AdaPNet: Adapting Process Networks
in Response to Resource Variations

Lars Schor, luliana Bacivarov, Hoeseok Yang#, and Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
“Dept. of ECE, Ajou University, Suwon, South Korea

firstname.lastname@tik.ee.ethz.ch

ABSTRACT

A widely considered strategy to prevent interference issues
on multi-processor systems is to isolate the execution of the
individual applications by running each of them on a ded-
icated virtual guest machine. The amount of computing
power available to a single application, however, depends
on the other applications running on the system and may
change over time. A promising approach to maximize the
performance under such conditions is to adapt the applica-
tion’s degree of parallelism when the resources allocated to
the application are changed. This enables an application to
exploit not more parallelism than required, thereby reducing
inter-process communication and scheduling overheads. In
this paper, we introduce AdaPNet, a run-time system to ex-
ecute streaming applications, which are modeled as process
networks, efficiently on platforms with dynamic resource al-
location. AdaPNet responds to changes in the available re-
sources by first calculating a process network that maximizes
the performance of the application on the new resources.
Then, AdaPNet transparently transforms the application
into the alternative network without discarding the program
state. Targeting two many-core systems, we demonstrate
that AdaPNet outperforms comparable run-time systems,
which do not adapt the degree of parallelism, in terms of
speed-up and memory usage.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.1.3 [Programming
techniques|: Concurrent programming—parallel program-
ming

General Terms

Algorithm, Design, Performance

Keywords

Streaming applications, process networks, run-time adaptiv-
ity, optimization, multi-processor systems

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
ESWEEK’14, October 12 - 17 2014, New Delhi, India

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3050-3/14/10 ...$15.00.
http://dx.doi.org/10.1145/2656106.2656112

hyang@ajou.ac.kr

1. INTRODUCTION

Modern embedded systems offer a tremendous amount of
processing power that enables multiple applications to share
the system. This trend comes with the need for advanced
strategies to manage the allocation of resources between ap-
plications. A widely considered strategy is to isolate the
execution of the individual applications by running each of
them on a dedicated virtual guest machine [4, 15]. A virtu-
alization manager, commonly referred to as a hypervisor, is
in charge of managing the computing power and allocating
resources for each application. The amount of computing
power available to an application, however, depends on the
other applications running on the system and may change
over time. For instance, if an application stops, the hyper-
visor may reallocate the released resources to another ap-
plication whose performance can thereby be improved. We
particularly assume that the number of processing elements
(PEs) available to an application can change over time.

A promising approach to maximize the performance un-
der such conditions is to adapt the application when the
available resources change. However, if the application is
statically specified at compile-time, the system can only re-
spond to resource variations by adapting the mapping of
parallel processes to PEs. This limits the maximum num-
ber of PEs that an application can simultaneously utilize to
the number of processes. On the other hand, if resources
are withdrawn so that parallel processes must share the re-
maining PEs, inter-process communication and scheduling
overheads are likely to limit the performance.

To overcome these limitations, the application’s degree
of parallelism must be adapted at run-time. Specially, we
address this challenge in the context of streaming applica-
tions, which are modeled as process networks. In fact, pre-
vious works showed that large performance gains in terms
of throughput [17, 20] or energy consumption [2] can be ob-
tained if the process network is refined at compile-time.

However, compared to compile-time strategies, adapting
the application’s degree of parallelism at run-time involves
not only the calculation of an alternative process network
in limited time, but also the transparent transformation of
the application into this network. These steps are not triv-
ial if stateful processes are executed asynchronously and the
amount of data being produced or consumed by a process
is not known beforehand. Previous works, therefore, lim-
ited their approaches to programming models with statically
specified data production and consumption rates [2] or to the
replication of stateless processes [3].

In this paper, we discuss the efficient execution of stream-
ing applications on (virtual) platforms with dynamic re-
source allocation. We propose AdaPNet, an adaptive run-
time system to execute stateful process networks on multi-

processor platforms. It responds to resource variations by
first calculating an alternative process network that maxi-
mizes the end-to-end throughput while preserving the origi-
nal functionality. Afterwards, it transforms the application
into this network without discarding the program state.
Instead of adhering to a static programming model,
thereby limiting the possible structural changes to the repli-
cation of stateless processes, we specify applications as ex-
pandable process networks (EPNs) [17]. EPNs extend con-
ventional Kahn process networks (KPNs) [10] in the sense
that several process networks with different degrees of paral-
lelism are abstracted in a single specification. In particular,
an application specified as an EPN has a top-level process
network defining the initial network. The initial network can
be refined by hierarchically replacing stateful processes by
other process networks. This enables AdaPNet to explore
different degrees of parallelism automatically by expanding
and contracting the network. We implemented AdaPNet for
the distributed application layer (DAL) [16] that allows to
execute applications adhering to the KPN and EPN model of
computation (MoC) efficiently on multi-processor systems.

Targeting two many-core platforms, we show that AdaPNet

outperforms a comparable run-time system, which does not

adapt the degree of parallelism, in terms of speed-up and
memory usage. Moreover, measurements of the through-
put during the transformation show that AdaPNet is able
to transform an application seamlessly into an alternative
process network so that its throughput is never lower than
that at the beginning and end of the transformation.

The contributions of this paper are summarized as follows:

e We propose a novel run-time algorithm that reacts to
changes in the available resources by determining an alter-
native process network and its mapping to the available
resources so that the throughput is maximized.

e We propose a novel technique that transparently trans-
forms the application into an alternative process network
without discarding its program state.

e We integrate the proposed concepts into AdaPNet, a run-
time system to execute streaming applications on (virtual)
platforms with dynamic resource allocation.

The paper continues with a description of the considered

problem and the approach to solve it. Afterwards, in Sec-

tion 3, the application model is revised. In Section 4, the
proposed run-time system is detailed. The results of the
performed case studies are presented in Section 5. Finally,

we review related work in Section 6.

2. PROBLEM AND APPROACH

In this paper, the efficient execution of stateful streaming
applications on (virtual) platforms with dynamic resource
allocation is considered. In particular, we assume that the
number of PEs available to a single application dynamically
depends on the presence of other applications. The goal is
to maximize the end-to-end throughput of the application
for all possible resource allocations.

To achieve this goal, the application’s degree of paral-
lelism and its mapping must be revised after a change in the
available resources. This requires that a) the application
has multiple implementations, all with the same functional-
ity but with potentially different degrees of parallelism, and
b) the application is able to switch from one implementation
to another one without discarding the program state.

Both requirements come with their own challenges. On
the one hand, calculating a different implementation for each
possible resource allocation is impractical at compile-time,
in particular, if the number of possible resource allocations
is large. Therefore, alternative implementations must be

calculated at run-time. On the other hand, transforming
a stateful application into another implementation requires
the specification of how the application’s state is transferred
from one implementation to another one. However, this is
usually not trivial as the following example shows.

