
Energy Efficient DVFS Scheduling
for Mixed-Criticality Systems

Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland

firstname.lastname@tik.ee.ethz.ch

ABSTRACT

Consolidating functionalities with different safety require-
ments into a common platform gives rise to mixed-criticality
systems. The state-of-the-art research has focused on pro-
viding heterogeneous timing guarantees for tasks of varying
criticality levels. This is achieved by dropping less critical
tasks when critical tasks overrun. However, with drastically
increased computing requirements and the often battery-
operated nature of mixed-criticality systems, energy mini-
mization for such systems is also becoming crucial. In fact,
this has already been possible since many modern processors
are equipped with the capacity of dynamic voltage and fre-
quency scaling (DVFS), where processor frequency can be
reduced at runtime to save energy.
We present in this paper the first results known to date

on applying DVFS to mixed-criticality systems. We show
that DVFS can be used to help critical tasks to meet dead-
lines by speeding up the processor when they overrun. This
will further allow the system to reserve less time budgets for
task overrun. Thus, more slack can be explored to reduce
the processor frequency to save energy for scenarios when
tasks do not overrun. Since overrun is rare, such a strat-
egy can greatly reduce the expected energy consumption for
mixed-criticality systems. For solving the energy minimiza-
tion problem, we formulate a convex program by integrating
DVFS with a well-known mixed-criticality scheduling tech-
nique – EDF-VD. Furthermore, we present analytical re-
sults on this problem and propose an optimal algorithm to
solve it. With both theoretical and experimental results, we
demonstrate energy savings and various tradeoffs.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; C.4 [Performance of
systems]: Performance attributes

General Terms

Algorithms, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESWEEK ’14, October 12 - 17 2014, New Delhi, India
Copyright 2014 ACM 978-1-4503-3052-7/14/10 ...$15.00.
http://dx.doi.org/10.1145/2656045.2656057

Keywords

Mixed-Criticality, Energy, Voltage and Frequency Scaling,
Real-time, Scheduling

1. INTRODUCTION
Recently, there is an increasing trend to consolidate func-

tionalities of varying importances (criticality levels) into a
common computing platform. Such a trend has been ob-
served in several major industries (e.g. automotive and
avionics [1]), and has lead to the emergence of mixed-critical-
ity systems – systems for which varying degrees of assurance
must be provided to functionalities of varying importances.

A typical example of mixed-criticality systems is the un-
manned aerial vehicles (UAVs) [2], where functionalities can
be categorized as safety- or mission-critical. The safety-
critical functionalities include those like flight control and
trajectory computation, losing which a UAV can no longer
be safely operated. While the mission-critical functionalities
may include object tracking for surveillance purposes, los-
ing which a UAV is still considered safe. Correspondingly,
in a system level model for mixed-criticality systems, the de-
sign parameters for safety-critical functionalities are usually
much more pessimistic than that for mission-critical func-
tionalities (e.g. task worst case execution times (WCETs)).

State-of-the-art. Pessimistic design parameters usually
imply resource inefficiency at runtime. In order to further fa-
cilitate resource efficient mixed-criticality systems, the state-
of-the-art model [3, 4, 5, 6, 7, 8, 9] for mixed-criticality sys-
tems specifies system guarantee in a dynamic manner: For
each task in the system, its WCET is modeled on all ex-
isting criticality levels, with the one on a higher criticality
level being more pessimistic. And whenever any task over-
runs its χ criticality level WCET, only tasks with criticality
levels higher than χ are guaranteed thereafter. A task set
is said to be mixed-criticality schedulable if such dynamic
guarantee can be provided by some scheduling algorithm.
Indeed, it has been demonstrated in various results (e.g. [3,
4, 8]) that schedulability of mixed-criticality systems can be
considerably improved this way.

Motivation. The state-of-the-art research on mixed-crit-
icality systems has primarily focused on providing hetero-
geneous timing guarantees for tasks of different criticality
levels. However, to the best of our knowledge, other non-
functional properties like energy consumption are still not
explored. Indeed, energy is also a critical issue for safety-
critical systems. We outline here three main reasons. First,
the volume of computing we embed into safety-critical sys-
tems is becoming considerably large. For example, cur-
rent high-end vehicle computers can consist of more than
100 electronic control units (ECUs) [10]. This requires a

tremendous power supply. Thus, to sustain the comput-
ing, energy minimization in the cyber space becomes vi-
tal. Second, many safety-critical devices like the medical
heart pacemakers are battery-operated. Therefore, low en-
ergy consumption could directly lead to significant economic
gains by increasing device lifetime and reducing maintenance
costs. Last, with drastic increase in power density of modern
electronic circuits, chip temperature has become a promi-
nent issue, which could affect system reliability and timing
correctness [11]. Hence, energy saving is crucial also due to
the thermal issues.
We address in this paper the new challenge to minimize

energy for mixed-criticality systems. In particular, we inves-
tigate offline dynamic voltage and frequency scaling (DVFS)
to reduce energy consumptions while preserving mixed-criti-
cality schedulability of the system. However, applying DVFS
in a mixed-criticality setting is non-trivial due to the follow-
ing features of this problem:
Unclear energy objective. For mixed-criticality sys-

tems, there is a bounded uncertain workload we have to
guarantee for critical tasks (for the sake of system safety).
Though assumed to be improbable, the uncertain workload
complicates energy minimization as we do not know for
which workload we are going to minimize the energy con-
sumption. Hence, a proper energy objective needs to be
justified in the first place.
Conflict between energy minimization and safety

guarantee. The main idea of applying DVFS to minimize
energy consumption is to stretch task execution times as
much as possible by lowering the processor frequency, such
that tasks finish “just in time”. In other words, DVFS tries
to explore all slack in the system and pushes the execution
of tasks to the time limit. On the contrary, in order to
guarantee system safety, we have to reserve time budget for
critical tasks, such that they can still meet their deadlines
even if they overrun. This needs to be prepared a priori and
prevents us from exploring all available slack in the system.
Such a conflict needs to be taken into account when solving
the mixed-criticality energy minimization problem.
Hardness. Without any detailed settings (e.g. used

scheduling algorithm, available frequencies), a first inves-
tigation reveals that the mixed-criticality energy minimiza-
tion problem is NP-hard in the strong sense. This can be
shown by examining a subproblem of the energy minimiza-
tion problem, where there is only one frequency level in the
system. In this case, the energy minimization problem is
identical to the mixed-criticality scheduling problem [12],
which has already been proved to be strongly NP-hard [12].
This confirms the NP-hardness of the mixed-criticality en-
ergy minimization problem.
Rationale. Due to the hardness of the energy mini-

mization problem, we will focus in this paper on integrat-
ing DVFS with a well-known mixed-criticality scheduling al-
gorithm – EDF-VD [4], which targets dual-criticality tasks
with implicit deadlines. In addition, since task overrun is
unlikely, we contend in this paper that it is proper to mini-
mize the system energy consumption for the scenario when
no task overruns, which we call as the expected energy con-
sumption. This is a realistic assumption as the system will
most likely only execute under this scenario. Furthermore,
as overrun is rare, it is affordable for the system to speedup
by DVFS to handle overrun. This will in turn allow the sys-
tem to reserve less time budgets for task overrun and more
slack could be explored by DVFS to minimize the expected
energy consumption.
Contribution. We present in this paper results on ap-

plying DVFS to mixed-criticality systems for energy mini-
mization. To our best knowledge, these are the first results
in this setting. Our detailed contributions are as follows:

‚ We clarify the characteristics of the mixed-criticality en-
ergy minimization problem and show that speeding up to
handle overrun is beneficial for minimizing the system’s
expected energy consumption.

