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Abstract—EURETILE investigates foundational innovations in the
design of massively parallel tiled computing systems by introducing
a novel parallel programming paradigm and a multi-tile hardware
architecture. Each tile includes multiple general-purpose processors,
specialized accelerators, and a fault-tolerant distributed network
processor, which connects the tile to the inter-tile communication
network. This paper focuses on the EURETILE software design flow,
which provides a novel programming environment to map multiple
dynamic applications onto a many-tile architecture. The elaborated
high-level programming model specifies each application as a network
of autonomous processes, enabling the automatic generation and
optimization of the architecture-specific implementation. Behavioral
and architectural dynamism is handled by a hierarchically organized
runtime-manager running on top of a lightweight operating system. To
evaluate, debug, and profile the generated binaries, a scalable many-tile
simulator has been developed. High system dependability is achieved
by combining hardware-based fault awareness strategies with software-
based fault reactivity strategies. We demonstrate the capability of
the design flow to exploit the parallelism of many-tile architectures
with various embedded and high performance computing benchmarks
targeting the virtual EURETILE platform with up to 192 tiles.

I. INTRODUCTION

The stringent performance and energy requirements of the next

generation of scientific and industrial applications are far beyond

the capabilities of current hardware technologies. Computing sys-

tems embedded into autonomous cars, for instance, must soon solve

multi-sensorial data fusion and artificial intelligence problems in

real-time. A promising paradigm to meet the performance and

energy requirements simultaneously is the use of heterogeneous

many-tile architectures.

The massive hardware parallelism of many-tile architectures

poses several new challenges that must be tackled in order to design

efficient and reliable systems. The first set of challenges arises

from the necessary shift towards more parallelism. Programming

models and related programming environments must be developed

that provide system designers the possibility to exploit the con-

currency in their applications. At the same time, the architecture-

specific implementation of the application must be synthesized

automatically. The second set of challenges faces the validation

of the system. If simulation does not keep pace with the evolution

of the architecture, it becomes a major bottleneck in the design

process. In fact, state-of-the-art simulation techniques would need

days or even weeks to simulate the execution of any realistic

application on a many-tile system. Finally, the last set of challenges

faces the dependability of the system, which is threaten by various

error sources. Consequently, fault management techniques must

be integrated in all steps of the design process including system

optimization, software synthesis, and hardware architecture design.
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Figure 1. The three layers of the EURETILE software design flow.

The European Reference Tiled Architecture Experiment

(EURETILE) project [1] addresses the above mentioned challenges

and proposes a novel foundational parallel programming paradigm

and a many-tile hardware architecture equipped with a high-

bandwidth and low-latency inter-tile communication infrastructure.

Each tile of the proposed architecture includes a network processor,

multiple general-purpose processors, and specialized accelerators,

like DSPs, ASIPs, FPGAs, and (GP)GPUs. Based on the pro-

posed hardware architecture, a many-tile fault-aware hardware

platform [2], the QUonG platform [3], and a scalable many-tile

simulator, the virtual EURETILE platform (VEP) [4], have been

realized.

This paper focuses on the EURETILE software design flow

that provides a novel programming environment to map multiple

dynamic applications onto a many-tile architecture. The design

flow follows the popular Y-chart paradigm [5] that separates the

specification of the applications, architecture, and mapping, see

Fig. 1. Each application is specified as a set of autonomous

processes that can only communicate through point-to-point FIFO

channels. The distributed application layer (DAL) maps the parallel

processes and communication channels onto the target architecture.

Afterwards, the architecture-specific implementation is automati-

cally generated on top of the hardware-dependent software layer

(HdS). The VEP, a SystemC-based simulator, is used to evaluate,

debug, and profile the generated binaries so that the application

and mapping specifications can be iteratively refined until quality

of service requirements are fulfilled. Then, the same software

stack is compiled towards the QUonG hardware platform. High

system dependability is achieved by integrating fault management

strategies in all steps of the design process. For instance, critical

processes are automatically duplicated during system design and

high chip temperatures are avoided by using thermal-aware sys-

tem optimization strategies. Moreover, hardware faults, which are

observed by local fault monitors that are built into each tile, are

handled by a hierarchically organized runtime-manager.

To evaluate the proposed design flow quantitatively, various

case studies are conducted to demonstrate the capabilities of the



proposed design flow to map state-of-the-art embedded and high

performance applications onto many-tile systems. We show that

the proposed programming paradigm enables the design of complex

systems and provides the system designer diverse options to exploit

concurrency and dynamism. Finally, we demonstrate that the pro-

posed simulation technique is deemed a key breakthrough to many-

tile system design and verification by ensuring high simulation

speed and scalability.