EXAMPLE 1. Assume that an application has two imple-
mentations with different degrees of parallelism. Impl. 1 con-
sists of process v1 and impl. 2 consists of processes va and vs
that are connected by FIFO channel c. If enough hardware
parallelism is available, the application might be transformed
from impl. 1 to impl. 2. One possible way to do so is as fol-
lows: v1 is stopped immediately and the new processes and
channels are installed. To maintain the program state, a
transformation procedure would be used that takes as input
the program counter and all variables of vi and generates
the program counters and the variables of v2 and vs, as well
as the content of channel c. Once variables and program
counters have been assigned, va and vs are started. Pro-
gramming such a procedure is typically complicated and it is
even more laborious to derive a procedure that performs the
opposite operation, i.e., generates the variables and the pro-
gram counter of vi. However, such a procedure is needed to
transform the application back to impl. 1, e.g., if resources
are taken away from the application.

To tackle the above challenges, we propose a solution out-
line as follows:

e We define a high-level application-programming interface
(API) to specify applications according to the EPN MoC,
i.e., we specify an application as a process network that
can be refined by hierarchically replacing processes by
other process networks (so-called refinement networks).

e We design a run-time system that responds to variations
in the assigned resources by calculating an alternative net-
work and transforming the application into this network.

e We stepwise transform the application into the alternative
network. In each step, we replace either a process by
its refinement network or the processes and channels of a
refinement network by their origin process. We call the
first operation expansion and the second one contraction.

e We restrict the points in time for expansion and contrac-
tion: A process / refinement network must reach a normal
state in order to be expanded / contracted.

e We describe a scheduling strategy that brings a process
or refinement network to a normal state.

e We extend the API by two procedures that transform the
state of a process into the state of its refinement network,
and vice versa. Due to these procedures, a stateful process
can be replaced transparently by its refinement network.

Considering the concepts and constraints described above,

the application specification and the proposed run-time sys-

tem are described in the following sections.

3. APPLICATION MODEL

In this paper, we represent an application as an EPN [17],
i.e., the application is specified as a top-level process net-
work, which can be refined by hierarchically replacing pro-
cesses by other process networks. In this section, we formally
specify the application model. First, we discuss the seman-
tics of EPNs. Then, we describe the considered execution
model and propose a high-level API for EPNs.

3.1 Specification and Refinement Strategies

Application specification. The base element of an EPN is
the process network. A process network is a network of au-
tonomous processes, which can only communicate through

o N\ (vo-ge s Co
g =
(a) Top-level process (b) Refinement
network porg. network of vs.

C1o @
Ci @
(c) Refinement
network of vg.

Figure 1: Example specification of EPN N.

unbounded point-to-point FIFO channels. Formally, a pro-
cess network is a tuple n = <V, Cinty Cin, Cout> where V is
the set of processes and Cint, Cin, and Coy: are the sets of
internal, input, and output channels, respectively. For every
¢ € Cint UCin, there is one v € V that reads from it and for
every ¢ € Cint U Cout, there is one v € V that writes to it.

The functionality of a process is specified by a determinis-
tic imperative procedure named FIRE that performs destruc-
tive blocking reads and non-blocking writes on the input and
output channels, respectively, and that is repeatedly called
by the run-time system. In addition, the process may have
a refinement network that defines the functionality of the
process as another process network.

Clearly, channels with unbounded capacity cannot be re-
alized in physical implementations. However, an implemen-
tation with the same semantics can use channels with finite
capacity [5, 7].

An EPN is a tuple N = <P7 u, I, porg>, where P is a
set of process networks, u is the refinement function, [is
the channel mapping function, and porg4 is the top-level pro-
cess network from which processes may be further refined.
Function v maps a process v to the corresponding refine-
ment network p = u(v) € P and function ! maps the input
and output channels of the refinement network u(v) to the
corresponding input and output channels of v.

EXAMPLE 2. Consider the EPN N = ({Porg, Dvy, Pus}s
u, 1, pmg> shown in Fig. 1. porg consists of three processes.
Two of them have a refinement network: u(va) = py, and
u(v3) = pug. The corresponding channel mapping is defined
as l(e3) = c1, l(cs) = c2, and l(co) = c2.

Refinement strategies. An application specified as an EPN
abstracts several possible granularities in a single specifica-
tion. The top-level process network can be refined by hier-
archically replacing processes by their refinement network.
Each process replacement results in a new process network
that has the same functionality as the top-level network.

ExXAMPLE 3. Consider the EPN introduced in Fig. 1. The
top-level process network can be refined by replacing process
v2 by pu, and process v3 by p.,, see Fig. 2.

Figure 2: Possible process networks of EPN N,
which is specified in Fig. 1.

3.2 Execution Model

As motivated in Section 2, the goal is to come up with
an execution model that requires the programmer to specify
only two additional transformation functions, namely one
for the expansion and one for the contraction. To repeat,
expansion denotes the replacement of a process by a refine-
ment network and contraction denotes the replacement of

a refinement network by its origin process. However, the
programmer should not have to deal with program counters
and implicit state that is on the stack when designing the
transformation functions. Therefore, we restrict the points
in time for the expansion and the contraction: A process can
only be expanded if it has finished its FIRE procedure and
a process network can only be contracted if all of its pro-
cesses have finished their FIRE procedure and if its internal
channels contain a statically specified number of tokens.

In the following, we discuss the considered execution
model individually for channels, processes, and refinement
networks. Based on that, we define the characteristics that
must hold for processes that can be refined by a refinement
network and for process networks that act as refinement net-
works so that the above stated goal can be achieved. This
forms the basis for a novel transformation technique that is
proposed in Section 4 and transparently transforms a pro-
cess network into a new network.

Channel. A channel ¢ of network n contains valued tokens
that are read and written in FIFO order. The number and
values of the tokens determine the state s. € S. of ¢ whereby
S. is the set of channel states of ¢ that are admissible in any
correct execution trace of n.

Process. During the execution of its FIRE procedure, process
v reads tokens from its input channels and writes tokens to
its output channels, thereby modifying its state s, taken
from the set of admissible states S, of v. As previously
motivated, v can only be expanded if its FIRE procedure
has reached its end, but is not yet re-started. We call any
admissible state of v where v has finished its FIRE procedure
a normal state of v.

DEFINITION 1. Assume that process v is a node of a pro-
cess network n and v either is part of a refinement network
or can be replaced by a refinement network. Then, the fol-
lowing characteristics must hold for v and n:

1. (BOUNDEDNESS) Assume that the input channels of v
contain a finite number of tokens. Then, the execution
of v is finite, i.e., after a bounded number of executions,
its FIRE procedure is blocked on reading from an empty
channel.

2. (TERMINATION) There exists a constant L such that for
any admissible state of v and for any admissible states
of the input channels of v with L tokens each, the FIRE
procedure terminates, i.e., it reaches its end.

3. (DEADLOCK FREE) v can infinitely often ezecute its FIRE
procedure, i.e., network n does not contain a deadlock
concerning v.

4. (NO DEAD INPUT CHANNEL) During each correct execu-
tion trace of metwork n of infinite length, an unbounded
number of tokens is written into each input channel of v.

Note that the first two conditions guarantee that the FIRE
procedure never runs into an infinite execution, i.e., the FIRE
procedure is not allowed to enter an infinite loop.

Refinement network. A refinement network p has a state sy,
which consists of the states of all its processes and internal
channels. A state s, € S, is admissible if it appears with a
legal input sequence of p, whereby S}, is the set of admissible
states of p.