‚ We integrate DVFS with the EDF-VD scheduling tech-
nique and formulate our energy minimization problem as
a convex program. Moreover, we show there is a conflict
between system timing safety and energy minimization.

‚ We provide results on reducing the search space for our
energy minimization problem and present an optimal al-
gorithm to find the solution to our problem.

‚ We demonstrate with both theoretical and experimental
results energy savings and various tradeoffs for the mixed-
criticality energy minimization problem.

Organization. Our paper is organized as follows: Our
system models and some preliminaries are given in Section 2.
We present a motivational example and our problem defini-
tion in Section 3. Section 4 presents a convex program for-
mulation of our energy minimization problem. We present
in Section 5 an optimal solution algorithm for our formu-
lated problem. We discuss in Section 6 some tradeoffs and
extensions for our proposed techniques. Section 7 presents
experimental results and Section 9 concludes the paper.

2. SYSTEM MODELS AND PRELIMINARY

2.1 Mixed-Criticality Sporadic Task Model
We adopt in this paper the state-of-the-art mixed-criticality

task model [5, 3, 6, 7, 8, 9, 13]. Given is a dual-criticality
sporadic task set τ “ tτ1, . . . , τnu scheduled on a unipro-
cessor. Each task has either high (HI) or low (LO) critical-
ity. In addition, each task τi is characterized by a minimal
inter-arrival time Ti and a relative deadline Di. We as-
sume all tasks have implicit deadlines, i.e. @τi P τ, Ti “ Di.
A task τi may issue an infinite number of jobs. For nota-
tional convenience, we denote all χ criticality level tasks by
τχ “ tτi | χi “ χu.

The WCETs of all tasks are modeled on both critical-
ity levels. Namely, each task τi has a HI criticality WCET
CipHIq and a LO criticality WCET CipLOq. For all tasks,
theWCETs on HI criticality are strictly non-decreasing when
compared to their WCETs on LO criticality. The rationale
behind this is that the WCET on HI criticality is typically
more conservative than that on LO criticality (to ensure
timing safety). We assume that LO criticality tasks are not
allowed to exceed their LO criticality WCETs.

Based on the above model, the system then provides dy-
namic guarantees to all tasks based on their revealed exe-
cution times at runtime, which can be specified by a simple
mode switch protocol:

‚ The system starts with the LO mode, where all tasks do
not exceed/overrun their LO criticality WCETs and are
guaranteed to meet their deadlines.

‚ If any HI criticality task exceeds its LO criticality WCET,
then the system transits immediately to the HI mode,
where all LO criticality tasks are dropped and HI criti-
cality tasks are guaranteed to meet their deadlines if they
do not exceed their HI criticality WCETs.

For a given scheduling algorithm, the system is said mixed-
criticality schedulable if such dynamic guarantees are pro-
vided to all tasks. Notice, however, the system could further
switch back from the HI mode to the LO mode, providing
that all tasks can meet their deadlines after transiting back,
see e.g. [13].

2.2 Power Model and DVFS
In this paper, we adopt the state-of-the-art power model [14,

15, 16]:

P pfq “ Ps ` Pdpfq “ Ps ` β ¨ fα
, (1)

where Ps stands for the static power consumption due to
leakage current, and Pd represents the active power con-
sumption due to switching activities, which depends on the
processor frequency. Pd can be represented as β ¨ fα, where
β is a circuit dependent positive constant and α ě 2 (a
common assumption is 3 [17, 18]). As a result, the power
consumption is a convex increasing function of the proces-
sor frequency. Moreover, by dynamic voltage and frequency
scaling (DVFS), one can reduce the processor frequency to
reduce Pd.
We focus in this paper on minimizing the active energy

consumption (due to Pd) by means of DVFS. And in our
later formulations we will omit Ps for simplicity of presenta-
tion. We assume that the processor frequency can be freely
set in the range rfmin, fmaxs. We additionally assume that
the task WCETs as presented in our task model are mea-
sured on a base frequency fb (the processor originally oper-
ates on this frequency), fmin ď fb ď fmax. Without loss of
generality, we assume that fmax is normalized to 1.
Based on our models, the χ criticality worst-case number

of clock cycles of task τi can be computed as Cipχq{ 1

fb
“

Cipχqfb, which is a constant under DVFS. For ease of pre-
sentation, we will call the invariant

CipLOqfb (2)

as the normal workload of task τi, and the invariant

pCipHIq ´ CipLOqqfb (3)

as its extra workload. If task τi runs constantly on frequency
f , then its actual χ criticality WCET is Cipχqfb{f .

2.3 Recap of the EDF-VD scheduling technique
We continue to introduce some basic concepts of mixed-

criticality scheduling and the EDF-VD scheduling technique [4],
on top of which we will design our DVFS strategy.

2.3.1 Preparation for safety
In order to ensure that HI criticality tasks can still meet

their deadlines even if they overrun, time budgets need to be
reserved for those tasks. Alternatively speaking, the safety
of the system needs to be prepared (in terms of extra work-
load for HI criticality tasks), even when the system is still
in the LO mode.

2.3.2 EDF-VD
Earliest Deadline First with Virtual Deadline (EDF-VD)

is a mode-switched EDF scheduling technique developed for
mixed-criticality task sets [4, 8]. The reservation of time
budgets for HI criticality tasks is done in the LO mode.
This is achieved by shortening the deadlines of HI criticality
tasks. Intuitively, shortening the deadlines of HI criticality
tasks will push them to finish earlier in the LO mode, leav-
ing more time until their actual deadlines to accommodate

Table 1: Example task set with parameters in units of ms

χi Ti CipHIq CipLOq
τ1 HI 8 5 2
τ2 LO 12 1 1
τ3 LO 16 2 2

extra workloads. Indeed, this form of safety preparation (i.e.
shortening deadlines of HI criticality tasks in the LO mode)
has been proved to be effective in improving system schedu-
lability [4]. For further details about EDF-VD, we also refer
the readers to [4].

Let us denote with x (0 ă x ď 1) the factor by which dead-
lines of HI criticality tasks are uniformly multiplied in the

LO mode. And let us use Uχ2
χ1

to denote
ÿ

τiPτχ1

Cipχ2q

Ti

. The

original EDF-VD scheduling technique sets x as
ULO

HI

1 ´ ULO

LO

,

which is the minimal x guaranteeing the system schedula-

bility in the LO mode [4] (
ULO

HI

x
` U

LO

LO ď 1). Without any

DVFS, a tight schedulability test can then be formalized as
follows [4].