The remainder of the paper is organized as follows. In Section II,

the proposed design flow is summarized. In Section III, the con-

sidered high-level system specification is described. In Section IV,

the mapping strategy is discussed. Details of the software synthesis

are given in Section V and the VEP is described in Section VI.

Finally, experimental results are presented in Section VII.

II. EURETILE DESIGN FLOW

In this section, we give an overview of the proposed design flow

and summarize the elaborated fault management strategies.

A. Design Flow

The proposed design flow maps a set of dynamic applications

onto a many-tile platform in a number of steps, as illustrated

in Fig. 2. The design flow’s input is an abstract specification of

the target architecture and a set of applications that are specified

using the DAL programming model [6]. The DAL programming

model specifies each application as a Kahn process network

(KPN) [7], i.e., as a network of autonomous processes, which

communicate through unidirectional point-to-point FIFO channels.

Due to the well-defined semantics of the KPN model, data races,

non-determinism, or the need for strict synchronization are avoided.

Each application may have its own performance requirements that

must be met independent of the other applications. Interactions

between applications are represented as a finite state machine

(FSM) with each state representing an execution scenario, i.e., a

certain set of applications running in parallel. Transitions between

scenarios are triggered by events generated either by running

applications or by the operating system (OS).

A first functionality check of the individual applications is

realized using the DAL functional simulator. The DAL functional

simulator executes each process as a POSIX thread on a host ma-

chine, thereby providing application-profiling data at a functional

level. For more accurate performance results as, for instance, the

run-times of processes, the system must be simulated on the VEP.

In the first step of the design flow, i.e., in the design space

exploration, parallel processes are assigned to tiles and the appli-

cations are refined. Using the performance results derived from the

VEP, the assignment of the processes (the so-called mapping) and

the structure of the applications are iteratively improved until the

performance requirements are fulfilled. In this paper, we mainly

focus on the optimization of the mapping; more details on how to

find a good application structure are given, e.g., in [8].

During software synthesis, a four-layer software stack is gen-

erated that consists of application layer, runtime-system, OS, and

hardware abstraction layer (HAL), see Fig. 3. The employed tool

chain first transforms the DAL processes to low-level threads that

can be executed on top of DNA-OS [9]. DNA-OS is a lightweight

embedded OS that is used as OS in the proposed software stack.

Afterwards, the tool chain generates one instantiation of the soft-

ware stack for each tile.

In order to validate the system and to verify timing requirements,

the VEP [4], a SystemC-based simulator, has been developed and

integrated into the design flow. In the configuration considered in
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Figure 2. EURETILE design flow to map a set of dynamic applications
onto a many-tile platform.

this paper, the VEP allows the instantiation of a variable number

of tiles that are connected in a 3D toroidal topology. Each tile

comprises a RISC processor model and models of the bus, memory,

and distributed network processor (DNP). Besides detailed trace

analysis, the VEP enables the designer to validate the system with

respect to faults.
Once the requested performance requirements are met, the same

software stack is compiled towards the QUonG platform [3]. The

QUonG platform is a GPU-accelerated HPC hardware platform.

Each of its tiles contains a multi-core x86 processor, GPUs, and an

FPGA-based PCIe network interface (i.e., the APEnet+ card [10]).
The focus of this paper is on the specification and the efficient

execution of DAL applications on the VEP. The same methodology,

however, can be used to execute applications on the QUonG

platform, which will be the topic of future studies. Moreover, the

automated extraction of performance data from the VEP and the

corresponding verification of the performance requirements are not

discussed in this paper, see [11] for more details.

B. Fault Management

Integrated circuit technology scaling is increasingly making pro-

cessors more vulnerable to faults. For instance, modern processors
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Figure 3. Software stack generated by the EURETILE design flow.
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Figure 4. Exemplified many-tile architecture illustrating
the proposed architecture specification.

procedure INIT(ProcessData *p) // initialization
initialize () ;

end procedure
procedure FIRE(ProcessData *p) // execution

fifo −>read(buf, size); // read from fifo
if (buf [0] == eventkey)

send event(e) ; // send event e
end if
manipulate () ;
fifo −>write(buf, size); // write to fifo

end procedure
procedure FINISH(ProcessData *p) // cleanup

cleanup () ;
end procedure

Listing 1. Exemplified implementation of a KPN
process using the proposed API.

