
Scheduling of Mixed-Criticality Applications on
Resource-Sharing Multicore Systems

Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland

{giannopoulou, stoimenov, phuang, thiele}@tik.ee.ethz.ch

ABSTRACT

A common trend in real-time safety-critical embedded sys-
tems is to integrate multiple applications on a single plat-
form. Such systems are known as mixed-criticality (MC)
systems as the applications are usually characterized by dif-
ferent criticality levels (CLs). Nowadays, multicore plat-
forms are promoted due to cost and performance benefits.
However, certification of multicore MC systems is challeng-
ing because concurrently executed applications with differ-
ent CLs may block each other when accessing shared plat-
form resources. Most of the existing research on multicore
MC scheduling ignores the effects of resource sharing on the
execution times of applications. This paper proposes a MC
scheduling strategy which explicitly accounts for these ef-
fects. Applications are executed by a flexible time-triggered
criticality-monotonic scheduling scheme. Schedulers on dif-
ferent cores are dynamically synchronized such that only a
statically known subset of applications of the same CL can
interfere on shared resources, e. g.,memories, buses. There-
fore, the timing effects of resource sharing are bounded
and we quantify them at design time. We combine this
scheduling strategy with a mapping optimization technique
for achieving better resource utilization. The efficiency of
the approach is demonstrated through extensive simulations
as well as comparisons with traditional temporal partition-
ing and state-of-the-art scheduling algorithms. It is also
validated on a real-world avionics system.

1. INTRODUCTION
As a result of the prevalence and maturity of multicore

systems in the electronics market, the field of embedded sys-
tems experiences nowadays an unprecedented trend towards
integrating multiple applications into a single platform. This
trend applies even in real-time embedded systems for safety-
critical domains, such as avionics and automotive. The ap-
plications in these domains, however, are usually character-
ized by several criticality levels, known as Safety Integrity
Levels (SIL) or Design Assurance Levels (DAL). These lev-
els express the required protection against failure when de-
signing a safety-critical system and hence, influence all steps
of the specification, design, development, testing, and certi-
fication processes.

For the integration of mixed-criticality applications on a
common platform, the existing certification standards re-
quire complete timing and spatial isolation among applica-
tions of different criticalities so that no interference among
them is possible. To achieve isolation on every core, system
designers usually rely on partitioning mechanisms at plat-
form level, such as the ones specified by the ARINC-653
standard [4]. What is not trivial is how isolation is achieved
when several cores share platform resources, e. g., caches or

memory buses, which is a common practice for efficiency and
cost reasons.

Obviously, if several cores access e. g., a memory bus in
an uncontrolled manner, interference among applications of
different criticalities cannot be avoided. Then, a lower crit-
icality application accessing the memory bus can block the
access of any other concurrently executed application. If ac-
cesses are synchronous, causing execution on a core to stall
until they are completed (such as memory accesses due to
cache misses), then each access of the lower criticality ap-
plication can affect the response time of higher criticality
applications on other cores. This effect is not only existent
but it also cannot be quantified, since generally the certifi-
cation authority (CA) which examines the higher criticality
applications does not have any information on the behav-
ior of the lower criticality applications, which are co-hosted
in the integrated platform, unless they are certified at the
higher level.

To enforce isolation among cores with a shared memory,
one could select a statically scheduled memory bus or im-
plement a server on the bus arbiter with a given access-
ing budget for each core. The effect of resource sharing
on the response time of higher criticality applications can
be then quantified, since inter-core interference is limited
by construction. These solutions come with certain draw-
backs. The first one offers no flexibility. The bus schedule
cannot change at runtime if more applications need to be
considered or the accessing time reserved for an applica-
tion is not used. The second solution, although potentially
more flexible, has a high design and implementation over-
head. Also, both solutions are not applicable on multicores
with commercially-off-the-shelf components (COTS), where
configuration/virtualization of the memory bus by the ap-
plication designer is not allowed.

In this work, we suggest an alternative solution for timing
isolation in mixed-criticality resource-sharing systems. Ap-
plications of any criticality can be mapped on all cores and
resource accessing is organised such that only a statically
known set of applications of the same criticality can inter-
fere at any time instant. Timing isolation on the core level
is achieved through a time-triggered scheduling strategy and
on the global level (shared resource) through dynamic inter-
core synchronisation with a barrier mechanism. The points
of inter-core synchronisation are defined by the scheduling
strategy and vary in runtime to reflect the dynamic behav-
ior of the applications. The suggested solution does not
deviate from the basic principles of partitioning defined by
the ARINC-653 standard. Timing isolation is preserved de-
spite resource sharing. At the same time, the flexible defini-
tion of ”partitions”, which are synchronised among the cores
and dynamically dimensioned based on the runtime require-
ments, enables efficient resource utilization. Our solution

does not require any special hardware support for eliminat-
ing/limiting interference on the shared resources, therefore
it can be implemented on COTS platforms.

To the best of our knowledge, the suggested mixed-
criticality mapping and scheduling strategy is the first to
consider the timing effects of resource contention. Most ex-
isting scheduling algorithms neglect this for simplification.
That is, the corresponding solutions may not be certifiable
with the existing standards, since it is unclear how to guar-
antee timing isolation. To bound the delays induced by re-
source contention, we adopt the superblock model of execu-
tion, which is known for its predictability [24]. Based on it,
applications are structured as sequences of access and execu-
tion phases with known bounds on accesses and computation
times.

The contributions of this paper can be summarized as
follows:
• We extend the established mixed-criticality (MC) task

model from literature to reflect not only the execution
profiles of the tasks at several criticality levels, but also
the corresponding memory access profiles.
• We suggest a partitioned scheduling strategy for MC pe-

riodic task sets, which (i) ensures timing isolation among
different criticality levels (certifiable), (ii) accounts for the
effect of memory contention on task execution, (iii) en-
ables efficient resource utilization. The scheduling strat-
egy combines time-triggered and event-driven task activa-
tion and can support fixed preemption points.
• We propose a tool for the analysis and design optimiza-

tion of MC task sets on resource-sharing multicores. The
tool takes as input the model of the task set and the plat-
form and generates a mapping of the tasks on cores and
a schedule for each core based on a simulated-annealing
heuristics approach.
• We perform extensive simulations using synthetic bench-

marks and an industrial application to validate the ef-
ficiency of our mapping and scheduling method against
state-of-the-art methods and its applicability to real-world
problems.

2. RELATED WORK
Scheduling of mixed-criticality applications is an emerg-

ing research field, which has been attracting increasing at-
tention in recent years. Vestal was the first to introduce the
currently dominating MC task model in [30]. He suggested a
fixed-task-priority scheduling strategy, which was later [10]
proven to be optimal. Baruah et al. [8] extended Vestal’s
algorithm to assign fixed priorities on job (rather than task)
level. In their work, the MC jobs belong to applications that
need to be validated by different certification authorities
(CA) and they assume that the more critical an application,
the more pessimistic the CA will be in the estimation of its
WCET. Given the intractability of the MC scheduling prob-
lem in this context [6], Baruah et al. proposed in [8] two suf-
ficient schedulability conditions, the worst-case-reservations
and own-criticality-based-priority (OCBP) conditions. This
work was extended in [19], which introduced a fixed-job-
priority scheduling strategy based on the OCBP condition,
as well as in several subsequent publications [5, 7, 11, 14].
All of the above works regard scheduling on single cores.

One of the first attempts to extend the MC scheduling
strategies (particularly, EDF-VD [5]) to multicore systems
was made in [20]. Mollison et al. proposed a schedul-
ing approach for MC tasks on multicores, adopting dif-

ferent strategies (partitioned EDF, global EDF, cyclic ex-
ecutive) for different criticality levels and providing tim-
ing isolation through a bandwidth reservation server [3,22].
Kelly et al. addressed in [15] the problem of partitioned
fixed-priority preemptive MC scheduling on multicores and
assessed empirically alternative solutions for task mapping
and priority assignment. Also, Pathan presented in [23] a
novel schedulability test for global MC fixed-priority schedul-
ing. Finally, following the current industrial practice for
certification, which requires strict timing and spatial iso-
lation among tasks of different criticalities, Tamas-Selicean
and Pop presented in [29] an optimization method for the
mapping and time-triggered scheduling of MC tasks on mul-
ticores, complying with the ARINC-653 standard. Most of
the above works ignored, though, the inter-core interference
on shared platform resources and its effect on schedulability.
We claim that this can be dangerous since it has been shown
empirically [24] that traffic on the memory bus in COTS-
based systems can increase the response time of a real-time
task up to 44%. Only [29] considers inter-task communi-
cation via message passing, but the message transmission
occurs asynchronously over a broadcast time-triggered bus
such that no task’s execution is blocked. This requires that
no shared memory exists and that the bus schedule can be
manually configured, assumptions which do not necessar-
ily hold on COTS platforms. Our work considers explicitly
the inter-core interference on shared resources, which may
be arbitrated according to any (time-driven or event-driven)
policy.

The field of worst-case response time (WCRT) analysis
under resource contention on multicores is also not new.
Several recent works proposed analytic methods to bound
the resulting waiting times. Schliecker et al. [26] and Dasari
et al. [9] used event models and Schranzhofer et al. [25,27,28]
arrival curves [18] to model the arrival of access requests
from different cores and bound the tasks’ WCRT for sev-
eral event or time-triggered arbitration strategies. These
methods relied on over-approximations of the resource ar-
biter behavior, which can lead to very pessimistic results,
esp. for event-driven arbitration. To tackle pessimism, Lv
et al. combined abstract interpretation and model check-
ing [21] to represent accurately the resource arbiter. How-
ever, due to the state space explosion problem the scalability
of their method was restricted for systems with more than
2 cores. Recently, a hybrid analytic/model-checking-based
method, combining timed automata [2] for the modeling of
the resource arbiter and arrival curves for the access request
patterns, was introduced in [13]. The proposed method can
be applied to systems with resource arbiters of any complex-
ity (e. g., FCFS, TDMA, FlexRay) and was shown to provide
accurate results with satisfying scalability. The last method
is applied in our work to analyse the WCRT of the tasks
under different mapping/scheduling configurations.