Theorem 2.1. [4] A dual-criticality task set is schedula-
ble under EDF-VD if:

U
HI
HI ` xU

LO
LO ď 1. (4)

2.4 Other notations
For notational simplicity, we use rrassb to represent maxpa, bq

and rrassc to represent minpa, cq. Furthermore, rrasscb repre-
sents rrrrassbssc. For a given domain rb, cs, this operation keeps
the value of a if b ď a ď c, otherwise it equals b if a ă b or
c if a ą c.

3. MOTIVATIONAL EXAMPLE AND PROB-

LEM DEFINITION
Recall our discussion in Section 1, we aim at minimizing

the expected system energy consumption by offline DVFS
for tasks scheduled under EDF-VD. According to our mod-
els, the system operates under the LO mode when all tasks
adhere to their LO criticality WCETs. Hence, we will al-
ternatively call the expected energy consumption as the LO
mode energy consumption. Due to the improbability of tran-
siting to the HI mode, it is beneficial to speedup HI critical-
ity tasks when they overrun, which will decrease their actual
HI criticality WCETs. Thus, less time budgets need to be
reserved for HI criticality tasks, and more slack could be
used to stretch task executions in the LO mode to reduce
energy consumption. We provide here a concrete example
to explain this.

Example 3.1. Consider a sporadic implicit deadline task
set with task parameters given in Table 1. All task WCETs
are measured on the highest frequency level fmax. The task
set is scheduled by EDF-VD. We compare the expected en-
ergy consumptions of 3 different strategies:

Strategy A No DVFS – all tasks run on fmax.

Strategy B One frequency level per task – each task runs
on one single frequency in both modes, with τ1, τ2 and τ3
running on frequencies 0.81, 0.49 and 0.49, respectively.

Strategy C Speedup for overrun – the HI criticality task
τ1 runs on frequency 0.65 for its normal workload, and on

o
o o o o o o o o o o

1.0 1.2 1.4 1.6 1.8 2.0
frequency

0.4

0.5

0.6

1.0

Normalized Energy

Strategy A HNo DVFSL

Strategy B

Strategy C

»

Figure 1: Normalized LO mode energy against the frequency
of τ1’s extra workload, with the system energy consumption
calculated in 48 ms, α in (1) set to 2.5, fmin set to 0.2, and
the energy for Strategy A normalized to 1

frequency 1 (fmax) for its extra workload. Both τ2 and τ3
run on frequency 0.54.

For all three strategies, the system is schedulable accord-
ing to the EDF-VD test (Theorem 2.1, notice that scaled
task WCETs need to be used when running the test due to
DVFS). We show the energy dissipations in Figure 1. In
fact, task frequencies of Strategy B are derived by Mathe-
matica numerical optimization [19] as the optimal solution
when each task runs on a single frequency level. However,
by allowing τ1 to speedup when it overruns (Strategy C), we
can get better expected energy saving (8% more compared to
Strategy B). If the maximum available frequency fmax is in-
creased, then by speeding up τ1’s extra workload more, the
expected energy consumption can be further reduced (results
in this case in Figure 1 are obtained by numerical optimiza-
tion with our problem formulation in Section 4). This ex-
ample confirms that speeding up the extra workload for HI
criticality tasks can help to achieve better expected energy
savings.

Based on our discussions, the formal definition of our en-
ergy minimization problem in this paper is as follows.

Definition 3.1. (Mixed-Criticality Energy Minimization
(MCEM)) Given a dual-criticality sporadic task set τ sched-
uled under EDF-VD, decide offline:

‚ @τi P τLO, one frequency level fLO
i on which it should run,

‚ @τi P τHI, one frequency level fLO
i for its normal work-

load CipLOqfb, and one frequency level fHI
i for its extra

overload pCipHIq ´ CipLOqqfb,

‚ a deadline shortening factor x for all HI criticality tasks,

such that the LO mode system energy consumption is min-
imized while mixed-criticality schedulability of the system is
satisfied.

Notice that each LO criticality task only needs a frequency in
the LO mode as it is dropped in the HI mode. There are still
other possibilities to have degraded services for LO critical-
ity tasks in the HI mode (e.g. [13]), however this is beyond
the scope of this paper. In addition, for each HI criticality
task τi, f

HI

i is only required if the task actually exceeds its

LO criticality WCET at runtime (
CipLOqfb

fLO

i

with DVFS).

For completeness, we include in our problem definition the
deadline shortening factor x as a decision variable. However,
this is not strictly necessary since x can be automatically
inferred by EDF-VD as the minimal value guaranteeing the
system schedulability (Section 2.3). We model the deadline
shortening factor explicitly for two main reasons:

‚ As we will show in Section 4, the choice of x is critical to
our energy minimization problem.

‚ Modeling x as an explicit decision variable will allow us to
formulate our problem as a convex program.

4. CONVEX PROBLEM FORMULATION
We have introduced in Section 3 the MCEM problem (Def-

inition 3.1). In this section, we continue to present a convex
program formulation of the energy minimization problem.
For this purpose, we first discuss the choice of the deadline
shortening factor x for the MCEM problem.

4.1 The choice of the deadline shortening fac-
tor x

Conflict between schedulability and energy mini-
mization. On the one hand, to improve the system schedu-
lability, we need to choose a deadline shortening factor x as
small as possible. This will allow HI criticality tasks to finish
their normal workloads as early as possible, leaving enough
time to accommodate their extra workloads. Indeed, the
original EDF-VD scheduling technique uses a minimal x to
shorten deadlines of HI criticality tasks, as presented in Sec-
tion 2.3. On the other hand, to reduce the LO mode energy
consumption, a larger x could be better. With increasing
x, deadlines of HI criticality tasks in the LO mode are ex-
tended, and tasks have more slack to stretch their executions
by DVFS.

Quantification of the feasible range of x. We con-
tinue to quantify a feasible range of x that will guarantee
mixed-criticality schedulability. Intuitively, if x is too large,
then HI criticality tasks would finish their normal workloads
too late (in the worst-case, just at their deadlines), and the
system might not be schedulable in the HI mode. However,
if x is too small, then the system might not even be sched-
ule in the LO mode due to small task deadlines. Those two
scenarios give the bounds of x from top and bottom, re-
spectively. In addition, the operating frequencies will also
affect the feasible range of x since they will change the ac-
tual WCETs of all tasks. Let us denote by C̃ipχq task τi’s
χ criticality WCET after DVFS. According to our problem
definition (Definition 3.1), it is straightforward to show that
after DVFS:

C̃ipLOq “
CipLOqfb

fLO

i

, @τi P τ,

C̃ipHIq “
CipLOqfb

fLO

i

`
pCipHIq ´ CipLOqqfb

fHI

i

, @τi P τHI.

(5)

Let us further define Ũ
χ2

χ1
as:

Ũ
χ2

χ1
“

ÿ

τiPτχ1

C̃ipχ2q

Ti

. (6)

Formally, the following result is presented to determine
the feasible range of x.

Lemma 4.1. With DVFS for the MCEM problem, a dual-
criticality sporadic task set τ is schedulable under the EDF-
VD schedulability test iff there exists a feasible range of x:

0 ă xLB ď x ď xUB ď 1, (7)

where

xLB “
ŨLO

HI

1 ´ ŨLO
LO

, (8)

and

xUB “ rr
1 ´ ŨHI

HI

ŨLO
LO

ss1. (9)

The widest feasible range is obtained when the processor fre-
quency is set to a constant fmax. Furthermore, if

‚ x ă xLB, then LO mode is not schedulable;

‚ x ą xUB, then HI mode is not schedulable.

