
Bolt: A Stateful Processor Interconnect

Felix Sutton, Marco Zimmerling, Reto Da Forno, Roman Lim, Tonio Gsell,
Georgia Giannopoulou, Federico Ferrari, Jan Beutel, and Lothar Thiele

Computer Engineering and Networks Laboratory
ETH Zurich, Switzerland

{firstname.lastname}@tik.ee.ethz.ch

ABSTRACT
The wireless sensor network community is currently under-
going a platform paradigm shift, moving away from classical
single-processor motes toward heterogeneous multi-processor
architectures. These emerging platforms promise efficient
concurrent processing with energy-proportional system per-
formance. The use of shared interconnects and shared mem-
ory for inter-processor communication, however, causes in-
terference in the time, power, and clock domains, which pre-
vents designers from fully harnessing these benefits. We thus
designed Bolt, the first ultra-low-power processor inter-
connect for the compositional construction of heterogeneous
wireless embedded platforms. This paper presents the archi-
tectural blueprint for interconnecting two independent pro-
cessors, while enabling asynchronous inter-processor com-
munication with predictable run-time behavior. We detail a
prototype implementation of Bolt, and apply formal meth-
ods to analytically derive bounds on the execution time of
its message passing operations. Experiments with a custom-
built dual-processor platform show that our Bolt prototype
incurs a negligible power overhead relative to state-of-the-art
platforms, offers predictable message passing with empirical
bounds that match the analytical ones to within a few clock
cycles, and achieves a high throughput of up to 3.3 Mbps.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiproces-
sors—interconnection architectures; C.3 [Computer Sys-
tems Organization]: Special-Purpose and Application-
Based System—real-time and embedded systems

General Terms
Design, Experimentation, Performance

Keywords
Cyber-physical systems; multi-processor; processor intercon-
nect; predictability; composability; resource interference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SenSys’15, November 1–4, 2015, Seoul, South Korea.
c© 2015 ACM. ISBN 978-1-4503-3631-4/15/11 ...$15.00.

DOI: http://dx.doi.org/10.1145/2809695.2809706.

1. INTRODUCTION
In the early days of sensor networks, platforms featuring a

single 8- or 16-bit microcontroller (MCU), such as Mica [25]
and Telos [43], spawned the development of a wide range of
sense-and-send applications. These platforms offered mod-
est computing resources well matched to the demands of low-
rate sensing of temperature, humidity, light, etc. Low-power
operation was achieved by interleaving sensing, data process-
ing, and communication tasks and by judiciously managing
the power state of hardware components.
Challenges. Although this design approach has been ex-
tensively followed to demonstrate the feasibility of wireless
sensing applications, through our own experiences in design-
ing, developing, and maintaining large-scale sensor network
installations we have encountered recurring patterns that
impede the construction and reliability of wireless embed-
ded systems. We have observed that the engineering ef-
fort in realizing such systems is labor-intensive with respect
to the design, test, and diagnosis of hardware and software
components. While difficult to quantify, we argue that these
practical complexities lead to implementations that are often
unreliable, not readily adaptable to changing requirements,
exhibit long development cycles, and are over-dimensioned
to satisfy performance targets. This leads us to pose the fol-
lowing question: Why is it difficult to design such systems?

A careful analysis of existing wireless device architectures,
in conjunction with a survey of the state of the art in the
embedded systems design literature, reveals that the main
problem is rooted in the interference of hardware and soft-
ware components in the time, power, and clock domains.

One may think that simple sense-and-send applications do
not suffer from this problem. However, also in these scenar-
ios several tasks must be executed concurrently: reading sen-
sors, processing data, transmitting packets, etc. Sense-and-
react applications (e.g., in cyber-physical systems [49]) addi-
tionally feature control and actuation tasks. These concur-
rent tasks interfere when they compete for shared resources
such as clock cycles, memory, and peripherals. While labor-
intensive engineering may partially handle such resource in-
terference in highly deterministic scenarios, this approach is
not only unsustainable in the long term but also ineffective if
tasks are triggered by unpredictable events (e.g., in surveil-
lance or tracking scenarios [3]). Further, as the system load
increases, the effects of resource interference increasingly af-
fect the timing behavior of individual tasks, which in turn
adversely impacts overall system performance. When incor-
porating power management techniques additional complex-
ity is added to the system, further exacerbating the problem.

Contribution. To address the above challenges, we advo-
cate a disruptive approach to the construction of future wire-
less embedded platforms. We propose the functional separa-
tion of tasks onto a multi-processor architecture whereby the
tasks interact through asynchronous message passing using
a processor interconnect with predictable timing character-
istics. Predictability of the interconnect entails that passing
a message takes a known, bounded time irrespective of the
attached processors. As a result, the proposed architecture
decouples processors in the time, power, and clock domains,
facilitating the composable construction of customized plat-
forms. Composability not only gives the system designer the
flexibility to select hardware and software components satis-
fying the needs of the application, but also ensures that their
interconnection does not change the properties of the inte-
grated parts [27]. Furthermore, predictability of the message
passing interface is essential to meeting the performance re-
quirements imposed by certain application domains or wire-
less standards with tight latency constraints.

This paper presents Bolt, the first processor interconnect
that enables the composable construction of ultra-low-power
wireless embedded systems. Bolt provides predictable asyn-
chronous communication between two arbitrary processors,
and thus decouples the processors in the time, power, and
clock domains. Bolt sits between both processors and hides
all complexities associated with handling asynchronous mes-
sage transfers from system developers. Two message queues,
one for each direction, with first-in-first-out (FIFO) seman-
tics form the core of this stateful interconnect. A signaling
protocol allows for concurrent message reads and writes on
both queues, and indicates when there is at least one mes-
sage ready to be read out from a queue and when a queue is
empty. The two message queues as well as all internal state
reside in non-volatile memory, thus preserving the state of
Bolt independent of the power states of the two processors.
Bolt requires only a minimal software interface with well-
defined semantics and predictable timing to be implemented
on either processor. This concept of a stateful interconnect
allows designers to choose arbitrary off-the-shelf or custom
processors and “bolt” them together to create a customized
dual-processor platform while avoiding resource interference.

We make the following contributions in this paper:
• Sec. 3 presents the design of Bolt.
• Sec. 4 validates our design by detailing a prototype imple-

mentation of Bolt on a state-of-the-art low-power MCU.
• Sec. 5 uses formal methods to derive bounds on the worst-

case execution time of Bolt’s message passing operations.
• Sec. 6 details Bolt’s interface and how it should be used.

Using our Bolt prototype, we have built a heterogeneous
dual-processor platform consisting of a 32-bit ARM Cortex-
M4 and a 16-bit TI system on chip (SoC). Extensive experi-
ments with this platform in Sec. 7 demonstrate the following:
(i) Bolt achieves power decoupling while incurring negligi-
ble power overhead with a current drain of 430 nA during pe-
riods of inactivity; (ii) the execution times of message pass-
ing operations exhibit empirical bounds that match the an-
alytical bounds to within a few clock cycles; (iii) Bolt pro-
vides a high throughput of 1.5–3.3 Mbps for inter-processor
messages that are 16–128 bytes in length; and (iv) Bolt
enables the smooth concurrent execution of event-triggered
sensing and wireless communication—a scenario that is com-
plex, labor-intensive, and error-prone to implement on cur-
rent platforms. Bolt is available at http://bolt.ethz.ch.

2. BACKGROUND AND RELATED WORK
This section discusses the needs of low-power wireless em-

bedded applications, the corresponding requirements on soft-
ware components and hardware platforms, and the problem
of resource interference in state-of-the-art architectures.

2.1 Classical Mote Architectures
In the early days of sensor networks, there was substan-

tial interest in new hardware and software architectures for
sensor nodes. These so-called motes typically provide the in-
terface to sensors, and process and communicate data. Dif-
ferent hardware platforms have been developed both in in-
dustry and academia, exploring different points of the design
space to match the demands of certain application domains
(see, for example, Cricket [45], Mica [25], Telos [43], Iris [12],
EYES [26], SunSPOT 9 [42], BTnode rev.3 [9], and Tiny-
Node [13]). Attempts towards adaptivity at run-time often
leverage multiple resources of the same type with different
properties, for example, multi-radio platforms like BTnode
rev.3 [9] or Opal [30] and the concept of wake-up radio [47].
Both the architectures and the design principles focused on
finding the right trade-off between energy efficiency and the
application-driven computing and communication require-
ments, interfaces to sensors, integration of state-of-the-art
radios, small form factors, and autonomous operation [29].

2.2 Changing Requirements
Over the years the field of distributed low-power wireless

embedded systems has matured to a point where now serious
applications of societal and economic importance are within
reach, such as the Internet of Things (IoT), industrial pro-
cess control and supervision, environmental and structural
monitoring, smart logistics, personalized medicine, home au-
tomation, and traffic control. In many of these applications,
measurements are precious and must not be lost [52], so data
must arrive reliably and in real-time [23, 46], responses are
safety-critical [17], sensors are relatively expensive, and de-
ployment and maintenance of a network is labor-intensive
and costly. Thus, it is inevitable that distributed low-power
wireless embedded systems become a high-quality infras-
tructure with known and predictable properties.

The requirements for successful hard- and software archi-
tectures in these domains are also much better understood
than in the early days of SmartDust [31]. Developing soft-
ware for heavily resource constrained hardware platforms is
known to be highly labor-intensive due to the tight coupling
between functional and non-functional properties on the one
hand and detailed hardware properties on the other. Despite
advances in model-based design techniques, specific models
of computation, intensive distributed testing and verification
cycles, distributed low-power systems are still error-prone.
To make matters worse, the final installations are often em-
bedded into hostile environments that are unknown at de-
sign time and exhibit dynamically changing properties.