Refinement network p can only be contracted by its origin
process if all of its processes have finished their FIRE proce-
dure and each of its internal channels contains a statically
specified number of tokens. We call these numbers the nor-
mal token distribution of p and any state of p that fulfills
the above stated conditions a normal state of p.

In order to transparently replace a process v by its refine-

ment network p = u(v) (and vice versa), the programmer
has to define how the state is passed from v to p and from
p to v. She does that by specifying the two transformation
functions EXPAND and CONTRACT. The EXPAND function F,
maps any normal state s, of v to a normal state s, = FEy(sy)
of p. The CONTRACT function Cp, maps any normal state s,
of p to a normal state s, = Cy(sp) of v. Using the above
notation, we can define the required characteristics of a re-
finement network.

DEFINITION 2. The following characteristics must hold

for a refinement network p = u(v) of process v:

1. (BOUNDEDNESS) Assume that the input channels of p
contain a finite number of tokens. Then, the execution
of p is finite, i.e., after executing the FIRE procedures of
its processes a bounded number of times, each of its FIRE
procedures is blocked on reading from an empty channel.

2. (SYNTACTICAL EQUIVALENCE) For each input and output
channel of v, there is a corresponding input and output
channel of p, i.e., Ve € Cin, l(c) is an input channel of v
and Ve € Cout, l(c) is an output channel of v.

3. (FUNCTIONAL EQUIVALENCE) Assume that the input
channels of v and p have the same channel state, i.e., the
same finite number of tokens with the same values.

e If v is nitially in a normal state s, (i.e., the FIRE
procedure reached its end, but is not yet re-started), if
the state of p initially satisfies sp = Ey(sy), and if v
and all processes of p then execute their FIRE procedure
iteratively until being blocked on reading from an empty
channel, the sequences of tokens written by v and p to
the corresponding output channels are the same.

e If p is initially in a normal state s, (i.e., the FIRE
procedures of all its processes are finished and each
of its internal channels contains a statically specified
number of tokens), if the state of v initially satisfies
sv = Cy(sp), and if v and all processes of p then exe-
cute their FIRE procedure iteratively until being blocked
on reading from an empty channel, the sequences of
tokens written by v and p to the corresponding output
channels are the same.

4. (REACHABILITY) There ezists a constant K such that for
any normal state of p and for any admissible state of the
input channels of p with K tokens each, there exists an
ordering of complete executions of the FIRE procedures' of
the processes of p such that p has again a normal token
distribution. Furthermore, the FIRE procedure of every
process in p is executed at least once in such an ordering.

These conditions guarantee that both the expansion of
process v by refinement network p = u(v) and the contrac-
tion of p by v do not change the functionality of the whole
process network. Furthermore, the reachability condition
states that there is at least one schedule that brings net-
work p from a normal state to another normal state.

In many situations, the above stated conditions do not im-
pose severe restrictions. Consider a process of a video pro-
cessing application. Its functionality can often be split into
sub-steps or rewritten so that it first splits large data blocks
into smaller data blocks and then operates on these tokens.
Both described refinements do not modify the functional-
ity, the execution is still bounded, and, if enough tokens are
available in their input channels, the refinement networks
can be scheduled so that they enter a normal state. Finally,
note that the proposed MoC is still more general than the

1The execution of a single FIRE procedure does not have to be atomic;
it can be interrupted by another FIRE procedure at any time.

Listing 1: Example of an implementation of an EPN
process v, which has a refinement network p = (V =
{'U27 US}: Cint = {01}7 Cin: Cout>-

o1 // process state declaration of vy, vz, and vg

02 struct StateV1 struct StateV2 struct StateV3

03 variables ; variables ; variables ;

04 end struct end struct end struct

05

o6 // initialization of state and output channels

07 procedure INIT(StateV1 V1)

08 V1 = initializeState () ;

09 writelnitial TokensToOutgoingChannels();

10 end procedure

11

12 // behavioral description of the process

13 procedure FIRE(StateV1 *V1)

14 manipulate(); // communication and computation

15 end procedure

16

17 // generate process state of vy and vz, and write initial tokens

18 procedure EXPAND(StateV1 xV1, StateV2 xV2, StateV3 V3,
Channel *C1)

19 V2 = generateStateOfV2(V1);

20 V3 = generateStateOfV3(V1);

21 writelnitialTokens (C1, V1);

22 end procedure

23

24 // generate process state of v

25 procedure CONTRACT(StateV1 xV1, StateV2 V2, StateV3 xV3,
Channel *C1)

26 channelState = readChannelState(C1);

27 V1 = generateStateOfV1(V2, V3, channelState);

28 end procedure

synchronous dataflow (SDF) [12] MoC that has been applied
in previous works to adapt the application structure.

3.3 High-Level API

Based on the above discussed considerations, we propose
the high-level API illustrated in Listing 1 to specify appli-
cations adhering to the EPN MoC. After a one-time initial-
ization that is specified by the INIT procedure, the FIRE pro-
cedure is repeatedly invoked by the system scheduler. The
scheduler is part of the run-time system, which is described
in the next section. Procedures EXPAND and CONTRACT im-
plement functions E, and C,. Procedure EXPAND generates
the state of the refinement network. Procedure CONTRACT
reads the remaining tokens from all internal channels of the
refinement network (the number of tokens is statically spec-
ified by the normal token distribution). Then, it generates
the process state. It is the programmer’s responsibility to
ensure that the characteristics stated in Definitions 1 and 2
hold for all processes and refinement networks.

In addition, we specify the structure of the application
in an XML format following the formal specification of an
EPN. The XML document defines the processes and chan-
nels, specifies the refinement networks, and specifies the re-
finement and channel mapping functions. Finally, it also
specifies the normal token distribution.

4. PROPOSED RUN-TIME SYSTEM

In this section, we propose AdaPNet, our adaptive run-
time system to execute applications on platforms with dy-
namic resource allocation. When the resource allocation
changes, AdaPNet determines an alternative process net-
work and transforms the application into this network.

Figure 3 illustrates the execution flow. The application
runs on a platform with resources A, and starts its execution
with network 1 and mapping 1. If the resource allocation
changes, the application is transformed into a new network
and its mapping is revised. In the example, the new net-
work and mapping are named network 2 and mapping 2.
The process of transforming the application into network 2

J |
application G+ network 1}[transformation] {network 27/ + %
/ ing 1 ing 2
mapping mapping ‘
calculate a new
network / mapping
B
resources E$ resources A
T

Figure 3: Execution flow of AdaPNet.

and mapping 2 consists of two steps. First, AdaPNet cal-
culates an alternative process network and mapping using
the algorithm detailed in Section 4.1. Then, it transforms
the application into the alternative network; a technique to
do so is proposed in Section 4.2. At the same time, pro-
cesses whose mapping has changed are migrated. A process
migration technique is summarized in Appendix A. While
being transformed, the application uses resources A and B
simultaneously; however, after completing the transforma-
tion, resources that are no longer needed are released.

In this paper, we aim to maximize the application’s
throughput. However, note that the overall approach is not
restricted to this optimization goal, but can also be used
if other performance metrics like, for instance, the energy
consumption, are optimized.

