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Abstract—Programming heterogeneous systems has been
greatly simplified by OpenCL, which provides a common low-
level API for a large variety of compute devices. However,
many low-level details, including data transfer, task scheduling,
or synchronization, must still be managed by the application
designer. Often, it is desirable to program heterogeneous systems
in a higher-level language, making the developing process faster
and less error-prone. In this paper, we introduce a framework to
efficiently execute applications specified as synchronous dataflow
graphs (SDF) on heterogeneous systems by means of OpenCL.
In our approach, actors are embedded into OpenCL Kkernels
and data channels are automatically instantiated to improve
memory access latencies and end-to-end performance. The multi-
level parallelism resulting from the hierarchical structure of
heterogeneous systems is exploited by applying two techniques.
Pipeline and task parallelism are used to distribute the application
to the different compute devices and data-parallelism is used to
concurrently process independent actor firings or even output
tokens in a SIMD fashion. We demonstrate that the proposed
framework can be used by application designers to efficiently
exploit the parallelism of heterogeneous systems without writing
low-level architecture dependent code.

Keywords—Automatic synthesis, dataflow languages, heteroge-
nous systems, OpenCL, SDF graphs

I. INTRODUCTION

The ever increasing computational requirements of real-
time multimedia and scientific applications, coupled with the
thermodynamic laws limiting the effectiveness of sequential
architectures, has brought hardware designers to conceive sys-
tems with a high degree of parallelism. Such systems integrate
a wide variety of compute devices including general-purpose
processors, graphics processing units (GPUs), or accelerators.
This enables software designers to perform their tasks on the
best-suited device.

Programming heterogeneous computing systems, i.e., sys-
tems with different types of compute devices, can often be
challenging, for instance because different devices require
different code or support different (low-level) services. To
provide a common interface for programming heterogeneous
systems, the open computing language (OpenCL) [1] has been
proposed. Programs following the OpenCL standard can run
on any OpenCL-capable platform satisfying their resource
requirements, and many hardware vendors, including Intel,
AMD, NVIDIA, and STMicroelectronics, provide native sup-
port for OpenCL. Still, application designers have to manage
many low-level details including data exchange, scheduling,
or process synchronization, which makes programming het-
erogeneous systems difficult and error-prone. Thus, it would
be desirable to have a higher-level programming language as
significant areas of the design process could be automated,

making the complete design process simpler, less error-prone,
and more understandable.

Dataflow graphs have emerged as a promising paradigm
for programming parallel systems. Essentially, an application
specified as a dataflow graph is a set of autonomous actors
that communicate through first-in first-out (FIFO) channels.
When an actor fires, it reads tokens from its input channels
and writes tokens to its output channels. As a large set
of streaming applications, such as audio and video codecs,
signal processing applications, or networking applications, can
be naturally expressed as dataflow graphs, they enjoy great
popularity in research and industry. Using them as model
of computation allows the designer to explicitly specify the
parallelism of an application and, at the same time, to separate
computation from communication. Moreover, the use of a
dataflow graph based design flow, such as the one introduced
in this paper, allows designers to focus on the application-
specific parts, with the architecture-specific implementation
being automatically synthesized by the design flow.

In the past, efficiently programming dataflow graphs for
heterogeneous systems was challenging due to hardware spe-
cific runtime and coding environments. We propose to meet
this challenge by running applications on top of OpenCL. This
has the advantage that the design flow can be used for any
platform supporting OpenCL. Another challenge is to fully
exploit the multi-level parallelism offered by hierarchically
organized heterogeneous systems. A heterogeneous system
might not only be composed of many compute devices; each
of them might also be able to process multiple threads in
parallel. Even more, there are devices that are only able to
fully exploit their performance if the same instructions are
concurrently applied to multiple data sources. To address this
issue, we propose to use pipeline, task, and data parallelism to
exploit the different levels of parallel hardware. Pipeline and
task parallelism are leveraged by distributing the application to
the different compute devices. Pipeline parallelism is achieved
by assigning each actor of a chain to a different compute device
and task parallelism is achieved by executing independent
actors on different compute devices. Finally, data parallelism
is used to exploit the parallelism offered by the individual
compute devices: independent actor firings will be scheduled
concurrently if the compute device is able to process multiple
threads in parallel and multiple output tokens will be calculated
in a SIMD fashion.

Following these ideas, the contribution of this paper is a
design flow for executing applications specified as synchronous
dataflow (SDF) [2] graphs on heterogeneous systems using
OpenCL. SDF graphs are a restricted version of dataflow



programs in which actors read and write a fixed number of
tokens per firing. First, we propose an architecture-independent
application programming interface (API) for programming
parallel applications as SDF graphs. Second, the correspond-
ing runtime-system and program synthesis backend has been
implemented for the distributed application layer (DAL) [3],
which allows multiple (dynamically interacting) applications
to efficiently execute on parallel systems. The communication
interface abstracts low-level implementation details from the
application designer in the sense that the memory location of
the FIFO channels is optimized to improve memory access
latencies and end-to-end performance. Seamless integration of
I/O operations is provided by the ability to execute actors
as native POSIX threads and to automatically transfer tokens
between them and actors running on top of OpenCL. Finally,
a detailed performance evaluation is carried out to support our
claims. In particular, the overhead of the runtime-system is
measured, the proposed concepts for exploiting the different
levels of parallelism are compared with each other, and the
end-to-end throughput is evaluated for various systems.

The remainder of the paper is structured as follows. In the
next section, related work is reviewed. In Section III, a short
overview on OpenCL is given. In Section IV, the proposed
approach is summarized. In Section V, the proposed API
is defined. In Sections VI and VII, details of our approach
are discussed. Finally, experimental results are presented in
Section VIIIL.