<processnetwork>
<process name=”prod”>
<port type=”output” name=”out”/>
<src type=”c” location =”prod.c”/>

</process>
<process name=”cons”>
<port type=”input” name=”in”/>
<src type=”c” location =”cons.c”/>

</process>
<channel name=”channel”>
<sender process=”prod” port=”out”/>
<receiver process=”cons” port=”in”/>

</channel>
</processnetwork>

Listing 2. Specification of a KPN with
two processes (see app n in Fig. 2).

are more likely to experience single-event upsets, which were

uncommon only a few years ago, and smaller transistors are respon-

sible for higher power densities, which in turn cause temperature

hotspots. In EURETILE, a high system dependability is achieved

by combining fault avoidance, fault tolerance, and fault reactivity

strategies. While the former two strategies are implemented at

system-level by elaborating properties of the programming model,

fault reactivity involves programming model, OS, and hardware.

Fault avoidance. Temperature related reliability issues are avoided

by applying thermal-aware optimization strategies. During design

space exploration, system designs that do not conform to peak

temperature requirements are ruled out using the analysis methods

described in [12], [13].

Fault tolerance. Applications with stringent performance require-

ments are duplicated during design space exploration. In particular,

we apply the strategy described in [14] to replicate critical sub-

networks. The strategy inserts a special replicator channel that

duplicates the stream to the corresponding input ports of the repli-

cas. Similarly, a specially introduced selector channel arbitrates

(merges) the data streams from the output ports of the replicas.

Fault reactivity. While the first two fault management strategies

are applied at design time, fault reactivity is employed at runtime

as a mechanism to react to faults. First, the occurrence of a

fault is detected by a novel hardware design paradigm named

LO|FA|MO [2], which is based on fault monitors that are added

to each tile. Once they detect a fault, LO|FA|MO propagates the

information along the system hierarchy to the runtime-manager,

which reacts to the fault by migrating processes that are assigned

to a faulty processor to an alternative processor. To include the

evaluation of all possible failure scenarios in the design time

analysis, spare processors and tiles are allocated during design

space exploration and used by the runtime-manager as target for

process migration.

III. HIGH-LEVEL SYSTEM SPECIFICATION

In this section, we describe the high-level specification that we

propose for automatic program synthesis.

A. Architecture Specification

We elaborate an abstract description of the architecture in terms

of a hierarchically organized many-tile platform. This representa-

tion is a generalization of the well-known tile-based multiprocessor

model [15] that has been successfully applied in academia and

industry (e.g., [16], [17], [18]). The considered abstract specifica-

tion of a many-tile platform is illustrated in Fig. 4, based on an

example. The basic entities of the architecture are the tiles. Each

of them contains a distributed network processor (DNP), multiple

general-purpose processors, local memories, and, depending on the

application domain, specialized hardware accelerators, like DSPs,

ASIPs, FPGAs, or, in the latest hardware evolution, (GP)GPUs. All

processors in a tile might have access to commonly shared memory.

In the case presented in this paper, we address computations

performed in tiles comprising general-purpose processors, DNPs,

and memories only. This is a first necessary step towards the

development of a complete software tool-chain for more complex

heterogeneous many-tile systems. The DNP is responsible for inter-

tile communication and provides the interface to the network.

The upper levels of the hierarchically organized architecture are

constructed according to the distributed memory paradigm whereby

multiple tiles together form an additional entity called cluster,

which can be controlled autonomously.

As discussed in the previous section, spare processors and tiles

are allocated at design time so that the runtime-manager can

efficiently react to faults. The number of spare hardware elements

depends on the number of faults that must be able to be tolerated.

We call the abstract representation of the architecture without

spare processors, tiles, and clusters the virtual representation of

the architecture.

B. DAL Programming Model

Application. Each application is specified as a KPN [7]. More

precisely, an application p = 〈V,Q〉 consists of autonomous

processes v ∈ V that can only communicate through unbounded

point-to-point FIFO channels q ∈ Q. A process v ∈ V is a

monotonic and determinate mapping F from one (or more) input

channels to one (or more) output channels. As every process v ∈ V
is monotonic and determinate, there is no notion of time and the

output just depends on the sequence of tokens in the input streams.

The proposed API is illustrated in Listings 1 and 2. The

functionality of an individual process is specified in C/C++ and

is composed of three procedures. The INIT procedure is executed

once when the application is started. Afterwards, the execution of

a process is split into individual executions of the FIRE procedure,

which is repeatedly invoked. Finally, the FINISH procedure is called

before the application is stopped. Each process can read from its

input channels and write to its output channels by calling the high-

level READ and WRITE procedures. Moreover, each process has the

ability to request a scenario change by calling the SEND EVENT

procedure. In addition, the topology of the application, i.e., the

connections between processes by FIFOs, is specified in an XML

format.