Proof. All proofs are presented in [20].

According to Lemma 4.1, we can compute the upper and
lower bounds of x assuming task frequencies are given, and
we obtain the widest feasible range of x when the processor
frequency is set to fmax. (This is intuitive – with increasing
frequency of the processor, the schedulability of the system
will be improved, and the feasible range of x will widen.) For
notational convenience, we will denote the lower and upper
bounds in this case as x̂LB and x̂UB. We call rx̂LB, x̂UBs as
the maximum feasible range.
Notice that for our energy minimization problem, if we

fix x and apply DVFS, we have to ensure that the fixed x
will still be in the new feasible range after DVFS. We now
illustrate this with an example.

Example 4.1. For the same task set and setting as shown
in Example 3.1, we can now compute the maximum feasible
range rx̂LB, x̂UBs “ r 6

19
, 1s. However, if we fix x to 0.5 and

the processor frequency to a constant, e.g. 3

4
fmax, then the

new feasible range of x becomes r 6

13
, 0.6s. Since our selection

of x (0.5) is still in this range, the system is schedulable
under EDF-VD for the new setting.

4.2 Convex problem formulation
We continue to present a convex program formulation of

our energy minimization problem (Definition 3.1)
Our objective is the LO mode system energy consumption,

which we calculate as the normalized energy consumption
in a hyperperiod ΠτjPτTj (the actual energy consumption
divided by the hyperperiod length). Notice that in such
a hyperperiod, the maximum number of jobs of task τi is
ΠτjPτTj

Ti

, and we can calculate our energy objective as:

1

ΠτjPτTj

¨
ÿ

τiPτ

ΠτjPτTj

Ti

CipLOqfb ¨
1

fLO

i

¨ β ¨ pfLO

i qα,

“
ÿ

τiPτ

CipLOqfb
Ti

¨ β ¨ pfLO

i qα´1
.

(10)

The energy minimization is constrained by:

‚ System schedulability in the LO mode [4]:

ŨLO

HI

x
` Ũ

LO

LO ď 1. (11)

‚ System schedulability in the HI mode (Theorem 2.1):

Ũ
HI

HI ` xŨ
LO

LO ď 1. (12)

‚ Maximum feasible range of x (Lemma 4.1):

x P rx̂LB, x̂UBs. (13)

‚ Available frequencies:

@τi P τHI,@χ P tHI,LOu,fχ
i P rfmin, fmaxs,

@τi P τLO,f
LO

i P rfmin, fmaxs.
(14)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

0.6
0.7
0.8
0.9
1.0

Normalized Energy

Optimal

Figure 2: Impact of x on minimal expected energy

Now, we can summarize a complete formulation for the mixed-
criticality energy minimization problem:

minimize p10q,

s.t. p5q, p6q, p11q, p12q, p13q, p14q.
(15)

A remark on the above problem formulation is that in
the feasible range of x and task frequencies, the problem is
a convex programming problem (our energy objective is a
convex function of task frequencies and the schedulability
constraints can be formulated in standard convex program-
ming form). For space reasons, we leave a detailed convex
presentation of our problem to [20]. Due to this convex for-
mulation, existing algorithms (e.g. [21]) can be used to solve
our formulated problem. We now show with an example the
impact of the deadline shortening factor x on the minimal
LO mode energy by solving the formulated problems.

Example 4.2. Consider the same task set and setting as
shown in Example 3.1. We use the Mathematica built-in op-
timization tool [19] to solve the formulated energy minimiza-
tion problem. In fact, Strategy C as shown in Example 3.1
is the optimal solution, where x equals 0.625. We plot here
in Figure 2 the minimal expected energy as a function of the
deadline shortening factor x in the maximum feasible range
(for each data point, we fix the value of x in our problem for-
mulation and run numerical optimization). As we can see,
indeed, there is a gain in energy saving with increasing x.
However, if x is bigger than 0.625, then the LO mode energy
consumption will increase. This can be intuitively explained:
The HI mode schedulability of the system will be jeopardized
when x is too big (“less” safety preparation). And to ensure
the HI mode schedulability, the system needs to speedup in
the LO mode. In other words, energy minimization conflicts
with the HI mode schedulability when x ą 0.625.

5. AN OPTIMAL SOLUTION ALGORITHM
We have formulated in Section 4 our energy minimization

problem (Definition 3.1) as a convex program. Although this
makes solving the problem easier by using existing methods
(e.g. [22]), theoretical investigations of the MCEM problem
are still needed to reveal its problem structure and give in-
sights into this problem. In the following, we will reduce
the actual problem space of the MCEM problem, identify
its optimality conditions and propose an optimal algorithm
to solve it.

5.1 Problem space reduction
We first show that the decision space for the MCEM prob-

lem can be reduced, due to convexity of the power function
(1) and insights into this problem. In particular, we present
the following results for problem space reduction.

Normal workload frequencies. Our first result re-
stricts the frequencies any optimal solution could use for
task normal workloads (as defined in (2)).

Theorem 5.1. In order to minimize the expected energy
consumption for the MCEM problem (Definition 3.1), for
task normal workloads, all HI criticality tasks should run
with the same frequency fLO

HI , and all LO criticality tasks
should run with the same frequency fLO

LO . In other words,
@τi P τHI, f

LO
i “ fLO

HI , and @τi P τLO, f
LO
i “ fLO

LO .

The fundamental reason for Theorem 5.1 is the convexity
of the power function. We refer interested readers to detailed
proof in [20]. Furthermore, in the LO mode, HI criticality
tasks should potentially run on a different frequency than
that of LO criticality tasks. This is because stretching the
executions of HI criticality tasks will have a different impact
on system schedulability due to shortened deadlines.
Extra workload frequencies. We continue to show

that, in any optimal solution to the MCEM problem, the
frequencies for the extra workloads of HI criticality tasks
(as defined in (3)) can also be limited. In fact, @τi P τHI,
setting the frequency fHI

i (with which τi’s extra workload
runs) the same will not change the optimal energy consump-
tion. The intuitive explanation is as follows: Suppose that
in an optimal solution to our problem, fHI

i ‰ fHI

j , where

tτi, τju Ă τHI. Notice first that modifying fHI

i alone will

only change ŨHI

HI , see (5) and (6). Hence, as long as we keep

ŨHI

HI the same, by e.g. letting fHI

i “ fHI

j , the solution will
remain feasible (according to Lemma 4.1, the feasible range
of x will not change). As a result, the LO mode energy
consumption (10) of the modified solution remains the same
(still optimal). Formally, this is summarized as follows.

Theorem 5.2. If an optimal solution exists for the MCEM
problem (Definition 3.1), where Dtτi, τju Ă τHI, f

HI
i ‰ fHI

j ,

then by letting fHI
i “ fHI

j , the optimal energy consumption
remains the same.