II. RELATED WORK

While OpenCL has recently become very popular, mainly
due to its non-proprietarity and the large number of supported
platforms, people also struggled with managing many low-
level details in OpenCL, and thus tried to find ways to simplify
programming OpenCL-capable platforms. Maestro [4] is an
extension of OpenCL that provides automatic data transfer
between host and device as well as task decomposition across
multiple devices. While tremendously simplifying the task of
the programmer, Maestro introduces new restrictions as, for
instance, that tasks have to be independent of each other.
The task-level scheduling framework detailed in [5] extends
OpenCL by a task queue enabling a task to be executed on
any device in the system. Furthermore, dependencies between
tasks are resolved by specifying a list of tasks that have to
be completed before a new task is launched. Nonetheless, the
burden of organizing data exchange is still left to the designer
and no automatic design-flow is provided to efficiently design
applications in a high-level programming language.

dOpenCL (distributed OpenCL) [6] is an extension of
OpenCL to program distributed heterogeneous systems. The
approach abstracts the nodes of a distributed system into
a single node, but the programmer is still responsible for
managing many low-level details of OpenCL.

The high-level compiler described in [7] generates OpenCL
code for applications specified in Lime [8], a high-level Java
compatible language to describe streaming applications. Lime
includes a task-based data-flow programming model to express
applications at task granularity, similar to dataflow graphs.
The work in [7] particularly focuses on generating optimal
OpenCL code out of the given Java code. In contrast to the
high-level language based approach of Lime, we propose the
use of a model-based design approach enabling actor-to-device
mapping optimization and verification. Furthermore, our high-

level specification enables the use of a lightweight runtime-
system without the need of a virtual machine.

The model-based design of heterogeneous multi-processor
systems using dataflow graphs is subject to several research
projects. Even though not targeting OpenCL-capable plat-
forms, the approach presented in [9] is closely related to our
work. They introduce a formal dataflow language that can be
used for both software and hardware synthesis. In contrast, the
focus of our work is the efficient exploitation of the parallelism
offered by applications specified as dataflow graphs.

Another approach to designing heterogeneous systems is
to program the individual devices in separate languages. In
this context, the execution of dataflow graphs on systems with
CPUs and GPUs has been studied using NVIDIA’s CUDA
framework [10] for executing actors on the GPU. For instance,
the multi-threaded framework proposed in [11] integrates
both POSIX threads and CUDA into a single application.
In contrast to our work, the approach is primarily concerned
with overlapping computation and computation, but does not
optimize the actual memory placement. KPN2GPU, a tool
to produce fine-grain data parallel CUDA kernels from a
dataflow graph specification, is described in [12]. An automatic
code synthesis framework taking dataflow graphs as input and
generating multi-threaded CUDA code is described in [13].
However, they assume that a separate definition of the actor is
given for the CPU thread implementation and the GPU kernel
implementation. In contrast, our API abstracts low-level details
enabling the same definition to be used for CPU and GPU
devices. Furthermore, Sponge [14] is a compiler to generate
CUDA code from the Streamlt [15] programming model.
Sponge only exploits the coarse-grained task parallelism of
the dataflow graph while in our approach, the firing of an
actors is additionally fragmented to fully exploit the multi-level
parallelism of today’s heterogenous systems. In addition, our
approach generates OpenCL code enabling the same frame-
work to be used for a wider range of heterogeneous platforms
than the above described CUDA-targeting frameworks.

ITII. OPENCL BACKGROUND

OpenCL defines a couple of new terms and concepts,
which the reader may be unfamiliar with. For the sake of
completeness, a short overview on these shall be given here;
for a detailed documentation, however, we refer to [1].

Computational resources are organized hierarchically in
OpenCL. There are devices, which consist of several compute
units (CUs); those again are groups of one or more processing
elements (PEs). As an example, a system with one CPU and
one graphics card might provide two OpenCL devices: the
CPU and the GPU of the graphics card. The different cores of
the CPU would then each be one CU basically consisting of
one PE. Each cluster of the GPU would be a CU with typically
dozens of PEs. The devices are controlled by the host, which
is a native program executed on the target machine'.

The code that runs on the PEs is referred to as kernels.
Essentially, a kernel is a function written in a C-like program-
ming language called OpenCL C. It should perform a specific
task with a well-defined amount of work and then return. All
memory portions that it can use to communicate with the other
kernels are provided as kernel arguments. When a kernel is

10n a PC, this means that the CPU may represent the host and a device at
the same time; usually, this is implemented by having different OS threads.



executed on a PE, this execution instance is called a work-
item. When the same kernel is instantiated multiple times at
once (e.g., to achieve SIMD execution on GPUs), some of
these work-items can be gathered to work-groups, which are
allowed to share memory for intermediate calculations.

There are two major classes of memory types in OpenCL:
global memory and different local memory types. Global
memory can be accessed by the host as well as the devices,
whereas local memory can only be used by the work-items
as an intermediary storage. Note that there is no specification
as to where the memory types are physically mapped. In case
of a GPU, the global memory would typically reside in the
graphics card DDR memory and the local memory in the
GPU’s fast scratch-pad memories, whereas on a CPU both
types just represent the normal RAM of the PC. All memory
types have in common that they are limited to the scope of a
context, i.e., a user-defined set of devices. If, within a context,
a global memory reference is passed from one device to
another one with a different implementation of global memory,
the OpenCL framework will automatically take care of the
necessary copying. However, as this is done by the OpenCL
backend (the driver), which is implemented by the hardware
manufacturers, a context may not contain devices of different
manufacturers (e.g., Intel CPU and NVIDIA graphics card).

The mapping and scheduling of the work-items is done
in a semi-automatic way. The host creates command queues
for each device and on these queues, it can place commands,
namely the instantiation of a kernel or a data transfer to or
from a global memory. The framework will decide on which
PE a work-item is executed and when it will be scheduled. The
host can influence this by choosing between in-order command
queues, which execute the commands strictly in the order in
which they were enqueued, and out-of-order queues, which
may consider later commands if the first command is blocked.

While initially conceived for PCs and general purpose GPU
programming, OpenCL is today supported by many more plat-
forms. Examples include Intel’s Xeon Phi accelerator, AMD’s
Accelerated Processing Unit (APU), and STMicroelectronics’
STHORM platform [16].