To our knowledge, the only work which has addressed
WCRT analysis in MC resource-sharing multicore systems
is [32]. The authors proposed a software-based memory
throttling mechanism to explicitly control the inter-core in-
terference on the shared memory path. Specifically, assum-
ing that all high criticality tasks are mapped on the same
core, lower criticality tasks executing on other cores are as-
signed a limited memory budget, so that schedulability of
the former tasks is guaranteed, while the performance im-
pact on the latter is kept minimal. Our work differs in that
(i) tasks of any criticality can be mapped on any core for

increased system utilization, (ii) we seek an optimized task
mapping and scheduling (it is not given), and (iii) shared
memory accessing does not depend on predefined budgets,
but on dynamic inter-core synchronisation, which allows for
timing isolation among different criticalities.

3. SYSTEM MODEL AND DEFINITIONS
This section defines the task and platform models as well

as the requirements that a MC scheduling strategy must ful-
fil for certifiability. The task models and requirements are
based on the established MC assumptions in literature, but
also on an avionics case study we addressed for an indus-
trial collaboration. A description of the avionics application
(flight management system, FMS) exists in Sec. A.1.

3.1 Task model
We consider mixed-criticality periodic task sets τ =
{τ1, . . . , τn} with criticality levels (CLs) among 1 (lowest)
and L (highest). A task is characterized by a 5-tuple
τi = {Wi, χi,Ci, Ci,deg,Dep}, where:

• Wi ∈ N
+ is the period,

• χi ∈ {1, . . . , L} is the criticality level,
• Ci is a size-L vector of execution profiles, where Ci(ℓ)

represents an estimation of the computation time and the
memory accesses of τi at criticality level ℓ, in the form of
a hierarchical list (defined later),
• Ci,deg is a special execution profile for the cases when

τi (with χi < L) runs in degraded mode. This profile
corresponds to the minimum required functionality for τi
so that no catastrophic effect occurs in the system. If
the execution of τi can be skipped without catastrophic
effects, then this execution profile contains zeros,
• Dep(V, E) is a directed acyclic graph representing depen-

dencies among tasks with equal periods. Each node τi ∈ V
represents a task. An edge e ∈ E from τi to τk implies that
within a period the job of τi must precede that of τk.

For simplicity, we assume that the first job of all tasks is
released at time 0 and that the relative deadline Di of τi is
equal to its period, i. e.,Di = Wi. Furthermore, for the pur-
pose of tight resource interference analysis, we assume that
each task follows the dedicated superblock model of exe-
cution [27], which has been shown to yield increased timing
predictability and is well-suited for the kind of safety-critical
real-time applications we are considering [12]. Based on it,
each task τi is structured as a sequence Si of computation
phases where only local computation is performed, and ac-
cess phases where (successive) memory accesses occur. A
task may have an arbitrary number of phases and they can
be in any order. A computation phase is characterized by
a min. and max. execution time and an access phase by
a min. and max. number of memory accesses. The j-th
phase of task τi is denoted as si,j ∈ Si and is defined by
the 4-element list: {µmin

i,j (ℓ), µmax
i,j (ℓ), exmin

i,j (ℓ), exmax
i,j (ℓ)},

∀ℓ ∈ {1, . . . , L}. If si,j is a computation phase, then
µmin
i,j (ℓ) = µmax

i,j (ℓ) = 0. If it is an access phase, then

exmin
i,j (ℓ) = exmax

i,j (ℓ) = 0. The specification of the above
parameters for all phases si,j ∈ Si at CL ℓ yields the level-ℓ
execution profile of τi, Ci(ℓ) (list of |Si| lists).

We assume that the worst-case parameters of Ci(ℓ) are
monotonically increasing for increasing ℓ and the best-case
parameters are monotonically decreasing, respectively. This
implies that the min./max. interval of execution times or
memory accesses for each phase si,j in Ci(ℓ) is included in

the corresponding interval of Ci(ℓ+ 1). Note that the best-
case parameters are only needed to obtain more accurate
results from the resource interference analysis in Section 4.3.

The different values for the execution times and memory
accesses of each profile can be obtained by different tools.
For instance, at the lowest level of assurance (ℓ = 1), the
system designer may extract these parameters by profiling
and measurement, as in [24]. At higher levels, the CAs may
use static analysis tools with more and more conservative
assumptions as the required confidence increases. The exe-
cution profile Ci(ℓ) for each task τi is derived only for CLs
that are not greater than its own CL, χi. For all ℓ > χi,
Ci(ℓ) = Ci,deg . That is because we assume that when certi-
fication is done at level of assurance ℓ, all tasks with a lower
CL are ignored. However, at runtime, if enough resources
are available, the lower criticality tasks can be let to run
in degraded mode. Then, the degraded profiles Ci,deg are
required for scheduling analysis.

3.2 Multicore Resource-Sharing Architecture
We consider a set P of m processing cores, P =
{p1, . . . , pm}. We assume identical cores but our approach
can be easily generalized to heterogeneous platforms. Each
core in P has access to a private local memory and also
to a shared (global) memory. Data and instructions are
fetched from the shared memory to the local during the ac-
cess phases of a task, and after each computation phase, the
modified data are written back to the shared memory during
subsequent access phases. We assume h/w platforms with-
out timing anomalies, such as the fully timing compositional
architecture [31], where execution and communication times
can be decoupled.

The bus to the global memory is shared among all cores
and access to it can be arbitrated according to any event- or
time-triggered scheme. We assume that only one core can
access the bus at a time and that once granted, a memory
access is completed within a fixed time interval, Tacc (same
for read/write operations). In the meanwhile, pending ac-
cess requests from other cores stall execution on their cores
until they are served.

The shared memory can be single (contiguous) or par-
titioned, namely split into several memory banks. We as-
sume that the mapping of data/instructions (set of memory
blocks MB) to memory banks (set Mem) is known. Par-
ticularly, all required information for interference analysis
is represented by the interference graph I(VI , EI), where
VI = Vτ ∪VMB∪VMem . Vτ represents all tasks in τ , VMB all
memory blocks and VMem all memory banks in the system.
I is composed by two sub-graphs; (i) the bipartite graph
I1(Vτ∪VMB, E1), where an edge from τi ∈ Vτ to mbj ∈ VMB

implies that task τi reads or writes from/on memory block
mbj , and (ii) the bipartite graph I2(VMB∪VMem , E2), where
an edge from mbj ∈ VMB to memk ∈ VMem denotes the al-
location of memory block mbj on memory bank memk.

Definition 1. Tasks τi and τj are interfering if and only
if ∃k, l, r ∈ N

+ : (τi,mbk) ∈ E1, (τj ,mbl) ∈ E1 and
(mbk,memr) ∈ E2, (mbl,memr) ∈ E2.

Figure 1 presents sample interferences graphs for a set of 4
tasks and 3 memory blocks, when the latter are allocated
on a single or a partitioned shared memory. Square, ellip-
soid and diamond nodes denote respectively, tasks, memory
blocks, and memory banks. Note that in Figure 1(a) all tasks
are interfering. In Figure 1(b) tasks τ1 and τ2 on one hand,

(a) (b)

Figure 1: Interference graph I for (a) single shared
memory, (b) partitioned shared memory (3 banks)

and τ3, τ4 on the other hand, are interfering. The interfering
tasks can delay each other when executed in parallel.

The mapping of tasks on the platform is defined by func-
tionM : τ → P . If any mapping constraints exist, they are
represented by a bipartite graph Mcon(Vτ ∪ VP , E), where
an edge from τi ∈ Vτ to pj ∈ VP implies that task τi cannot
be mapped on core pj . Note thatM is not given, but it will
be determined by our approach.

3.3 MC Scheduling Requirements
Under the above system assumptions, we seek a correct

scheduling strategy for the MC task set τ on P , which will
enable composable and incremental certifiability. We define
the properties of correctness, composable and incremental
certifiability, which are crucial for a successful and econom-
ical certification process, below.

Definition 2. A scheduling strategy is correct if it sched-
ules any task set τ such that the provided schedule is admis-
sible at all criticality levels. A schedule of τ is admissible at
CL ℓ if and only if:
• the jobs of each task τi, satisfying χi ≥ ℓ, receive enough
resources between their release time and deadline to meet
their real-time requirements according to execution profile
Ci(ℓ),
• the jobs of each task τi, satisfying χi < ℓ, receive enough
resources between their release time and deadline to meet
their real-time requirements according to execution profile
Ci,deg .

The term resources, in this context, refers to both processing
time and access to the shared memory.

Definition 3. A scheduling strategy enables composable
certifiability if all tasks of a CL ℓ are temporally isolated
from tasks with lower CLs, for all ℓ ∈ {1, . . . , L}. Namely,
the execution and access activities of a task τi must not
delay in any way any task with CL greater than χi.

The requirement for composability enables different CAs to
certify task subsets τℓ of a particular CL (τℓ ⊆ τ) even
without any knowledge of the tasks with lower CLs in τ .
This is important when several CAs need to certify not the
whole system, but individual parts of it. Each CA still needs
some information on the scheduling of tasks with higher CL
than the one considered. Such information can be provided
by the responsible CAs for the higher-criticality task subsets.

Definition 4. A scheduling strategy enables incremental
certifiability if the real-time properties of the tasks at all
criticality levels ℓ ∈ {1, . . . , L} are preserved when new tasks
are added to the system.

This property implies that if the schedule of a task set τ is
certified as admissible, the certification process will not need
to be repeated if new tasks are added later to the system.

4. FLEXIBLE TIME-TRIGGERED IMPLE-

MENTATION
The problem that we are addressing can be formulated as

follows. Given: (i) a periodic MC task set τ , (ii) an architec-
ture consisting of processing cores P that share a (single or
partitioned) memory, (iii) the memory interference graph I
and (iv) mapping constraintsMcon, determine: (i) the map-
pingM of tasks to cores and (ii) the schedule on each core,
such that all tasks meet their MC real-time requirements at
all levels of assurance and the workload is balanced among
the cores.

First, we consider a scheduling strategy with a given map-
ping. The strategy combines time and event-triggered task
activation to impose timing isolation among different CLs. It
is non-preemptive, but it supports fixed preemption points.
Next, we propose a heuristic optimization method for finding
a mapping and a schedule on a resource-sharing multicore
platform.

4.1 Scheduling
In a resource-sharing multicore system, where inter-core

interference on a shared resource cannot be avoided/limited,
a way to impose timing isolation among different CLs is to
allow only tasks of the same CL to be executed at a time.
Hence, we suggest scheduling the periodic jobs of τ using
a Time-Triggered and Synchronisation-based strategy, de-
noted as global TTS schedule. We assume that on the target
platform, it is possible to achieve global clock synchroniza-
tion among cores.