Execution scenarios. The dynamic behavior of the workload is

captured by a set of execution scenarios that form a FSM, see Fig. 2

for an example. Each state represents a set of concurrently running

or paused applications and each state transition corresponds to an

application start, stop, pause, or resume request. Starting a KPN

p = 〈V,Q〉 involves the installation of all processes v ∈ V
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and all FIFO channels q ∈ Q. Then, after executing the INIT

procedure of all processes v ∈ V once, the FIRE procedures are

iteratively executed by the scheduler. On the other hand, when a

KPN p = 〈V,Q〉 is stopped, the FIRE procedure of all processes

v ∈ V is aborted and the FINISH procedure is executed once.

Finally, all processes v ∈ V and all FIFO channels q ∈ Q are

removed.

IV. HYBRID MAPPING STRATEGY

The mapping decides on the distribution of the processes on

the architecture. Typical mapping strategies that calculate a single

mapping are no longer capable of efficiently utilizing the hardware

if the functionality of the system can change at runtime. Therefore,

the hybrid design time / runtime mapping strategy outlined in Fig. 5

is integrated into the design flow.

At design time, an optimal mapping is calculated for each

application and scenario where the application is running, whereby

the virtual representation of the architecture is used as target

architecture. A runtime-manager controls the dynamic behavior

of the system at runtime. Whenever an application is started or

stopped, it first selects the appropriate mapping (onto the virtual

representation) and then maps the virtual representation onto the

physical architecture. This enables the runtime-manager to react

to faults without recalculating the mapping by just adjusting the

binding of the virtual representation onto the physical architecture.

A. Design Time Analysis and Optimization

At design time, an optimal mapping for each pair of application

and scenario, where the application is running, is calculated. The

output of the design space exploration is therefore a collection

of optimal mappings and exactly one mapping is valid for a

pair of application and scenario. To minimize the reconfiguration

overhead, an application has the same mapping in all connected

execution scenarios so that a running application is not affected by

the start or stop of another application.

In order to efficiently calculate the mappings, a two-step pro-

cedure is applied during design space exploration [6]. First, it is

calculated which pairs of application and scenario must use the

same mapping so that no process migration is required. We do

that by calculating for each application separately the maximally

connected components of a subgraph, which only contains the

scenarios where the application is running. At the end of this step,

one mapping is allocated for each component of the subgraph.

Second, the previously allocated mappings are optimized so that

the objective function is minimized and additional architectural

constraints (e.g., processor utilization, link bandwidth, and chip

temperature) are fulfilled. The objective function depends on the

intended use and may include more than one objective. However,

multi-objective meta-heuristics, that have been successfully applied

to solve the mapping problems of multi-tile systems (e.g., [19],

[20], [21]), are no longer effective for many-tile systems due to

front-end
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Figure 6. Overview of the software synthesis tool-chain as elaborated in
the EURETILE design flow.

the scale of the investigated problem. Therefore, in EURETILE,

a multi-objective mapping optimization technique is used that

overcomes this shortcoming by decomposing the mapping problem

into independent sub-problems [22]. As illustrated in Fig. 5, two

different problem decompositions are considered: the execution

scenarios are decoupled into independent sets and an architecture-

based decomposition is applied that first assigns processes to

clusters. Afterwards, and for each cluster separately, the processes

are assigned to the tiles.

B. Runtime-Manager

The task of the runtime-manager is to send commands to the

runtime-system so that the execution semantics of the system is

ensured. To this end, the runtime-manager receives and processes

behavioral events and fault detection notifications. A behavioral

event is sent by an application and triggers a scenario change. A

fault detection notification is sent by LO|FA|MO if a hardware fault

has occurred. The latter only changes the binding of the virtual

representation onto the physical architecture, but not the mapping

of the applications onto the virtual representation.

Consequently, the runtime-manager consists of two components.

The first component is responsible to handle behavioral events and

ensures the execution semantics. It is just aware of the virtual

representation of the architecture. The second component processes

the fault events and redirects the commands to the corresponding

physical network. If the runtime-manager receives a fault event, it

migrates the processes that are assigned to the faulty processor (tile)

to a spare processor (tile) and changes the binding of the virtual

representation onto the physical architecture by reconfiguring the

second component to redirect the commands to the new target.

V. SOFTWARE SYNTHESIS

A multi-stage tool chain is developed to perform the software

synthesis step in the EURETILE design flow. In this section,

functionality and capability of this tool chain are explained.

The software synthesis’ input consists of the application models,

the code of the processes, the mapping, and the architecture

specification. Its task is then to transform the input into binary code

for either QUonG or VEP, see Fig. 6. Since there is more than one

target platform, the tool chain is split into two parts, namely front-

end and back-end. The front-end transforms DAL applications into

multi-threaded C code applications. The back-end compiles and

links the obtained code from the front-end on top of DNA-OS [9]

and generates binary code for the target platform. In the following,

we first explain the capabilities of DNA-OS before detailing the

tasks of the front-end and back-end.

