-essential
versions in the partially persistent 7 without breaking the temporal flow of the
essential versions within.

3 Merging Non-essential Versions in Partially Persistent

BSTs

Our problem involving the partially persistent data structures laid out in the
previous section is what Driscoll et al. and Sarnak and Tarjan [2[T] termed the
“persistent sorted set” problem. Here, we maintain a set of elements that changes
over time, where each element has a distinct key that is comparable to all other
keys in the elements in the same set, such that these keys can be totally ordered.
The BST 7 is a structure that represents such a set, where it contains one element
per node arranged in a symmetric ordering.

We begin by characterizing the different types of nodes that can exist during
the intercession of two adjacent essential versions of 7. As we collate the series of
non-essential versions effected on 7 by the corresponding series of intermediate
update operations, we need to distinguish the set of ephemeral nodes from the
set of persistent nodes. They tend to appear simultaneously in 7 amidst this
transition period, but always in a some formal ordering.

An ‘ephemeral node’ is a node created during an intermediate update oper-
ation and is ephemerally modifiable until it becomes a persistent node, or until
it is deleted. On the other hand, a ‘persistent node’ is a versioned node belong-
ing to an existing persistent version v; of 7, and that any modification on it is
strictly not allowed.

Let v,,—1 be the latest essential version of a partially persistent BST 7 under
our path-merging technique. Let v,, be the next essential version of 7 to be
spawned. Let all intermediate versions contributing to the non-essential versions
of 7 between v,,_1 and v, be v},. Then 7 at version v}, is a ‘semi-ephemeral’
BST containing both ephemeral nodes and persistent nodes. Note that v, may
change over time.

3.1 Path-Merging Via Path-Copying

Sarnak and Tarjan [I] compiled from several sources and presented the idea of
the path-copying method to make a linked data structure persistent. During an
update operation on 7, we copy only those nodes that are effected by the said
operation and percolate the copying procedure to any node with a direct pointer

Versioning Tree Structures by Path-Merging 105

to the copied nodes. Consequently, if 7 is a BST, then entire paths from the
effected nodes to the roots are copied, creating a set of search trees for all the
partially persistent versions of 7, having different roots per version but sharing
common subtrees.

In our path-merging technique, only the first update operation that imme-
diately follows the successful persistence of the latest essential version v, 1,
adheres to the original path-copying method. This effectively gives us a new
semi-ephemeral BST rooted at v},. The newly copied path forms a set of linked
ephemeral nodes in v}, . All other nodes linked from the subtrees of the ephemeral
nodes in v}, belong to other partially persistent versions of 7, and they make up
the set of persistent nodes in v},. All subsequent update operations contributing
to the non-essential versions of 7 shall begin with a search at the root at v},.
Note that each update will change v}, .

Fig. 2. Path-merging via path-copying. Version wvg: Insert {14, 6, 34, 38, 26, 10, 2, 18,
30, 22, 11, 12, 9}. Version v1: {Insert {17}, Insert{28}, Delete {14}, Rotate-Left {6}},
showed in sequence from (a) to (d), respectively. The BST rooted at vi during the
intercession is a semi-ephemeral structure. Red nodes are ephemeral nodes, and black
nodes are persistent nodes.

Let x be a node in v}, in which an update operation will be effected upon,
and let ¢(x) denote an ephemeral copy of the node z. Then we only need to copy
the persistent nodes in v}, if our search for x breaks away from the traversal
of the path of ephemeral nodes. We note here that a newly created copy of a
persistent node is an ephemeral node.

The next two rules complete the handling of the path-merging technique once
we have identified the node z:

106 K.A. Mohamed, T. Langner, and T. Ottmann

1. If x is an ephemeral node, then we treat the update operation on x as a
normal ephemeral instruction, overriding the effects of a previous operation
made on .

2. If x is a persistent node, then we perform the update operation on ¢(z).

Fig. 2 shows an example of path-merging four successive intermediate update
operations between vy and vy, with each sub-figure showing an intermediate
update operation.

After a series of 7 intermediate update operations, the “net” set of ephemeral
nodes in v}, is the result of merging i non-essential versions of the original path-
copying method of persistence. What is left to be executed in persisting this set
of merged paths for the next essential version of 7 is to set the status of all the
ephemeral nodes in version v,, to ‘persistent’. Since the set of ephemeral nodes
in v, is a connected subtree at the root, we can carry out this change of status
in time proportional to the number of ephemeral nodes in v, using a simple
depth-first traversal.