IV. PROBLEM AND APPROACH

In this paper, a model-based design approach to program-
ming heterogeneous systems in a systematic manner is con-
sidered. The proposed approach enables the system designer
to efficiently execute SDF graphs on OpenCL-compatible
heterogeneous systems. The goal is to maximize the end-to-
end throughput of an application by leveraging the parallelism
offered by heterogeneous systems. Other performance metrics
as, for instance, response time, power consumption, or real-
time guarantees are not regarded.

Clearly, the goal could be reached by compiling SDF
graphs natively for a specific target platform without the
additional layer introduced by OpenCL. Even though the
advantages of a model-based design approach could be re-
tained, such an approach would only support a small subset of
heterogeneous systems and optimizing the application might
be time-consuming. Using OpenCL and its runtime compiler
enables the application to automatically take advantage of the
latest enhancements of modern processors to maximize the
throughput. On the other hand, in comparison with program-
ming applications directly in OpenCL, the proposed model-
based design approach offers a way to explicitly leverage var-
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Fig. 1. Proposed high-level design flow to execute SDF graphs on heteroge-

neous systems using OpenCL.

ious kinds of parallelism, enables functional verification, and
allows to efficiently distribute the work between the different
compute devices. Another advantage of the proposed model-
based design approach is that the application-independent parts
can be implemented once and reused in all applications.

A. Proposed Design Flow

The proposed design flow maps an SDF graph onto an
OpenCL-compatible system in a number of steps, as illustrated
in Fig. 1. The design flow’s input is a dataflow graph specified
in a high-level, architecture-independent API and an abstract
specification of the target architecture. In Step 1, the actors
are assigned to the available compute devices and potentially
parallelized for running on multiple CUs and PEs. OpenCL C
compliant actors are mapped onto OpenCL devices and the
remaining actors (e.g., actors using file I/O or recursive func-
tions) are executed as native POSIX threads (Step 2). Actors
that have been assigned to OpenCL devices are synthesized
in Step 3 to OpenCL kernels. Finally, in Step 4, OpenCL
kernels are launched at runtime by the runtime-system that
synchronizes the actors.

The focus of this paper is on the specification and efficient
execution of SDF graphs on top of OpenCL-compatible het-
erogeneous systems. Thus, we do not detail Steps 1 and 2 on
how to partition the SDF graph onto the available compute
devices and how to synthesize actors as POSIX threads. An
excellent survey on current trends in application partitioning
and mapping is provided in [17]. More details on executing
dataflow graphs on top of a POSIX-compliant multi-threading
environment is given, e.g., in [3].

Next, we will give an overview on how parallelism is
exploited before detailing the proposed high-level API, the
software synthesizer, and the runtime-system.

B. Exploiting the Parallelism of Heterogeneous Systems

The key to efficient program execution on heterogeneous
systems is to exploit the parallelism they offer. OpenCL
supports three levels of hardware parallelism, namely different
devices, CUs, and PEs. We take account of these by leveraging
different kinds of application parallelism on each of them.
More specifically, pipeline and task parallelism are used to dis-
tribute the dataflow graph to the different devices. Afterwards,
data parallelism is used to exploit the parallelism offered by the
individual devices. Independent actor firings are concurrently
executed on different CUs of the same device and, to achieve
SIMD execution on different PEs, independent output tokens



are calculated in parallel. To illustrate how data parallelism is
leveraged, we take the actor shown in Figure 2 as an example.
Per firing, it reads six tokens and writes three tokens. Output
tokens are independent of each other, although depending on
the same input tokens. In our framework, multiple firings might
be executed in parallel on different CUs and each output token
is calculated on a different PE.
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Fig. 2. Exemplified actor behavior where the calculation of each output token
is independent of the other tokens even though three output tokens depend on
the same input data.

This concept can be implemented in OpenCL by mapping
actors, firings, and output tokens onto equivalent OpenCL
constructs. The basic idea is that a work-item calculates one or
more output tokens of a firing so that all work-items gathered
to a single work-group calculate together all output tokens of a
firing. All work-items belonging to the same work-group have
access to the same input tokens but write their output tokens to
different positions in the output stream. This allows for SIMD
execution.

In addition, if the topology of the dataflow graph allows
it, multiple firings will be calculated in parallel by having
multiple work-groups. Thus, work-items from different work-
groups access different input tokens and write their output
tokens to different memory positions. While this could also
be achieved by adding a splitter distributing the work and a
merger collecting the data, the communication and manage-
ment overhead in our approach is less since multiple invoca-
tions can be combined into one invocation. This particularly
has an impact if certain input or output channels are mapped
onto memory other than the device’s memory. The memory
required by all firings belonging to the same kernel invocation
is then copied as one block. Note that the number of work-
groups per kernel invocation might be limited by the topology
of the graph, e.g., if the actor is part of a cycle.

When launching a kernel, the OpenCL runtime assigns each
work-group to a CU and each work-item to a PE of its work-
group’s CU. Note that in OpenCL, the number of work-groups
and work-items is not bounded by the number of CUs and PEs.
OpenCL can handle more work-groups than available CUs and
more work-items than available PEs. In fact, OpenCL might
use them to improve the utilization by switching the context
if work-items of a particular work-group are stalled due to
memory contention. Figure 3 illustrates the different levels of
hardware and software parallelism and how they are linked.

In order to fully leverage the parallelism offered by hetero-
geneous systems, design decisions have to be taken in all steps
of the proposed design flow. First of all, the specification of the
SDF graph should include details about the output tokens. In
Step 1, besides binding actors to compute devices, decisions
must be taken about the number of work-groups and work-
items per work-group. The number of work-groups highly
depends on the characteristics of the device, e.g., a loss of
performance must be expected if the number of work-groups
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Fig. 3. TIllustration of the different levels of hardware and software parallelism
when executing an actor on top of an OpenCL device.

is not a multiple of the number of CUs. Similarly, the number
of work-items might depend on the number of available PEs.
In Step 3, the OpenCL kernel is synthesized based on these
numbers and the output tokens are distributed to the work-
items. At start-up, the runtime-system forwards the paralleliza-
tion directives to the OpenCL framework, which builds and
optimizes the kernel to leverage the latest enhancements of
the device. The runtime-system is further in charge of reducing
the communication overhead, e.g., by selecting a good memory
location for the FIFO channels and combining data transfers.