3

AdaPNet

new
esources
available

|
resources B $€
1

time

4.1 Alternative Process Network Calculation

AdaPNet reacts to changes in the available resources by
re-calculating the process network structure in order to max-
imize the application’s throughput while preserving the orig-
inal functionality. In addition, AdaPNet must also deter-
mine a mapping for the new network. However, as the pro-
cedure is performed at run-time, AdaPNet has only limited
time to react to resource variations so that the number of
optimization steps must be limited.

The basic idea is to expand the application if more re-
sources are available and to contract it if fewer resources are
available. However, comprehensive strategies to contract an
application are usually expensive, particularly as it is ex-
pensive to determine which process should be contracted to
achieve the largest performance gain. Assume, for instance,
that the processes belonging to refinement network p = u(v)
are distributed among the PEs. Estimating the performance
gain that can be achieved by contracting v involves not only
the contraction, but also the calculation of a new mapping
as the processes may not be evenly distributed anymore.

AdaPNet divides the re-calculation of an alternative pro-
cess network, as follows. If PEs are removed or replaced,
it uses backtracking to find a process network for (a subset
of) the remaining PEs. Otherwise, if new PEs are available,
Alg. 1 is used to expand the network so that all PEs are
exploited. To enable backtracking, intermediate results ob-
tained during the expansion of the network are stored in a
database. Each entry consists of the network, its mapping,
and the particular PEs for which the network and mapping
have been obtained. By backtracking, the first entry in the
database whose target architecture is a subset of the new
PEs is identified. If the platform has multiple PEs of the
same type (they are functionally identical), it only saves the
PE type. Example 4 illustrates the proposed algorithm.

EXAMPLE 4. In Fig. 4, each box represents a network n
and mapping m obtained for the resources written next to it.
Assume that PEa, PEp, PEc, and PEp have been orig-
inally assigned to the application, see Fig. 4a. Network na
and mapping ma have been obtained by stepwise increasing
the number of PEs. After each step, the result has been saved
in the database. Next, assume that PEc and PEp are re-
moved and PEg and PEr are assigned to the application.

available resources:
PE,, PEg, PEg, PEp

original resources:
PE,, PEg, PE¢, PEp

new resources:
PE,, PEg, PEg, PEp

none none

PEA PE, PEA

PEA/PEg PEA/PEg

(>

il reatest common|
resource subset

Py

2

PEA/PEg

PR T

7
Y h
bEbE
(c) Phase 2: calculate
new network / mapping.

in the database

PEA/PEg PEA/PEg PE,/PEg
PEc PEc PEg

each of them is stored

PEA/PEg
PE¢/PEp

PE/PEg
PE¢/PEp

PE,/PEg
PEL/PE;

(a) Original
assignment.

(b) Phase 1:
backtracking.

Figure 4: Example of the steps to calculate an al-
ternative network and mapping using backtracking.

Starting with network na and mapping ma, AdaPNet finds
the database entry for PEA/PEp as being the entry with
the greatest common resource subset (Fig. 4b). Then, it cal-
culates an alternative network and mapping for PEA, PER,
PFEEg, and PEF using network ne and mapping ma as start-
ing point. As shown in Fig. 4c, network ne and mapping me
are finally used to execute.

Once AdaPNet has identified a certain network and map-
ping as the starting point for further refinements, its uses
Alg. 1 to calculate an alternative network and its mapping.
The basic idea of the algorithm is to use graph partitioning,
which was previously proposed to find good replication de-
grees [8], to balance the workload between the available PEs.
It first identifies the PE with the highest utilization and its
process Uyork with the largest amount of work. Then, it
virtually adds vyerk to all PEs and selects the PE with the
lowest utilization. It stops if the ratio between highest and
lowest utilization is lower than a predefined balance factor
that is specified as an input to the algorithm. Selecting a
good balance factor might be difficult. However, our experi-
ments have shown that a balance factor of 1.2 generates good
results in general. As extensive expansion increases the com-
munication overhead, Alg. 1 primarily migrates processes to
PEs with low utilization. In fact, vyerk is migrated to the
PE with the lowest utilization if the maximum utilization
over all PEs can be reduced. Otherwise, if the maximum
utilization cannot be reduced anymore by migrating pro-

Algorithm 1 Calculating a new network and mapping.

Input: PEs, initNetwork, initMapping, balanceFactor
Output: new process network and mapping
01 addProcessesToPEs(PEs, initNetwork, initMapping)
02 while True do
03 sortPEsByUtil(PEs) >find PE with maz. utilization
04 maxPE + PEWithMaxUtil(PEs)
>find process with largest computing demand
05 process < largestProcess(maxPE)
>find PE with lowest utilization after adding process
06 minPE < PEWithMinUtilAfterAdding(PEs, process)
>check the overall balance of the system
o7 if util(maxPE) < util(minPE) * balanceFactor then
08 finish()
09 end if >migrate process to minPE or expand the process
10 if utilAfterAdding(minPE, process) < util(maxPE) then

11 addTo(process, minPE) >migrate process

12 removeFrom(process, maxPE)

13 else if process can be expanded then pexpand process, ...
>. .. uniformly distribute processes to maxPE, minPE

14 removeFrom (process, maxPE)

15 subProcesses < expand(process)

16 distributeAndAdd(subProcesses, maxPE, minPE)

17 else if process is the only process assigned to maxPE then

18 finish() >no more refinements are possible

19 else >migrate remaining processes of marPE to minPE

20 remaining < removeAllExceptOneFrom(process, maxPE)

21 addTo(remaining, minPE)

22 end if

23 end while

cesses, Alg. 1 expands vyork making the largest indivisible
unit of work smaller. The new processes are distributed be-
tween the PE of vyork and the PE with the lowest utilization
so that both PEs have a balanced workload. In case that
Vywork cannot be expanded, the algorithm stops or, if there
are further processes assigned to the PE of vyork, it migrates
these processes to the PE with the lowest utilization.

Calculating a new network might be done stepwise by ex-
ecuting Alg. 1 multiple times. In each step, only a subset of
the new PEs is added. In Example 4, one PE has been added
per step so that more entries are available in the database.

The complexity of Alg. 1 depends on the application, the
number of PEs that are added, and the total number of
PEs that are available. The first two parameters affect the
number of iterations that must be performed and the total
number of PEs determines the complexity of a single iter-
ation. In fact, the complexity of a single iteration mainly
depends on the used sorting technique (Line 3). However,
as each iteration only changes the utilization of two PEs, the
sorting algorithm can use the result of the previous iteration
and just change the position of two entries. The complexity
of an iteration is therefore O(#PEs) with #PEs being the
number of PEs.

4.2 Application Transformation

After identifying a process network that improves the
throughput of the application, AdaPNet transparently
transforms the current process network into this network.
AdaPNet does that in multiple steps and in each step, it
either expands or contracts one process.

Ezpand a process. Assume that process v is a node of net-
work n. It follows from Definition 2 that the expansion of v
by network p = u(v) does not change the functionality of n
if v is expanded after finishing its FIRE procedure and if the
state of p is initially s, = FEy(sy), whereby s, is the state
of v after finishing the FIRE procedure. A prerequisite for
the expansion is therefore that v finishes its FIRE procedure.
However, it follows from the characteristics stated in Def-
inition 1 that v will do that if n is executed long enough.
Algorithm 2 summarizes the steps to expand a process.