The application domains differ substantially in their re-
quirements and hence a single platform does not suite them
all with respect to computational, communication, and mem-
ory resources, available energy budget, and degree of integra-
tion [5]. Nevertheless, we can identify two common trends.

• Increasing resource demand. The program and data mem-
ory required to implement even seemingly simple function-
ality has grown significantly. Similar observations hold for
the required computational resources that very often can-

http://bolt.ethz.ch

not be fulfilled by the simple 8- or 16-bit MCUs that were
employed in the first generation of motes.

• Need for adaptability. Application tasks such as commu-
nication, sensing, actuation, and computation are highly
dependent on the occurrence of events (e.g., on sensor and
radio interfaces) and the availability of energy. The same
holds for the associated modes of operation such as radio
states, MCU power modes, duty cycle, and clock speeds.

One of the early attempts to increase the amount of avail-
able resources was the Imote2 [39], at the cost of high sleep
currents limiting its use in energy-constrained settings. More
recently, there are new MCU generations appearing on the
market that combine low sleep currents, short wake-up times,
and rich peripherals with a relatively high compute power,
such as the ARM Cortex-M family [6] used in products from
NXP, STMicroelectronics, Silabs, Freescale, and Atmel. But
their appearance only solves part of the problem inherent
to classical mote architectures: highly adaptive and event-
triggered application tasks with widely varying resource re-
quirements interfere on shared resources, thus violating the
principles of modularity and separation of concern.

To illustrate this resource interference problem, let us con-
sider an application that requires high-rate sampling of sen-
sors, for example, acoustic sensors in a structural monitoring
application [52]. Due to the fact that the single processing
resource, the MCU, also needs to handle time-critical events
from the wireless communication component, the computa-
tional power may not be sufficient and interference between
tasks is inevitable. As a second example, suppose an appli-
cation requires a node to react timely to events, for example,
to quickly perform an actuation or to localize signal sources
depending on the pairwise differences in the arrival of events
at different nodes. Again, limited resources and interference
on the single computing resource lead to unpredictable be-
havior in such adaptive scenarios. This kind of resource in-
terference can only partly be hidden by software abstraction
layers (e.g., provided by TinyOS [37] and Contiki [14]), often
leading to fragile, monolithic, and over-provisioned systems
that are tedious to design, implement, debug, and maintain.

As a result, already early on in the history of sensor net-
works, modular architectures have been proposed that allow
designers to seamlessly compose a node architecture from
components that match the target application domain.

2.3 Modular Multi-processor Architectures
Early solutions to remove some of the deficiencies as de-

scribed above have been the construction of modular archi-
tectures that can be adapted to the need of various appli-
cation domains, including the 4-layer modular architecture
in [44], the MIT Media Lab modular platform [8], the stack-
able architecture [41], and Epic [15]. In all of these designs,
components communicate via a shared bus or a set of shared
standard interconnects such as UART, I2C, SPI, and 1-wire.
New shared interconnects like M-bus [35] have been specifi-
cally designed for ultra-low-power connectivity.

The need for heterogeneous systems consisting of multiple,
possibly heterogeneous components that dynamically match
resources to the specific task at run-time (e.g., sleep modes,
clock options, voltage scaling, component shut down) to al-
low for highly adaptive applications has been recognized by
other communities as well, especially in the area of mobile
communications. As a consequence, we increasingly see de-
signs combining heterogeneous resources for ultra-low-power

applications, such as the LPC4300 [40] from NXP, and the
VF3xxR and MKW2xDx [21] from Freescale. All these de-
signs use bus-based interconnects or shared-memory commu-
nication between the components. One notable exception is
the TI F28M3x series [50], which is expressly designed for ap-
plication domains requiring safety certifications. Instead of
relying exclusively on shared resources for communication,
it contains a FIFO buffer for conflict-free communication at
the cost of not being aimed for ultra-low-power operation.

It has been recognized that whenever multiple resources
communicate, the use of shared busses and shared memory
seriously hampers modularity [32]. The major obstacle for
application domains with high dependability and safety re-
quirements, such as automotive and avionics, to adopt multi-
core and multi-resource platforms is the inevitable interfer-
ence on shared resources [34]. Thus, there is currently no
accepted path to certification, which requires guarantees on
correct timing and function [51].

The main consequences of using shared memory or busses
for communication among components are the following:
• Coupling of power and clock domains. To reach the goal of

energy-proportional performance, where the energy con-
sumed grows with the amount of useful task execution per-
formed, systems use different power and clock domains.
However, a shared bus couples these domains and requires
tight coordination of power and clock management. As a
result, the principles of separation of concerns and isola-
tion of independent functionalities are violated, and power
management requires interaction with many hardware and
software layers [5]. As a rule, unnecessary interference and
dependencies introduced on the hardware layer can rarely
be decoupled by means of higher-level software constructs.

• Interference in the time domain. Using shared memory,
constructs like semaphores and locks allow for mutually
exclusive access to shared resources. However, they also
make the timing of activities on one resource dependent on
that of activities on another, seriously violating compos-
ability and the possibility of independent design. In other
words, engineering must be re-done system-wide for each
newly designed task. Similarly, the bus as a shared com-
munication medium causes timing interference, leading to
highly pessimistic timing bounds (e.g., when using proto-
cols like first-come-first-serve, fixed priority, round-robin)
or inefficient communication (e.g., when using partitioned
protocols like TDMA, time-triggered architecture [33]).

Due to these deficiencies, alternatives like distributed mem-
ory, asynchronous message passing, and queue-based com-
munication are all well understood in their underlying con-
cepts and widely used in distributed systems, multi-processor
systems, and networks on chip (NoC)[28, 22]. However, they
have not yet been thoroughly investigated in ultra-low-power
wireless embedded systems. This paper aims to fill this gap.

3. BOLT DESIGN
We introduce Bolt, a new processor interconnect for ultra-

low-power wireless embedded systems. By providing bidirec-
tional asynchronous message passing with predictable mes-
sage transfer times, Bolt is a key building block for the com-
munication between components on emerging dual-processor
platforms to support ultra-low-power applications with high
dependability requirements and stringent timing constraints.
Bolt simplifies the design of such applications by completely
eliminating or at least limiting the interference among differ-

CONTROL

BOLT

Non-volatile Memory

. . .

. . .

Receive

Buffer

. . .

Tasks

B
O

L
T

 A
P

I

Message Controller

DATA

CONTROL

DATA

Processor (A)

Receive

Buffer

. . .

Tasks

Processor (C)

B
O

L
T

 A
P

I

Figure 1: Overview of Bolt processor interconnect.
By providing predictable bidirectional asynchronous
message passing between processors A and C, Bolt
decouples them in time, power, and clock domains.

ent hardware and software components on shared resources.
As such, Bolt promotes a radical paradigm shift toward the
composable construction and predictable operation of hetero-
geneous ultra-low-power wireless embedded platforms.

3.1 Overview
As depicted in Fig. 1, Bolt is a piece of integrated hard-

ware and software that sits between two processors A and C.
Bolt lets A and C asynchronously exchange messages while
executing within their own time, power, and clock domains.
This entails in particular that each processor can indepen-
dently write messages into Bolt or read messages out of
Bolt. We design and implement Bolt in such a way that
the execution time of these read and write operations can
be tightly bounded. Based on these bounds, we conceive a
well-defined software interface by which each processor ac-
cesses Bolt in a non-blocking manner to exchange messages
of variable length and possibly with different priorities.

The unique properties of Bolt allow for composable sys-
tem designs. That is, a designer can choose any two commer-
cially available processors and existing software artifacts and
integrate them to create a customized platform that satisfies
the application needs, without changing the properties of the
integrated parts. These parts can be separately designed, im-
plemented, and validated, thus leading to modular systems
that are easier to develop, understand, and maintain.

Key to achieving these beneficial properties is to tackle the
problem of interference between different hardware and soft-
ware components on shared resources. To solve this prob-
lem, we take a disruptive approach in Bolt that is guided by
the following established embedded systems design princi-
ples [24, 48]: (i) try to avoid interference; (ii) if interference
is unavoidable, try to tightly bound it; and (iii) specify an
interface with formally verified and predictable properties.

We describe next how to apply principles (i) and (ii) to
the design of Bolt. Since principle (iii) depends on a con-
crete implementation of Bolt (see Sec. 4) and a formal anal-
ysis of its timing properties (see Sec. 5), we discuss the inter-
face by which the processors access Bolt in Sec. 6. While
the basic concept can be extended to more than two pro-
cessors, we stick to the dual-processor case for illustration
purposes and its immediate applicability to the separation
of concurrent application (A) and communication (C) tasks.

3.2 Architecture
Bolt adopts asynchronous message passing to avoid in-

terference between processors A and C wherever possible, as
per design principle (i). Thus, Bolt decouples processors A
and C in the time, power, and clock domains.

• Time. Processors A and C interact with Bolt over ded-
icated control and data channels, as illustrated in Fig. 1.
Using these channels, messages can be asynchronously

transferred between each processor and Bolt, irrespec-
tive of the state of the other processor. Due to this and
by buffering messages until they are read out, Bolt effec-
tively decouples A and C in time.