A. DNA-OS

DNA-OS [9] is an embedded OS coded in C99 that implements

the exokernel architecture [23] and that is used as OS in the

EURETILE software stack. DNA-OS runs single threaded pro-

cesses (tasks) and is capable of supporting symmetric multipro-

cessing (SMP). It is characterized by a small memory footprint,
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simplicity, and low overhead. The following classes compose the

layered structure of DNA-OS:

• Hardware Abstraction Layer (HAL): This class contains

processor-specific routines and low-level boot code like spe-

cific memory accesses, context manipulation, interrupts han-

dling, SMP management, and atomic spin accesses. These

classes are mostly written in assembly language.

• Core services: This class provides the global boot and initial-

ization, task scheduling, and synchronization management.

• Device drivers: Device drivers handle specific hardware de-

vices. This class contains the device access engine and pro-

vides a structure to create extra drivers.

• Memory management: This class provides services for dy-

namic memory allocation and freeing. It provides two memory

maps: the SYSTEM map to manage the kernel memory space

and the USER map to manage the user memory space.

B. Front-End

The front-end is responsible for code generation after parsing the

input. This part, as well as the back-end, is developed as a script

in Ruby. Specifications of architecture, mapping, and applications

as well as the C/C++ files describing the individual functionality

of the processes are the input to the front-end. The output of the

front-end is then a DNA-OS task for each of the processes and the

source code of the runtime-manager.

In fact, to fulfill the requirements in terms of scalability, the

front-end splits the workload of the runtime-manager among hier-

archically organized controllers, see Fig. 7. The hierarchical control

mechanism assigns each layer of the hardware architecture its

own controller, which is responsible for handling all dynamism

occurring inside this layer. Each controller consists of the two com-

ponents described in Section IV-B, however, the components handle

an event only if it affects the controller’s area of responsibility.

Otherwise, they send the event to the controller of their superior

hardware layer. Following the three layers of the EURETILE

architecture, we can categorize the controllers as follows:

• A SLAVE is responsible for the activities inside a tile. It

receives all events generated by the OS or by a process

assigned to this tile and is able to send commands to the

underlying runtime-system.

• A CLUSTER is responsible for a cluster. It receives all events

that cannot be handled by its SLAVE controllers and processes

the event if it only affects the controller’s own cluster.

• The MASTER is responsible for the complete system and

processes all events that cannot be handled by any other

controller.

C. Back-End

The back-end is built on top of DNA-OS. Its main responsibility

is to provide two different tool chains targeting either VEP or

QUonG. The back-end generates the source codes, a bootstrap file,

and some specific files required to build the final binaries such as

the compilation and linking scripts. The main role of the bootstrap

file is to allocate the threads, to create the channels, to link the

communication ports of every DAL process to its corresponding

channels, and to start the controllers. Since this part of the tool

chain supports two target platforms, it has specific components for

every target including the HAL and the interface to the platform

specific compilers and linkers. It is worth noting that a newly

added PCIe driver has been developed for DNA-OS to support

communication on QUonG.

VI. VIRTUAL EURETILE PLATFORM (VEP)

The VEP lies at the bottom of the design flow. It is a Sys-

temC [24] based simulator comprised of instruction-set simulators

(ISSs) and models of hardware components that replicate the

architectural structure shown in Fig. 4. The VEP provides an

execution environment for the automatically generated software

and plays a crucial role for debugging, testing, and evaluating the

EURETILE system. The VEP was designed with the following

goals in mind:

• Scalable number of tiles to represent different platform sizes

and topologies.

• Different levels of abstraction for different use cases.

• Simulation models augmented with debugging, tracing, and

fault injection capabilities.

Arguably, the most difficult challenge of the VEP is to achieve

sufficient speed while being able to simulate a considerable number

of tiles. To cope with this, models of hardware components

were, first, created at different levels of abstraction as demanded

by different use cases and, second, highly optimized for speed.

Furthermore, new technologies were developed to create a SystemC

kernel that is able to partition the simulation workload and take

advantage of multi-core simulation hosts.

A. Architecture and Simulation Models

The VEP allows instantiating several tiles, which are arranged in

a complete 3D grid and connected in a 3D toroidal topology. Each

tile comprises a RISC processor model generated using Synopsys

Processor Designer [25] as well as TLM2 models of a bus,

memories, a memory management unit, peripherals (i.e., USART,

timer, real-time clock, interrupt controller), and the DNP.