Algorithm 2 (EXPANSION) Replace process v by p = u(v).

o1 install all processes and channels of p

02 connect the channels of p to the corresponding processes of p

03 stop process v at the end of its FIRE procedure

04 use the EXPAND procedure to generate the process states of all
processes of p and the initial tokens of all channels of p

connect incoming and outgoing channels of v to the corresponding
processes of p

o6 start all processes of p and remove process v

0

&

Contract a process. Assume again that process v is a node
of process network n and that v has the refinement network
p = u(v). It follows from Definition 2 that contracting the
refinement network p = u(v) by v does not change the func-
tionality of n if p is stopped in a normal state s, and if the
state of v is initially s, = Cy(sp). p is in a normal state if
all of its processes have finished their FIRE procedure and if
each internal channel contains a statically specified number
of tokens, also known as the normal token distribution.
Therefore, a prerequisite for the contraction is that p is in
a normal state. However, if the FIRE procedures of its pro-
cesses are executed iteratively in a greedy manner, p might
never enter such a state. Thus, in the following, we will first
describe a scheduling strategy that executes the processes of
network n such that the refinement network p enters a nor-
mal state. The basic idea of the scheduling strategy shown
in Alg. 3 is that each process of the refinement network ob-
serves the number of tokens in its input and output chan-

Algorithm 3 Scheduling strategy to bring a refinement net-
work p being part of process network n to a normal state.

01 execute all processes of n except those of p in a greedy manner,

i.e., execute their FIRE procedures iteratively

execute all processes of p in a greedy manner. However, do only

restart the FIRE procedure of a process v in p if at least one of the

following conditions holds:

03 e v has an internal input channel that contains more tokens than

its normal number of tokens,

04 e v has an internal output channel that contains less tokens than

its normal number of tokens, or,

05 e the FIRE procedure of another process in p is directly or indi-
rectly blocked on an output channel ¢ of v. A process is directly
blocked on c if the process is the reader process of c. A process
is indirectly blocked on c if the process is blocked on an input
channel of p whose writer process itself is blocked by some other
process and if this chain finally ends in ¢

stop if all processes of p have finished their FIRE procedures and

no FIRE procedure can be restarted

0

]

0

=Y

nels and only starts its FIRE procedure if certain conditions
are fulfilled. In fact, if a channel has more tokens than its
normal number of tokens (defined by the normal token dis-
tribution), the reader process continues its execution. The
writer process continues its execution if a channel has less
tokens than its normal number of tokens.

Note that the strategy of Alg. 3 must only be used to
schedule the network when a particular refinement network
is supposed to be contracted. Example 5 emphasizes the
role of Line 5, which is used to resolve deadlocks that are
imposed by the scheduling strategy (the processes of the
refinement network might be blocked artificially, i.e., they
cannot necessarily restart their FIRE procedure).

EXAMPLE 5. Assume that process ¥ of refinement net-
work p must restart its FIRE procedure as either the rule
on Line 3 or the one on Line 4 holds for one of its input
or output channels. Then, © may block on reading from an-
other input channel that does not contain enough tokens and
whose writer process is also blocked. If the writer process is
also in p, the FIRE procedure of ¥ is directly blocked on an
output channel of v. On the other hand, if the writer process
is not in p, it must again be blocked by some other process
as only processes in p can be blocked artificially. In fact,
the thereby created chain must end at some process v in p so
that ¥ is indirectly blocked on an output channel of v and the
block can only be resolved if v restarts its FIRE procedure.

THEOREM 1. Assume that network p is a refinement of
process v, part of process network n, and the characteristics
stated in Definitions 1 and 2 hold for v, p, and n. After
executing the FIRE procedures of its processes for a finite
number of times, network n including p is scheduled accord-
ing to the rules stated in Alg. 8. Then, p will eventually
enter a normal state.

PrOOF. We know that we originally replaced in network
n process v by a correct refinement network p = u(v). Due
to Definitions 1 and 2, replacing v by p did not change the
functionality of n so that no deadlock can occur in p if the
FIRE procedures of all processes of n are executed iteratively.
Given this property, the basic idea of the proof is to observe
the sequences of tokens in the input channels of v in the
origin network n with v instead of p. Then, we use these
sequences to determine a schedule for the processes of p.
Unless this schedule leads to a deadlock, p can be executed
according to this schedule even if p is embedded into n.

Let us first consider the point in time when we started
to schedule n by Alg. 3. Assume that the highest number
of executions of a FIRE procedure in any process of p was
f, i.e., no process in p executed the FIRE procedure more

than f times. As all processes of n are deterministic, the
sequences of tokens in the input channels of p are indepen-
dent of the execution order of the processes. Due to the
functional equivalence of the expansion, the sequences are
the same as that of the origin network n with v instead of p.
Let us observe the input channels of v and the correspond-
ing sequences that would have occurred if we had not done
the expansion, starting from the instance of the expansion.
As v has no dead input channels (see Definition 1), we stop
the observation if each sequence contains at least f - K to-
kens whereby K is defined as in the reachability condition
of Definition 2.

Let us go back to the refined network. We know from
the reachability condition in Definition 2 that starting from
any normal state of p, there exists an ordering of complete
executions of the FIRE procedures of the processes of p such
that p is again in a normal state. In such a sequence, each
process in p executes its FIRE procedure at least once. Now
assume that we go from one such state to the next one f
times. Clearly, there would be enough tokens in the input
channels to allow for this schedule and the FIRE procedure
of each process in p must be executed at least f times. As
defined above, no process in p executed its FIRE procedure
more than f times when starting to schedule n by Alg. 3.
Therefore, in order to reach the final normal state from the
current state, there are executions of the FIRE procedures
still left for some processes, but no process executed its FIRE
procedure more often than necessary in order to reach the
final normal state (after f iterations).

As all processes of n are deterministic, the ordering of exe-
cuting the FIRE procedures does not matter. In other words,
if we start from any state and execute the FIRE procedures
by a certain scheduling method a given number of times,
then we can reach the same state by any other scheduling
method provided that we do not execute the FIRE procedure
more often than this number of times. However, no online
scheduling strategy knows the number of times that the FIRE
procedures should be executed in order that p reaches the
final normal state. Therefore, in order to prove that p en-
ters a normal state if n is scheduled according to the rules of
Alg. 3, we have to show that the scheduling strategy a) does
not execute the FIRE procedure of a process in p more often
than the number of times that is necessary to reach the final
normal state and b) does not lead to deadlocks, whereby p
initially started in a normal state and a greedy scheduler
with an upper bound on the number of FIRE executions for
each process in p would enter the final normal state.

First, we show that Alg. 3 only starts a FIRE procedure if
the greedy scheduler would also do so. Assume that an in-
ternal channel contains a smaller number of tokens than its
normal number, then the writing process needs to execute
its FIRE procedure at least once. Assume that an internal
channel contains a larger number of tokens than its normal
number, then the reading process needs to execute its FIRE
procedure at least once. If the FIRE procedure in one of the
above mentioned cases is blocked due to an internal input
channel, the process writing to this channel must also exe-
cute its FIRE procedure. Clearly, Alg. 3 covers these cases.