• Power. Bolt stores undelivered messages and all inter-
nal state in non-volatile memory. Thus, it also decouples
the two processors in power, enabling independent power
management of A and C over a maximum dynamic range,
including deep sleep and power off modes. Bolt can also
retain its own state and undelivered messages after a com-
plete power failure, which may suddenly occur, for exam-
ple, in energy harvesting settings.

• Clock. Finally, there exist implementation choices for the
data channel that allow A and C to select and adjust their
clock frequencies, decoupling them in the clock domain.

To achieve these properties, the control and data channel
between Bolt and the attached processors must be serviced
by independent hardware blocks, thus enabling simultaneous
message requests and message transfers from either proces-
sor. To support independent bidirectional message transfers,
Bolt stores undelivered messages in two FIFO queues, as
illustrated in Fig. 1. One queue is for messages written into
Bolt by A and read out by C, while the other queue is for
messages written by C and read by A.

Bolt’s message controller manages the state of the mes-
sage queues and the operation of the control and data chan-
nels. The message controller consists of software and hard-
ware components. The latter can be realized on a multitude
of hardware options, ranging from general-purpose MCUs to
field-programmable gate arrays (FPGAs). A concrete mes-
sage transfer is initiated asynchronously by one of the pro-
cessors over the control channel, prior to the actual message
transfer over the data channel.
Control channel. Operating the control channel means co-
ordinating data channel access for message transfers and in-
dicating the availability of messages to the target processor.
The signaling sequence of the control channel, as described
in Sec. 4, ensures that each processor can initiate message
transfers without causing inter-processor interference in the
power and clock domains. Indeed, each processor is free to
trigger a read or write operation at any moment in time over
the control channel, and transfer the message over the data
channel without interfering with the concurrent execution of
the other processor.

For example, at the end of a write operation, Bolt uses
the control channel to inform the target processor that there
is now a pending message. It is then up to the discretion
of the target processor when to inspect the control channel
and when to initiate a read operation. Whenever the target
processor is not busy performing local operations, it can read
the message from Bolt using its dedicated control and data
channels irrespective of the state of the other processor.

By the same token, the power management of one proces-
sor is independent of the messaging operations invoked by
the other processor. That is, one processor may, for exam-
ple, choose to reside in a deep sleep mode for a given period
of time as determined by its duty cycle, and is not explicitly
woken up by the arrival of a message buffered in Bolt.
Data channel. The actual message transfer between a pro-
cessor and Bolt occurs over a bidirectional data bus that
supports master/slave operation. Two popular examples of
standardized busses supporting master/slave operation are
SPI and I2C. Each interconnected processor is the master

address

data

DMA 0

Channel

DMA 1

Channel

FRAM

SPI CSPI A

DMA Controller

GPIO

PORT3 PORT4

MSP430

Core

DMAreq DMAreq

IRQreq

IRQreq

HALT

Figure 2: Simplified hardware block diagram of the
MCU used in our prototype implementation of Bolt.

of its dedicated data channel; that is, it provides the clock
required to transfer each bit over the bus, while Bolt is al-
ways the slave. This ensures that each processor can transfer
messages using its own independent clock frequency, thereby
decoupling both processors in the clock domain.
Bounding unavoidable interference. Our architectural
design decisions described thus far effectively avoid any in-
terference between processors A and C in the power and
clock domains. In the time domain, however, A and C may
interfere. Since message transfers are asynchronous, it is
possible that A and C simultaneously request a message op-
eration on the same queue: one processor wants to read a
message, while the other processor wants to write a message.
This situation creates unavoidable interference at the mes-
sage controller, because two processors compete for access
to the same message queue (i.e., a shared resource).

Following design principle (ii), we intend to tightly bound
the execution time of read and write operations despite this
kind of resource interference. To this end, our design and
implementation of Bolt strives to reduce as much as pos-
sible the hardware and software complexity of the message
controller. By consequently following this guideline, we are
able to accurately model the message controller and to de-
termine tight bounds on the execution time of read and write
operations using a model checker, as described in Sec. 5.

We acknowledge that if a message queue is full, a proces-
sor will not be granted access to write a message into Bolt,
thereby blocking the write operation. We address this prob-
lem through the concept of virtual queues and appropriate
buffer dimensioning, as discussed in Sec. 6.

4. BOLT IMPLEMENTATION
To demonstrate the viability of our design, we implement

a Bolt prototype using the 16-bit TI MSP430FR5969 MCU
running at an 8 MHz clock frequency. This particular MCU
is well-suited due to its ultra-low power dissipation in sleep
mode, the availability of built-in non-volatile storage in the
form of ferro-electric random access memory (FRAM), an
abundance of built-in peripherals, and its commercial avail-
ability at low cost. We next detail the hardware architecture
of the MSP430FR5969, followed by a description of Bolt’s
software state machine that executes on top of it.

4.1 Hardware Architecture
Fig. 2 depicts a simplified hardware block diagram of the

MSP430FR5969 including its built-in peripherals. The MCU
is based on a Von Neumann architecture, where the core ac-
cesses program and data memory using a shared bus. The

Read Message

REQ

ACK

DATA
Write Message

REQ

ACK

DATA

IND

R/WR/W 1

2

3

4

5

6

72

3

4

5

7

1

Read OperationWrite Operation

IND
6

Figure 3: Signal sequences for write and read oper-
ations. The signals numbered with solid circles are
driven by Bolt, while those numbered with dashed
circles are driven by the interconnected processor.

core, the FRAM, and all peripherals are attached to a shared
16-bit data bus and a 20-bit address bus. All program code,
message data structures, and run-time variables are stored
in the non-volatile FRAM of size 64KB. The instruction pro-
cessing of the core may be interrupted by either the general-
purpose input/output (GPIO) module or the direct mem-
ory access (DMA) controller using auto-vectored interrupt
processing, whereby each peripheral interrupt is processed
according to fixed priorities. The priorities are defined in
hardware such that the DMA controller has a higher inter-
rupt priority than the GPIO module.

The GPIO module has two ports, namely PORT3 and
PORT4, each of which supports several input/output (I/O)
lines. An I/O line can be individually configured to initiate
an interrupt on either a rising or a falling-edge. If an inter-
rupt condition is detected on either port, the GPIO module
will inform the core through an interrupt request IRQreq. In
the case of simultaneous interrupt conditions, hardware pri-
oritization ensures that the interrupt service routine (ISR)
associated with PORT3 is executed before that of PORT4.

The MCU provides two independent SPI hardware mod-
ules, namely SPI A and SPI C. The byte-wise transfer be-
tween the SPI receive buffer and the FRAM is coordinated
by dedicated DMA channels, that is, DMA0 for SPI A and
DMA1 for SPI C. The DMA controller manages the bus arbi-
tration and interrupt priority, with DMA0 having a higher
priority than DMA1. When an SPI module has received
or transmitted a byte, a hardware trigger is signaled to the
DMA controller DMAreq to initiate a memory transfer (e.g.,
to store the received byte to FRAM or to fetch the next
byte to transmit from FRAM). Before the DMA controller
can perform such memory transfers, it must seize control of
the shared bus from the core. The DMA controller initiates
this takeover by halting the core through a hardware-driven
request HALT. The core is allowed to complete the current
clock cycle before it is halted, thus relinquishing its control
of the address and data bus. The byte transfer between SPI
and FRAM takes precisely two clock cycles, after which the
halt request is cleared by the DMA controller and the core
resumes operation as bus master on the next clock cycle.
Once a fixed number of bytes has been transferred, as de-
termined by the DMA’s software configuration, the DMA
controller will inform the core using an interrupt request.
Control channel. A dedicated GPIO port is used to im-
plement the control channel toward each interconnected pro-
cessor. Specifically, PORT3 is assigned to processor A, while
PORT4 is assigned to processor C. We adapt a four-phase
handshake protocol [38] to provide coordinated access for
reading or writing a message over the data channel, as il-

GPIO

REQ

ACK

ISR Execution

Write

REQ

ACK

ISR Execution

Read

GPIO DMA

. . .

. . .

. . .

. . .

. . .

TLPM4

T1

T2

TLPM0

T3

T4

time

time

TLPM4

T1

T2

TDMA

T5

. . .

Tw1 Tw2

Tr1 Tr2

la
st

 S
P

I b
it

T6

GPIO

MESSAGE
TRANSFER

(LPM0)

COMMIT WRITE
Update IND
Update ACK

IDLE
(LPM4)

Power-On
Reset

REQUEST
Configure

SPI & DMA

REQ↑

COMMIT READ
Update IND
Update ACK

REQ↓

DMA IRQ

REQ↓ && buffer=Ø

R/W↓ && Q=Ω ||

ACK↑

R/W↑ && Q=Ø

Figure 4: Bolt software state machine.

lustrated in Fig. 3. The control channel consists of the four
lines R/W , REQ , ACK , and IND . The R/W line defines
the requested operation as either a message read or a mes-
sage write. The REQ line is used by the interconnected pro-
cessor to request the specified message operation, while the
ACK line is used by Bolt to grant a message transfer over
the corresponding data channel. If Bolt’s message queues
are empty or full, access to the data channel will not be
granted for a read or a write operation, respectively. Bolt
indicates to a processor when there is at least one message
available to read using a dedicated IND line. The IND line
is updated at the completion of every message operation.
Data channel. A dedicated SPI module is used to transfer
messages between Bolt and each interconnected processor.
Bolt configures both SPI modules in slave mode, thus de-
coupling each interconnected processor with respect to their
clock domains. Dedicated DMA channels facilitate fast mes-
sage transfers between each SPI module and the message
data structures stored in FRAM.