V. HIGH-LEVEL SYSTEM SPECIFICATION
In this section, we describe the high-level specification we
propose for automatic program synthesis. It is illustrated in
Fig. 4, based on an example.

architecture

__bus

back-side bus

Fig. 4. Example system illustrating the proposed high-level specification. G
refers to work-groups and I refers to work-items per work-group.

Application specification. In this work, we consider applica-
tions that can be represented as an SDF graph. An SDF graph is
basically a set of autonomous actors that communicate through
FIFO channels by reading/writing tokens from/to a channel.
Reading a value from a FIFO channel is always destructive,
i.e., the value is removed from the FIFO channel. Each actor of
a graph adhering to the SDF model of computation produces
and consumes a fixed number of data tokens per firing, which
is called the token rate. In Fig. 4, the token rate is specified
by a number next to the ports. In addition, we introduce the
notion of blocks. A block is defined as a group of consecutive
output tokens that are jointly calculated and do not depend on
any other output tokens. In the example illustrated in Fig. 2,
a single output token forms a block as all output tokens are
independent of each other. Clearly, all blocks of an output
port have to be of the same size and that size must be a
fraction of the port’s token rate. This last kind of fragmentation
can typically not be leveraged by an ordinary dataflow graph



specification; however, we claim that the proposed extension is
natural, as in practice, actors are often specified such that one
firing calculates multiple output tokens that require the same
input data even though they could be calculated independently
of each other. The discrete Fourier and cosine transforms,
block-based video processing algorithms [18], and sliding
window methods often used for object detection [19] are just
a few examples of algorithms that exhibit this property.

SDF graphs have the advantage that the application be-
havior is specified independently of the topology. We employ
the XML format shown in Listing 1 to specify the topology.
Each actor has a set of ports representing the connections
to the FIFO channels. Besides its type, a port has a field
rate specifying the token rate, i.e., the number of tokens
produced or consumed per firing, and each output port has a
field blocksize specifying the size of a corresponding block
in number of tokens.

Listing 1. Specification of the SDF graph illustrated in Fig. 4.

01 <graph>

02 <actor name="prod">

03 <port type="out" name="outl" rate="1" blocksize="1"/>
04 <src type="c" location="prod.c"/>

05 </actor>

06 <actor name="worker">

07 <port type="in" name="inl" rate="1"/>

08 <port type="out" name="outl" rate="4" blocksize="2"/>
09 <src type="c" location="worker.c"/>

10 </actor>

11 <actor name="cons">

12 <port type="in" name="inl" rate="2"/>

13 <src type="c" location="cons.c"/>

14 </actor>

15

16 <channel capacity="8" tokensize="4" name="channell">
17 <sender actor="prod" port="outl"/>

18 <receiver actor="worker" port="inl"/>

19 </channel>

20 <channel capacity="32" tokensize="1" name="channel2">
21 <sender actor="worker" port="outl"/>

22 <receiver actor="cons" port="inl"/>

23 </channel>

24 </graph>

The behavior of an actor is specified in C/C++ and follows
the ideas illustrated in Listing 2; however, the application de-
signer is free to optimize the code using OpenCL C constructs.
Providing the application designer with the ability to write
the code in C/C++ has various advantages over OpenCL C,
e.g., it hides low-level details of OpenCL and provides the
opportunity to not only execute the actor as OpenCL kernel,
but also as POSIX thread. The FIRE procedure represents one
firing of the actor and is repeatedly executed. Additionally,
there is an INIT procedure, which is called once at start-
up of the application in order to produce potential initial
tokens. We leverage the concept of windowed FIFOs [20]
for the FIFO channel interface. The basic idea of windowed
FIFOs is that actors directly access the FIFO buffer avoiding
(expensive) memory copy operations. A window for reading
is acquired by using CAPTURE, which returns a pointer to the
requested memory. Similarly, a buffer reference for writing is
obtained by using RESERVE, potentially together with a block
identifier (b1k, the default is to use the first block). Finally,
the FOREACH directive allows for a parallel calculation of the
individual blocks of an output port. Note that, although not
shown here, it is possible to include multiple ports in one
FOREACH statement if they take the same number of blocks
per firing.

Listing 2. Implementation of the actor “worker” using the proposed API.
01 void INIT() |

02 initialization();

03 FOREACH (blk 1N PORT_outl) {

04 TOKEN_OUT1_t *wbuf = RESERVE (PORT_outl, blk);

05 createinittokens (wbuf, blk); // write initial tokens to wbuf

06 }
07}

09 void FIRE() {

10 preparation () ;

11 TOKEN_IN1_t xrbuf = capTUurRE (PORT_inl);

12 FOREACH (blk 1IN PORT_outl) {

13 TOKEN_OUT1_t *wbuf = RESERVE (PORT_outl, blk);

14 manipulate (rbuf, wbuf, blk); //read from rbuf, write to wbuf
15 }

16}

Architecture specification. The described approach targets
heterogeneous platforms that are OpenCL-capable and can be
managed by a single host. A system may consist of hardware
components of different vendors with individual OpenCL
drivers. The extension to distributed systems with multiple host
controllers is straightforward, e.g., by connecting the different
nodes by an MPI interface as presented in [3]. For the high-
level specification of the architecture, we employ an XML
format specifying the available devices and their OpenCL
identifiers.
Mapping specification. Finally, a mapping of the actors onto
the devices is required for program synthesis. The mapping is
generated in Step 1 of the design flow illustrated in Fig. 1.
The mapping particularly decides on the distribution of
the actors to the architecture by assigning each actor to a
compute device, see Listing 3. In addition, the mapping defines
the number of work-items per work-group that should be
instantiated for an actor and the number of work-groups used
to gather the work-items. The mapping may also specify a
work distribution pattern for every output port. This setting
indicates how the output blocks are assigned to the work-items,
e.g., consecutive blocks to the same work-item or to different
work-items for simultaneous access.