Now, let us show that the scheduling strategy of Alg. 3
does not lead to a deadlock. Assume towards a contrac-
tion that there is a deadlock in p, i.e., the number of tokens
in the internal channels does not yet correspond to the nor-
mal token distribution, but no process can proceed anymore.
Consequently, at least one process in p is blocked on reading
from an internal or input channel of p and the remaining
processes of p have completed their FIRE procedure, but are
not eligible to restart it. However, the case that a process

is blocked on reading from an internal channel is resolved as
the process that causes the blocking starts its FIRE proce-
dure. In case that a process is blocked on an input channel
of p, the execution will only block forever if the writing pro-
cess (which is not part of p) is blocked itself and a process
of p connected to an output channel of p must execute its
FIRE procedure at least once more to resolve this blocking.
However, this case is resolved as a process that causes an
indirect blocking on an output channel restarts its FIRE pro-
cedure. []

Finally, the steps to contract a refinement network are
summarized in Alg. 4.

Algorithm 4 (CONTRACTION) Replace the processes and
channels of refinement network p = u(v) by process v.

o1 install process v

02 use the strategy of Alg. 3 to stop the refinement network p in a
normal state

03 use the CONTRACT procedure to generate the process state of v

04 connect the input and output channels of p to process v

05 remove all processes and channels of p, and start process v

S. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of AdaPNet.
The goal is to answer the following questions: a) How ex-
pensive is the transformation into an alternative process net-
work? b) Can AdaPNet outperform run-time systems that
do not adapt the application’s degree of parallelism? ¢) How
does the transformation procedure affect the performance of
an application during the actual transformation? — To an-
swer these questions, we use AdaPNet to execute synthetic
and real-world applications on two many-core platforms.

5.1 Experimental Setup

Hardware setup. We implemented AdaPNet on Intel’s Xeon
Phi and Single-chip Cloud Computer (SCC) [9]. Though not
designed for embedded applications, for the purpose of the
experimental evaluation, they are representatives of future
many-core systems-on-chip. The Xeon Phi has 60 physical
cores (the hyper-threading capability is not used), which are
clocked at 1.2 GHz, and hosts a Linux operating system. The
SCC has 48 cores that are clocked at 533 MHz and each of
them hosts its own Linux operating system. AdaPNet runs
on top of Linux and uses the POSIX library to execute mul-
tiple processes in parallel. In fact, processes are stored as
dynamic libraries, which are loaded and linked dynamically
when the process is started. As each core of the SCC rep-
resents an individual computing environment, channels be-
tween processes running on different cores are implemented
using MPI. The implemented software synthesis tool chain
follows the DAL design flow [16]. We suppose that each
application is running in isolated guest machines [4, 15] so
that the effectiveness of AdaPNet can be studied for each
application individually.

Benchmark applications. We evaluate the performance of

AdaPNet based on the three benchmarks shown in Fig. 5.

e Synthetic. The synthetic application has a top-level pro-
cess network with three processes. Process v has a refine-
ment network with a variable number of processes.

e Video-processing. The video-processing application
first decodes a motion-JPEG video stream and then ap-
plies several filters to the decoded frames.

e Sorting. The sorting application uses quicksort to sort
arrays of 128 elements. Multiple sub-arrays can be sorted
in parallel by recursively expanding the SORT process.

(b) Video-processing application.

(c) Sorting application.

Figure 5: Benchmark applications.

5.2 Transformation Costs

To evaluate the costs of transforming an application into
an alternative process network, we measure the time to ex-
pand and contract process vo of the synthetic application.
When measuring the transformation time, we vary either the
number of processes of the refinement network, the capacity
of the channels, or the workload of processes v2 and vs. If
not varied, the refinement network has three processes, the
channels have a capacity of five tokens, and a process just
reads one token from all of its input channels and writes
one token to all of its output channels. For brevity, we only
report the results for the Xeon Phi; however, the results for
the SCC exhibit similar trends.

Figure 6 shows the time to expand and contract process
va. The reported numbers are the mean of 70 runs and the
bottom and top of the error bars are the 16-th and 84-th
percentile. The time to expand process vz increases linearly
with the number of processes of the refinement network and
highly depends on the work performed per invocation of the
FIRE procedure. However, the time is independent of the
channel capacity as there is always only one process involved
in the expansion. The time to contract process vs increases
linearly with all investigated parameters. In fact, contract-
ing takes up to ten times longer than expanding, mainly as
the procedure of bringing a refinement network to an admis-
sible state requires more steps than the procedure of bringing
a single process to an admissible state.

Next, we measure the time to expand, contract, and repli-
cate various processes of the video-processing and sorting ap-
plication. Replication means that a process is replaced by a
refinement network that consists of a fork process, multiple
replicas of the process, and a join process. The maximum
and average times measured over ten repetitions are listed in
Table 1. The reported numbers confirm the trends observed
with the synthetic application. Moreover, if the transfor-
mation includes multiple expand or contract operations, the

60 1200

% 2 1000
=z =z
E 40 z 15 B 800
o 30 = &-6-4-4-3-4-& o 600
E 20 2 TTTTITTIT £ 400
104 - = s 200
. [—o—cxpanding] [—o— cxpanding] .
10 20 30 0520 30 4 50 02040608 1 12
number of processes [1] channel capacity [tokens] exec. time / fire [s]
5000 1000 8000
== contracting
__ 4000 800 — 6000
Z - =
£ 3000 £ 600 g
o - 5 4000
£ 2000 £ 400 E
= 1000] 200 — 2000
[0 0
10 20 30 10 20 30 40 50 02040608 1 1.2

number of processes [1] exec. time / fire [s]

(c) Workload.

channel capacity [tokens]

(a) Processes. (b) Channel size.

Figure 6: Time to expand and contract the process
network of the synthetic application.

Table 1: Time in milliseconds to expand, contract,
and replicate processes of two benchmarks.

Xeon Phi SCC

transformation
mark max avg max avg
0 expand Vgec 151 78 667 440
k) contract vgec 155 103 1054 893
2 expand Vfijter 144 86 740 587
8 contract viter 747 428 1923 1852
2 replicate vgec b 540 461 3357 2965
g‘ replicate vgquss 3T 205 134 5340 5260
_g replicate vsoper 3T 213 169 1961 1761
N expand vf;jter, replicate vgquss and 855 786 8017 7857

Vsobel 3T

contract vgec, expand vyiiter 275 195 1423 1398
o0 expand vgsort 1l 15 8 115 104
£ expand vsort 3T 73 61 505 470
5 contract vsort 1l 93 51 52 42
@ contract vgorr 3 596 425 795 675

measured transformation times are about the same as the
sum of the times to perform the individual transformations.
The results also show that installing new processes is more
costly on the SCC than on the Xeon Phi. This might be
due to the framework’s ability to load processes dynamically
from the file system, which is more costly on the SCC.

In summary, the results demonstrate that transforming an
application can take up to several hundreds of milliseconds.
However, the time to transform a process strongly depends
on the granularity of the refinement network and the work
performed per invocation of the FIRE procedure.