4.2 Software State Machine
Fig. 4 shows Bolt’s software state machine executing on

the MSP430FR5969. Once the hardware is powered on, exe-
cution starts in a Power-On-Reset state where all state vari-
ables and message queues are initialized. If a queue con-
tains undelivered messages, the IND line is asserted accord-
ingly. The two REQ lines are configured as interrupt wake-
up sources. The MCU is put into deep sleep (LPM4), while
all other hardware blocks are turned off. The MCU remains
in deep sleep until a read or write operation is initiated.

When either processor initiates a read or write operation
by setting the R/W line and raising the REQ line, the as-
sociated IRQ wakes the MCU from deep sleep. Once the
core is awake, the GPIO ISR will first determine the re-
quested mode of operation and configure the corresponding
SPI module and DMA channel for message transfer before
updating the ACK line accordingly. The MCU will then
enter a low-power mode (LPM0) with the core turned off,
while the DMA and SPI modules remain active.

The completion of a message transfer is also processed
by an ISR. However, depending on the message operation,
either the GPIO or DMA ISR will be invoked. If the op-
eration is a write, the falling edge of the REQ line signals
the end of the message, thereby invoking the GPIO ISR. If
the operation is a read, the DMA controller will trigger an
interrupt toward the core. The ISR will update the internal
data structures, update the ACK and IND lines, and dis-
able the associated SPI and DMA peripherals. If there is an
on-going message transfer involving the alternate processor,
the MCU will return to the LPM0 sleep mode; otherwise it
will return to the LPM4 deep sleep mode.

5. FORMAL TIMING ANALYSIS
As discussed in Sec. 3, two of Bolt’s key design principles

are to avoid resource interference wherever possible, and if

interference is unavoidable, try to tightly bound it. Upper
bounds on the interference on shared resources may be found
using extensive measurements in a simulation environment
or on an actual implementation of the system. However, this
approach is extremely time-consuming and often infeasible
in practice due to the number of possible combinations of
input parameters and initial states of the system that need
to be explored. An alternative approach, and one that has
been well-studied in the embedded systems community, is
to use formal methods such as model checking [7]. Through
the construction of an accurate model of the system, one can
apply rigorous mathematical tools to analytically derive safe
bounds on interfering resources. We leverage such formal
methods in verifying the timing predictability and functional
correctness properties of Bolt.

In particular, we show next that Bolt has tightly bounded
worst-case execution times for read and write operations,
and that the physical interface operates according to its
specification. We start by identifying the relevant hardware
and software components of the Bolt prototype, and con-
struct a model of their interactions using a network of timed
automata [4]. We then parametrize the model based on
our prototype and formally verify the timing and functional
properties of Bolt using the Uppaal model checker [36].

5.1 Model Checking
The challenge in constructing a model of our Bolt proto-

type is capturing the complexity of several time-dependent
and interacting state machines each of which has their own
independent clock domain. In particular, processor A and C
initiate message operations within their own clock domain,
while the Bolt MCU responds to these operations using its
own clock. Furthermore, contention between the execution
of GPIO and DMA ISRs need to be formally modeled.

As a solution to this challenge we propose to model all
interactions as timed automata and to extend each automa-
ton with an independent clock variable. This technique is
based on the theory developed in [4], where networks of time-
dependent state machines interact through synchronization
channels. This formalism allows us to model the complex in-
teractions between Bolt and the interconnected processors
by incrementing all clock variables synchronously.

We use Uppaal, a popular toolbox for the modeling, simu-
lation, and verification of timed automata networks [36]. We
construct a run-time model of our Bolt prototype and its
interactions with two interconnected processors. The run-
time model consists of four interacting timed automata:
• the processor automaton
• the Bolt software state machine automaton
• the GPIO port automaton
• the DMA channel automaton

In the following, we introduce the behavior modeled by each
automaton. Due to space constraints, we limit detailed ex-
planations to the Bolt software state machine automaton.

5.1.1 Processor Automaton
The processor automaton represents the expected signal-

ing sequence of a read or write operation, according to the
specification in Sec. 3. There are two instances of this au-
tomaton, one for each interconnected processor, each with
its own clock variable. The type of operation (i.e., read,
write, or no-operation) and the time instant at which an op-
eration is started are specified as non-deterministic transi-

Figure 5: Timed automaton modeling the Bolt software state machine of Fig. 4 within the Uppaal toolbox.

tions. This level of non-determinism ensures that we indeed
capture the worst-case timing operation of Bolt. Note that
during verification, the Uppaal model checker will exhaus-
tively explore all feasible scenarios and concurrent activities.

5.1.2 Bolt Software State Machine Automaton
The Bolt software state machine automaton represents

the software execution of the Bolt message controller. The
automaton, shown in Fig. 5, uses features like state invari-
ants and transition guards provided by Uppaal [36] to model
the execution time of each GPIO and DMA ISR.

Variable transition times, such as the wake-up time from
the LPM0 low-power mode of the core, are incorporated into
the automata by limiting the invariant to at most the maxi-
mum delay, while relaxing the guard to at least the minimum
delay. In this way, the Uppaal tool is free to choose an ar-
bitrary delay within the specified bounds and can explore
all possible transitions. The execution of either GPIO and
DMA ISRs is protected by a binary semaphore in the soft-
ware state machine. This ensures that only one ISR can be
executing at any moment in time. The prioritization of the
ISR execution is defined by the GPIO port automaton.

5.1.3 GPIO Port Automaton
The purpose of the GPIO automaton is to model the hard-

ware prioritization between the two GPIO ports. The final
state machine model of Bolt contains two GPIO automa-
ton instances, one for each processor port. They model the
detailed protocol interactions and the case of simultaneous
message requests by the two connected processors. The cor-
responding priority-based arbitration is taken into account
as well as the fact that the GPIO port has lower hardware
priority than the DMA controller; that is, if a DMA inter-
rupt is pending, the GPIO port automaton will ensure the
DMA ISR acquires the semaphore first. Another important
behavior modeled by this automaton is the time to wake-

up from LPM4. We use global state variables to ensure the
wake-up time is bypassed when there are ongoing operations.

5.1.4 DMA Channel Automaton
Once a GPIO port has taken the binary semaphore, the

execution time of the ISR may be extended due to a DMA
memory transfer between the SPI peripheral bus and the
FRAM. The DMA channel automaton ensures that the hard-
ware prioritization between each DMA channel is adhered
to. As described in Sec. 4.1, when there is a byte to transfer
between the SPI and the FRAM, the DMA controller stalls
the MCU for two clock cycles. We model this using Up-
paal’s stop-watch feature [11], whereby a timed automaton
can stop the clock of another automaton. This feature en-
ables each DMA channel to stop the clock associated with
the Bolt automaton for precisely two clock cycles before
allowing it to resume. In this way, we precisely capture the
interactions described for the MSP430FR5969 in Sec. 4.

5.1.5 Complete System Model
Table 1 lists the number of states, transitions, and clock

variables of the individual timed automata templates. The
complete system model comprises of nine automaton in-
stances: two processor automata (for processors A and C),
two Bolt software state machines, two GPIO port automata,
two DMA channel automata, and one supplementary au-
tomaton that enforces the urgent selection of specific transi-
tions in the network of timed automata. The resulting model
of the complete system consists of 125 states, 165 transitions,
8 clock variables, and 15 synchronization channels.

Table 1: Timed automata in the Bolt system model
Automaton #States #Transitions #Clocks

Processor 14 13 1
Bolt software 24 28 1

GPIO port 19 32 1
DMA channel 5 9 1

GPIO

REQ

ACK

ISR Execution

Write

REQ

ACK

ISR Execution

Read

GPIO DMA

. . .

. . .

. . .

. . .

. . .

TLPM4

T1

T2

TLPM0

T3

T4

time

time

TLPM4

T1

T2

TDMA

T5

. . .

Tw1 Tw2

Tr1 Tr2

la
st

 S
P

I b
it

T6

GPIO

Figure 6: GPIO and DMA interrupt service routine
execution with respect to read and write operations.

5.2 Timing Parameter Characterization
The timed automata templates model the high-level hard-

ware/software operation of Bolt, parametrized using low-
level timing parameters. We now describe the methodology
we use to obtain safe bounds on these quantities.

Fig. 6 shows the execution of the GPIO and DMA ISRs
with respect to the REQ and ACK lines for both read and
write operations. To determine the specific worst-case de-
lays in terms of clock cycles of the MSP430FR5969, we first
need to investigate two important issues: (i) unbalanced ISR
execution time, and (ii) non-deterministic hardware delays.

Since the GPIO and DMA ISRs must always determine
which of the two processors is to be serviced, conditional
statements are needed to select the desired control flow, re-
sulting in the ISRs exhibiting port-specific execution times.
By inserting the appropriate number of no-operation in-
structions into the ISR assembly code, we ensure that the
GPIO and DMA ISRs execute a constant number of clock
cycles, irrespective of which processor triggers the interrupt.

The next problem to address is the MCU’s delay in waking
up from the low-power sleep modes, denoted by TLPM4 and
TLPM0 , and the time it takes from signaling a DMA inter-
rupt until the beginning of an interrupt context, denoted by
TDMA. Typically, these hardware-specific delays are spec-
ified in the datasheet of the MCU as being deterministic.
However, detailed measurements on our Bolt prototype
with a logic analyzer show that the particular delays con-
cerned are in fact non-deterministic within a small bounded
range. Fig. 7 shows the histograms of the measured delays
expressed in clock cycles of the MSP430FR5969 MCU.