Listing 3. XML specification of the mapping based on the example of the
“worker” actor shown in Fig. 4.

01 <binding>

02 <actor name="worker">

03 <port name="outl" work-dist="strided"/>
04 </actor>

05 <device name="gpu_0"/>

06 <workgroups count="4"/>

07 <workitems count="2"/>

08 </binding>

VI. OPENCL SYNTHESIZER

Having identified the actors that are mapped onto OpenCL
devices in Step 1, Step 3 is to synthesize these actors into
OpenCL kernels by performing a source-to-source code trans-
formation. In the following, we illustrate this step based on
the “worker” actor shown in Listing 2.

As described in Section III, an OpenCL kernel specifies
the code that runs on one PE. Thus, the basic idea of the
OpenCL synthesizer is to replace the high-level communica-
tion procedures with OpenCL-specific code so that the FIRE
procedure calculates a certain number of output blocks. The
number of output blocks depends on the number of work-
items per work-group as specified by the mapping illustrated
in Listing 3. When launching the kernel, the runtime-system



Listing 4. Embedding the actor shown in Listing 2 into an OpenCL C
kernel. Newly added lines are marked by [ and modified lines by [07.

=

/I declare helper variables according to dataflow graph specification in Listing 1

@ const int TOKEN_IN1_RATE = 1;

- const int TOKEN_OUT1_RATE = 4, BLOCK_OUT1_SIZE = 2;
- const int BLOCK_OUT1_COUNT =

los. TOKEN_OUT1_RATE / BLOCK_OUT1_SIZE;
07 __kernel void 1nIT(__global TOKEN_OUT1_t #*outl) {

08 int gid = get_group_id(0); // work-group id

09 int 1id = get_local_id(0); // work-item id

10 int 1lsz = get_local_size(0); // work-item count

11 initialization();

12 for (int blk=1id; blk<BLOCK_OUT1_COUNT; blk+=1lsz) {
13 __global TOKEN_OUT1_t xwbufl = outl +

14 gid«TOKEN_OUT1_RATE + blk+BLOCK_OUT1_SIZE;

15 createinittokens (wbuf, blk); // write initial tokens to wbuf
[} }

17 }

19 _ kernel void FIRE(__global TOKEN_IN1_t =inl,

20 __global TOKEN_OUTI1_t =*outl) {

[ 1] int gid = get_group_id(0); // work-group id

2 int 1id = get_local_id(0); // work-item id

23 int 1lsz = get_local_size(0); // work-item count

24 preparation();

25 __global TOKEN_IN1_t srbuf = inl + gid+TOKEN_IN1_RATE;
2 for (int blk=1id; blk<BLOCK_OUT1_COUNT; blk+=1lsz) {
27 __global TOKEN_OUT1_t xwbufl = outl +

28 gid«TOKEN_OUT1_RATE + blk+*BLOCK_OUT1_SIZE;

29 manipulate (rbuf, wbuf, blk); // read from rbuf, write to wbuf
130/ }

3}

will specify the number of work-groups and work-items so that
one or more firings are concurrently calculated by one kernel
invocation. Listing 4 illustrates how an actor is synthesized
into an OpenCL kernel:

e The INIT and FIRE procedures are declared as kernels
with one parameter per output channel being added to
INIT and one parameter per input and per output channel
being added to FIRE (Lines 07 and 19f.).

e Constant helper variables are declared (Lines 02 to 05).

e CAPTURE is replaced with a pointer to the head of the
corresponding FIFO channel, using the work-group id to
select the correct region (Line 25).

e FOREACH is implemented as a loop iterating over the
block identifiers (Lines 12 and 26). For each work-
item, its ID determines the iteration that it computes. In
Listing 4, the solution for a strided work distribution is
shown. Note that the loop might not be executed by all
work-items, in particular if the number of work-items is
larger than the number of blocks. The number of work-
items might be larger than the number of blocks if, for
instance, an actor has multiple output ports with each
having a different number of blocks.

e RESERVE is replaced with a pointer to the block being
written in the current iteration (Lines 13 f. and 27f.).

VII. RUNTIME-SYSTEM FOR SDF GRAPHS

The runtime-system’s task is to dispatch the OpenCL ker-
nels to the connected devices by providing an implementation
of the high-level API proposed in Section V. This includes two
basic functionalities, namely a framework to synchronize the
actors and a memory-aware implementation of the FIFO chan-
nels. Their implementation is the key to an efficient execution
of SDF graphs on top of OpenCL. Thus, the runtime-system
must try to maximize the utilization of OpenCL devices and
to reduce communication latencies. To this end, we leverage
two properties of OpenCL:

OpenCL commands el

notifications _—

callback invocations -------- »

runtime-system (host program)

Fig. 5. Structure of the actor synchronization and invocation framework.

In-order command queues. The utilization of a device can
be maximized by always having commands in the command
queue. In-order queues allow for an efficient specification of
dependencies as they guarantee a fixed execution order of
work-items. Unlike all other methods of specifying execution
orders, they can be autonomously interpreted by the devices
without time-consuming interventions of the host.

Hierarchical memory system. Work-items have to use global
memory for data exchange. The physical location of these,
however, depends on the devices and on the OpenCL directives
used by the host. It is therefore important to keep track of
these locations and to take influence such that the best-suited
memory is used whenever possible. The objective is to keep
the number of memory copy transactions as low as possible,
reducing latencies and maximizing the end-to-end throughput.

Based on these considerations, we describe the two basic
functionalities of the runtime-system in the following.

A. Actor Synchronization

As each kernel invocation executes a specific amount of
work and then returns, a mechanism is required to repeatedly
reinvoke the kernel with different input data. However, a kernel
can only be invoked if enough tokens and space are available
on each input and output channel, respectively. Thus, the basic
idea of the actor synchronization and invocation framework is
to monitor the FIFO channels and, depending on their fill level,
to (re)invoke the kernels.