5.3 Refinement Algorithm

Next, we investigate the question whether AdaPNet out-
performs run-time systems that only adapt the application’s
mapping. To this end, we compare the performance of
AdaPNet with that of Flextream [8] in terms of throughput,
memory usage, and time to calculate an alternative map-
ping and process network (if applicable). Flextream refines
the process network already at compile-time by using the
largest possible resource allocation as target platform. At
run-time, it assigns the processes that have been originally
assigned to cores that are not available, to the remaining
cores. For comparability, we extended Flextream’s compile-
time algorithm to also support EPNs. AdaPNet calculates
the new network and mapping either with or without using
the ability to backtrack to previous results. If it is config-
ured to save intermediate results in the database, it adds
either one, two, or four cores per step. We call this number
the step size. Furthermore, the balance factor of Alg. 1 is
set to 1.2.

Figure 7 plots the performance of the video-processing ap-
plication when executing it on the Xeon Phi with the num-
ber of available cores being varied from one to 56. The
speed-up versus the throughput of the top-level process net-
work executed on one core is shown in Fig. 7a. The speed-
up achieved with AdaPNet is up to 10 % higher than that
achieved with Flextream. AdaPNet achieves speed-ups close
to the theoretical maximum for any investigated number of
available cores. In particular, if no backtracking is used
and for the maximum number of available cores, AdaPNet
achieves the same speed-up as Flextream (the difference is
within the limits of measurements). In all other cases, the
speed-ups achieved with Flextream can be lower than that
of AdaPNet if the processes cannot be evenly distributed
among the available cores. This effect is particularly evi-
dent for 48 cores. AdaPNet does not suffer from this effect,
as it adapts the application’s degree of parallelism.

As AdaPNet adapts the number of processes to the num-
ber of available cores, the average memory usage per core
is almost constant with AdaPNet, see Fig. 7b. In fact, it is

I AdaPNet (w/o backtrack.)
[AdaPNet (step size 4)
[AdaPNet (step size 2)
[AdaPNet (step size 1)
[Flextream

5
230
3
220
10
0 o

=2

memory usage [KB]
3,

dilioan L

time [us]
3

1 2 4 8 16 24 32 40 48 56 1 2 4 8
number of cores

(a) Speedup.

number of cores

(b) Memory usage per core.

24 32 40 48 56 1 2 4 8 16 24 32 40 48 56
number of cores

(¢) Time to calculate the new mapping and
process network (if applicable)z.

Figure 7: Performance of a video processing application for different resource allocations.

up to 22.5x less than with Flextream, which uses the same
process network for all possible resource allocations.

The required time to calculate the alternative mapping
and process network is shown in Fig. 7c. For Flextream, we
only report the time that is needed at run-time to assign
the processes that have been originally assigned to cores
that are not available, to the remaining cores. This is why
it takes Flextream O pus to calculate a new mapping when
the largest possible resource allocation (56 cores) is used as
target platform. The reported numbers for AdaPNet are
measured when the number of cores previously allocated to
the application distinguishes from the new number by the
step size. For instance, for a step size of 4 and 16 available
cores, we assume that the database has an entry for 12 cores.
Even for tens of cores, the measured time is still in the order
of a few milliseconds for both investigated run-time systems.

We conclude that AdaPNet outperforms run-time systems
that do not adapt the application’s degree of parallelism.
Compared with Flextream, AdaPNet achieves up to 10%
higher throughput and has up to 22.5 x less memory usage.
In fact, AdaPNet mainly benefits from the better suited ap-
plication parallelism that reduces inter-process communica-
tion and scheduling overheads.

5.4 A Run-Time Scenario

The results presented so far indicate that reasonable
speed-ups can be obtained by transforming the application
into an alternative network. However, we have also seen
that the transformation can take several hundreds of mil-
liseconds. Next, we investigate how the performance of the
application is affected during the transformation.

For this purpose, we measure the frame rate of the video-
processing application when the available cores are changed
every 40s, see Fig. 8. All resource variations except the one
from four to six cores cause a transformation into an alter-
native network. During the transformation, the frame rate
basically stays between the rate at the beginning and end
of the transformation. However, it can happen (e.g., when
changing the number of available cores from two to five)
that several frames arrive at the output process almost at
the same time. This happens if multiple replicas simultane-
ously start to process.

Transforming the application takes the most time when

=N
S

1 core 4 cores 6 cores 8 cores 4 cores 2 cores 5 cores

B
=)
T
i

hyosmrig

)
=]
T
=
i

frames per second [1/s]
t

=)

40 80 120 160 200 240

time [s]
Figure 8: Measured frames per second of the video-
processing application.

the available cores are increased from six to eight (3.9s)
and reduced from eight to four (4.2s). In both situations,
AdaPNet changes the number of replicas of the processes
Udec, Vgauss, and Vsoper- In particular, in the first situation,
it replicates vge. three times, changes the number of replicas
of vgauss from ten to 19, and replicates vsober two times. As
the application is assigned the same process network for four
and six cores, AdaPNet just reverses the previous expansion
when the number of available cores is reduced to four.

Overall, the results show that AdaPNet is able to trans-
form the application into an alternative network seamlessly
so that the throughput is never lower than the throughput
at the beginning and end of the transformation.

6. RELATED WORK

Various compile-time techniques to refine a process net-
work have been proposed in literature. Most of these tech-
niques use the concept of fusion and fission operators [6] to
change the number of replicas of stateless processes. In [20],
“just-enough parallelism” is exploited by replicating pro-
cesses of synchronous dataflow (SDF) graphs [12]. In [18],
the throughput of an SDF graph is maximized by replicating
and merging processes. A machine learning based approach
to predict the ideal partition of a dataflow graph among the
available resources is presented in [19].

When the available resources may change at run-time,
techniques are needed that are able to adapt the mapping or
even the application’s parallelism. Flextream [8] is a flexible
compilation framework to adapt the mapping of a streaming
application dynamically. However, as shown in Section 5.3,
the memory usage of the application is virtually indepen-
dent of the available PEs and the application might have a
considerable scheduling overhead on a single PE. Run-time
task duplication is used in [3] to maximize the application’s
throughput. The technique replaces stateless processes by
a master thread that distributes the actual work among its
sibling threads. When the available PEs are changed, the
number of sibling threads is increased or decreased to im-
prove the throughput. In contrast, our work proposes the
expansion of processes by process networks as a mechanism
to also refine stateful processes. A dynamic scheduling ap-
proach for streaming applications specified as SDF graphs is
proposed in [13]. It uses the fusion and fission operators to
generate a schedule that maximizes the throughput of the
application. StreaMorph [2] is a technique to adapt SDF
graphs at run-time by performing a reverse sequence of ex-
ecutions to bring the graph into a known state. In contrast
to the previous two approaches, our technique does not as-
sume a static schedule and is therefore applicable to more
complex MoCs than SDF graphs. Furthermore, the mech-

2For 56 cores, Flextream has in fact 0 us to calculate the new mapping
as it refines the process network at compile-time using the largest
possible resource allocation, i.e., 56 cores, as target platform.

anism proposed in Section 4.2 supports stateful processes,
a key characteristic of general process networks that is not
supported by the previously discussed techniques.