3.2 Path-Merging Via Node-Copying

The node-copying method was conceived to eliminate the shortcomings of the
naive fat node method. Where there can be arbitrarily many outgoing pointers
in a fat node in a persistent structure, a node following the node-copying method
is allowed to have only a fixed number of such pointers.

In fact, Driscoll et al. [2] showed that the improved node for the persistent
BST 7 needs to store, apart from its key element, only three obligatory pointers:
one left pointer, one right pointer, and one other modification pointer, each with
a version stamp. When such a node becomes full, we create a new copy of the
node containing only the newest value of each pointer field. Also, as was with
the case of the path-copying method, every time we copy an existing node, its
predecessor must be informed of the change. In this case, the parent of the copied
node must update its modification pointer to point to the newly copied node and
accorded the newest version stamp. But if the parent is also full, then the parent
too, must be copied. This copy-percolation process may end up with the root
itself being copied.

Accessing Persisted Versions. Unlike the path-copying method where every
update operation always produces a new root, the node copying method tends to
be more conservative in its expansion of the main tree structure. Every update
operation leaves a distinct version stamp in the pointers to the nodes inside T
that are effected by the operation. Thus, traversing a persistent BST 7 made by
the node-copying method must abide by the following access heuristic (which is
similar to the access heuristic of the fat node method):

1. Find the correct root for a given version v;.
2. Traverse the nodes by choosing only pointers with the maximum version
stamp that is less than or equal to v;.

Versioning Tree Structures by Path-Merging 107

Intermediate Update Operations. As before, let = be a node in v}, in which
an update operation will be effected upon, and let ¢(z) denote an ephemeral copy
of the node z.

We impose a slight variant on the original node-copying procedures in our
path-merging technique when an update operation contributes to a non-essential
version. Navigating and manipulating this conservative structure of 7 at version
vy, influenced by the node-copying method, requires a different kind of atten-
tion to be paid when managing the internal nodes. This is not as forthright
as compared to the more discernible arrangement of ephemeral and persistent
nodes in 7 created by the path-copying method. That is, whenever we access 7
at v, to search for the node x, we may end up retrieving a path from the root
to x that contains both ephemeral and persistent nodes, in random sequence!
Furthermore, the nodes in 7 have an additional modification pointer field that
exhibits special properties when we apply our path-merging technique via the
node-copying method.

Hence, here, we extend the notions of our earlier terminologies so as to apply
them to the context of the node-copying method, in order to handle the path-
merging procedure efficiently.

At one end of the access-spectrum, we have the persistent nodes. A ‘persistent’
node is a versioned and full node in 7 belonging to an existing essential version,
and is strictly unmodifiable. By full, we mean that this persistent node has
its key and all three of its pointer fields, particularly the modification pointer,
assigned to objects (even to a null object). On the opposite end of the spectrum,
lies the ephemeral nodes. An ‘ephemeral’ node in 7 is always created during
an intermediate update operation at version v}, , either as a new entity or as an
ephemeral copy of an existing persistent node. All the contents in this ephemeral
node are ephemerally modifiable, and remain so until the node is deleted, or
until the node is versioned at v,,. What is now left to be considered are those
nodes that are in the middle of the spectrum, and they fit neither of the two
descriptions above. We shall call them semi-persistent nodes.

An ephemeral node becomes a ‘semi-persistent’ node, if and only if its mod-
ification pointer is empty at the time of spawning a new essential version of 7.
In other words, only its key and its left and right pointers can be versioned. The
modification pointer, left untouched, is ephemerally modifiable by any future
update operation, and remains so as long as the node is in transition. Further-
more, the semi-persistent node becomes a persistent node if at the next essential
version vy, the modification pointer is no longer empty.

Given an intermediate update operation, we first invoke the access heuristic on
T at version v, (or at version v,,_1 if v}, does not yet exist) and traverse 7 until
we arrive at the node = in which to effect the operation. We then execute the
node-copying method on z implicitly, while explicitly adhering to an additional
set of rules when administering any nodal changes.

Rule 1. If z is an ephemeral node, then we treat the update operation on x
as a normal ephemeral instruction, overriding the effects of a previous
operation made on x.

108 K.A. Mohamed, T. Langner, and T. Ottmann

P

Fig. 3. For example, deleting {14} from (a) results in (b), where the dotted red nodes
are ephemeral nodes and all others are semi-persistent nodes. Note that {17} was
deleted in (a) without consequence following Rule 1 below, and a copy of the root was
made in (b) following Rule 3(a).

Rule 2. If z is a persistent node, then we perform the update operation on ¢(z).
Rule 3. If x is a semi-persistent node, then we react according to the update
operation as follows:

(a) If the update operation changes the key in z, then we perform the change
of key in ¢(x).