With the measured upper and lower bounds of the timing
delays, as listed and defined in Table 2, the formal system
model is fully parameterized. The timed automata model
can now be used to determine the worst-case timing bounds
on the complex run-time dynamics of Bolt.

5.3 Timing Predictability Analysis
To find the worst-case execution time for read and write

sequences, that is, Tr1 , Tr2 , Tw1 and Tw2 as annotated in
Fig. 6 and defined in Table 2, we extend the Uppaal model
in three ways. First, we add an additional global clock

41 42 43 44 45 46 47 48
0

5

10

15

20

25

30

35

40

45

50
LPM4 to ISR Delay T

LPM4

Clock Cycles

C
o
u
n
t

1 2 3 4 5
0

10

20

30

40

50

60

70

80
LPM0 to ISR Delay T

LPM0

Clock Cycles

C
o
u
n
t

4 5 6 7 8
0

10

20

30

40

50

60

70
End of DMA to ISR Delay T

DMA

Clock Cycles

C
o
u
n
t

Figure 7: Histogram of wake-up delays TLPM4 , TLPM0 ,
and DMA interrupt delay TDMA in MCU clock cycles.

Table 2: Measured timing parameters of the system
model in MCU clock cycles as annotated in Fig. 6

Parameter Description
TLPM4 ∈ [41,48] Wake-up from LPM4 until beginning of

ISR execution
T1= 172 Start of GPIO ISR until rising edge of the

ACK line
T2 = 48 Rising edge of the ACK line until the end

of the GPIO ISR
TLPM0 ∈ [2,4] Wake-up from LPM0 until beginning of

ISR execution
T3 = 149 Start of the GPIO ISR until falling edge

of the ACK line
T4= 58 Falling edge of the ACK line until the end

of the GPIO ISR
T5 = 117 Start of the DMA ISR until the falling

edge of the ACK line
T6 = 59 Falling edge of the ACK line until the end

of the DMA ISR
TDMA ∈ [5, 7] Last bit on the SPI bus until the begin-

ning of the ISR execution

variable to support the construction of verification queries
using a common time base. Second, we modify the pro-
cessor automaton such that the Uppaal model checker can
non-deterministically select the type of operation (i.e., read,
write, or no-operation) performed by each processor instance.
Third, we introduce a delay at the beginning of each oper-
ation and allow the model checker to non-deterministically
select the delay of each operation. By selecting an appro-
priate upper bound for the delay (e.g., double the expected
duration of a single operation), it is assured that all possible
singular and simultaneous operations, with all possible rela-
tive timing offsets, are explored with clock cycle resolution.

We determine the worst-case execution times by submit-
ting queries to the Uppaal model checker. Specifically, we
query the existence of a global time value that exceeds a
given threshold X for a specific Bolt instance and state.
We apply binary search to find the minimum threshold X
that satisfies the query. Table 3 shows the worst-case execu-
tion times for singular read and write as well as simultaneous
read and write operations as derived from the Uppaal model.

We now use these values to determine the worst-case exe-
cution time for any Bolt operation, irrespective of the type
of operation performed. We define the worst-case execu-
tion time of the request phase Trequest and the commit phase
Tcommit in terms of the maximum execution time of read
and write sequences as defined in Fig. 6. The worst-case
execution times are defined by the following expressions:

Trequest = max(Tr1 , Tw1)

Tcommit = max(Tr2 , Tw2)

Table 4 summarizes the results for each GPIO port in-
stance. As expected, the request phase execution time dif-

Table 3: Analytically determined worst-case execu-
tion times for singular reads and writes and simulta-
neous read & write operations in MCU clock cycles

Write Read Read & Write
Tw1 Tw2 Tr1 Tr2 Tw1 Tw2 Tr1 Tr2

PORT3 220 153 220 124 418 397 418 357
PORT4 220 153 220 124 466 397 466 357

Table 4: Worst-case execution times in MCU clock
cycles for request and commit phases, irrespective of
whether Bolt executes a read or a write operation

Trequest Tcommit

PORT3 418 397
PORT4 466 397

fers between the two GPIO ports due to different priorities.
The execution time of the commit phase is identical for both
GPIO ports, since the DMA controller halts the core for the
same number of clock cycles under the worst-case scenario.

5.4 Functional Correctness
We define functional correctness of Bolt in terms of the

asynchronous signaling sequence defined in Sec. 3. Given a
valid input signal sequence, Bolt should always provide a
correct output sequence. In terms of the developed timed
automata model, the formal validity of Bolt’s functional
correctness is assessed based on the existence or absence of
a deadlock. Here, a deadlock denotes a state in which no
edge transition can be executed by any automaton in the sys-
tem model, that is, the system “stalls.” After verifying the
absence of such a deadlock in the developed model by sub-
mitting an appropriate query to the Uppaal model checker,
we can conclude that the model developed does not exhibit
a state sequence leading to a deadlock.

6. BUILDING APPLICATIONS WITH BOLT
The stateful processor interconnect provided by Bolt is

a stepping stone toward building highly reliable, resource-
efficient, and timing-critical wireless embedded applications.
Bolt concentrates on contributing a communication mecha-
nism with well-defined semantics and known timing proper-
ties. We now describe the interfaces as well as the necessary
implications for a successful integration with Bolt.

6.1 Interface Specification
The complexity of real-world wireless sensing applications

implies that multiple message types, coupled with the pos-
sibility for prioritization between message types, may be re-
quired. For example, messages containing protocol data may
be considered low priority, while messages containing proto-
col control information may be considered high priority.

In the case of only a single message priority, the problem of
non-blocking writes required by our asynchronous message
passing scheme can be solved by correctly dimensioning the
available buffer space based on the expected read and write
dynamics associated with the application domain.

If instead multiple message priorities are needed, the prob-
lem becomes significantly more complex. We thus introduce
an abstraction called virtual queues to reduce the problem
to the single priority-based message flow problem. We con-
sider a virtual queuing system, as shown in Fig. 8. Messages
of priority i are written into a queue of length Bi, and are

DATA

CONTROL

Read Message

REQ

ACK

DATA
Write Message

REQ

ACK

DATA

IND

R/WR/W 1

2

3

4

5

6

72

3

4

5

7

1

Read OperationWrite Operation

IND
6

Application
Processor (A)

BOLT
Platform Interconnect

. . .

. . .

Communication
Processor (C)

Message
Buffer

MA

. . .

. . .

Message
Buffer

MC

. . .

. . .

FSM FSM

Application
Processor

BOLT

Non-volatile Memory

. . .

. . .

Communication
Processor

Message
Buffer

. . .

. . .

Message
Buffer

. . .

. . .

Task FSM

Processing Element

B
O

L
T

 A
P

I B
O

L
T

 A
P

I

Application
Processor

BOLT

Non-volatile Memory

. . .

. . .

Communication
Processor

Message
Buffer

. . .

. . .

Message
Buffer

. . .

. . .

Tasks Tasks

B
O

L
T

 A
P

I B
O

L
T

 A
P

I

Message Controller

DATA

CONTROL

. . .

B1

Bn

. . .

b1

bn
wtest()
write()

rtest()
flush()
read()

BOLT

B

. . .

b1

bn rtest()
flush()
read()

Processor

QueueCounter
IND

QueueCounter
IND

wtest()
write()

Processor

. . .

B1

Bn

. . .

b1

bn
wtest()
write()

rtest()
flush()
read()

BOLT

B

. . .

b1

bn rtest()
flush()
read()

Processor

Counter
IND

Counter
IND

wtest()
write()

Processor

. . .

B1

Bn

. . .

b1

bn
write() read()

flush()

BOLT

B . . .

b1

bn

rtest()
flush()
read()

Processor

INDIND
wtest()
write()

Processor

Figure 8: Message passing through virtual queues.

DATA

CONTROL

Read Message

REQ

ACK

DATA
Write Message

REQ

ACK

DATA

IND

R/WR/W 1

2

3

4

5

6

72

3

4

5

7

1

Read OperationWrite Operation

IND
6

Application
Processor (A)

BOLT
Platform Interconnect

. . .

. . .

Communication
Processor (C)

Message
Buffer

MA

. . .

. . .

Message
Buffer

MC

. . .

. . .

FSM FSM

Application
Processor

BOLT

Non-volatile Memory

. . .

. . .

Communication
Processor

Message
Buffer

. . .

. . .

Message
Buffer

. . .

. . .

Task FSM

Processing Element

B
O

L
T

 A
P

I B
O

L
T

 A
P

I

Application
Processor

BOLT

Non-volatile Memory

. . .

. . .

Communication
Processor

Message
Buffer

. . .

. . .

Message
Buffer

. . .

. . .

Tasks Tasks

B
O

L
T

 A
P

I B
O

L
T

 A
P

I

Message Controller

DATA

CONTROL

. . .

B1

Bn

. . .

b1

bn
wtest()
write()

rtest()
flush()
read()

BOLT

B

. . .

b1

bn rtest()
flush()
read()

Processor

QueueCounter
IND

QueueCounter
IND

wtest()
write()

Processor

. . .

B1

Bn

. . .

b1

bn
wtest()
write()

rtest()
flush()
read()

BOLT

B

. . .

b1

bn rtest()
flush()
read()

Processor

Counter
IND

Counter
IND

wtest()
write()

Processor

. . .

B1

Bn

. . .

b1

bn
write() read()

flush()

BOLT

B . . .

b1

bn

rtest()
flush()
read()

Processor

INDIND
wtest()
write()

Processor

Figure 9: Realization of virtual queues using Bolt.

read from a separate queue of length bi. We define the rate
at which all messages in queue Bi are transferred into queue
bi as the flush rate. Under this construction, it is possible
to compute the queue lengths Bi and bi for each priority i
under the assumption of a minimum flush rate.