Thus, without giving up optimality of the solution, we can
fix fHI

i p@τi P τHI) to a same value (denoted as fHI

HI). Sum-
marizing Theorem 5.1 and Theorem 5.2, we have:

@τi P τLO,f
LO

i “ f
LO

LO ,

@τi P τHI,f
LO

i “ f
LO

HI , f
HI

i “ f
HI

HI .
(16)

5.2 Optimality condition
We proceed to study the exact optimality conditions for

the MCEM problem. For a given task set τ , let us first
define several invariants as follows:

K “
ÿ

τiPτHI

CipLOqfb
Ti

,

L “
ÿ

τiPτLO

CipLOqfb
Ti

,

M “1 ´
ÿ

τiPτHI

pCipHIq ´ CipLOqqfb
Tifmax

.

(17)

Based on Theorem 5.1 and Theorem 5.2, let us denote an
optimal solution to our problem as xopt, f

LO

HI opt, f
LO

LO opt and

fHI

HI opt. According to (5), (6) and Lemma 4.1, we can derive
the feasible range of x in this case as:

xLBopt “

K

fLO
HI opt

1 ´ L

fLO
LO opt

,

xUBopt “

s1 ´ K

fLO
HI opt

´ p1´Mqfmax

fHI
HI opt

L

fLO
LO opt

{1

.

(18)

0 1xLB xUBoptxLBopt xUB

xopt

Ö Ö

Figure 3: Bounds of x in an optimal solution

Notice that all frequencies (fLO

HI opt, fLO

LO opt and fHI

HI opt)
are less than or equal to fmax, and the optimal solution is
by definition feasible, i.e. 0 ă xLBopt ď xopt ď xUBopt ď
1. Furthermore, according to Lemma 4.1, we have x̂LB ď
xLBopt^xUBopt ď x̂UB. (Ũ

χ2
χ1

is strictly non-decreasing in an
optimal solution compared to when the processor frequency
is a constant fmax. According to Lemma 4.1, we can observe
that xLBopt can not decrease when compared to x̂LB. Simi-
larly, xUBopt will not increase.) Let us depict the bounds of
x and the optimal selection of it in Figure 3.

Four different cases can hence arise:

Case 1: xLBopt ă xopt ă xUBopt

In this case, according to (18), we can further reduce
fLO

HI opt and/or f
LO

LO opt (so that xLBopt will be increased and
xUBopt will be potentially decreased). This will help to re-
duce the expected energy consumption in the LO mode.
Since we assumed this is the optimal solution, it can only
be the case that fLO

HI opt and fLO

LO opt cannot be reduced, i.e.

fLO

HI opt “ fLO

LO opt “ fmin. However, manipulating fHI

HI opt

to change xUBopt will not affect the expected energy con-

sumption, which is independent of fHI

HI opt, see (10) and

(16). Hence, fHI

HI opt can be freely set as long as system
schedulability is guaranteed.

Case 2: xLBopt ă xopt ^ xopt “ xUBopt

In this case, if we choose xopt to be smaller such that it still
fulfills xLBopt ă xopt, the newly obtained solution is still
feasible. Since we are not modifying task frequencies, the
new solution is still optimal w.r.t. energy minimization.
Thus, this case is identical to Case 1.

Case 3: xLBopt “ xopt ^ xopt ă xUBopt

Similar to the argument in Case 2, we can increase xopt

without affecting the optimality of the solution. Also this
case is identical to Case 1.

Case 4: xLBopt “ xopt “ xUBopt

In this case, any reduction of fLO

HI opt or f
LO

LO opt will violate
the feasibility of the solution (according to (18), xLBopt

will be increased, and xUBopt will not increase such that
xLBopt ą xUBopt). Since we have so far considered all
possible cases of an optimal solution, and Case 1, Case 2
and Case 3 are identical, it follows that if an optimal so-
lution does not exist in a lowest energy state (task normal
workload frequencies are fmin), it must then exist in Case
4.

Formally, we summarize our observations as follows.

Theorem 5.3. An optimal solution to the MCEM prob-
lem can only exist in two cases:

1. At a lowest energy state: frequencies fLO
HI opt and fLO

LO opt

are set to fmin.

2. At an “equilibrium” state: xLBopt “ xopt “ xUBopt, where
xLBopt and xUBopt are derived according to (18).

We proceed to show that if an optimal solution exists for
our energy minimization problem for some fHI

HI opt, fLO

HI opt

and fLO

LO opt, then an optimal solution with the same mini-

mal LO mode energy also exists when fHI

HI opt is fixed to fmax.

This is intuitive since with increasing fHI

HI opt, the existing op-
timal solution will still be feasible (the actual HI criticality
WCETs of HI criticality tasks are decreased and the system
is less loaded). In fact, we have already shown in Exam-
ple 3.1 that with increasing speedup for the extra workload
of HI criticality tasks, the LO mode energy consumption can
be reduced.
Formally, we have the following result.

Theorem 5.4. For the MCEM problem, with increasing
fHI
HI , the system’s minimal expected energy does not increase.

As a result of Theorem 5.4, we can fix fHI

HI to fmax without
sacrificing optimality of the solution found. Based on this,
the calculation of xUBopt as shown in (18) can be simplified:

xUBopt “

sM ´ K

fLO
HI opt

L

fLO
LO opt

{1

. (19)

5.3 Our algorithm
Based on our theoretical results in this section, we now

present an algorithm (Algorithm 1) to find the optimal so-
lution. We first check in our algorithm whether a feasible
solution exists or not (Line 1-2). This is done by calculating
the maximum feasible range of the x. If no such feasible
range exists, our algorithm terminates and signals failure.
Otherwise, we continue to check the two optimality condi-
tions according to Theorem 5.3 (to search for the optimal
solution). According to Theorem 5.4, we can first fix fHI

HI opt

to fmax (Line 3). We then check whether a lowest energy so-
lution exists. For such a solution, fLO

HI opt “ fLO

LO opt “ fmin.
Hence, we can calculate the bounds of x in this case (Line 4).
If the system is feasible for this setting, our algorithm suc-
ceeds. Otherwise, at least one “equilibrium” solution must
exist (detailed proof in [20]). We continue to find the min-
imal energy “equilibrium” solution. We can add the “equi-
librium” constraint (i.e. xLB “ xUB “ x) to our convex pro-
gram. This yields a single variable constrained minimization
problem in a continuous range, which can be solved by stan-
dard gradient based methods. Line 9-18 gives our results on
solving such a simplified optimization problem (for details,
please refer to our proof of Theorem 5.5 in [20]).
Our results in this section can be summarized as follows.

Theorem 5.5. Algorithm 1 yields an optimal solution to
the MCEM problem if there exists one.

Remarks. According to Theorem 5.4, computing fHI

HI opt

takes Op1q time (Line 3 in Algorithm 1). The time complex-
ity of calculating K, L and M each is pseudo polynomial in
the number of total tasks in the system (by (17)). In addi-
tion, calculating each of x̂LB, x̂UB, x̌LB, and x̌UB takes also
time pseudo polynomial in the number of total tasks (by
(5), (6), (8) and (9)). Therefore, according to Algorithm 1,
computing xopt, f

LO

HI opt and fLO

LO opt take pseudo polynomial
time in the number of tasks in the system.
We conclude this section with an example to show the

application of our proposed algorithm.