(b) If the update operation changes the modification pointer of x without
causing a node-contention, then we simply execute the change. We give a
further explanation of what a node-contention is in the next sub-section.

(c) If the update operation changes the modification pointer of = and causes
a node-contention, then we make a copy of x and resolve the conflict
between x and the update operation, in the new ¢(z).

In addition to the rules above, the pointers in every intermediate update
operation effecting or effected by = shall carry the version stamp v},. Fig. @l
depicts an example of path-merging the same four successive intermediate update
operations as performed in the previous section.

After a series of 7 intermediate update operations, the “net” set of ephemeral
nodes is again the result of merging 7 non-essential versions of the original node-
copying method. The partially persistent BST 7 in Fig. @l underwent exactly the
same sequence of intermediate update operations as was in the case of the tree

Versioning Tree Structures by Path-Merging 109

produced in Fig. @l The stark difference between both these trees is that the
ephemeral nodes in Fig. [are sporadically dispersed, rather than being ordered
as a proper subtree as we saw in Fig.

Hence, it may require an O(n) effort to locate the ephemeral nodes in 7 at
vy, in order to change their access statuses when spawning the next essential
version v,,. One way to counter this problem is not to find them at all in the
first place. That is, instead of stamping v}, to pointers effecting « when execut-
ing intermediate update operations, we simply stamp the identity of the next
essential version v,,. Since each node knows which essential version it belongs
to, past or future, stamping the version v, during the merging of non-essential
versions holds for our path-merging technique via the node-copying method.

Fig. 4. Path-merging via node-copying. Version vo: Insert {14, 6, 34, 38, 26, 10, 2, 18,
30, 22, 11, 12, 9}. Version v1: {Insert {17}, Insert{28}, Delete {14}, Rotate-Left {6} }.
Dotted red nodes are ephemeral nodes. Red nodes are ‘marked’ semi-persistent nodes.

Node-Contentions in Semi-persistent Nodes. A ‘node-contention’ can oc-
cur only in a semi-persistent node during its transition between two essential
versions. The contention is caused between a current update operation and the
non-empty modification pointer in the node. More specifically, it happens when
the modification pointer is already pointing to an object meant to override the
node’s right (left) pointer, while the current update operation contains an in-
struction to override the node’s left (right) pointer.

When such a case happens, and if we are to replace the modification pointer
in favour of the instruction, we then end up with an incorrect routing path
in 7. And since we cannot modify the node’s original left and right pointers,
we resolve this contention by making an ephemeral copy of this semi-persistent
node, and directly assign its new left and right pointers from the instruction and
from the reference from the original modification pointer. Afterwhich, we delete
the modification pointer in the original node to complete the reassignment.

For example, suppose we need to handle one more intermediate update oper-
ation in v} in Fig. @l - to Delete {2}. A search for the node z in vj to effect the
delete operation returns the parent of the node {2}, so that © = node {6} and
where x is a semi-persistent node. Now, in order to delete {2}, we need the left
pointer of z to be null. Since z is a semi-persistent node, we can only change

110 K.A. Mohamed, T. Langner, and T. Ottmann

its modification pointer. However, its modification pointer is already assigned to
point right to node {9}, and that overriding this pointer will be erroneous to vy.
Thus, we make a copy of x and resolve the contention by assigning the latest
left and right pointers to the new ephemeral ¢(x) = copy(node {6}), and then
remove the modification pointer in the original x. The result is shown in Fig.

Fig. 5. Resolving a node-contention: Deleting {2} from v} in Fig. @ where the parent
node {6} = = was a semi-persistent node, which would have triggered a node-contention
if 2 was deleted without checking

4 Analysis of the Path-Merging Technique

The time required for a single update operation in the path-merging technique is
the same as the time taken to execute a single update operation by the original
underlying methods of path-copying and node-copying [2I1]. However, we note
the stern reduction in the overall time by a large factor in the path-merging
technique, since no ephemeral nodes are copied more than once.

In terms of space consumption, the path-merging techniques surpass both
its predecessors’, as it supports bursts of operations between any two essential
versions. That is, only the “net” set of ephemeral nodes, which comes from the
resultant set of newly created nodes after merging the non-essential versions,
contributes to the net increase in space after ¢ intermediate operations. This net
increase can even be zero, particularly for the path-merging via node-copying
technique, in the case that exactly the same set of keys is inserted into and
then deleted from 7 several times during the transition period between essential
versions. This, compared to the original node-copying method which will end
up spawning entire paths after O(h) insertions and deletions of a single key,
resulting in A+ (h—1) +...4+ 1 = O(h?) additional space, where h is the height
of the BST 7.