Figure 5 illustrates the structure of the actor synchroniza-
tion and invocation framework. On start-up, the host creates
an in-order command queue for each device and starts the
runtime-manager. The runtime-manager then monitors the fill
level of the FIFO channels and invokes OpenCL kernels.
Callbacks triggered by certain command execution states are
used to keep this information up to date. For instance, the com-
pletion of a kernel may trigger a callback function notifying
the runtime-manager that a certain amount of tokens has been
produced or consumed (see below).

The aim of the runtime-manager is to maximize the uti-
lization of the individual devices by avoiding empty command
queues. It might even have multiple kernel invocations of the
same actor simultaneously enqueued, in particular as long as
data are available in the input channels and buffer space is
available in the output channels. Using in-order command
queues is advantageous as the runtime-manager can enqueue
commands already before completion of other commands they
depend on. For instance, if two actors having a common
FIFO channel are mapped onto the same device, the runtime-
manager can update the number of available tokens of the
FIFO channel immediately after enqueuing the source actor,
even though no tokens have been produced yet.



B. FIFO Communication

The communication service has two tasks to accomplish,
namely data transfer and, indirectly, actor invocation. While
data transfer should happen ideally without even involving
the host, the host must know the state of the channels,
which determines whenever an actor can be fired. Therefore, a
distributed FIFO channel implementation is considered where
the FIFO channel’s fill level is managed by the host and only
updated by the runtime-manager. The memory buffer, on the
other hand, may be allocated in device memory.

In the following, we discuss FIFO communication between

actors mapped onto a single device, between actors mapped
onto different devices, and between an actor running on top of
OpenCL and an actor executing as a POSIX thread.
FIFO communication on single device. If both the source
and the sink actor are mapped onto the same device, a buffer
is allocated in the global memory of the corresponding device.
In each firing, the source actor gets a pointer to the current
tail and the sink actor to the current head of the virtual ring
buffer. The ring buffer is implemented as a linear buffer in
the device memory and OpenCL’s sub-buffer functionality is
used to split the buffer into individual tokens. As an in-order
command queue is used, the runtime-manager can also update
the tail and head pointers upon enqueuing the kernels. The
FIFO channel implementation and the communication protocol
are illustrated in Fig. 6.

[ source device | [ runtime-manager |

[ sink device ]

1 . enqueue kernel

I:l execute kernel

process can
be triggered

available

i

update lailpoinlerg

enqueue kernel

occupied H update head
space H pointer

Fig. 6. FIFO channel implementation on single devices (left) and correspond-
ing communication protocol (right).

FIFO communication between devices. While the FIFO
communication implementation on a single device requires
no memory copies, it is typically required to transfer the
data from one device to the other one if two actors mapped
onto different devices communicate with each other. In the
following, we consider the general case where host accessible
memory (HAM) has to be used for this data transfer. The
overall idea is to allocate the entire buffer in both global
memories of the involved devices and in the HAM. The
runtime-manager keeps track of all three memories by having
three tail and three head pointers. Preallocating the memory
is particularly advantageous as expensive memory allocation
operations are avoided at runtime.

The communication protocol is illustrated in Fig. 7. The
basic principle underlying the protocol is that data are for-
warded as soon as possible from the source to the sink in
packets of reasonable size. The protocol works as follows.
After enqueuing the command for launching the source kernel,
the runtime-manager also enqueues a command for updating
the host memory with the newly written data. As in-order
command-queues are installed between host and devices, it
is ensured that the memory update command is only executed
when the kernel execution is completed. Once the memory
update command is completed, a callback tells the runtime-

source device runtime-manager sink device
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at
update FIFO fill level
———

Fig. 7. Communication protocol for data exchange between two devices.

manager to update the fill level of the FIFO channel. The
runtime-manager then checks if the channel contains enough
data for a kernel invocation of the sink actor. If this is the case,
it enqueues a command to update the device memory with
the newly available data. Once the sink fulfills all execution
conditions, i.e., there are enough tokens and space available on
each input and output channel, the runtime-manager enqueues
the kernel into the command queue, initiating a new firing
of the actor. As soon as the kernel execution is completed,
a callback tells the runtime-manager that tokens have been
consumed.

A special case of this situation is if one of the devices
is the CPU. In that case, the global memory of the device is
identical with the HAM and thus only two buffers are needed.
FIFO communication between device and POSIX thread.
The situation that one of the actors is executed as a POSIX
thread is similar to the situation where one of the OpenCL
kernels is executed on the CPU device. The actor directly
accesses the buffer in the HAM.

VIII. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed framework. The goal is to answer the following ques-
tions. @) What is the overhead introduced by the proposed
runtime-system and can we give guidelines when to execute
an actor as OpenCL kernel or as a POSIX thread? ) How ex-
pensive is communication between actors, both when mapped
onto the same device and onto different devices? ¢) Does the
proposed framework offer enough flexibility for the program-
mer to efficiently exploit the parallelism offered by GPUs? —
To answer these questions, in the following, we evaluate the
performance of synthetic and real-world applications on two
different heterogeneous platforms.

A. Experimental Setup

The considered target platforms are outlined in Table I
Both CPUs have hyper-threading deactivated and support the
advanced vector extensions (AVX). Applications benefit from
AVX in the sense that several work-items might be executed
in a lock-step via SIMD instructions. The Intel SDK for
OpenCL Applications 2013 is used for Intel hardware. OpenCL
support for the graphics cards is enabled by the NVIDIA driver
319.17 and by the AMD Catalyst driver 13.1. If not specified
otherwise, the used compiler is G++ 4.7.3 with optimization
level O2 and the default optimizations are enabled in OpenCL.

B. Overhead of the Runtime-system
First, we quantify the overhead introduced by OpenCL
and by the proposed actor synchronization and invocation



TABLE I

PLATFORMS USED TO EVALUATE THE PROPOSED FRAMEWORK.