Processor model. Each tile’s processor is a small-format RISC

tailored for embedded applications. It features a pipelined 32-

bits Harvard architecture with bypassing and interlocking, auto-

increment addressing, conditional execution, and interrupt support.

Although the processor is used as the main execution element

within a tile, it can also serve as a template for highly specialized

ASIPs by extending its base architecture in the Synopsys Processor

Designer. The processor ISS exists both as a cycle-accurate (CA)

and an instruction-accurate (IA) model. Two different implemen-

tations of the IA model are available: a slower just-in-time cache-

compiled simulator (JIT-IA) [26] with small memory footprint and

a faster dynamic binary translation simulator (DBT-IA) [27] with

big memory footprint.

Apart from the CA, JIT-IA and DBT-IA processor models, the

VEP can also be used as an abstract simulator (AS). In this

form, the ISS in every tile is replaced by a host-compiled object,

namely the Abstract Execution Device (AED), which implements

the behavior of the target software (as a SystemC-wrapped shared

library). The AED communicates with the DNP and other compo-

nents through an interface that is identical to that of the RISC

processor. The wrapping in the AED takes care that essential

features are provided, such as software timing annotation and

limited visibility of tile-scope global variables.
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Figure 8. The Distributed Network Processor (DNP).

DNP model. The DNP is a network-centric IP core, targeting

multi-tile systems organized in an N -dimensional grid. The DNP

relieves the intra-tile processors from the task of routing inter-

tile messages. It autonomously fragments and routes messages

toward their destination that can be located multiple hops away in

the N -dimensional grid. The links connecting the DNPs provide

a point-to-point bandwidth greater than what is offered by the

intra-tile processor bus. The DNP provides a uniform Remote

Direct Memory Access (RDMA) API that guarantees zero-copy

data transfers. In the model, the DNP networking functionality is

enveloped in four main modules as depicted in Fig. 8: the Engine

decodes commands, the two Master Interfaces read/write data

from/to the bus, and the Router receives/sends packets through the

DNP’s bidirectional links. The DNP also provides the DNP Fault

Manager that, together with its software peer running in the tile

processor (the Host Fault Manager), implements the LO|FA|MO

mutual watchdog mechanism [2] and exploits the network topology

to send diagnostic messages throughout the system. Apart from the

simulation model, the DNP has been implemented as an FPGA-

based PCIe network interface, i.e., the APEnet+ card [10], which

has shown excellent results in terms of communication latency for

HPC clusters [3]. The APEnet+ card has been used as reference

to obtain latency and other timing measurements, which have thus

been annotated in the VEP simulation model.

Model optimizations. Some speed-driven optimizations are included

in the VEP to reduce simulation overhead. First, unnecessary

overhead caused by SystemC clock objects is avoided by com-

bining multiple clocks with identical timing into single custom

clock objects. Second, Direct Memory Interface (DMI) access

from the processor to the local memory is introduced. Third,

temporally decoupled execution of the processors is included to

avoid repetitive SystemC context switches at every clock cycle.

Finally, a simulation-level processor idle state is introduced that is

triggered by the target software when there is no work to perform

and suspends core-related SystemC events.

B. Parallel SystemC Simulation

Initially, the VEP was developed using the regular sequential

OSCI SystemC reference simulation kernel. However, the perfor-

mance degradation when simulating large system topologies called

for the adoption of parallel simulation technologies.
The strategy employed by the parSC simulation kernel [4]

revolves around distributing simulation events (such as CPU clock

ticks or interrupts) that happen at the same point in time among

different threads. This proved to achieve high simulation speedups

when using detailed simulation models (CA), as those usually have

a high number of events occurring concurrently and can as such

benefit most from the fine-grained parallelism that parSC offers.

The SCope simulation kernel [28] uses a more coarse-grained

parallelism in order to achieve high speedups when simulating less

detailed simulation models, which are typically already built for

high performance simulation (JIT-IA, DBT-IA). Several simulation

models (e.g., tiles) are grouped and assigned to different threads.

The groups then operate in a temporal-decoupled fashion, i.e., in-

dividual groups are allowed to advance in time without frequent

synchronization with the other threads. This increases the overall

simulation performance.

C. VEP Use Cases

Choosing among the CA, JIT-IA, DBT-IA and AS VEP versions

allows targeting different use cases. While the most accurate CA

version is good for assessing the performance of DAL applications,

its speed is not enough for regular programming tasks. The JIT-

IA and DBT-IA versions are better suited for debugging and

programming. These models have been used to develop and debug

the EURETILE OS and runtime environment.

The AS VEP enables simulating large systems with maximum

speed. However, due to its host-compiled nature, it is restricted

to software without target-specific constructs (e.g., inline assembly

or compiler intrinsics). For this reason, the AS is better suited as

a DNP-centric simulator to test fault awareness and networking

features, e.g., testing the LO|FA|MO mechanism in the DNPs.