Using the examples in Section 2] we can expect to see a significant reduc-
tion in storage space when using the path-merging technique; particularly for
the problem of the ‘Range Query of Horizontal Line-Segments’, where we can
anticipate handling arbitrarily many insertions and deletions at an event point.
Furthermore, our benchmarked results in Fig. [f] proves the space efficiency be-
tween the original path-copying method versus our path-merging technique. For

Versioning Tree Structures by Path-Merging 111

w
w

ER

)
I
N
\
|
)
I
Ay
\
|

r el 1 ----- Path-copying

,_‘
I
\

N
|
—
I
\
.
|

- Path-merging

Stored nodes / 10°
\

Stored nodes / 10°
\

(=]
T
N
s
\
\
\
(=]
\

Lol
0O 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Version
Fig. 6. Space complexity comparison between ‘path-merging via path-copying’ and the
original ‘path-copying’ methods. Graphs show the execution of 2'* operations between
v and vi41.

the complete details of the benchmarking process, the reader is invited to check
out the work by Langner [5].

5 Conclusion

The pertinence of the path-merging technique reignites the relevance of the ap-
plicative components of the classical path-copying and node-copying methods in
partially persistent data structures. The technique’s strengths lie in their sub-
tle, yet effective ways of merging non-essential versions of the original underlying
methods of persistence to derive efficient time and space bounds, that are primed
for handling applications where it makes sense to store only the substantially
essential versions.

We conclude with a real-world example to prove the usefulness of the path-
merging technique. We invite the reader to review our completed works of de-
tecting conflicts in internet router tables [GI7I8], where the 1-dim IP packet filters
resemble that of the horizontal line-segments on the plane, similar to the problem
discussed in Section 2.2l In the summarized context of the IP-Lookup problem, ¢
is taken to be an incoming packet filter and becomes a stabbing query for the set S
of n filters. We need to return the most-specific filter that ¢ stabs. The advantage
in this case is two-fold: We were able to solve the conflict detection problem in
optimal time of O(n log n) — while building the partially persistent structure; and
then utilize the benefits of path-merging’s space saving output to store the entire
conflict-free set S, which is immediately ready for packet classification.

Now, to appreciate the solution to this problem better, usually, we would re-
quire two separate structures to handle the two independent problems of conflict
detection and packet classification. But by executing path-merging as described
above, we are able to unite them and take advantage of path-merging’s adeptness
to kill two birds with one stone.

Acknowledgement

This research is funded by the Deutschen Forschungsgemeinschaft (DFG) as
part of the research project ,,Algorithmen und Datenstrukturen fiir ausgewéhlte
diskrete Probleme (DFG-Projekt Ot64/8-3) .

112 K.A. Mohamed, T. Langner, and T. Ottmann

References

1. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Com-
munications of the ACM 29(7), 669679 (1986)

2. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures per-
sistent. In: STOC 1986: Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, pp. 109-121. ACM Press, New York (1986)

3. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Ge-
ometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

4. Cole, R.: Searching and storing similar lists. Journal of Algorithms 7(2), 202-220
(1986)

5. Langner, T.: Using partial persistence to support bursts of operations in IP-lookup.
Bachelor Thesis, Albert-Ludwigs-Universitat Freiburg (March 2007)

6. Maindorfer, C., Mohamed, K.A., Ottmann, T., Datta, A.: A new output-sensitive
algorithm to detect and resolve conflicts in internet router tables. In: INFOCOM
2007: Proceedings of the 26th IEEE International Conference on Computer Com-
munications, May 2007, pp. 2431-2435. IEEE Press, Los Alamitos (2007)

7. Mohamed, K.A., Kupich, C.: An O(n log n) output-sensitive algorithm to detect
and resolve conflicts for 1D range filters in router tables. Technical Report 226,
Institut fir Informatik, Albert-Ludwigs-Universitat Freiburg (August 2006)

8. Kupich, C., Mohamed, K.A.: Conflict detection in internet router tables. Technical
Report 225, Institut fiir Informatik, Albert-Ludwigs-Universitdt Freiburg (August
2006)

	Versioning Tree Structures by Path-Merging
	Introduction
	Implications of Access Operations in Partially Persistent Structures
	Planar Point Location
	Range Query of Horizontal Line-Segments
	Essential and Non-essential Versions

	Merging Non-essential Versions in Partially Persistent BSTs
	Path-Merging Via Path-Copying
	Path-Merging Via Node-Copying

	Analysis of the Path-Merging Technique
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