Example 5.1. Consider again the task set as shown in
Example 3.1 under the same setting. We already calculated
in Example 4.1 the maximum feasible range of x as r 6

19
, 1s,

hence a feasible solution always exists. According to Algo-
rithm 1, we can first set fHI

HI to 1 (normalized fmax). We

Algorithm 1: Pseudo code – Find the optimal solution

Input: τ , fb, fmin, fmax

Output: fHI

HI opt, f
LO

HI opt, f
LO

LO opt, xopt

1 Calculate x̂LB and x̂UB when the processor frequency is
a constant fmax according to Lemma 4.1 ((8) and (9));

2 if 0 ă x̂LB ď x̂UP ď 1 then

3 fHI

HI opt Ð fmax;

4 Calculate according to (8) and (9) xLB and xUB

when fLO

HI “ fLO

LO “ fmin, denoted as x̌LB and x̌UB;
5 if 0 ă x̌LB ď x̌UB ď 1 then

6 fLO
χ opt

Ð fmin (χ P tHI,LOu);

7 Set xopt as any value in rx̌LB, x̌UBs;
8 else

9 Set qfLO

LO “

s

L

1 ´ K
Mfmax

{

fmin

;

10 if fmin ą K{M then

11 Set pfLO

LO “

s

L

1 ´ K
Mfmin

{fmax

;

12 else

13 Set pfLO

LO “ fmax;
14 end
15 xopt Ð M ;

16 f
LO

LO opt Ð rrK ¨ M´ α´1

α ` Lss
pfLO
LO

qfLO
LO

;

17 f
LO

HI opt Ð
K

M ¨ p1 ´ L{fLO

LO opt
q
;

18 end

19 else
20 return Failure;
21 end
22 return Success;

continue to check whether a lowest energy solution exist.
This is done by calculating x̌LB “ ´30 and x̌UB “ ´ 3

5
.

Therefore, no lowest energy solution exists and we check for
the “equilibrium” condition. According to the algorithm, we
can derive xopt “ 0.625, fLO

HI opt “ 0.65, and fLO
LO opt “ 0.54.

6. DISCUSSION
We proceed in this section to investigate some tradeoffs for

the MCEM problem, as well as extensions of our proposed
techniques.

6.1 Extra workload and expected energy con-
sumption

Intuitively, if extra workloads for HI criticality tasks are
increased, then more time budgets should be reserved for
the HI mode instead of being explored to save the LO mode
energy. This is a meaningful tradeoff, as for increased extra
workloads to accommodate, the system timing safety could
be enhanced. However, this is at the cost of increased LO
mode energy. Formally, this is summarized as follows.

Lemma 6.1. If the extra workload pCipHIq´CipLOqqfb is
increased for some HI criticality task τi, then the minimal
expected energy consumption of the system is strictly non-
decreasing.

Notice that, with increasing extra workload, the system could
still be feasible when the processor’s frequency is the low-
est (fmin). In this case, the minimal expected energy will

ææææ
æææ

æææ
æææ

ææ
ææ
ææ
ææ
ææ
æ
æ
æ
æ
æ
æ
æ

æ

ààà
ààà

àà
àà
àà
àà
àà
àà
àà
à
à
à
à
à
à
à
à

à

à

à

ììì
ììì

ìì
ìì
ìì
ìì
ìì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì

ì

ì

ì

Α=2

Α=2.5

Α=3

1 2 3 4 5
Γ0.4

0.5

0.6

0.7

0.8

0.9

1.0
Normalized Energy

Figure 4: FMS: impact of extra workload (modeled by pa-

rameter γ “ CipHIq
CipLOq

) on energy minimization, fmin “ 0.2

(results computed by Algorithm 1)

remain the same. Otherwise, the minimal expected energy
strictly increases with increasing extra workload.

6.2 Extension – Discrete frequency levels
Often, frequency levels may not be continuously avail-

able. In this case, we have to consider discrete frequency
levels. Due to this limitation, our theoretical results for en-
ergy minimization in the continuous case will not hold any-
more. However, we can still formulate the expected energy
minimization problem as a mixed-integer convex program.
Let us assume that, the list of available frequencies in in-

creasing order is F “ tf1, f2, ¨ ¨ ¨ , f|F |u, where f1 “ fmin

and f|F | “ fmax. Then, for each LO criticality task, we have
to decide the number of clock cycles it spends on each fre-
quency level. In addition, for each HI criticality task τi, we
have to decide for its normal workload, the number of clock
cycles it spends on each frequency level (similarly for its ex-
tra workload). And the system schedulability needs to be
guaranteed for both modes. Based on the above discussions,
we can modify our problem formulation in Section 4.2 and
formulate a mixed integer convex program (the number of
clock cycles can only be integers).
An alternative solution is to apply the techniques in this

paper and use discrete frequency levels to “mimic” the fre-
quencies returned by our techniques (details in [20]).
To further account transition overheads in timing and en-

ergy when switching between different frequency levels, a so-
lution could be obtained by integrating existing techniques,
e.g. [23], with our proposed techniques. We leave this to our
future work.

7. EVALUATION
We evaluate now our proposed techniques with an avion-

ics use-case and extensive simulations on synthetic task sets.
Energy savings and various tradeoffs are illustrated by our
results. For all our experiments, we assume task WCETs in
our system model are measured on the maximum frequency
(i.e. fb “ fmax). We normalize the LO mode energy con-
sumption when all tasks run on fmax to 1.

7.1 Flight management system
Our first set of experiments are conducted on a subset

of the flight management system (FMS), which consists of
7 HI criticality tasks and 4 LO criticality tasks (detailed
parameters can be found in [13]). We apply our proposed
techniques to FMS and tune relative parameters to evaluate
their impacts on the minimal expected energy.
Impact of extra workload. We first show the impact of

extra workload on the minimal LO mode energy. For this set
of experiments, we use a factor γ (ě 1) to uniformly model

the extra workload – @τi P τHI,
CipHIq

CipLOq
“ γ. If γ “ 1, then

(a) Impact of x and fHI

HI

fHI
HI
=1

0.5 0.6 0.7 0.8
x

0.85

0.90

0.95

1.00
Normalized Energy

(b) Impact of x

x=0.585

0.7 0.8 0.9 1.0
fHI

HI

0.85

0.90

0.95

1.00
Normalized Energy

(c) Impact of fHI

HI

Figure 5: FMS: impact of x and fHI

HI on energy minimiza-
tion, fmin “ 0.2, α “ 2, γ “ 3. Gray area in Figure 5a
indicates that FMS is not schedulable (similar in Figure 5c,
dot-dashed area). Results are derived by fixing the corre-
sponding parameters in our problem formulation and apply-
ing numerical optimization.

HI criticality tasks could never exceed their LO criticality
WCETs. However, if there is a safety concern for HI crit-
icality tasks (γ ą 1), then we have to reserve time budget
to accommodate the extra workload of HI criticality tasks.
This prevents us from exploring all available slack in the LO
mode to save energy. Figure 4 shows how the extra workload
limits energy savings for FMS. As we can see, with increased
extra workload (bigger γ), the minimal expected energy is
increased, which matches our analysis. This trend stops af-
ter γ ą 4.02, in which case the system is infeasible even if
tasks run on fmax (dash-dotted line in Figure 4). Further-
more, we can also observe that, for increasing α, the energy
saving is also increased (according to the power function (1),
larger α means more energy saving by DVFS).