Typically, it is possible to simulate around 200 tiles in the CA

and JIT-IA configurations. The DBT-IA is limited to only around

40 tiles due to the stringent memory consumption of the internal

binary translator and the pre-compiled binaries. Finally, the AS

configuration allows simulating a few thousand tiles (e.g., a 16×
16× 16 topology with 4096 tiles has been used to test the DNP).

VII. EXPERIMENTAL RESULTS

In this section, we provide experimental results characterizing

the proposed design flow. Additional results for the individual

components of the design flow can be found, e.g., in [22] (design

space exploration), [14] (fault management), or [4] (simulator).

A. Experimental Setup

The CA VEP version is used as target platform in all case studies.

Each tile is set up to be equipped with a RISC processor (running

at 100MHz), 4MBytes on-tile memory, and a DNP. The DNP

model of the VEP offers a nominal bandwidth of 400MBytes/s,
nearly independent of the number of travelled hops in the 3D grid

of tiles. It automatically fragments long messages into packets of

maximum size 1KByte, which are wormhole routed along the

path towards the destination node. Each message suffers an initial

latency of 40 clock cycles.

All evaluations are performed on a quad-core Intel i920 worksta-

tion PC. If not stated otherwise, simulations are running with the

SCope kernel using four threads. However, temporarily decoupling

is disabled to achieve the same accuracy as with the OSCI reference

SystemC simulation kernel. To avoid confusion, we refer to “host-

time” for the time needed to perform the simulation on the host.

Otherwise, time always refers to simulation time.

B. Multi-Application Case Study

First, we show that the proposed scenario-based design flow

enables the design of complex and dynamic systems. To this end,

we present a multi-application benchmark that has been designed

in DALipse [29], an extension of Eclipse to visually specify the

FSM and the process networks of a DAL benchmark.



Figure 9. Finite state machine of the considered PiP benchmark. Sce-
nario HD(p)/VCD, for instance, refers to the state where the application
processing the high-definition video stream is paused and the application
processing low-resolution video data is running.

The FSM of the Picture-in-Picture (PiP) benchmark shown

in Fig. 9 consists of eight scenarios and three different video

decoder applications. The HD application processes high-definition,

the SD application standard-definition, and the VCD application

low-resolution video data. The software has two major execution

modes, namely watching high-definition (scenario HD) or standard-

definition videos (scenario SD). In addition, the user might want to

pause the video or watch a preview of another video by activating

the PiP mode (i.e., by starting the VCD application).

C. Data Transfer Rate

Next, we measure the data transfer rate between two processes

mapped onto different tiles. Our test application is designed such

that in each execution of the FIRE procedure, the source process

generates one token, which it then sends to the sink process that

reads the token. No other processes except the runtime-manager

are running on the system.

Figure 10 shows the aggregated data rate for different process

mappings whereby the size of a single token is varied between

4Bytes and 128KBytes. The mappings are selected so that the

source process and the sink process are assigned to tiles that are a

certain number of hops apart from each other. The observed peak

data rate over all configurations is 22.3MBytes/s. If the distance

is increased from one hop to 31 hops, the data transfer rate is

reduced by about 11% at most.

Yet, we think that the communication costs still leave much room

for improvement. In the future, we would like to optimize the

proposed communication interface and software stack to reduce

unnecessary copy operations.

D. Speed-up due to Parallelism

Next, we will investigate if the proposed programming environ-

ment also allows to efficiently exploit the application’s parallelism.

For this purpose, we measure the speed-up of a distributed im-

plementation of an array-sorting algorithm, namely quicksort. The

quicksort algorithm sorts an array with 256 elements in ascending

order. As the quicksort algorithm recursively sorts an array, it can

have multiple instances of a SORT process to sort multiple sub-

arrays simultaneously. To efficiently utilize the available hardware

parallelism, we automatically adjust the application’s degree of

parallelism for maximum performance, see [8] for a description of

the applied transformation and optimization strategies. As a result,

the optimizer allocates one SORT process if one tile is available

and eight SORT processes if 16 tiles are available. In Fig. 11, the

speed-ups are compared for implementations running on a different

number of tiles whereby the speed-up is calculated with respect to

an implementation running on a single tile. The maximum speed-

up that can be achieved is 7.01 whereby the additional costs to

split an array into sub-arrays prevent an even higher speed-up.
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Figure 11. Speed-ups of the quick-
sort algorithm for varying number of
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The scalability of DAL benchmarks on many-tile architectures

has further been evaluated targeting, e.g., Intel’s 48-core SCC

processor [30], see [29] for a summary of the obtained results.