A global TTS schedule repeats over a scheduling cycle
with a period equal to the hyper-period H of the tasks in
τ , i.e., the least common multiple of their periods. The
scheduling cycle consists of frames (set F), which start and
finish synchronously on all cores. The frame lengths are
fixed and they can differ. Their maximum length, however,
is restricted by the minimum period in τ . Additionally, each
frame is divided into so many sub-frames as the number of
criticality levels L in the system.

The beginning of a TTS sub-frame is not time-triggered,
but achieved through inter-core synchronisation with a bar-
rier mechanism, for the sake of efficient resource utilization.
Specifically, a new TTS sub-frame starts once all tasks that
were scheduled in the previous sub-frame complete execu-
tion across all cores (exception: the first sub-frame of each
frame starts upon frame start). The tasks that are sched-
uled within a sub-frame are always defined by the same CL
and the sub-frames within a frame correspond to CLs of de-
creasing order, i. e., the first sub-frame includes tasks of the
highest CL and the last sub-frame includes tasks of the low-
est CL. Within a sub-frame, task scheduling on each core is
sequential, following a predefined order, namely every task
is triggered upon completion of the previous one.

An illustration of a global TTS schedule is given in Fig-
ure 2. The parameters of the task set τ are shown in
Table 1 (execution times in ms) and we assume no task
dependencies. The TTS schedule has a cycle of H =
lcm(100, 50, 50, 200) = 200 ms and is divided into 4 frames
of equal length (50 ms), each with 2 sub-frames (L = 2).
The static schedule on each core includes H

Wi
invocations

of each mapped task τi, equal to the number of jobs of τi
that arrive within a hyper-period. The solid lines define the
frames and the dashed lines the sub-frames, i.e., potential
points, where barrier synchronisation is performed.

0 26.6 35 50 100 150 200 46.7 49.9 300 350 400

Figure 2: Global TTS Schedule for 2 cycles with task parameters from Table 1 (dark: CL 2, light: CL 1)

At runtime, the length of each sub-frame varies based on
the different computation times and accessing patterns that
the tasks exhibit. However, its worst-case length can be
computed offline for each schedule and each CL using in-
terference analysis (Sec. 4.3). We use function barriers :
F × {1, . . . , L} → R

L to denote the worst-case length of
all sub-frames in a particular frame, at a level of assur-
ance. In Figure 2, vector barriers(f1, 1) (1st cycle) indicates
the worst-case lengths of the first frame’s sub-frames for the
level-1 task execution profiles. Respectively, barriers(f1, 2)
(2nd cycle) indicates the worst-case lengths of the same sub-
frames when the execution profiles C1(2), C2(2), C3(2) are
considered. We use barriers(f, ℓ)i to denote the worst-case
length of the i-th subframe of f at CL ℓ.

The dynamic barriers are used to achieve flexibility and
efficient resource utilization. That is, if sub-frames started
at fixed time points, they would have to be dimensioned
for the worst-case execution profiles of the tasks, so that all
possible execution scenarios are covered. This is a common
practice, e.g., when dimensioning the timing partitions in
ARINC-653 architectures, where only the execution profile
at each task’s own CL is considered [29]. This approach
can be very inefficient since the higher criticality tasks may
never reveal the corresponding execution profiles in prac-
tice. Resources, however, are reserved for them, leading to
large slack times, during which cores are idle, but cannot be
used by tasks of lower CL. The barrier synchronisation, on
the other hand, occurs dynamically depending on the exe-
cution scenarios revealed at runtime, thus enabling efficient
resource utilization.

Runtime behavior. Given an admissible schedule S and
the barriers function, the local scheduler on each core man-
ages task execution within each frame f ∈ F as follows:
• For the i-th sub-frame, the scheduler triggers sequentially

the corresponding jobs based on the schedule table of S.
Upon completion of the jobs’ execution, it signals the
event and waits until the barrier synchronisation of all
cores.

• Let the elapsed time from the beginning of the i-th sub-
frame until the barrier synchronisation be t. Given the
CL ℓ which satisfies the inequality:

t ≤ min
ℓ∈{1,...,L}

{barriers(f, ℓ)i}, (1)

the scheduler will trigger jobs in the next sub-frame such
that tasks with CL lower than ℓ run in degraded mode.
If ℓ = 1, then jobs in the next sub-frame will be triggered
in normal mode.

• The two previous steps are repeated for each sub-frame,
until the next frame is reached.

Note that the decision on whether a task will run in
degraded mode regards only the current frame and is

Table 1: Task set definition

τi χi Wi Ci Ci,deg

τ1 2 100

C1(1) = {{10, 14, 0, 0},

N/A
{0, 0, 20, 25}, {6, 8, 0, 0}}
C1(2) = {{8, 30, 0, 0},
{0, 0, 15, 44}, {6, 12, 0, 0}}

τ2 2 50

C2(1) = {{8, 10, 0, 0},

N/A
{0, 0, 15, 18}, {1, 2, 0, 0}}
C2(2) = {{5, 12, 0, 0},
{0, 0, 15, 20}, {1, 4, 0, 0}}

τ3 1 50
C3(1) = {{4, 5, 0, 0}, C3,deg = {{2, 2, 0, 0},
{0, 0, 6, 8}, {2, 4, 0, 0}}

{0, 0, 2, 3}, {1, 2, 0, 0}}
C3(2) = C3,deg

τ4 1 200
C4(1) = {{10, 10, 0, 0}, C4,deg = {{0, 0, 0, 0},
{0, 0, 20, 20}, {10, 10, 0, 0}}

{0, 0, 0, 0}, {0, 0, 0, 0}}
C4(2) = C4,deg

not relevant for the subsequent frames. An exceptional
case arises when barrier synchronisation in a sub-frame
is not achieved by the time indicated by barriers(f,L).
Since schedule S is admissible, this case should never oc-
cur and hence, it indicates erroneous behavior of the system.

Admissibility. Let S be a TTS schedule constructed
such that all jobs (in total H

Wi
jobs) of every task τi ∈ τ are

scheduled in frames within their release time and deadlines
and all dependency and mapping constraints hold, as in the
case of Figure 2. To evaluate the admissibility of S, one
needs to compute function barriers for each frame f ∈ F
and each level of assurance ℓ ∈ {1, . . . , L}. The derivation
of barriers(f, ℓ) is discussed in detail in Sec. 4.3. S is ℓ-
admissible if and only if it fulfils the following condition:

L
∑

i=1

barriers(f, ℓ)i ≤ Lf ,∀f ∈ F , (2)

where Lf denotes the length of frame f . If the condition
holds for all frames f ∈ F , it follows that all scheduled jobs
in S can meet their deadlines at level of assurance ℓ. If it
holds also for all CLs, then schedule S is admissible accord-
ing to Definition 2 of Sec. 3.3. Hence, it can be accepted by
any CA at any level of assurance and the scheduling strategy
is correct.

Recall that if different CAs certify task subsets of differ-
ent CLs, then for composable certifiability (Definition 3),
the CAs of lower-criticality subsets need some information
concerning the resource allocation for the higher-criticality
subsets. For the TTS scheduling strategy, this information
is fully represented by function barriers. Therefore, global
TTS enables composable certifiability. Similarly, it enables
incremental certifiability (Definition 4), since new tasks can
be inserted into their respective CL sub-frame if there is suf-
ficient slack time in the frame.

Benefits and Challenges. The global TTS scheduling
strategy features certain advantages w. r. t. its applicability

and certifiability. It is easy to implement even on COTS
architectures, since contention on the shared memory does
not need to be eliminated by hardware. It enforces timing
isolation among different CLs and enables composable and
incremental certifiability. It enables efficient resource uti-
lization, since the sub-frames are dynamically adapted to
the runtime task execution profiles. It can force tasks to ex-
ecute in degraded mode if a higher-criticality task exhibits a
level-ℓ execution profile with ℓ > 1, but only for the duration
of a TTS frame and not for the rest of the system’s life-time,
as in previous MC scheduling strategies, e. g., [7]. Finally, it
can handle erroneous behavior, by aborting the responsible
task execution and continuing scheduling as normal from the
beginning of the next frame.

These advantages come at a cost, namely the runtime
overhead for clock and barrier synchronisation among the
cores. However, several mechanisms (hardware or software,
centralized or distributed) exist to achieve this synchroni-
sation. The strategy comes also with certain limitations,
e. g., the time-triggered frames and the fixed preemption
points. Their impact on schedulability is evaluated in Sec. 5.

4.2 Mapping Optimization
The problem of optimal task mapping on multiple cores is

known to be NP-hard, resembling the combinatorial bin-
packing problem. To tackle this challenge, we propose
the MC Mapping and Scheduling Optimization (MCMSO)
method. MCMSO takes as input the periodic task set τ ,
the set of cores P along with the interference graph I and
the mapping constraints Mcon, and returns the mapping
function M of tasks to cores and an admissible schedule S
if there exists one. S consists of the dimensions of the TTS
cycle (period H and lengths of frames F) and a static sched-
ule table for each core in P . The schedule table defines the
sequence of task execution in each frame and indicates the
tasks, after which barrier synchronisation is performed.

MCMSO implements a heuristic method based on simu-
lated annealing (SA) [16] (see Sec. A.2). SA is only one of
the methods that can be applied for the design optimization.
If the optimization problem itself was the focus, one could
consider also e. g., constraint solvers or other non black box
heuristics. This is, however, outside the scope of this pa-
per. In summary, the MCMSO approach is described by the
following steps:

1. Dimension the TTS scheduling cycle and frame lengths
based on the periods of tasks in τ 1.

2. Generate a random mapping/schedule of the jobs of τ
within H on the cores of P and the frames F of the TTS
cycle, such that all constraints are respected.

3. Apply a simulated annealing approach to generate and
explore neighboring mappings (assignments of tasks to
cores) and schedules (assignment of jobs to frames), until
an optimal solution is found or a given computational
budget is exhausted. A mapping/scheduling solution is
considered optimal if all jobs meet their deadlines at all
levels of assurance (admissible) and the worst-case sub-
frame lengths are minimized.