ID CPU GPU(s) operating system
cores clusters PEs memory bandwidth
A Intel Core i7-2600K at 3.4 GHz 4 NVIDIA GeForce GTX 670 7 1344 192.2GB/s Arch Linux with kernel 3.7.6-1
AMD Radeon HD 7750 8 512 72.0 GB/s
B Intel Core i7-2720QM at 2.2 GHz 4 NVIDIA Quadro 2000M 4 192 28.8 GB/s Ubuntu Linux 12.04 with kernel 3.5.0-28
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output channel. This result consists of multiple output tokens
that can be calculated in parallel using multiple work-items.
The number of calculations is varied to change the execution
time per firing of the source actor. This also changes the
invocation period and its inverse, i.e., the invocation frequency
as the SDF graph’s invocation interval is only limited by the
execution time of the source actor. For brevity, we only report
the results for platform A; however, the results for platform B
exhibit similar trends.

Overhead of the OpenCL framework. To quantify the
overhead of the OpenCL framework, we synthesized both
actors of the PRODUCER-CONSUMER application either for
OpenCL or POSIX. When synthesizing the application for
POSIX, either no optimization, optimization level O2, or
optimization level O3 with setting march=native is used.
When march=native is set, G++ automatically optimizes
the code for the local architecture. When synthesizing the
application for OpenCL, the number of work-groups is set to
one so that each actor is executed on exactly one core.

Figure 8 shows the speed-up of the OpenCL implemen-
tation and the optimized POSIX implementations versus the
execution time of the unoptimized POSIX implementation,
with the number of calculations in the source actor being
varied. The z-axis represents the invocation period of the
unoptimized POSIX implementation. As the kernel invocation
overhead in OpenCL is virtually independent of the kernel’s
amount of work, the POSIX implementation performs better
for small invocation periods. On the other hand, the overhead is
less crucial for longer invocation periods and OpenCL imple-
mentations achieve even higher speed-ups than the optimized
POSIX implementations. This may be due to OpenCL’s ability
to utilize the CPU’s vector extension so that four work-items
are executed in SIMD fashion. That assumption is supported
by the fact that the CPU we use is only able to execute four
work-items in parallel and distributing the work to five work-
items is counter-productive. Note that G++ also makes use of
the AVX commands when the corresponding option is enabled,
which is why the speed-up of the O3 implementation is always
higher than the speed-up of the OpenCL implementation with
one work-item.

Overhead of the runtime-system. To evaluate the overhead
caused by the proposed runtime-system, we synthesize the
PRODUCER-CONSUMER application for OpenCL with one
work-item per actor and measure its execution time for two dif-
ferent actor synchronization mechanisms. The first mechanism
is called “manager” and corresponds to the proposed actor
synchronization mechanism presented in Section VII, i.e., a
runtime-manager monitors the FIFO channels and creates new
kernel instances. A larger channel capacity allows the runtime-

unoptimized POSIX invocation period [ms] "callback" invocation frequency [1/s]

Fig. 8. Speed-up of the OpenCL and Fig. 9. Speed-up of the PRODUCER-
the optimized POSIX implementations CONSUMER application when using
versus the unoptimized POSIX imple- the “manager” mechanism relative to
mentation. I refers to the number of the execution time when using the
work-items. “callback” mechanism.

manager to have multiple firings of the same actor simul-
taneously enqueued in the command queue, which can lead
to a higher utilization of the device. The second mechanism
is called “callback” and is a naive approach that uses the
callback functions of OpenCL (e.g., kernel execution finished,
data transfer completed) for enqueueing further commands.

Figure 9 shows the speed-up of the PRODUCER-
CONSUMER application when using the “manager” mechanism
relative to the execution time when using the ‘“callback”
mechanism. Both actors are mapped onto the CPU and the
number of calculations in the source actor is varied. The x-axis
represents the invocation frequency when using the “callback”
mechanism. As expected, no speed-up is achieved for low
invocation frequencies. For higher invocation frequencies, the
“manager” mechanism is slower than the “callback” mech-
anism if the FIFO channel has a capacity of one token. In
this case, both mechanisms can enqueue a new firing only if
the previous firing is completed. However, the feedback loop
is larger for the “manager” mechanism as it also includes
the runtime-manager. If the FIFO channel has a capacity of
more than one token, the “manager” mechanism can enqueue
a new firing in parallel to the execution of the old one so
that the “manager” mechanism is faster than the ‘“callback”
mechanism. Finally, for very large invocation frequencies, the
firing completes earlier than the “manager” mechanism can
enqueue a new firing so that the speed-up declines again.

Overall, the results demonstrate that the proposed runtime-
manager performs considerably better than a naive actor invo-
cation mechanism. Furthermore, we claim that OpenCL is not
only useful for executing actors on GPUs, but also on CPUs
if data parallelism can be efficiently leveraged.

C. Intra- and Inter-Device Communication

Next, we evaluate the communication costs for different
types of FIFO channel implementations. The goal is to show
that mapping the memory buffers in a sub-optimal manner
onto the distributed memory architecture may affect the overall
performance of the application.

For this purpose, we measure the data transfer rate between
two actors mapped onto either the same device or different
devices. Our test application is designed such that in each
firing, the producer actor generates one token, which it fills
with a simplistic integer sequence. It then sends the token to
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Fig. 10. Data rate for different actor mappings and channel implementations.
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the consumer actor that reads the values. This set-up is selected
to ensure that the workload per transmitted byte is independent
of the size of a token. Figure 10 shows the aggregated data
rate for different actor mappings and channel implementations,
where the size of a single token is varied between 512 bytes
and 4 MB. The channel size is fixed to 32 MB.