Fig. 9 shows how the virtual queue abstraction is mapped
onto a concrete message queue in Bolt. The length of the
Bolt message queue B must be greater than or equal to the
aggregate queue sizes of all prioritized queues, B ≥

∑n
i=1Bi,

while the receive buffer must be at least as large as all pri-
oritized queues, that is, bi ≥ Bi for all message priorities i.

Virtual queues make it possible for a single processor to
handle more than one input queue, e.g., in the case where
Bolt is extended to more than two processors. With an
appropriately dimensioned flush rate, the virtual queue ab-
straction coupled with an aggregate IND line, i.e., repre-
senting the availability of a message in any of the pend-
ing message queues, Bolt facilitates non-blocking message
operations. If more than one thread having data depen-
dencies executes on a single processor, asynchronous batch
processing [10] may be applied to guarantee timing con-
straints. However, if more than one thread performing Bolt
message operations executes on a single processor, a non-
preemptive round-robin scheduler may be employed to en-
sure non-blocking message operations with predictable tim-
ing behavior.

6.2 Application Programming Interface
Bolt provides a simple application programming inter-

face (API) as shown in Table 5 (see also Fig. 9). Besides
read and write, it includes the three additional functions
rtest, wtest and flush. The following preconditions must
be met by each interconnected processor when using Bolt.
• There must be space for at least one message in Bolt

before write is called.
• There must be at least one message pending in the receive

buffer before read is called.
• There must be no buffer overflow of the receive buffer.

The first precondition is satisfied by maintaining a local
variable on each attached processor that stores the number
of free messages in Bolt. This variable is initialized when
the IND line is low, is decremented by one at each write

invocation, and is accessed using the wtest function. It
follows that wtest must return a positive integer before a
write is invoked. The second precondition is satisfied by
storing a counter for the number of messages available in the
receive buffer for each message priority i. A read therefore
can only be invoked if rtest returns a positive integer for a
specified priority level. The last precondition is satisfied by

Table 5: Bolt application programming interface
Function Description

msg_t* read(int i) Read a message of prior-
ity i from receive buffer

void write(msg_t *m, int i) Write a message of prior-
ity i into Bolt

int rtest(int i) Return number of mes-
sages of priority i in re-
ceive buffer

int wtest(int i) Return number of free
spaces in Bolt available
for messages of priority i

void flush(void) Read all messages from
Bolt into receive buffer

invoking flush at a rate no greater than that determined by
a queue buffer size analysis.

If a message queue is empty upon a read request or the
message queue is full upon a write request, the Bolt state
machine will not raise the ACK line in response to the rais-
ing of the REQ line. Instead, the Bolt state machine will
safely return to an idle state and wait for the next request,
while the requesting processor may stall indefinitely waiting
for the ACK line. Nevertheless, the Bolt API ensures that
an interconnected processor can perform a non-blocking read
or write operation. This is done by monitoring the state of
the IND line, maintaining local message counters, and ap-
propriately executing the wtest, rtest and flush functions.

6.3 Message Consistency
In a real-world system, the loss of power or the reset of

a processor can lead to a loss of state. While the issue of
reconstructing state or managing erroneous state (e.g., after
a reboot) is left to higher layers, Bolt ensures that the mes-
sages it maintains are consistent. Specifically, the architec-
ture and interfaces of Bolt guarantee functional correctness
of the processor interconnect in case of a spontaneous loss
of power. This is achieved by storing both the Bolt mes-
sage queues and all associated state in non-volatile memory,
which will persist through a loss of power. Furthermore, the
Bolt state machine ensures that partially read messages are
not removed from the message queue, while partially writ-
ten messages are removed from the message queue. This
behavior ensures that undelivered messages can always be
safely retrieved from Bolt when power is re-established.

7. EVALUATION
This section evaluates the performance of our Bolt proto-

type using extensive experiments with a custom-built dual-
processor platform. First, we focus on a single Bolt instance
and characterize its operation in terms of power decoupling,
power overhead, timing predictability, and message through-
put. Then, we demonstrate the benefits of Bolt in a typical
event-triggered wireless sensing scenario.

7.1 Custom-built Dual-processor Platform
Fig. 10 shows a custom-built heterogeneous dual-processor

platform, where Bolt interconnects two state-of-the-art pro-
cessors with different computing capabilities and power dis-
sipation: a 32-bit STM ARM Cortex-M4 STM32F303VCT6
running at 72 MHz and a 16-bit TI CC430F5137 SoC run-
ning at 20 MHz. We constructed this platform by connecting

Figure 10: Custom-built heterogeneous dual-
processor platform used in the experiments. The
Bolt prototype interconnects a 32-bit ARM Cortex-
M4 (left) with a 16-bit TI CC430 SoC (right).

0 0.5 1 1.5 2 2.5 3 3.5 4

10
−6

10
−4

10
−2

10
0

Time [ms]

P
o

w
e

r
D

is
s
ip

a
ti
o

n
 [

W
]

ARM Cortex−M4

BOLT

TI CC430

1 2 3 4

Figure 11: Power profiles of the ARM Cortex-M4,
the TI CC430, and our Bolt prototype.

Bolt’s control (4 I/O lines) and data (3-wire SPI bus) chan-
nels to each processor, and developing a small software mod-
ule for each processor that implements the read and write
operations as described in Sec. 4.1. We use this platform in
the following experiments.

7.2 Power Decoupling
We start by illustrating how Bolt decouples two proces-

sors in the power domain. To this end, we perform an ex-
ample execution with the dual-processor platform, using an
Agilent N6705A DC power analyzer to measure the current
of our Bolt prototype, the Cortex-M4, and the CC430 at a
supply voltage of 3.0 V and a sampling rate of 48 kHz.
Execution. Fig. 11 shows the power dissipation of the three
cores over a period of 4.5 ms. We can distinguish four phases.

In phase 1©, Bolt and the CC430 reside in a low-power
sleep mode, while the Cortex-M4 collects sensor measure-
ments by periodically sampling its built-in analog-to-digital
converter (ADC). Bolt dissipates approximately 1.3µW.

In phase 2©, once enough samples are collected, the Cortex-
M4 writes a single message into Bolt using an SPI frequency
of 4 MHz. When the Cortex-M4 initiates the write opera-
tion, Bolt goes from deep sleep into active mode, where it
dissipates about 1.1 mW. At the end of the write operation,
Bolt asserts the IND line to indicate to the CC430 that a
message is pending and then returns to deep sleep.

At the beginning of phase 3©, the CC430 wakes up, initial-
izes its wireless transceiver, and waits until the communica-
tion channel is available. During this time, the Cortex-M4
and Bolt both reside in energy-saving sleep modes.

In phase 4©, the CC430 reads the pending message from
Bolt using a 2 MHz SPI clock and proceeds to transmit the
contents of the message over its wireless radio.
Finding. The above execution shows that Bolt decouples
two processors in the power domain. Indeed, each processor
is free to locally decide when to enter or awake from a sleep
mode, irrespective of the current power state and activity of
the alternate processor and Bolt itself. This enables opti-
mal power management over a maximum dynamic range.

0 50 100 150 200 250 300 350 400 450 500

C
ou

nt

10 1
10 2
10 3
10 4
10 5

T
REQUEST

 on PORT3

0 50 100 150 200 250 300 350 400 450 500

C
ou

nt

10 1
10 2
10 3
10 4
10 5

T
REQUEST

 on PORT4

0 50 100 150 200 250 300 350 400 450 500

C
ou

nt

10 1
10 2
10 3
10 4
10 5

T
COMMIT

 on PORT3

Clock Cycles
0 50 100 150 200 250 300 350 400 450 500

C
ou

nt

10 1
10 2
10 3
10 4
10 5

T
COMMIT

 on PORT4

Figure 12: Histograms of the execution times of re-
quest and commit phases for concurrent message op-
erations by two interconnected processors. Vertical
dashed lines indicate the upper bounds from Table 4
determined with the Uppaal model checker.

7.3 Power Overhead
Using power measurements from the previous experiment,

we quantify the power overhead of our Bolt prototype.
Results. When Bolt does not perform reads or writes, its
power dissipation of 1.3µW is less than state-of-the-art low-
dropout voltage regulators, and, in our setup, several orders
of magnitude lower than the sleep modes of both intercon-
nected state-of-the-art processors, as visible in Fig. 11. Fur-
thermore, Bolt’s active power dissipation of 1.1 mW is com-
parable to the sleep mode power dissipation of the Cortex-
M4. We thus conclude that Bolt incurs a negligible power
overhead in a dual-processor platform design.

7.4 Timing Predictability
In a second experiment, we empirically verify the analyt-

ical bounds on the execution time of read and write opera-
tions determined by the Uppaal model checker in Sec. 5.
Setting. The time to complete a read or a write operation
depends on the time to transfer the message over the SPI
bus and the time Bolt needs to execute its interrupt-driven
state machine according to the request and commit phases
of the asynchronous interface, as detailed in Sec. 4. While
the message transfer time is given by the message length
and the SPI frequency, the duration of the request and com-
mit phases, Trequest and Tcommit , are non-deterministic due
to interference on the same message queue in case of simul-
taneous accesses by both interconnected processors.