Optimization heuristics. The SA algorithm seeks the
global minimum of a given cost function in a state space.
It begins with an arbitrary solution (state) and it consid-
ers a series of random transitions based on a neighbourhood
function. At each step, if the neighbouring state S′ is of

1The lengths of the frames can be also optimized by MCMSO.

lower cost than the current state S, SA accepts the transi-
tion to S′. Else, SA accepts the transition with probability

e−(Cost(S′)−Cost(S))/T , where T is a positive constant, com-
monly known as temperature.

In this work, the cost function of a candidate solution S
is defined as:

Cost(S) =

{

c1 = maxf∈F

{

maxℓ∈{1,...,L} late(f, ℓ)
}

if c1 > 0
c2 = ‖barriers‖3 if c1 ≤ 0

where late(f, ℓ) expresses the difference between the worst-
case completion time of the last sub-frame of f and the
length of f :

late(f, ℓ) =
L
∑

i=1

barriers(f, ℓ)i − Lf . (3)

If late(f, ℓ) > 0, the tasks in f cannot complete execution by
the end of the frame for their ℓ-level execution profiles. Note
that the barriers function is computed for each visited state
using a fast and conservative interference analysis method
as explained in Section 4.3.

With this cost function, we initially guide the design space
exploration to find an admissible solution. If at least one
task cannot complete execution within its frame, at any level
of assurance ℓ, the term late(f, ℓ) will be positive and so will
be c1. Otherwise, c1 will be negative or 0, implying that all
tasks ”fit”into the corresponding frames. In this case, c2, the
3rd norm of all sub-frame lengths, ∀f ∈ F ,∀ℓ ∈ {1, . . . , L}, is
used as the cost function to minimize the worst-case lengths
of all sub-frames for the admissible solution. Minimizing
the sub-frame lengths is important for a balanced workload
distribution and also, for incremental certifiability (maxi-
mization of slack times). Note that depending on how slack
time can be used for future tasks, other optimization crite-
ria, e. g., the number of empty frames, can also be considered
in the cost function.

Design space exploration is restricted only to possible so-
lutions, which fulfil the following criteria:

• a total of H
Wi

jobs of each task τi are scheduled in the TTS

cycle, in frames within their respective release times and
deadlines,

• all jobs of a task τi are scheduled on the same core, re-
specting constraintsMcon,

• all jobs of a task τk, which depends on τi, are scheduled
on the same core as τi. Each job of τk is scheduled in
the same or a later frame than the corresponding job of
τi within their common period. If they are scheduled in
the same frame, the job of τk must succeed that of τi.

If no candidate solution can be found to satisfy the above
criteria, the search is aborted, i. e., τ is considered not TTS-
schedulable on P .

The neighboring function is defined by two possible tran-
sitions. Namely, a new solution S′ is generated by selecting
randomly a task of τ and either (i) re-mapping all its jobs
(and all of its dependent tasks’ jobs) on another core (core
variation) or (ii) re-scheduling one of its jobs to another TTS
frame on the same core (frame variation). In both cases, the
alternative core or frame are selected non-deterministically.
The probability of choosing between the two variations is
given as input to the SA algorithm.

Extension: Preemption Points. In certain cases (see
the avionics FMS case, Sec. A.1), some sort of preemption
is indispensable for schedulability, esp. when one considers
task sets with one or more computationally intensive tasks,

which may not ”fit” in any frame of a global TTS sched-
ule. Enabling a preemptive scheduling strategy, where each
task can start executing in one sub-frame and continue over
several frames (always in the corresponding sub-frame of its
CL) would not be efficient because:

• The computationally intensive tasks (in the FMS, they are
of the highest CL) would be allowed to run up to the end
of each frame, in which they are scheduled, thus prevent-
ing any other tasks of the same or lower CL from being
executed. This behavior would affect not only tasks on
the same core, but also on the remaining cores, since the
barrier synchronisation for the corresponding sub-frame
would not be achieved.

• The fact that these tasks could be preempted at any pos-
sible point of execution makes accurate interference anal-
ysis impossible, since the execution profiles of the tasks
(including memory accesses) cannot be extracted for any
possible partial execution.

To tackle this challenge, we use the concept of fixed pre-
emption points. A task may have a certain amount of well-
defined preemption points, so that execution profiles for the
corresponding partial executions can be extracted. We spec-
ify each ”preemptable” task by a list of alternative execu-
tions, e. g., one with no preemption, one with 1 preemption
point, etc. In each case, the partial executions are defined
as chains of dependent tasks with the same period, e. g., a
chain with one task or 2 dependent tasks, respectively. The
alternatives are given as input to MCMSO. An admissible
solution S must eventually include one of the alternative
executions of the related tasks. Note that this extension
introduces a new transition for the neighboring function.
Namely a new solution S′ can be generated also by select-
ing randomly a task chain and substituting it for one of its
alternative executions (alternative variation).

Extension: Top-k Solution Ranking. MCMSO can
be extended to return not the best encountered solution
w. r. t. the cost function, but the top k solutions, with k > 1.
For this purpose, it maintains a list Sbest of length k. Sbest

is updated every time a new solution is visited if the new so-
lution is better than at least one entry in the list. Solution
ranking can be useful, e. g., if no admissible schedule can
be found. In this case, the top-k solutions can be further
examined, i. e., tighter interference analysis can be applied
to confirm that they are indeed not admissible (explained
in Sec. 4.3) or their structure can be examined to reveal
the reason of schedulability failure (e. g., need for preemp-
tion for long tasks). Note that a top solution found with
a conservative interference analysis may not correspond to
the top solution found by using tighter interference analy-
sis. However, if a non-admissible top solution is found with
a conservative method, we can consider this as a good initial
solution for a tighter interference analysis.

4.3 Interference Analysis
WCRT analysis for multicores under resource contention

scenarios is a highly complex problem. In this paper, we con-
sider synchronous memory accesses. Therefore, the delays
incurred every time a core is waiting to access the shared
memory must be explicitly considered for its WCRT analy-
sis. Providing tight bounds for these delays is far from trivial
because one needs to consider (i) the pending access requests
from all other cores and (ii) the state of the memory arbiter.

The number of possible interleavings of accesses from differ-
ent cores can be very large. Recall that for the superblock
model, the access phases are defined by a min./max. range
of potential accesses and also, the starting times of these
phases are highly variable, depending on the actual duration
of the preceding access and computation phases. Moreover,
knowing the state of the arbiter over time is challenging,
esp. when event-driven arbitration policies are considered.

For this problem, we apply the WCRT analysis methodol-
ogy from [13]. This suggests state-based modeling and anal-
ysis of the multicore system, using timed automata (TA)
to model accurately memory arbiters of any complexity and
model-checking to estimate the WCRT of a task. The re-
source accesses from different cores can be modeled using
either TA (all possible scenarios) or arrival curves [18] (over-
approximation). An arrival curve represents abstractly the
maximum number of accesses that a core can issue in any
time interval and can be also incorporated into the TA sys-
tem model [17]. Deciding between the two alternatives for
the memory access representation yields a trade-off between
accuracy (exploration of all possible access interleavings)
and scalability (reduction of state space).

The selected method needs few seconds up to several min-
utes for the WCRT estimation of a task, depending on the
problem size. However, during design space exploration
(DSE) with MCMSO, usually thousands of solutions are
explored, so a fast analysis methodology must be favored.
Thus, in MCMSO we apply a conservative method to de-
rive the required worst-case sub-frame lengths. E.g., if the
shared memory is FCFS-arbitrated, we assume that all ac-
cesses of a task are delayed by all cores with at least one in-
terfering task (based on I) scheduled in the same sub-frame.
This is a pessimistic assumption, nevertheless it leads to safe
WCRT bounds, computed as follows:

WCRTi,cons(ℓ) =
∑

si,j∈Si

exmax
i,j (ℓ)+mint ·µ

max
i,j (ℓ)·Tacc (4)

where mint is the number of cores with at least one con-
currently running interfering task. At the end of the DSE
phase, in order to refine the information conveyed by func-
tion barriers, we apply the method of [13] to the best found
solution. The result of this analysis can be used then for the
certification procedure. If no admissible solution is found,
the same method can be applied to the k top encountered
solutions (k ≥ 1), as this step may reveal admissible sched-
ules.

Consider now the schedule of Figure 2, where we apply the
two methods to derive barriers(f1, 1) and barriers(f1, 2).
Let the interference graph I for the target dual-core ar-
chitecture be one of Figure 1. In both cases, τ1 and τ2
are interfering tasks. Let the memory access latency be
Tacc = 0.05 ms. Applying Eq. 4 for τ1 and τ2 at ℓ = 1 yields:
WCRT1,cons(1) = 27.2 ms, WCRT2,cons(1) = 19.2 ms. So,
the worst-case length of the 1st sub-frame in f1 is 27.2 ms
for the level-1 execution profiles of the tasks. This way, we
derive the barrier vectors of Table 2. The same table shows
the corresponding results with the method of [13] (accesses
modeled by TA). Note that the refinement of barriers with
the second method satisfies the criterion of Eq. 2 for frame
f1 (46.7 + 3.2 < 50), which was not true for the results of
the first method (48.2 + 3.2 > 50).

5. EXPERIMENTAL EVALUATION
For the evaluation of the TTS scheduling strategy and the

Table 2: Computation of barriers for sample schedule
Conservative WCRT Model-checking WCRT

barrier(f1, 1) {27.2, 8.45} {26.6, 8.45}
barrier(f1, 2) {48.2, 3.2} {46.7, 3.2}

design optimization method MCMSO, we performed simula-
tions using synthetic task sets and the FMS application. We
considered platforms with shared memory to which access is
arbitrated based on a FCFS or RR policy. MCMSO was im-
plemented in Wolfram Mathematica 9.0. The experimental
setup for all simulations and the task generation algorithms
are presented in detail in Sec. A.3.

Impact of barriers and resource contention. First,
we evaluate the effects on schedulability when: (i) dynamic
barriers in a time partitioning scheme and (ii) task interfer-
ence on a shared resource are considered. For this purpose,
we attempt to map/schedule randomly generated task sets
under 3 alternative setups: (i) when inter-core interference is
considered and the TTS sub-frames are dynamically initial-
ized (MCMSO), (ii) when the TTS sub-frames are statically
dimensioned based on the execution profiles of the tasks at
their own CL (including inter-core interference), similarly
to previous works for partitioned architectures, e. g., [29]
(MCMSO, fixed sub-frames), and (iii) when inter-core inter-
ference is ignored and sub-frames are dynamic (MCMSO, no
interference).