In the first set-up, the data transfer rate between two actors
mapped onto the same device is measured for two different
FIFO implementations. The results are shown in Figs. 10a
and 10b for the NVIDIA and the AMD GPU, respectively.
First, we use the optimized FIFO implementation, which keeps
the data in the global memory of the device (“global buf.”).
Second, we used a naive FIFO implementation, which transfers
data through HAM (“HAM buf.”). The number of work-groups
(G) per actor is set to the number of CU and the number of
work-items per work-group is indicated by I. Having more
work-items might lead to higher data transfer rates as more
PEs can concurrently read and write. The observed peak data
rate is 20.30 GBytes/s when both actors are mapped onto
the NVIDIA GPU and 7.96 GBytes/s when both actors are
mapped onto the AMD GPU. The data transfer rate is consid-
erably lower if the memory buffer is allocated in the HAM. In
this case, the observed peak data rate is 1.09 GBytes/s (both
actors are mapped onto the NVIDIA GPU) and 1.67 GBytes/s
(both actors are mapped onto the AMD GPU).

The data transfer rate for the case that one actor is mapped
onto the CPU and the other actor is mapped onto the AMD
GPU is illustrated in Fig. 10c. “GPU to CPU” means that the
producer actor is mapped onto the GPU and the consumer
actor onto the CPU. For “CPU to GPU”, it is vice versa. The
observed peak data rate is 1.91 GBytes/s when the producer
actor is mapped onto the GPU and 2.14 GBytes/s when the
producer actor is mapped onto the CPU.

Finally, Fig. 10d shows a summary of the data transfer rates
for platform B. The observed peak data rate is 3.82 GBytes/s
and measured when both actors are mapped onto the GPU.

We conclude that exploiting on-device communication
without going through HAM is essential for the performance.
Yet, we think that the communication costs still leave much
room for improvement. In future work, we would like to
include the local memory of a CU and to overlap local to
global memory communication with computation.

gauss- optical
ian blur flow

CPU GPU (if available) CPU

Fig. 11. SDF graph of the video-processing application.

D. Exploiting Data and Task Parallelism

The results presented so far indicate that the proposed
concepts of multi-level parallelism indeed lead to higher
performance. Next, we will investigate this question further
by comparing the performance of a real-world application for
different mappings and degrees of parallelism.

For this purpose, a video-processing application has been
implemented that decodes a motion-JPEG video stream and
then applies a motion detection method to the decoded video
stream, see Fig. 11 for the SDF graph. The MJPEG decoder
can decode multiple video frames in parallel but cannot divide
the output tokens into smaller pieces. The motion detection
method is composed of a Gaussian blur, a gradient magnitude
calculation using Sobel filters, and an optical flow motion
analysis. Tokens transmitted between these three components
correspond to single video frames, but in all filters, the
calculation of an output pixel is independent of the other output
pixels. A gray scale video of 320 x 240 pixels is decoded and
analyzed in all evaluations. If a GPU is available, the Gaussian
blur, the Sobel, and the optical flow actors will be mapped onto
it. Otherwise, all actors will be mapped onto the CPU.

In what follows, we measure the frame rate of the applica-
tion for different degrees of parallelism and configurations of
the target platforms. While fixing the number of frames that are
concurrently decoded to three, the number of work-groups (G)
and the number of work-items (I) per work-group are varied
for the Gaussian blur, the Sobel, and the optical flow actors.
However, for the sake of simplicity, all three actors have the
same number of work-groups and work-items.

Figure 12a shows the frame rates achieved with different
configurations on target platform A. The highest performance
(2347 fps) is achieved with all CPU cores and a GPU device
available. In that case, the bottleneck is not anymore the GPU,
but the CPU that is not able to decode more frames. Similarly,
the CPU is mostly the bottleneck if only one core is used
to decode the frames. Mapping all actors onto a single core
of the CPU leads to a maximum frame rate of 57 fps, thus
a speed-up of almost 41x can be achieved when all cores
are used together with a GPU device. The plot also shows
that the GPU can highly leverage a large number of work-
items. Finally, note that a different work distribution pattern
is used for the calculation of the individual output pixels
depending on whether the Gaussian blur, the Sobel, and the
optical flow actors are mapped onto the CPU or the GPU.
Mapping consecutive blocks to the same work-item works best
for the CPU while consecutive blocks to different work-items
works best for the GPU.

Figure 12b shows the frame rates for different configura-
tions on target platform B. The peak performance (931 fps) is
achieved when all cores of the CPU and the GPU device are
available. It constitutes a speed-up of 192 compared to the case
where all actors are mapped onto one CPU core. The plot also
shows that the number of work-groups should be aligned with
the available hardware. We have found that the Intel OpenCL
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SDK version we used distributes the OpenCL kernels to only
three cores, which is why a higher frame rate is obtained when
executing three work-groups instead of four.

Overall, the results demonstrate that the proposed frame-
work provides developers with the opportunity to exploit the
parallelism provided by state-of-the-art GPU and CPU sys-
tems. In particular, speed-ups of up to 41z could be measured
when outsourcing computation intensive code to the GPU.

IX. CONCLUSION

In this paper, we have presented a high-level programming
framework to execute applications specified as SDF graphs
on heterogeneous systems using OpenCL. The proposed high-
level API abstracts low-level implementation details from
the application designer so that the designer can focus on
the application-specific parts. In this framework, actors are
automatically embedded into OpenCL kernels and scheduled
by a centralized runtime-manager. FIFO channels are instan-
tiated by the runtime-system in a way that memory access
latencies and end-to-end performance are improved. The multi-
level parallelism typically offered by heterogeneous systems
is individually exploited on each level. First, task and pipeline
parallelism are used to distribute the application to the different
compute devices. Afterwards, the parallelism offered by the
individual compute devices is exploited by means of data
parallelism. In particular, multiple firings of an actor are
concurrently processed and independent output tokens are
calculated in a lane of a SIMD machine. We demonstrated
the viability of our approach by running synthetic and real-
world applications on two heterogeneous systems consisting
of a multi-core CPU and multiple GPUs, achieving speed-ups
of up to 41x compared to execution on a single core.

In the future, we plan to apply the proposed design flow
to other OpenCL-capable platforms, e.g., the STHORM plat-
form [16] or the Xeon Phi accelerator.
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