We accurately measure Trequest and Tcommit on our Bolt
prototype using a logic analyzer sampling at 25 MHz, while
the Cortex-M4 and the CC430 perform concurrent message
operations. We configure each processor to write a fixed
number of messages into Bolt, before reading out all pend-
ing messages. The Cortex-M4 writes 48-byte messages and
the CC430 writes 24-byte messages, resulting in equal mes-
sage transfer times over the SPI busses. In total, 100,000
simultaneous message operations are performed, using a ran-
domized waiting time between successive message operations
to stress-test Bolt and to generate different access patterns.

Table 6: Maximum queue size and average through-
put of Bolt prototype for different message lengths

Message length [bytes] 16 32 48 64 128
Max. messages per queue 1075 568 380 290 148
Avg. throughput [Mbps] 1.5 2.1 2.5 2.8 3.3

Results. Fig. 12 shows historgrams of Trequest and Tcommit

measured for the Cortex-M4 attached to PORT3 and the
CC430 attached to PORT4. We see the analytical bounds
are extremely tight: they are at most 12 clock cycles greater
than the worst-case execution times we measured. This can
be attributed to our quest for simplicity in the design and
implementation of Bolt as well as our accurate modeling.

Further, in accordance with the model, the worst-case ex-
ecution time of the request phase, Trequest, is slightly longer
on PORT4 than on PORT3 (48 MCU clock cycles), because
of the interrupt prioritization of PORT3 over PORT4. In-
stead, the worst-case execution time of the commit phase,
Tcommit , is approximately equal for both ports. This is due
to the fact that DMA memory transfers performed during
the commit phase, as described in Sec. 5.3, halt the MCU
for an equal number of clock cycles for each DMA channel.

In summary, the results demonstrate that our Bolt proto-
type exhibits timing-predictable read and write operations,
satisfying a key requirement for enabling composability.

7.5 Message Throughput
Next, we quantify the maximum message throughput sup-

ported by our Bolt prototype.
Setting. We determine the throughput by measuring the
time to write a sequence of messages into Bolt at a SPI
frequency of 4 MHz. Specifically, we let the Cortex-M4 write
1000 messages into Bolt, and measure the message transfer
time with a logic analyzer. We consider write operations
as they take longer than read operations: a message can be
read 29 MCU clock cycles faster than it can be written.
Results. Table 6 shows the maximum queue size (number
of messages that fit into a queue) and the average through-
put for different message lengths. We see that the through-
put increases with the message length, supporting up to a
maximum of 3.3 Mbps for 128-byte messages. Assuming the
available memory in Bolt is evenly allocated to both FIFO
message queues, the number of messages that can be stored
into each queue is inversely proportional to the message size,
allowing up to 1075 16-byte messages to be stored. Thus, by
choosing a suitable message length, Bolt can support appli-
cations with high inter-processor communication demands.

7.6 Use Case: Event-triggered Sensing
In a final experiment, we demonstrate the benefits of Bolt

in a typical event-triggered wireless sensing scenario.
Scenario. The application demands resource-constrained
embedded devices to handle unpredictable sensor events orig-
inating from a physical process, while simultaneously ser-
vicing the wireless network interface to report those events
over the radio. Upon the occurrence of an event, a device
starts to acquire ADC samples to classify the event, and con-
structs a message containing all metadata associated with
the event. The time between event detection and the first
ADC sample should be as short as possible so as to maxi-
mize the number of samples that contain useful data about
the event. To report events and coordinate their operation,
devices run a low-power wireless communication protocol.

Time [s]

Network triggered

Sensor triggered

0 5 10 15 20 25 30 35

TI CC430

Read

IND line

Write

Cortex−M4

Events

1 3

2

15.89 15.91

TI CC430

Read

IND line

Write

Cortex−M4

Events

4

Figure 13: Signal trace extracted from an example event-triggered wireless sensing application using Bolt.

Given the timing constraints inherent to many protocols and
standards, such as scheduled wake-ups [16, 18] and commu-
nication slots [1, 2], devices execute subject to hard real-time
deadlines. During periods of inactivity, devices reside in a
low-power sleep mode to meet the application’s lifetime goal.
Without Bolt. Realizing this application based on a single-
processor platform would lead to resource interferences when-
ever sensing and networking events must be handled at the
same time, resulting in degraded performance or even erro-
neous behavior. By contrast, partitioning sensing and net-
working tasks onto two different processors improves a de-
vice’s capability to handle both types of events in a timely
manner. However, using a shared memory or a shared bus
for inter-processor communication would entail a tight cou-
pling of the two processors in the time, power, and clock
domains, with all the drawbacks discussed in Sec. 2.
With Bolt. Using Bolt as the interconnect avoids these
issues and provides maximum flexibility in selecting appro-
priate processors for each task, for example, the Cortex-M4
as a capable application processor and the CC430 as a ultra-
low-power communication processor. Furthermore, software
implementation and re-use are simplified, processors can in-
dependently switch power modes while exchanging messages
within guaranteed timing bounds, and the overall system be-
comes significantly more robust and easier to maintain.

The costs of Bolt relative to directly connecting two pro-
cessors via I/O lines and a SPI bus is application-specific and
difficult to quantify. Besides the additional cost of the MCU,
there is an increase in the overall hardware surface area; our
Bolt prototype requires 49 mm2 plus support circuitry. The
total power dissipation of the platform increases by 1.3µW
during periods of no message exchange. Each message trans-
fer consumes about 350 nJ assuming 128-byte messages at a
4 MHz SPI frequency, while the message throughput reduces
by about 17 % compared to an optimally configured SPI bus
and under the best-case assumption that both processors are
always ready to service the SPI to read and write messages.
In our view, the benefits of Bolt far outweight these costs.
Bolt in action. We implemented the above application on
our custom-built dual-processor platform. The CC430 runs
the Low-power Wireless Bus (LWB) [19], a communication
protocol that uses fast and highly reliable Glossy floods [20]
to transmit packets among nodes in a multi-hop network.

Fig. 13 shows a representative execution trace illustrating
the interaction of the two processors through Bolt. The top
three rows show the arrival of sensor events, the servicing of
sensor events, and the writing of event messages into Bolt
by the Cortex-M4. The fourth row indicates the state of
Bolt’s IND line towards the CC430. The last two rows show

the reading of event messages from Bolt and the processing
of network-triggered events by the CC430.

Looking at the first and the last row, we see that sensor
events occur randomly and possibly in bursts, while network
events occur periodically with the period changing according
to the required communication bandwidth.

By inspecting the active phases of both processors, we see
that Bolt allows them to act independently of each other.
For example, at time 1©, a sensor event triggers the Cortex-
M4 to wake up from sleep mode and to write a new message
into Bolt. The IND line indicates a pending message to the
CC430. This message is then asynchronously requested from
Bolt by the CC430 at time 2©, where it starts to interact
with the network as determined by LWB’s communication
schedule [19]. The independent handling of sensor and net-
work events ensures task deadlines are adhered to, even in
cases of heavy event bursts as visible at time 3© in Fig. 13.

As shown in Sec. 5.3, the time to perform message oper-
ations with Bolt can be tightly bounded. In this use case,
this property enables the communication processor to read a
sequence of pending messages just before they are sent over
the radio via Glossy at time 4©, thereby limiting the number
of wake-up cycles performed by the communication proces-
sor, and thus reducing the platform’s energy footprint.

8. CONCLUSIONS
In this paper, we focus on the resource interference prob-

lem in today’s wireless embedded platforms. We argue that
to address this problem, a multi-processor architecture built
around an interconnect offering asynchronous message pass-
ing with guaranteed message transfer times is needed. Based
on this idea, we design and implement Bolt, a stateful in-
terconnect for ultra-low-power wireless embedded systems.
We show how our Bolt prototype avoids interference in the
power and clock domains, while exhibiting tight bounds on
unavoidable interference in the time domain between two
interconnected processors. Evaluation using a custom-built
heterogeneous dual-processor platform shows that Bolt can
fully decouple the interconnected processors while providing
high-throughput, timing-predictable inter-processor commu-
nication at a negligible power overhead. We thus maintain
that the architectural blueprint provided by Bolt is an im-
portant building block for the composable construction of
next-generation wireless embedded platforms.
Acknowledgments. We thank Luca Mottola, the anony-
mous reviewers, and our shepherd Jie Liu for valuable feed-
back. This work was scientifically evaluated by the SNSF
and financed by the Swiss Confederation and Nano-Tera.ch.

9. REFERENCES
[1] HART communication foundation. http://en.

hartcomm.org/main_article/wirelesshart.html.

[2] IEEE 802.15.4e Wireless Standard - Amendment 1:
MAC sublayer. http://standards.ieee.org/
findstds/standard/802.15.4e-2012.html.

[3] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans,
J. George, S. George, L. Gu, T. He, S. Krishnamurthy,
L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood.
EnviroTrack: Towards an Environmental Computing
Paradigm for Distributed Sensor Networks. In
Proceedings of the IEEE International Conference on
Distributed Computing Systems (ICDCS), 2004.

[4] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 1994.

[5] M. P. Andersen and D. E. Culler. System design
trade-offs in a next-generation embedded wireless
platform. Technical Report Technical Report No.
UCB/EECS-2014-162, University of California at
Berkeley, 2014.

[6] ARM. Cortex-M Series. http:
//www.arm.com/products/processors/cortex-m/.

[7] C. Baier and J.-P. Katoen. Principles of model
checking. MIT Press Cambridge, 2008.

[8] A. Y. Benbasat and J. A. Paradiso. A compact
modular wireless sensor platform. In Proceedings of
the 4th International Symposium on Information
Processing in Sensor Networks (IPSN). IEEE Press,
2005.