We use 500 synthetic task sets with 10 to 20 tasks and 2
CLs. For each generated task τi, computations and accesses
under no resource contention take equal (randomly selected)
time. The execution profiles of τi vary at different CLs,
i. e., the access and execution time ranges of the phases at
CL 2 are wider by a factor Zi ∈ [1, 4] than the respective
ones at CL 1. We assume that all tasks with CL 1 are
ignored at level of assurance 2 (degraded profile of zeros).

Figure 3 shows the fraction of task sets for which a schedu-
lable implementation was found under the 3 setups, on ar-
chitectures with 1, 2, 4, or 8 cores. The time budget of the
optimizer was 25 minutes, but in most cases MCMSO con-
verged to a solution within 10 minutes. As expected, the
dynamism introduced by the use of synchronisation barriers
and the fact that the low-criticality tasks are occasionally
allowed to run in degraded mode (here, not run) in TTS
lead to increased schedulability compared to the case with
statically dimensioned sub-frames. This increase can be as
high as 15% (4 cores). On the other hand, the results of
Figure 3 show clearly the impact of resource contention on
TTS schedulability. On multicore systems, schedulability
could be increased up to 43% (8 cores) if resource shar-
ing was eliminated, e. g., if the interfering tasks of I were
mapped on the same core or such that they could not ac-
cess the same memory bank at the same time. This can be
critical information at design time, since by selecting a parti-
tioned memory and mapping appropriately memory blocks
to memory banks, the TTS schedulability can be signifi-
cantly improved. It is also a strong argument for the need
to consider the timing effects of resource contention in fu-
ture multicore MC scheduling strategies. If one neglected
these effects, up to 43% of the generated task sets would
have erroneously been deemed schedulable.

Impact of using more cores under resource shar-
ing. Next, we evaluate the gain in TTS schedulability as the
number of cores in a multicore platform increases, while con-
sidering the effects of resource sharing. For this, we assume

1 core 2 cores 4 cores 8 cores
0

20

40

60

80

Sc
he

du
la

bl
e

ta
sk

se
ts
H%
L

MCMSO

MCMSO, fixed sub-frames

MCMSO, no resource interference

Figure 3: Schedulability under the 3 MCMSO se-
tups for different number of cores

that in the 500 random task sets, the ratio of the minimum
time required for memory accesses over the complete exe-
cution time of every task can be equal to: 0 (no accesses),
0.25, 0.5 (equal time for computations, accesses), 0.75 or 1
(no computation), i.e., we trade computation for accesses.

Figure 4 shows the fraction of schedulable task sets for the
different scenarios, denoted as accessing time ratios (ATR),
as the number of cores increases from 1 to 2, 4, and 8. It is
interesting that the more memory-intensive the task sets are,
the less gain we obtain by increasing the cores. Note that
when ATR = 0.75 or 1, schedulability remains unchanged
upon transition from single-core to multicore systems. Also
in less memory-intensive cases (ATR = 0.5), schedulabil-
ity may increase only up to 4 cores, but remains unchanged
upon transition to 8 cores. This is probably opposed to what
one would expect, given that more tasks (of the same CL)
are able to execute in parallel. This is explained by the pres-
ence of shared resources because more concurrently executed
tasks means also higher inter-core interference and thus,
larger response times. We can conclude that in multicores
with shared memories, the gain achieved by the increase of
cores is limited unless there is a simultaneous increase in
the memory bandwidth (reduction of access latency) or a
reduction of the memory contention, e. g., by increasing the
number of shared memory banks on the platform.

Comparison to existing MC scheduling strategies.
Next, we evaluate the limitations posed by the (flexible)
time-triggered implementation of TTS and their impact
on schedulability. Hence, we compare TTS to more dy-
namic, state-of-the-art MC scheduling strategies, particu-
larly the EDF-VD algorithm for single core [5] and its vari-
ant GLOBAL for multicores [20]. Since these algorithms
do not consider resource sharing, comparison is based upon
synthetic task sets that require no accesses. For task set gen-
eration we use the algorithm of [20] for 2 CLs. Per-task uti-
lization Ui is selected uniformly from [UL, UH] = [0.05, 0.75]
and the ratio Zi of the level-2 utilization to level-1 utilization
is selected uniformly from [ZL, ZH] =[1,8]. The probability
that a task τi has χi = 2 is set to P = 0.3. Period Wi

is randomly selected from the set {100, 200, 300, 400, 500}.
Because TTS cannot handle dynamic preemption, if the as-

æ

æ

æ

æ

à

à

à à

ì
ì

ì ì

ò ò ò òô ô ô ô

1 2 4 8
20

40

60

80

100

Number of cores

S
c
h
e
d
u
la
b
le
ta
s
k
s
e
ts
H%
L

æ ATR: 0

à ATR: 0.25

ì ATR: 0.50

ò ATR: 0.75

ô ATR: 1

Figure 4: Schedulability vs. number of cores and
accessing time ratio (ATR)

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ●

■ ■ ■ ■ ■
■

■
■

■

■

■

■

■

■
■

■
■ ■

0
.2
5
0
.3

0
.3
5
0
.4

0
.4
5
0
.5

0
.5
5
0
.6

0
.6
5
0
.7

0
.7
5
0
.8

0
.8
5
0
.9

0
.9
5 1

.

1
.0
5
1
.1

0

20

40

60

80

100

● EDF -VD

■ MCMSO

S
c
h
e
d
u
la

b
le

 t
a
s
k
 s

e
ts

 (
%

)

Sys. utilization

(a) Variable periods, fixed pre-
emption, 1000 task sets

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■

0
.2
5
0
.3

0
.3
5
0
.4

0
.4
5
0
.5

0
.5
5
0
.6

0
.6
5
0
.7

0
.7
5
0
.8

0
.8
5
0
.9

0
.9
5 1

.

1
.0
5
1
.1

0

20

40

60

80

100

● EDF - VD

■ MCMSO

(b) Equal periods, no preemp-
tion, 1000 task sets

● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

■

■

■
■

■ ■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■

0
.2
5
0
.3

0
.3
5
0
.4

0
.4
5
0
.5

0
.5
5
0
.6

0
.6
5
0
.7

0
.7
5
0
.8

0
.8
5
0
.9

0
.9
5 1

.

1
.0
5
1
.1

0

20

40

60

80

100

● GLOBAL

■ MCMSO

(c) Variable periods, fixed pre-
emption, 100 task sets

● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

■
■ ■ ■

■
■

■ ■ ■
■

■

■

■

■

■ ■ ■ ■

0
.2
5
0
.3

0
.3
5
0
.4

0
.4
5
0
.5

0
.5
5
0
.6

0
.6
5
0
.7

0
.7
5
0
.8

0
.8
5
0
.9

0
.9
5 1

.

1
.0
5
1
.1

0

20

40

60

80

100

● GLOBAL

■ MCMSO

(d) Equal periods, no preemp-
tion, 1000 task sets

Figure 5: Schedulable task sets (%) vs. normalized utilization: MCMSO, EDF-VD (m = 1), GLOBAL (m = 4)

signed execution time of a task is larger than the maximum
frame length of the TTS scheduling cycle, the task is split
into sub-tasks, each ”fitting” within a TTS frame.

Figures 5(a)-5(d) show the fraction of task sets that are
deemed schedulable by the considered algorithms as a func-
tion of the ratio Usys/m (normalized system utilization).
Usys is defined in [20] as follows:

Usys = max
(

ULO
LO (τ) + ULO

HI (τ), U
HI
HI (τ)

)

, (5)

where Uy
x (τ) represents the total utilization of the tasks with

CL x for their y−level execution profiles (LO≡1, HI≡2). To
check schedulability of each randomly generated task set,
we (i) apply MCMSO for TTS and (ii) check the sufficient
conditions from [5,20] for EDF-VD and GLOBAL.

In single-core systems, TTS faces two limitations com-
pared to EDF-VD, i. e., the fixed preemption points and
the time-triggered frames. EDF-VD is more flexible with
scheduling task jobs as they arrive and can preempt them
any time. The results of Figure 5(a) show that as the
utilization increases, EDF-VD can schedule 0 up to 52.9%
(U = 0.85) more MC task sets than TTS (avg: 17.9%). The
impact of the TTS limitations on schedulability becomes
even clearer if we repeat the experiment such that these
limitations are avoided. This happens when all tasks have
the same period (Wi = 100), hence the TTS cycle consists
only of 1 frame. The corresponding results in Figure 5(b)
exhibit now reverse trends, with TTS being able to schedule
up to 57.2% (U = 1.0) more task sets than EDF-VD (avg:
10.5%). In fact, if we consider safety-critical applications
with harmonic task periods, e. g., the FMS, the performance
of TTS is comparable to that of EDF-VD (Sec. A.4), which
is very important given that TTS was designed targeting at
timing isolation rather than efficiency.

In multicores, GLOBAL performs more efficiently than
TTS not only because of the previously discussed advan-
tages, but also because it enables task migration. Namely,
several jobs of the same task can be scheduled on different
cores and a preempted job can be resumed on a different
core. The results of Figure 5(c) show that the effectiveness
of GLOBAL in finding admissible schedules for the gen-
erated task sets is up to 65% higher (U = 0.40) than for
TTS. Recall, however, that the increased efficiency comes
at the cost of ignoring the timing effects of shared resources
which are not negligible especially in the presence of task
migrations. If the limitations of TTS are avoided as before,
the results (Figure 5(b)) are again reversed. Then, MCMSO
finds a TTS schedule for up to 82.3% (U = 0.65) more task
sets than GLOBAL. Sec. A.4 shows that schedulability is
comparable when the task periods are harmonic. It follows
that TTS, despite its imposed limitations for achieving
timing isolation, can actually compete with state-of-the-art
scheduling algorithms, which were designed with efficiency
in mind.