Impacts of x and fHI

HI . We continue to present the im-
pacts of x and fHI

HI on energy minimization. As discussed
in Section 4, with increasing deadline shortening factor x
(larger deadlines for HI criticality tasks in the LO mode),
we can have more slack to apply DVFS in the LO mode for
better energy savings. However, large x could jeopardize the
system schedulability in the HI mode (see (12)). This im-
plies that there is a limit on energy saving by increasing x
due to the constraint of the HI mode schedulability. In addi-
tion, with higher speedup for extra workload (i.e. increasing
fHI

HI), less time budget needs to be reserved to handle overrun
and more energy savings can be achieved (see Theorem 5.4).
Figure 5 illustrates the impacts of both factors. Indeed, our
results show that, with increasing x, the expected energy
consumption can be reduced. However, when x is too large,
the expected energy will increase (e.g. when fHI

HI “ 1, the
expected energy consumption will increase when x ą 0.585,
as shown in Figure 5b). In addition, our results confirm that
for increased fHI

HI , the expected energy consumption can be
reduced. For example, when x “ 0.585, the LO mode energy
consumption will continuously decrease when fHI

HI ą 0.78 (as
shown in Figure 5c).

0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1.0

Ubound

N
o
rm

a
li

ze
d

E
n

er
g
y

(a) PHI “ 0.2, γ “ 2

0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1.0

Ubound

N
o
rm

a
li

ze
d

E
n

er
g
y

(b) PHI “ 0.2, γ “ 8

0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1.0

Ubound

N
o
rm

a
li

ze
d

E
n

er
g
y

(c) PHI “ 0.4, γ “ 2

0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1.0

Ubound

N
o
rm

a
li

ze
d

E
n

er
g
y

(d) PHI “ 0.2, γ “ 2

Ubound
0.5 0.6 0.7 0.8 0.9

0.0
0.2
0.4
0.6
0.8
1.0

Normalized Energy
Figure 6a

Figure 6b

Figure 6c

Figure 6d

(e) Bar-chart plot of our results in all cases for the 3rd quartile (75%) data points in the box-whisker plots

Figure 6: Box-whisker plot of experimental results for random task sets, with u´ “ 0.01, u` “ 0.2, T´ “ 200 ms, T` “ 2 s, α “
3, fmin “ 0.5. For Figure 6a, Figure 6b, and Figure 6c, we apply our proposed method (Algorithm 1). For Figure 6d, we apply
discrete DVFS by adapting our method (details in [20]), assuming only fmin and fmax available.

7.2 Extensive simulations
In order to validate our proposed techniques on general

task sets, we now apply them to randomly generated task
sets. We adopt a similar random task generator as used
in [4]. The random task generation is controlled by the fol-
lowing parameters:

- [u´, u`]: the LO mode utilization of any task τi,
CipLOq

Ti
,

is uniformly drawn from this range: 0 ă u´ ă u` ď 1;

- Ubound: the total LO mode utilization, which is defined as

Ubound “
ř
τi

CipLOq
Ti

;

- [T´, T`]: task minimal inter-arrival times are uniformly
drawn from this range;

- γ: the ratio of CipHIq to CipLOq for any HI criticality
task;

- PHI: the probability that a task is a HI criticality task.

The random task generator starts with an empty task set
and incrementally adds new random tasks into this set until
certain system utilization Ubound is reached. For each data
point (a specific system utilization Ubound), we generate 200
random task sets and conduct our experiments. Further-
more, we omit infeasible task sets at each data point.
We summarize our results in Figure 6, where we observe:

‚ With increasing utilization of the system (Ubound), the ex-
pected energy saving is decreased. This is intuitive as
we have less time slack under higher system utilization.
Therefore, less energy savings can be achieved by explor-
ing time slack to stretch task executions. This is confirmed
by all our results in Figure 6, e.g. the middle quartile (av-
erage) LO mode energy consumptions increase with in-
creasing Ubound.

‚ With increasing extra workload, the expected energy sav-
ing is decreased. This can be observed by comparing Fig-
ure 6a to Figure 6b – when γ is increased from 2 to 8,
the expected energy saving is dropped. For example, with
Ubound “ 0.5, the maximum LO mode energy consump-
tion is 0.78 when γ “ 2. This is increased to 0.94 when
γ “ 8. Our results here match our analysis in Lemma 6.1.

‚ With more HI criticality tasks, the expected energy sav-
ing is reduced (compare Figure 6a to Figure 6c, where
PHI is increased from 0.2 to 0.4). For example, with
Ubound “ 0.8, the average LO mode energy consumption

is 0.69 when PHI “ 0.2. This is increased to 0.75 when
PHI “ 0.4. The intuitive explanation is as follows: with
more HI criticality tasks, the extra workloads for those
tasks are also increased, hence more time budget needs
to be reserved for those extra workload instead of being
explored to save energy.

‚ With the restriction of discrete frequency levels, the ex-
pected energy saving is reduced (compare Figure 6a to
Figure 6d). Here, we obtain our results with discrete fre-
quency levels by using them to “mimic” the frequency lev-
els calculated by our algorithm (for details, please refer
to [20]). According to our results, with continuous fre-
quency levels, the average LO mode energy consumption
when Ubound “ 0.7 is 0.53. This is increased to 0.78 under
discrete frequency levels. However, considerable energy
reductions can still be achieved by adapting our proposed
techniques, e.g. when Ubound “ 0.8, we can still achieve
on average 12% energy reduction according to Figure 6d.

For the purpose of clear comparison between different cases,
we present a bar-chart plot of our results in Fig 6e (only for
the 3rd quartile (75%) of the box-whisker plots). The trend
becomes evident: with increasing extra workload, more HI
criticality tasks or the limitation of discrete frequency levels,
the energy saving is reduced.

8. RELATED WORK
We survey in this section the main results in two research

areas related to this work: mixed-criticality scheduling and
system level energy minimization.

8.1 Mixed-Criticality Scheduling
To date, a common model exists in the literature to spec-

ify mixed-criticality systems [24, 25, 8, 5, 6, 13]. In this
model, varying degrees of timing assurance for tasks of dif-
ferent criticality levels are considered: All task WCETs are
modeled on all existing criticality levels, with the WCET
on a higher criticality being more pessimistic. At runtime,
whenever any task violates its WCET on some criticality
level, all tasks with criticality levels no higher than this crit-
icality level are dropped to guarantee the more critical tasks.
Different scheduling techniques (e.g. fixed priority [26, 3],
earliest deadline first (EDF) [6, 7, 8], and time-triggered [9])
are extended to this mixed-criticality setting.

However, the current research on mixed-criticality systems
has primarily focused on real-time guarantees [24, 25, 8, 5, 6,

13] and functional safety [27]. To the best of our knowledge,
energy minimization for mixed-criticality systems has not
been explored yet.