Finally, a different approach to achieve dynamic load bal-
ancing, the overall goal of run-time adaptivity, is the concept
of task stealing [1]. Even though efficient implementations
for shared-memory systems have been presented (e.g., [11]),
task stealing approaches still suffer from communication
overheads, in particular on distributed memory systems [14].
However, this overhead can be reduced if tasks are assigned
to specific PEs. In addition, task stealing only provides lim-
ited options to exploit pipeline parallelism. In contrast, our
technique uses pipeline parallelism to split large (stateful)
tasks into sub-tasks.

7. CONCLUSION

In this paper, we demonstrated that stateful process net-
works can be executed on platforms with dynamic resource
allocation efficiently. To achieve this goal, we proposed
AdaPNet, an adaptive run-time system to execute stream-
ing applications on multi-processor systems. AdaPNet
does not exploit more application parallelism than required,
thereby reducing unnecessary inter-process communication
and scheduling overheads. It responds to resource variations
by calculating an alternative process network that preserves
the application behavior, but maximizes the performance
on the new resources. Afterwards, AdaPNet transparently
transforms the application into the alternative process net-
work without discarding its program state. Evaluations on
two many-core systems have shown that AdaPNet outper-
forms run-time systems that do not adapt the degree of par-
allelism in terms of speed-up and memory usage. Moreover,
AdaPNet is able to transform the application seamlessly into
an alternative network so that the throughput is never lower
than that at the beginning and end of the transformation.

Acknowledgement. This work was supported by EU FP7
project EURETILE under grant number 247846 and by
the UltrasoundToGo project from Nano-Tera.ch with Swiss
Confederation financing.

References

[1] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded
Computations by Work Stealing. J. ACM, 46(5):720-748, 1999.

[2] D. Bui and E. A. Lee. StreaMorph: A Case for Synthesizing
Energy-Efficient Adaptive Programs Using High-Level
Abstractions. In EMSOFT, pages 20:1-20:10, 2013.

[3] Y. Choi et al. Adaptive Task Duplication using On-Line
Bottleneck Detection for Streaming Applications. In CF, pages
163-172, 2012.

[4] A. Fedorova et al. Cypress: A Scheduling Infrastructure for a
Many-Core Hypervisor. In MMCS, pages 1-7, 2008.

[5] M. Geilen and T. Basten. Requirements on the Execution of
Kahn Process Networks. In Programming Languages and
Systems, volume 2618 of LNCS, pages 319-334. Springer, 2003.

[6] M. I. Gordon et al. Exploiting Coarse-Grained Task, Data, and
Pipeline Parallelism in Stream Programs. SIGPLAN Not.,
41(11):151-162, 2006.

[7] W. Haid et al. Efficient Execution of Kahn Process Networks
on Multi-Processor Systems using Protothreads and Windowed
FIFOs. In ESTIMedia, pages 35-44, 2009.

[8] A. Hormati et al. Flextream: Adaptive Compilation of
Streaming Applications for Heterogeneous Architectures. In
PACT, pages 214-223, 2009.

[9] J. Howard et al. A 48-Core IA-32 Message-Passing Processor
with DVFS in 45nm CMOS. In ISSCC, pages 108-109, 2010.

[10] G. Kahn. The Semantics of a Simple Language for Parallel
Programming. In IFIP, pages 471-475, 1974.

[11] N. M. Lé et al. Correct and Efficient Work-stealing for Weak
Memory Models. In PPoPP, pages 69-80, 2013.

[12] E. Lee and D. Messerschmitt. Synchronous Data Flow. Proc.
IEEE, 75(9):1235-1245, 1987.

[13] H. Lee et al. Dynamic Scheduling of Stream Programs on
Embedded Multi-core Processors. In CODES+ISSS, pages
93-102, 2012.

[14] S. Li et al. Asynchronous Work Stealing on Distributed
Memory Systems. In PDP, pages 198-202, 2013.

[15] A. Polze and P. Tréger. Trends and Challenges in Operating
Systems — from Parallel Computing to Cloud Computing.
Concurrency and Computation: Practice and Experience,
24(7):676-686, 2012.

[16] L. Schor et al. Scenario-Based Design Flow for Mapping
Streaming Applications onto On-Chip Many-Core Systems. In
CASES, pages 71-80, 2012.

[17] L. Schor et al. Expandable Process Networks to Efficiently
Specify and Explore Task, Data, and Pipeline Parallelism. In
CASES, pages 5:1-5:10, 2013.

[18] A. Stulova et al. Throughput Driven Transformations of
Synchronous Data Flows for Mapping to Heterogeneous
MPSoCs. In SAMOS, pages 144-151, 2012.

[19] Z. Wang and M. F. O’Boyle. Partitioning Streaming
Parallelism for Multi-Cores: A Machine Learning Based
Approach. In PACT, pages 307-318, 2010.

[20] J. T. Zhai et al. Exploiting Just-Enough Parallelism when
Mapping Streaming Applications in Hard Real-Time Systems.
In DAC, pages 170:1-170:8, 2013.

APPENDIX
A. PROCESS MIGRATION

As shown in Section 4, some processes must be migrated
to different PEs during the transformation. In the following,
we summarize a technique to do so. It migrates a process
adhering to the API described in Section 3 from one PE
to another one whereby both PEs might belong to different
computing environments.

Algorithm 5 shows the pseudo-code to migrate an indi-
vidual process from one PE to another one on a platform
with distributed memory. The basic idea of the algorithm is
to have a hand-shaking protocol that informs the process to
be migrated, vmig, that no more incoming tokens are gen-
erated. Afterwards, all in-flight tokens (tokens written by a
parent process but not yet received by the child process) are
collected so that process vmig, as well as all incoming and
outgoing channels of vynig, can be migrated.

Algorithm 5 Pseudo-code to migrate process vpig of pro-
cess network p from PEg,.. to PEgg;.

>stop Vmig, pause parent and child processes of Vmig
01 stop process vmig before it starts a new firing

02 for all ¢ = (Vsre, Vast) S.b. Vsre <> Umig and vgst == Upig do
03 pause process vVgrc

04 wait until all in-flight tokens of ¢ arrived at destination

o5 end for

06 for all ¢ = (Vgre, Vast) S.t. Vsre == Umig and vgsi <> Umig do
o7 pause process vgst

08 wait until all in-flight tokens of ¢ arrived at destination

09 end for
10 install process vimig on PEgg¢ >mowve process to new PE
11 move process state Svmig from PEg,.. to PEg 4
12 Temove Process Umig on PEgyc
>re-instantiate incoming and outgoing channels

13 for all ¢ = (Vsrc, Vdst) 8.t Vere <> Umig and Vgst == Umig do
14 install channel ¢ between PE(vs,c) and PEgs¢

>with PE(vsye) being the PE of vgre
15 transfer tokens from old to new instance of ¢
16 remove old instance of ¢
17 resume process Usyrc
18 end for
19 for all ¢ = (Vsrc, Vdst) 8.t Vere == Umig and vgss <> Umig do
20 install channel ¢ between PEgs; and PE(vgst)

>with PE(vgst) being the PE of vast
21 transfer tokens from old to new instance of ¢
22 remove old instance of ¢
23 resume process Ugst

24 end for
25 start process vmmig on PEgg Dre-start the process on target PE