Industrial system - FMS. Finally, to show the appli-
cability of TTS scheduling to real-world industrial systems,
we model the Flight Management System (FMS) applica-
tion. FMS consists of 26 independent periodic tasks, char-
acterized by 2 CLs. The tasks fit very well with the su-
perblock model, hence we model each one as a sequence of
an access (read), a computation and another access (write)
phase. The phase parameters are selected randomly from
pre-defined ranges, which we estimated depending on the
functionalities of the corresponding tasks (Sec. A.3). For
each task τi with χi = 2, the execution time (access) ranges
at CL 2 are wider by a factor of Zex ∈ [1, 2] (Zacc ∈ [1, 4])
than the ones at CL 1. Similarly, for each task τi with
χi = 1, we define a degraded execution profile such that the
execution time (access) ranges in this profile are tighter by
a factor of Dex ∈ [1, 2] (Dacc ∈ [1, 10]) than the ones at
CL 1. The task periods of the FMS are known to be har-
monic ({200, 1000, 5000} ms), hence we dimension the TTS
cycle with period H = 5000 ms and frames of equal length,
200 ms. The FMS features a computationally intensive task
(flightplan computation, τ26) with a worst-case execution
time up to 800 ms at CL 2 (without considering accesses).
We assume that we can split this task into 4, 5, 8 or 10
sub-tasks, each having the same access requirements as the
original task and a fraction of its computation time.

We perform design space exploration with MCMSO to
determine: (i) the minimum number of cores (1 to 8) for
the FMS implementation, and (ii) the number of preemp-
tion points for τ26. We evaluate schedulability of the FMS
for the 4 alternative implementations of this task, based on
||barriers||3 for the corresponding best solution found by
MCMSO. The lower the norm of a solution is, the higher the
FMS schedulability. Note that every time MCMSO finds a
schedulable implementation of FMS on m cores, exploration
for the problem with m+ 1 cores starts from that solution.
In most cases, the optimizer converged to a solution in less
than 25 minutes.

Figure 6 shows how the schedulability metric changes for
one particular FMS instance as the number of cores in-
creases, for different number of preemption points. The
points within the dashed rectangle correspond to schedu-
lable implementations. We observe that schedulability of
an FMS implementation increases or remains stable as the
number of cores increases. Also, more preemption points do
not necessarily mean higher schedulability. This is because,
as the number of preemptions increases, the required mem-
ory accesses can also increase due to the performed context
switches. This is reflected by the higher schedulability of
the implementation with 8 sub-tasks w.r.t. that with 10
sub-tasks. The results of Figure 6 are particularly useful
for the FMS designer, as they show that a platform with at
least 3 cores must be used and that the flightplan task must
have at least 5 preemption points whereas having more than

�

�
� � � � � �

�

�

� � � � � �

�

�

�

� � � � �

�

�

�
� � � � �

1 2 3 4 5 6 7 8
Cores

500

600

700

800

900

1000

1100

��
b
a
rr
ie
rs
��

�

�

�

�

�������	�
�

�������	�
�

�������	�
�

�������	�
�

�

Figure 6: Flight Management System - DSE

8 is not beneficial.

6. CONCLUSION & FUTURE WORK
A global time-triggered scheduling approach with barrier

synchronization (TTS) is proposed. It considers periodic
mixed-criticality task sets executed on resource-sharing mul-
ticores. TTS enables only tasks of the same criticality level
to be executed concurrently in order to guarantee their tim-
ing properties at a particular level of assurance, a necessary
property for the certification of MC systems. TTS tries to
bridge the space between strict partitioning mechanisms for
timing isolation (industrial practice for safety-critical ap-
plications) and efficient MC scheduling algorithms. More-
over, TTS can take advantage of state-of-the-art interfer-
ence analysis methods for multicore resource-sharing sys-
tems. As the experimental results show, TTS can sched-
ule task sets without over-provisioning resources (increased
schedulability compared to static partitioning approaches).
At the same time, its efficiency is not severely compromised
when compared to more dynamic MC scheduling strategies.
Applicability has been validated with an industrial avionics
application. This confirms that TTS is a potential solution
to the problem of MC scheduling on multicores, where re-
source (e. g., memory) sharing among several cores cannot
be eliminated. TTS is currently being implemented in an
industrial setup for evaluating its runtime overhead.

Acknowledgment

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 288175
(CERTAINTY project).

7. REFERENCES
[1] RTCA/DO-178B, Software Considerations in Airborne Systems

and Equipment Certification, 1992.

[2] R. Alur and D. L. Dill. Automata For Modeling Real-Time
Systems. In Intl. Colloquium on Automata, Languages and
Programming, pages 322–335, 1990.

[3] J. Anderson, S. Baruah, and B. Brandenburg. Multicore
operating-system support for mixed criticality. In Workshop on
Mixed Criticality: Roadmap to Evolving UAV Certification,
2009.

[4] ARINC. ARINC 653-1 avionics application software standard
interface. Technical report, 2003.

[5] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li,
A. Marchetti-Spaccamela, S. Van der Ster, and L. Stougie. The
preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In ECRTS, pages
145–154, 2012.

[6] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li,
A. Marchetti-Spaccamela, N. Megow, and L. Stougie.
Scheduling real-time mixed-criticality jobs. Mathematical
Foundations of Computer Science, pages 90–101, 2010.

[7] S. Baruah and G. Fohler. Certification-cognizant time-triggered
scheduling of mixed-criticality systems. In RTSS, pages 3–12,
2011.

[8] S. Baruah, H. Li, and L. Stougie. Towards the design of
certifiable mixed-criticality systems. In RTAS, pages 13–22,
2010.

[9] D. Dasari, B. Andersson, V. Nelis, S. Petters, A. Easwaran, and
J. Lee. Response time analysis of cots-based multicores
considering the contention on the shared memory bus. In
TrustCom, pages 1068 –1075, 2011.

[10] F. Dorin, P. Richard, M. Richard, and J. Goossens.
Schedulability and sensitivity analysis of multiple criticality
tasks with fixed-priorities. Real-Time Systems, 46(3):305–331,
2010.

[11] P. Ekberg and W. Yi. Bounding and shaping the demand of
mixed-criticality sporadic tasks. In ECRTS, pages 135–144,
2012.

[12] A. Ferrari, M. Di Natale, G. Gentile, G. Reggiani, and P. Gai.
Time and memory tradeoffs in the implementation of
AUTOSAR components. In DATE, pages 864 –869, 2009.

[13] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele.
Timed model checking with abstractions: towards worst-case
response time analysis in resource-sharing manycore systems.
In EMSOFT, pages 63–72, 2012.

[14] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and
efficient scheduling of certifiable mixed-criticality sporadic task
systems. In RTSS, pages 13–23, 2011.

[15] O. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of
fixed-priority mixed-criticality task sets. In TrustCom, pages
1051–1059, 2011.

[16] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220:671–680, 1983.

[17] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time
analysis and timed automata: A hybrid methodology for the
performance analysis of embedded real-time systems. Design
Automation for Embedded Systems, 14(3):193–227, 2010.

[18] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of
deterministic queuing systems for the internet. 2001.

[19] H. Li and S. Baruah. An algorithm for scheduling certifiable
mixed-criticality sporadic task systems. In RTSS, pages
183–192, 2010.

[20] H. Li and S. Baruah. Global mixed-criticality scheduling on
multiprocessors. In ECRTS, pages 166–175, 2012.

[21] M. Lv, W. Yi, N. Guan, and G. Yu. Combining abstract
interpretation with model checking for timing analysis of
multicore software. In RTSS, pages 339–349, 2010.

[22] M. Mollison, J. Erickson, J. Anderson, S. Baruah, J. Scoredos,
et al. Mixed-criticality real-time scheduling for multicore
systems. In ICCIT, pages 1864–1871, 2010.

[23] R. Pathan. Schedulability analysis of mixed-criticality systems
on multiprocessors. In ECRTS, pages 309–320, 2012.

[24] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha.
Coscheduling of cpu and i/o transactions in cots-based
embedded systems. In RTSS, pages 221–231, 2008.

[25] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and
L. Thiele. Worst case delay analysis for memory interference in
multicore systems. In DATE, pages 741–746, 2010.

[26] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared
resource load for the performance analysis of multiprocessor
systems. In DATE, pages 759–764, 2010.

[27] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing Analysis for
TDMA Arbitration in Resource Sharing Systems. In RTAS,
pages 215–224, 2010.

[28] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and
M. Caccamo. Timing analysis for resource access interference
on adaptive resource arbiters. In RTAS, pages 213–222, 2011.

[29] D. Tamas-Selicean and P. Pop. Design optimization of
mixed-criticality real-time applications on cost-constrained
partitioned architectures. In RTSS, pages 24–33, 2011.

[30] S. Vestal. Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance. In RTSS,
pages 239–243, 2007.

[31] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister,
and C. Ferdinand. Memory hierarchies, pipelines, and buses for
future architectures in time-critical embedded systems. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(7):966 –978, 2009.

[32] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha.
Memory access control in multiprocessor for real-time systems
with mixed criticality. In ECRTS, pages 299–308, 2012.

A. SUPPLEMENT

A.1 Motivational Example (FMS)
The flight management system (FMS) from the avionics

domain is responsible for functionalities, such as the local-
ization of an aircraft based on periodically acquired sensor
data, the computation of the flightplan that guides the auto-
pilot, the detection of the nearest airport, etc.

Tasks in this system are independent and communicate
through double buffering. Some of them regularly read a
navigation database. Due to the database size (magnitude
of hundreds of MB), it is unrealistic to assume that each core
can retain a copy of all required data in its local memory
for most COTS multicores. So, the inter-core interference
on the global memory path cannot be neglected. The su-
perblock model of execution fits very well with the FMS
tasks, since most of them fetch data from the memory (sen-
sor readings, database) upon their triggering, process them
and write back the results (localization information, com-
puted flightplan) before their completion.

Besides periodic tasks in the FMS, there are asynchronous
and restartable tasks. Asynchronous tasks are initiated by
the pilot, but their invocation is limited by a known max-
imum frequency. Therefore, they can be modeled as peri-
odic. Restartable tasks are computationally intensive tasks,
related to the generation of the flightplans. These tasks need
to be stopped and restarted if they overrun. They are also
triggered at a known maximum frequency, so they are mod-
eled as periodic for scheduling analysis. Special attention is
needed for their scheduling so that they do not exhaust the
computational resources.

Depending on the criticality of the corresponding func-
tionalities, the FMS tasks are classified into 2 design assur-
ance levels, DAL-B and DAL-C from the DO-178B stan-
dard for certification of airborne systems [1]. Note that for
the FMS, it is not acceptable to drop lower-criticality tasks
in order to guarantee the schedulability of higher-criticality
tasks, as usually assumed in the MC scheduling literature.
In practice, most lower-criticality tasks must be always ex-
ecuted, at least in (a pre-defined) degraded mode, for the
safe operation of the aircraft.