[9] J. Beutel, M. Dyer, M. Hinz, L. Meier, and
M. Ringwald. Next-generation prototyping of sensor
networks. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems
(SenSys). ACM, 2004.

[10] Q. Cao, D. Wang, T. Abdelzaher, B. Priyantha,
J. Liu, and F. Zhao. Energy-optimal batching periods
for asynchronous multistage data processing on sensor
nodes: foundations and an mPlatform case study. In
Proceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS), 2010.

[11] F. Cassez and K. Larsen. The impressive power of
stopwatches. In CONCUR 2000 - Concurrency
Theory. Springer, 2000.

[12] Crossbow Technology. http://www.xbow.com.

[13] H. Dubois-Ferrière, L. Fabre, R. Meier, and
P. Metrailler. Tinynode: a comprehensive platform for
wireless sensor network applications. In Proceedings of
the 5th International Conference on Information
Processing in Sensor Networks (IPSN). ACM, 2006.

[14] A. Dunkels, B. Grönvall, and T. Voigt. Contiki – a
lightweight and flexible operating system for tiny
networked sensors. In Local Computer Networks, 2004.

[15] P. Dutta and D. Culler. Epic: An open mote platform
for application-driven design. In Proceedings of the 7th
International Conference on Information Processing in
Sensor Networks (IPSN). IEEE, 2008.

[16] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M.
Liang, and A. Terzis. Design and evaluation of a
versatile and efficient receiver-initiated link layer for
low-power wireless. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems
(SenSys), 2010.

[17] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and
D. Culler. Design of a wireless sensor network
platform for detecting rare, random, and ephemeral
events. In Proceedings of the 4th International
Symposium on Information Processing in Sensor
Networks (IPSN), 2005.

[18] A. El-Hoiydi and J.-D. Decotignie. WiseMAC: An
ultra low power MAC protocol for multi-hop wireless
sensor networks. In ALGOSENSORS, 2004.

[19] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele.
Low-power wireless bus. In Proceedings of the 10th
ACM Conference on Embedded Network Sensor
Systems (SenSys), 2012.

[20] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh.
Efficient network flooding and time synchronization
with Glossy. In Proceedings of the 10th ACM/IEEE
International Conference on Information Processing in
Sensor Networks (IPSN), 2011.

[21] Freescale. VF3xxR and MKW2xDx Series.
http://www.freescale.com.

[22] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken.
CoMPSoC: A template for composable and
predictable multi-processor system on chips. ACM
Transactions on Design Automation of Electronic
Systems (TODAES), 2009.

[23] W. P. M. H. Heemels, K. H. Johansson, and
P. Tabuada. An introduction to event-triggered and
self-triggered control. In Proceedings of the IEEE 51st
Annual Conference on Decision and Control, 2012.

[24] T. A. Henzinger and J. Sifakis. The discipline of
embedded systems design. Computer, 2007.

[25] J. L. Hill and D. Culler. Mica: A wireless platform for
deeply embedded networks. IEEE Micro, 2002.

[26] L. F. Hoesel, S. Dulman, P. J. Havinga, and H. J. Kip.
Design of a low-power testbed for wireless sensor
networks and verification. Technical report, University
of Twente, Centre for Telematics and Information
Technology (CTIT), 2003.

[27] A. Jantsch. Models of computation for networks on
chip. In Proceedings of the 6th International
Conference on Application of Concurrency to System
Design (ACSD), 2006.

[28] A. Jantsch and H. Tenhunen. Networks on chip.
Springer, 2003.

[29] M. Johnson, M. Healy, P. van de Ven, M. J. Hayes,
J. Nelson, T. Newe, and E. Lewis. A comparative
review of wireless sensor network mote technologies.
In IEEE Sensors, 2009.

[30] R. Jurdak, K. Klues, B. Kusy, C. Richter,
K. Langendoen, and M. Brunig. Opal: A multiradio
platform for high throughput wireless sensor networks.
IEEE Embedded Systems Letters, 2011.

[31] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next
century challenges: mobile networking for Smart Dust.
In Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom). ACM Press, 1999.

[32] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu,
and R. Rajkumar. Bounding memory interference
delay in COTS-based multi-core systems. In
Proceedings of the 20th IEEE Real-Time and

http://en.hartcomm.org/main_article/wirelesshart.html
http://en.hartcomm.org/main_article/wirelesshart.html
http://standards.ieee.org/findstds/standard/802.15.4e-2012.html
http://standards.ieee.org/findstds/standard/802.15.4e-2012.html
http://www.arm.com/products/processors/cortex-m/
http://www.arm.com/products/processors/cortex-m/
http://www.xbow.com
http://www.freescale.com

Embedded Technology and Applications Symposium
(RTAS), 2014.

[33] H. Kopetz and G. Bauer. The time-triggered
architecture. Proceedings of the IEEE, 2003.

[34] O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters,
and H. Theiling. Multicore in real-time
systems–temporal isolation challenges due to shared
resources. In Proceedings of Workshop on
Industry-Driven Approaches for Cost-effective
Certification of Safety-Critical, Mixed-Criticality
Systems, 2013.

[35] Y.-s. Kuo, P. Pannuto, G. Kim, Z. Foo, I. Lee,
B. Kempke, P. Dutta, D. Blaauw, and Y. Lee. MBus:
A 17.5pJ/bit/chip portable interconnect bus for
millimeter-scale sensor systems with 8nW standby
power. In Proceedings of the IEEE Custom Integrated
Circuits Conference, 2014.

[36] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
nutshell. International Journal on Software Tools for
Technology Transfer, 1997.

[37] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, et al. Tinyos: An operating system for
sensor networks. In Ambient Intelligence. Springer,
2005.

[38] C. J. Myers. Asynchronous Circuit Design. John
Wiley & Sons, 2001.

[39] L. Nachman, J. Huang, J. Shahabdeen, R. Adler, and
R. Kling. Imote2: Serious computation at the edge. In
Wireless Communications and Mobile Computing
Conference. IEEE, 2008.

[40] NXP Semiconductors. Cortex-M4 MCUs with
Cortex-M0 Co-Processors. http://www.nxp.com/
products/microcontrollers/core/cortex_m0_m4f/.

[41] B. O’Flynn, S. Bellis, K. Delaney, J. Barton, S. C.
O’Mathuna, A. M. Barroso, J. Benson, U. Roedig, and
C. Sreenan. The development of a novel minaturized
modular platform for wireless sensor networks. In
Proceesdings of the 4th International Symposium on
Information Processing in Sensor Networks (IPSN).
IEEE, 2005.

[42] Oracle Labs. SunSPOT.
http://www.sunspotworld.com.

[43] J. Polastre, R. Szewczyk, and D. Culler. Telos:
Enabling ultra-low power wireless research. In
Proceedings of the 4th International Symposium on
Information Processing in Sensor Networks (IPSN),
2005.

[44] J. Portilla, A. De Castro, E. De La Torre, and
T. Riesgo. A modular architecture for nodes in wireless
sensor networks. Universal Computer Science, 2006.

[45] N. B. Priyantha, A. Chakraborty, and
H. Balakrishnan. The cricket location-support system.
In Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking
(MobiCom). ACM, 2000.

[46] A. Rowe, D. Goel, and R. Rajkumar. FireFly Mosaic:
A vision-enabled wireless sensor networking system. In
Proceedings of the 28th IEEE International Real-time
Systems Symposium (RTSS), 2007.

[47] E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless:
an event driven energy saving strategy for battery
operated devices. In Proceedings of the 8th Annual
International Conference on Mobile Computing and
Networking (MobiCom). ACM, 2002.

[48] J. Sifakis. Rigorous system design. Foundations and
Trends R© in Electronic Design Automation,
6(EPFL-ARTICLE-185999), 2012.

[49] J. Stankovic, I. Lee, A. Mok, and R. Rajkumar.
Opportunities and obligations for physical computing
systems. Computer, 2005.

[50] Texas Instruments. F28M3x Series.
http://www.ti.com/lsds/ti/microcontrollers_

16-bit_32-bit/c2000_performance/control_

automation/f28m3x/products.page.

[51] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling,
M. Pister, and C. Ferdinand. Memory hierarchies,
pipelines, and buses for future architectures in
time-critical embedded systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 2009.

[52] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin. A wireless
sensor network for structural monitoring. In
Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems (SenSys). ACM,
2004.

http://www.nxp.com/products/microcontrollers/core/cortex_m0_m4f/
http://www.nxp.com/products/microcontrollers/core/cortex_m0_m4f/
http:// www.sunspotworld.com
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/c2000_performance/control_automation/f28m3x/products.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/c2000_performance/control_automation/f28m3x/products.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/c2000_performance/control_automation/f28m3x/products.page

	Introduction
	Background and Related Work
	Classical Mote Architectures
	Changing Requirements
	Modular Multi-processor Architectures

	Bolt Design
	Overview
	Architecture

	Bolt Implementation
	Hardware Architecture
	Software State Machine

	Formal Timing Analysis
	Model Checking
	Processor Automaton
	Bolt Software State Machine Automaton
	GPIO Port Automaton
	DMA Channel Automaton
	Complete System Model

	Timing Parameter Characterization
	Timing Predictability Analysis
	Functional Correctness

	Building Applications with Bolt
	Interface Specification
	Application Programming Interface
	Message Consistency

	Evaluation
	Custom-built Dual-processor Platform
	Power Decoupling
	Power Overhead
	Timing Predictability
	Message Throughput
	Use Case: Event-triggered Sensing

	Conclusions
	References