However, in contrast to the work presented in this paper, a

non-customized software-stack with a general-purpose Linux OS

has been used. Targeting 16 cores, the above-described quicksort

algorithm achieved a speed-up of about 6.0. This in turn indicates

that the software stack of the EURETILE design flow introduces

a low management and communication overhead. Moreover, the

results presented in [29] demonstrate that the DAL programming

model is well suited for the specification of parallel applications.

In fact, it is reported that a motion-JPEG decoder specified as a

DAL benchmark achieves a speed-up of 21 on 24 cores and that

a ray-tracing algorithm achieves a speed-up of 20 on 24 cores.

E. Management Overhead for a Large Number of Tiles

So far, we have demonstrated that coarse-grained applications

achieve good scalability in terms of performance. Next, we are

interested in the worst-case situation and demonstrate that the

proposed system has a low management overhead when targeting

finest-grained applications. For this purpose, we measure the exe-

cution time of a distributed fast Fourier transform (FFT) application

that consists of 194 processes and 448 channels. The FFT computes

a discrete Fourier transform (DFT) of 64 points whereby each

process simply calculates a bufferfly, i.e., a DFT of size two.

In Fig. 12, the execution time is compared for implementations

running on either 32, 64, 128, or 192 tiles. Even though the

granularity of the FFT application is too small to absorb the

overhead imposed by the process and channel management, the

execution time of the FFT application can be reduced by a factor

of 1.36 when going from 32 to 192 processes. Overall, the case

study demonstrates that the proposed execution environment has

low communication latency and low process launching overhead.

F. Runtime-Manager

To quantify the response time of the runtime-manager, we

measure the time to start and stop a synthetic application with

a variable number of processes. All processes of the synthetic

application form a chain and are either mapped onto the same

tile or mapped alternately onto two tiles of the same cluster. The
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Figure 12. Measuring the manage-
ment overhead with a finest-grained
FFT application of 194 processes.
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application start and stop events are triggered by a single-process

application that is running on another tile of the same cluster.
Figure 13 shows the time to start and stop the synthetic ap-

plication. The reported numbers are the measured elapsed time

between sending the event and starting or stopping the last process

of the application. The time to start and stop the application

increases linearly with the number of processes. If the processes

are distributed between two tiles, the time to start and stop the

application is almost divided in halves. This comes from the fact

that a SLAVE controller can process its jobs largely independent

of the other SLAVE controllers. It is worth to note that for a small

number of processes, starting an application is more expensive than

stopping the same application, and vice versa.

G. Performance of the Simulator

Finally, we compare the performance of the parSC and SCope

simulation kernels with the performance of the OSCI reference

SystemC simulation kernel. To this end, we consider a distributed

FFT application with 82 processes and 192 channels, running on 64
tiles. Since the parallel simulation is conducted with four threads,

the simulator is divided into four groups of 16 tiles.
Table I reports the host-time for simulating the distributed FFT

application. In the selected configuration, the SCope simulation

kernel can simulate 40 processor cycles in parallel before it needs

to synchronize with the other threads so that a speed-up of 4.01
is achieved. parSC, on the other hand, can only simulate one

delta-cycle before it needs to synchronize with the other threads,

therefore achieving a speed-up of only 2.18.

Table I
HOST-TIMES FOR SIMULATING THE FFT APPLICATION ON 64 TILES.

OSCI time parSC time parSC speed-up SCope time SCope speed-up

4:29:27 2:03:54 2.18× 1:07:10 4.01×

VIII. CONCLUSION

In this paper, we presented the EURETILE software design flow

that provides a novel programming environment to map multiple

dynamic applications onto many-tile architectures. Applications

are specified as process networks in a high-level programming

model and the dynamic interactions between the applications are

represented as finite state machine. The EURETILE design flow

splits the design and optimization process into three steps. First,

parallel processes and communication channels are distributed onto

the target architecture. Afterwards, the platform-dependent imple-

mentation of the applications is automatically generated. Finally,

the generated binaries are evaluated and profiled on the VEP, a

scalable many-tile simulator, such that the application and mapping

specifications can be iteratively refined until the performance

requirements are met. Evaluations on the VEP with up to 192 tiles

have shown that the proposed programming paradigm enables the

design of complex systems while the proposed simulation technique

is deemed to be a key technology to many-tile system design and

verification by showing a linear speed-up in terms of the number

of processing cores available on the host machine.
Future work includes the evaluation of the proposed fault

management strategies on the VEP, the design of more com-

plex benchmark applications, and the evaluation of the proposed

methodologies on the QUonG platform.
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