Assume that the FMS tasks need to be mapped and sched-
uled on a multicore platform with private memories for each
core and a shared memory, where the database and the
shared buffers are maintained. If the accesses to the shared
memory and the resulting timing interference were ignored,
a solution would be to map tasks of the same CL on the
same core and apply conventional real-time scheduling al-
gorithms. Or, for more efficient workload distribution, map
tasks of mixed CLs on any core and apply an existing MC-
scheduling algorithm, e. g., [20,23]. In the presence of shared
memory, these solutions do not enable composable certifia-
bility though, since tasks of different CLs can interfere with
each other upon accessing the memory. TTS, on the other
hand, provides the required timing isolation among different
CLs.

A.2 MCMSO heuristics
A variation of the basic SA heuristic algorithm, which was

implemented for the MCMSO prototype is listed as pseu-
docode under Algorithm 1. The algorithm receives as in-
puts the initial temperature T0, the temperature decreasing
factor a ∈ (0, 1), Failmax which defines the maximum num-
ber of consecutive variations with no cost improvement that

Algorithm 1 MCMSO-SA

Input: T0, a, Failmax, Tfinal, tmax

Output: Sbest, Costmin

1: S ← GenerateInitialSolution()
2: Sbest ← S
3: Costmin ← Cost(S)
4: T ← T0

5: FailCount ← 0
6: t ← StartTimer()
7: while t < tmax and T > Tfinal do
8: S′ ← RandomVariate(S)

9: if e−(Cost(S′)−Cost(S))/T ≥ Random(0,1) then
10: S ← S′

11: end if
12: if Cost(S′) < Costmin then
13: Sbest ← S′

14: Costmin ← Cost(S′)
15: FailCount ← 0
16: else
17: FailCount ← FailCount+ 1
18: end if
19: if FailCount == Failmax then
20: T ← a · T
21: S ← Sbest

22: FailCount ← 0
23: end if
24: end while

can be checked for a particular temperature, Tfinal which is
a stopping criterion in terms of the final temperature, and
tmax which is a stopping criterion in terms of search time
(computational budget). Its execution returns the best solu-
tion that was found for the selected temperature parameters,
in the given time.

Functions GenerateInitialSolution and RandomVariate
are specified such that only meaningful solutions (fulfilling
the criteria of Sec. 4.2) are considered. Therefore, before
applying the algorithm, one needs to compute for each task
job, the earliest and latest TTS frame, in which the job can
be scheduled. Function RandomVariate generates a new so-
lution S′ by selecting randomly a task of τ and performing
non-deterministically a core, frame or alternative variation.
The probability of choosing each of the three variations is
defined in RandomVariate. The new solution is accepted, in-
dependently of whether its cost is higher or lower than that

of S on condition that e−(Cost(S′)−Cost(S))/T is no lesser
than a randomly selected real value in (0,1). Additionally,
the cost of S′ is compared to the currently best observed
cost, Costmin. If the former is lower than Costmin, the new
solution and its cost are stored, even if the transition to S′

was not admitted.
As far an the annealing schedule is concerned, the tem-

perature T is reduced geometrically, with factor a, every
time a sequence of Failmax new solutions are checked, none
of which has a lower cost than the best observed, Costmin.
In this case, the temperature is reduced to enable a finer
exploration of the search space close to the currently best
solution Sbest. This solution is assigned to the current state
S and the exploration continues similarly, until the lowest
temperature Tmin is reached or the computational budget
tmax is exhausted.

For the simulations, described in Sec. 5 and Sec. A.3,
MCMSO-SA was called with the following input parame-
ters: a = 0.8, Failmax = 100, Tfinal = 0.1. The initial
temperature T0 was selected in every case, by performing
few random transitions and determining the average objec-
tive function change. The time budget varied as described
for each experiment. Finally, the probabilities of Random-
Variate selecting a core or a frame variation were set to 0.15
and 0.85, respectively (no alternative variation needed).

A.3 Experimental Setup
This section presents in detail the simulation setup

for the case studies presented in Sec. 5. All simula-
tions were run on computers with Intel Xeon CPUs at 2.9
GHz or AMD Opteron CPUs at 2.6 GHz and 8 GB of RAM.

Impact of barriers and resource contention. The ex-
periment was conducted upon randomly generated task sets,
characterized by 2 CLs. The input parameters for the gen-
eration of one task set are:

• n: Number of tasks.

• [UL, UU]: Lower and upper bound on per-task utiliza-
tion. The utilization is uniformly selected from this range
(UL > 0, UU ≤ 1) and is the same for all tasks of a task
set. It is defined as the fraction of worst-case execution
time of a task over its period (Eq. 6), when execution time
is considered at the task’s own CL and the task needs no
resource accesses:

ui =

∑

si,j∈Si
exmax

i,j (χi)

Wi
(6)

where Si is the set of superblock phases of task τi. For
example, if a task τi has period Wi = 100 ms and the per-
task utilization of the corresponding task set is U = 0.2,
then the sum of worst-case computation time over τi’s
execution phases will be 0.2 · 100 = 20 ms at CL χi.

• [ZL, ZU]: Lower and upper bound on degree of pessimism
of the tools used for the certification of high-criticality
tasks. The degree of pessimism is defined as the ratio of a
task’s utilization at CL 2 (high) to its utilization at CL 1
(low). It is selected uniformly from the above range and
independently for each task of a task set. For example, if a
task τi with χi = 2 has utilization U = 0.2, its utilization
at CL 1 will be U

Zi
with Zi ∈ [ZL, ZH].

• Wset: The set of task periods. A period is randomly se-
lected from this set for each task.

• Pcrit: The probability that a task τi is characterized by
the highest CL (χi = 2).

• Tacc: The latency of a memory access.

For each task τi of a generated task set, we assume the
following:

• The task is defined by one accessing and one execution
phase.

• If the task is of lower criticality (χi = 1), its degraded
mode is equivalent to no execution. Namely, when certi-
fying the task set at level of assurance 2, the low-criticality
tasks can be ignored.

• Several versions of the task can be generated depending
on the accessing time ratio (ATR). This parameter defines
the fraction of time the task spends on resource accessing

over its total execution (sum of accessing and computa-
tion) time, when no resource contention exists. Depending
on the ATR value, generation of a task’s phase parameters
is described in pseudocode form in Listing 2. The execu-
tion profile of τi Ci at level ℓ is defined by two superblock
phases, denoted by the tuples {µmin, µmax, 0, 0} (access-
ing phase) and {0, 0, exmin, exmax} (execution phase), re-
spectively.

Algorithm 2 TaskGenerator

Input: χi, Wi, U , Zi, ATR, Tacc

Output: Ci(1), Ci(2)

1: if χi = 1 then
2: exec time tot(1) ← u ·Wi

3: µ(1) ←
⌈

ATR·exec time tot(1)
Tacc

⌉

4: ex(1) ← exec time tot(1)− µ(1) · Tacc

5: Ci(1) ← {{µ(1), µ(1), 0, 0}, {0, 0, ex(1), ex(1)}}
6: Ci(2) ← {{0, 0, 0, 0}, {0, 0, 0, 0}}
7: else
8: exec time tot(2) ← u ·Wi

9: µ(2) ←
⌈

ATR·exec time tot(2)
Tacc

⌉

10: ex(2) ← exec time tot(2)− µ(2) · Tacc

11: exec time tot(1) ← u·Wi

zi

12: µ(1) ←
⌈

µ(2)
zi

⌉

13: ex(1) ← exec time tot(1)− µ(1) · Tacc

14: Ci(1) ← {{µ(1), µ(1), 0, 0}, {0, 0, ex(1), ex(1)}}
15: Ci(2) ← {{µ(1), µ(2), 0, 0}, {0, 0, ex(1), ex(2)}}
16: end if

The parameter values for the simulations that yielded the
results of Fig. 3 and 4 were set as follows: n = 10 (300
task sets), n = 15 (150 task sets) or n = 20 (150 task
sets), UL = 0.02, UU = 0.2, ZL = 1, ZU = 4, Wset =
{100, 200, 400, 500}, Pcrit = 0.5, Tacc = 0.5. For each task
set, we considered 5 different versions of its tasks for the dif-
ferent values of parameter ATR ∈ {0, 0.25, 0.5, 0.75, 1}. The
TTS scheduling cycle was dimensioned so that the frames
would be equally sized with length given by the greater com-
mon divisor of the tasks’ periods. Note that based on the
period set Wset, the maximum possible period of the TTS
cycle (hyper-period of tasks) is H = 2000 ms and the maxi-
mum number of TTS frames is 20.

For each task set, the MCMSO optimizer was called in
total 40 times; 2 times for each of the 5 task configurations
(ATR parameter) and each of the 4 platform configurations
(with 1, 2, 4 or 8 cores). The first time it was called, the op-
timizer took the timing effects of resource contention into ac-
count during exploration (MCMSO), while the second time
it ignored them (MCMSO, no resource interference). To de-
cide whether a found solution would be admissible had the
sub-frames had fixed lengths (MCMSO, fixed sub-frames),
we checked the condition of Eq. 7 for each solution found by
MCMSO (1st call):

L
∑

i=1

barriers(f, i)L−i+1 ≤ Lf ,∀f ∈ F . (7)

That is, a schedule is admissible with fixed sub-frames if for

each frame f , the length of f is no lesser than the sum of its
sub-frame lengths, when the latter are derived at their cor-
responding CL. For example, for the first sub-frame (ℓ = L),
we consider its length at level of assurance L, for the sec-
ond sub-frame (ℓ = L − 1) at level L − 1, etc. The index
(L − i + 1) in Eq. 7 indicates the corresponding sub-frame
(CL: i) within vector barriers(f, ℓ). Note that for condi-
tion 7, we do not consider the degraded mode of the tasks
of lower CLs. That is because the sub-frames are dimen-
sioned statically. If the degraded profile of some tasks was
used during dimensioning, the corresponding tasks would be
permanently executed in degraded mode, which is generally
not acceptable in safety-critical systems, such as the FMS.
Recall that under TTS scheduling, execution in degraded
mode can occur rarely (depending on accuracy of the exe-
cution profiles at each level of assurance) and only for the
duration of a TTS frame each time.