8.2 Energy minimization techniques
Energy-aware embedded system design has been estab-

lished for many years. The system level energy minimization
techniques can be broadly categorized into dynamic volt-
age and frequency scaling (DVFS) [28, 29, 30] and dynamic
power management (DPM) [31, 32]. DVFS minimizes the
dynamic energy consumption due to circuit switching activ-
ities by reducing the processor voltage and frequency levels.
In contrast, DPM minimizes the static energy consumption
due to leakage current by turning off the processor or switch-
ing the processor to sleep mode. Both DVFS and DPM have
been extensively studied in the literature. DVFS can be fur-
ther categorized into offline [28] and online [29]. For offline
techniques, task frequencies are assigned a priori, while for
online techniques, the system adapts the DVFS strategy in
response to runtime events (e.g. temperature variation [29]).
For a comprehensive survey on energy minimization tech-
niques, we refer the readers to [32, 14].
Notice, however, that conventional DVFS techniques are

designed out of the context of mixed-criticality. Due to en-
ergy concerns of mixed-criticality systems, it is important to
extend the research on DVFS to those systems.

9. CONCLUSION
We solve in this paper the energy minimization problem

for mixed-criticality systems, where critical tasks must meet
their deadlines even if they exceed their expected WCETs.
We investigate the characteristics of this problem and show
there exists a conflict between safety and energy minimiza-
tion. We further show that speeding up the system to han-
dle overrun is beneficial for minimizing the expected energy
consumption of the system. We integrate continuous DVFS
with the EDF-VD scheduling technique and formulate our
energy minimization problem as a convex program. Further-
more, we provide an optimal algorithm to find the solution
to our problem. Tradeoffs and extensions for our techniques
are discussed. The proposed techniques are validated by
both an industrial use-case and extensive simulations.

10. REFERENCES
[1] “Mixed criticality systems.” http:

//cordis.europa.eu/fp7/ict/embedded-systems-engineering/
documents/sra-mixed-criticality-systems.pdf.

[2] K. P. Valavanis and K. P. Valavanis, Advances in Unmanned
Aerial Vehicles: State of the Art and the Road to Autonomy.
Springer Publishing Company, Incorporated, 2007.

[3] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time
analysis for mixed criticality systems,” in RTSS, pp. 34–43,
2011.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li,
A. Marchetti-Spaccamela, S. van der Ster, and L. Stougie, “The
preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems,” in ECRTS,
pp. 145–154, 2012.

[5] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing
mixed-criticality scheduling strictness for task sets scheduled
with fp,” in ECRTS, pp. 155–165, 2012.

[6] T. Park and S. Kim, “Dynamic scheduling algorithm and its
schedulability analysis for certifiable dual-criticality systems,”
in EMSOFT, pp. 253–262, 2011.

[7] S. K. Baruah, V. Bonifaci, G. DâĂŹAngelo,
A. Marchetti-Spaccamela, S. Van Der Ster, and L. Stougie,
“Mixed-criticality scheduling of sporadic task systems,” in
Algorithms–ESA 2011, pp. 555–566, Springer, 2011.

[8] P. Ekberg and W. Yi, “Bounding and shaping the demand of
mixed-criticality sporadic tasks,” in ECRTS, pp. 135–144, 2012.

[9] S. Baruah and G. Fohler, “Certification-cognizant
time-triggered scheduling of mixed-criticality systems,” in
RTSS, pp. 3–12, 2011.

[10] “Automotive electronics.”
http://en.wikipedia.org/wiki/Automotive_electronics.

[11] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-aware
global real-time scheduling on multicore systems,” in
Real-Time and Embedded Technology and Applications
Symposium, pp. 131–140, April 2009.

[12] S. Baruah, “Mixed criticality schedulability analysis is highly
intractable,” 2009.

[13] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele,
“Service adaptions for mixed-criticality systems,” in ASP-DAC,
pp. 125–130, 2014.

[14] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for
real-time systems on dynamic voltage scaling (dvs) platforms,”
in International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 28–38, IEEE, 2007.

[15] S. Pagani and J.-J. Chen, “Energy efficiency analysis for the
single frequency approximation (sfa) scheme,” in RTCSA,
pp. 82–91, 2013.

[16] D. Zhu, R. Melhem, and D. Mossé, “The effects of energy
management on reliability in real-time embedded systems,” in
IEEE/ACM International Conference on Computer Aided
Design, pp. 35–40, IEEE, 2004.

[17] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. Nguyen, and
K. Goossens, “Power minimisation for real-time dataflow
applications,” in Digital System Design (DSD), pp. 117–124,
Aug 2011.

[18] S. Pagani and J.-J. Chen, “Energy efficient task partitioning
based on the single frequency approximation scheme,” in RTSS,
pp. 308–318, Dec 2013.

[19] “Constrained optimization.” https://www.wolfram.com/
technology/guide/ConstrainedNonlinearOptimization/.

[20] P. Huang, P. Kumar, G. Giannopoulou, and L. Thilele, “Energy
efficient dvfs scheduling for mixed-criticality systems,” Tech.
Rep. 354, ETH Zurich, Laboratory TIK, July 2014.

[21] Y. E. Nesterov and M. J. Todd, “Self-scaled barriers and
interior-point methods for convex programming,” Mathematics
of Operations research, vol. 22, no. 1, pp. 1–42, 1997.

[22] S. P. Boyd and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[23] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M.
Al-Hashimi, “Overhead-conscious voltage selection for dynamic
and leakage energy reduction of time-constrained systems,” in
Proceedings of the Conference on Design, Automation and
Test in Europe, (Washington, DC, USA), 2004.

[24] S. Baruah and S. Vestal, “Schedulability analysis of sporadic
tasks with multiple criticality specifications,” in ECRTS,
pp. 147–155, 2008.

[25] H. Li and S. Baruah, “Load-based schedulability analysis of
certifiable mixed-criticality systems,” in EMSOFT, pp. 99–108,
2010.

[26] S. Vestal, “Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance,” in RTSS,
pp. 239–243, 2007.

[27] P. Huang, H. Yang, and L. Thiele, “On the scheduling of
fault-tolerant mixed-criticality systems,” in Proceedings of the
The 51st Annual Design Automation Conference on Design
Automation Conference, pp. 131:1–131:6, 2014.

[28] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced cpu energy,” in 36th Annual Symposium on
Foundations of Computer Science, pp. 374–382, Oct 1995.

[29] J. Tschanz, N. S. Kim, S. Dighe, J. Howard, G. Ruhl,
S. Vangal, S. Narendra, Y. Hoskote, H. Wilson, C. Lam,
M. Shuman, C. Tokunaga, D. Somasekhar, S. Tang, D. Finan,
T. Karnik, N. Borkar, N. Kurd, and V. De, “Adaptive
frequency and biasing techniques for tolerance to dynamic
temperature-voltage variations and aging,” in International
Solid-State Circuits Conference, pp. 292–604, Feb 2007.

[30] P. Huang, O. Moreira, K. Goossens, and A. Molnos,
“Throughput-constrained voltage and frequency scaling for
real-time heterogeneous multiprocessors,” in Proceedings of the
28th Annual ACM Symposium on Applied Computing,
pp. 1517–1524, 2013.

[31] L. Benini, A. Bogliolo, A. Paleologo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, pp. 813–833, Jun 1999.

[32] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 8, pp. 299–316, June 2000.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32

 D:20140815132822
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 1.8000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