In all cases, the MCMSO optimizer uses the same cost
function (see Sec. 4.2) during DSE. The time budget for
each call was limited to 25 minutes, since it was observed
that almost always the MCMSO converged to a solution
within at maximum 10 minutes. Thus, we assumed that
if no solution can be found in 25 minutes, no admissible
solution exists at all.

Impact of using more cores under resource sharing.
Same as above. The experiment was performed on the same
randomly generated task sets.

Comparison to existing MC scheduling strategies.
The goal of this experiment is to replicate the results of [20]
in order to compare the ability of MCMSO to find schedu-
lable implementations of MC task sets to that of EDF-
VD on single cores or GLOBAL on multicores. There-
fore, for the random task set generation, algorithm TaskGen
(Fig. 4, [20]) was implemented and applied with parameters
UL = 0.05, UU = 0.75, ZL = 1, ZU = 8, P = 0.3 (same as
in Fig. 5, 6 of [20]). Moreover, we assumed that the (non-
harmonic) periods of the generated tasks could be selected
from the set Wset = {100, 200, 300, 400, 500}. Similarly to
the previous experiment, the TTS cycle was dimensioned
such that all frames have equal lengths, given by the great-
est common divisor of the tasks’ periods. Note that since
the maximum per-task utilization is Ui = 0.75 and the max-
imum period Wi = 500 ms, it follows that a task can have
a worst-case execution time of 0.75 · 500 = 375 ms at the
highest CL. At the same time, the minimum possible frame
length is 100 ms, implying that a task set containing the
above task would be deemed not schedulable according to
TTS. For those cases, we consider the existence of fixed pre-
emption points. That is, if a generated task has a worst-case
execution time greater than the TTS frame length, the task
is split into so many sub-tasks such that each of them ”fits”
within a TTS frame. For instance, the previously mentioned
task with execution time 375 ms would be split into 4 sub-
tasks, each with execution time 93.75 ms if the TTS frame
length was equal to 100 ms.

To evaluate the schedulability of a task set τ on single
cores under EDF-VD, the (improved) sufficient condition
from [5] is checked:

UHI
HI (τ) + ULO

LO (τ) ·
ULO

HI (τ)

1− ULO
LO (τ)

≤ 1. (8)

Similarly, for schedulability on multicores (m cores) under

GLOBAL, the sufficient condition 9 from [20] must hold:

ULO
LO (τ) + min

(

UHI
HI (τ),

ULO
HI (τ)

1− 2 · UHI
HI (τ)/(m+ 1)

)

≤
m+ 1

2
,

(9)
where ULO

LO , ULO
HI and UHI

HI are defined as in Eq. 1 of [20].
Respectively, for schedulability under TTS, the condition of
Eq. 3 must be validated. For this experiment, the MCMSO
optimizer was given a time budget of 20 minutes, since it
was observed that this was already a multiple of the amount
of time needed until the simulated annealing heuristics con-
verged to a solution.

The (normalized) system utilization Ubound (Ubound/m),
against which schedulability is examined (x-axis in Fig. 4(a),
4(b), 4(c), 4(d)), is defined as in Eq. 8 of [20]. Note that
this parameter increases from 0.25 to 1.10 in steps of 0.05.
Each point in the figures was obtained by (i) randomly
generating 1000 task sets, (ii) checking the schedulability
of each one under the respective state-of-the-art algorithm
and TTS, and (iii) calculating the fraction of schedulable
task sets (y-axis) on single-core or quad-core platforms.

Industrial system - FMS. For this experiment, we looked
into a subset of functionalities of the Flight Management
System (Sec. A.1). For each considered task, we knew from
an actual implementation of the FMS on a single-core sys-
tem, its activation pattern (periodic - P, asynchronous - A
or restartable - R), criticality level (DAL-B - 2 or DAL-
C - 1), and period. This information is depicted in Ta-
ble 3. Based on the implementation of each task and the
data structures that it needs to read/update, we estimated
lower and upper bounds on the number of required memory
accesses upon triggering (data fetches) and before comple-
tion (write-backs) of the task, given that all data structures
are maintained in the main memory. Moreover, we assumed
that the computation time of a task cannot surpass 10% of
its period (2% for periods ≥ 5 sec). Therefore, we set the
lower and upper limits on access requests and computation
times (in ms) that appear in Table 3. A range of values,
e. g., of the form {µmin, µmax} for resource accesses denotes
these limits. Note that these ranges have not been derived
by static analysis or profiling of the tasks’ code, since the
latter was not available. They are estimations based on the
tasks’ functionalities that were assumed for the purposes of
the experiment. Static analysis of an FMS implementation
on a specific multicore platform would probably yield differ-
ent access request and computation time ranges.

As a next step, we generated randomly several instances
of the FMS task set based on the following parameters:

• [ZL,acc, ZU,acc]: Lower and upper bound on degree of pes-
simism for the certification of high-criticality tasks, with
regard to resource accesses. For instance, a task τi with
χi = 2 and an upper bound of µmax(2) accesses will
have an upper bound µmax(1) = ⌈µmax(1)/Z⌉ accesses
in its level-1 execution profile, where Z ∈ [ZL,acc, ZU,acc].
In our experiments, parameter Z was selected uniformly
from the range [1, 4] and was the same for all tasks of an
FMS instance with CL 2.

• [ZL,exec, ZU,exec]: Same as before for the computation
time of the tasks with CL 2. The degree of pessimism Zi

was selected uniformly from the range [ZL,exec, ZU,exec] =
[0, 1] and independently for each FMS task τi with χi = 2.

• [DL,acc, DU,acc]: Lower and upper bound on fraction of
memory accesses that are performed when tasks with CL

Table 3: FMS Parameters

Purpose Task Act.Pattern CL Period
Accesses

Exec.Time
Accesses

(Fetch) (Write Back)

Sensor data acquisition

τ1 P 2 200 {50,108} {1,20} {50,85}
τ2 A 2 200 - {1,20} {0,7}
τ3 A 2 200 - {1,20} {0,19}
τ4 A 2 200 - {1,20} {0,19}
τ5 A 2 200 - {1,20} {0,9}

Localization

τ6 P 2 200 {50,127} {1,20} {10,18}
τ7 P 2 1000 {10,18} {1,100} {10,18}
τ8 P 2 5000 {20,35} {1,100} {0,1}
τ9 P 2 1000 {20,33} {1,100} {0,4}
τ10 A 2 200 - {1,20} {10,20}
τ11 A 2 1000 - {1,100} {0,3}
τ12 A 2 200 - {1,20} {0,3}

Flightplan management

τ13 A 2 1000 {100,200} {1,100} {20,100}
τ14 A 1 1000 {100,200} {1,100} {20,100}
τ15 A 2 1000 {100,200} {1,100} {20,100}
τ16 A 1 1000 {100,200} {1,100} {20,100}
τ17 A 2 1000 {100,200} {1,100} {20,100}
τ18 A 2 1000 {100,200} {1,100} {20,100}
τ19 A 1 1000 {100,200} {1,100} {20,100}
τ20 A 1 1000 {100,200} {1,100} {20,100}

Flightplan computation

τ21 P 2 1000 {0,3} {1,100} {0,3}
τ21 P 2 1000 {30,54} {1,100} {20,44}
τ23 R 2 5000 {200,300} {700,800} {100,180}
τ23a R 2 5000 {200,300} {175,200} {10,45}
τ23b R 2 5000 {200,300} {140,160} {10,36}
τ23c R 2 5000 {200,300} {87,100} {10,23}
τ23d R 2 5000 {200,300} {70,80} {10,18}

Guidance
τ24 P 2 200 {0,10} {1,20} {0,1}
τ25 P 2 200 {0,10} {1,20} {0,1}

Nearest Airport τ26 P 1 1000 {100,134} {1,100} {200,322}

1 run in degraded mode. For instance,a task τi with χi = 1
and an upper bound of µmax(1) accesses will perform at
maximum µmax(2) = µmax,deg = ⌈µmax(1)/D⌉ accesses
in its Ci,deg execution profile, with D ∈ [DL,acc, DU,acc].
In our experiments, D was selected uniformly from the
range [1, 10], once for all tasks of an FMS instance with
CL 1.

• [DL,exec, DU,exec]: Same as before for the computation
time of the tasks with CL 1. Parameter Di was selected
uniformly from the range [DL,exec, DU,exec] = [0, 1], inde-
pendently for each FMS task τi with χi = 1.

An FMS instance can be generated as follows. Let each task
consist of 3 superblock phases; an accessing phase at the
beginning, followed by a computation and another accessing
phase. The minimum/maximum ranges of resource accesses
and computation time for these phases at the task’s own CL
are generated randomly such that they are included in the
given ranges of Table 3. The corresponding level-1 execution
profile for tasks τi with CL 2 is derived based on the param-
eters Z (accesses) and Zi (computation time). Respectively,
the level-2 (degraded) execution profile for tasks τi with CL
1 is derived depending on parameters D (accesses) and Di

(computation time).
Following the previous procedure, we generated several

FMS instances. For each instance, we considered 4 alter-
natives, for all potential implementations of the restartable
task τ23 (4 dependent sub-tasks τ23a or 5x τ23b or 8x τ23c

or 10x τ23d, see Table 3 for corresponding parameters). The
MCMSO optimizer was called to find an implementation of
each instance on systems with 1 to 8 cores and a shared
memory with access latency Tacc = 0.05 ms. The optimizer
was given a time budget of 35 minutes for the DSE and in
practice, it was observed that it never needed more than 25
minutes to converge to a solution (admissible or not). Note
that for this experiment, in order to boost the efficiency
of the MCMSO optimizer, for systems with more than one
core, the simulated annealing heuristics started not from a
random task mapping, but from the solution found for the
system with one less core. That is, if a solution S3 was found
for an FMS instance on a 3-core system, the DSE for a 4-
core system started from solution S3. If S3 was admissible,
then it would also be admissible on a 4-core system (where
a core is not used). This way, the MCMSO started from a
good initial solution (c1 > 0), which it tried to improve.

A.4 Additional Experimental Results
Comparison to existing MC scheduling strategies.

The following results complement the comparison to state-
of-the-art MC scheduling strategies of Sec. 5. In particular,
one more set of simulations is run for single-core (m = 1)
and multicore (m = 4) systems, where the task sets have not
equal nor random, but harmonic periods. In other words,
every task period divides evenly every other (greater) period
in W . This is rather common in the domain of safety-critical
applications on which we are focusing, as witnessed e. g., in

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■

■

■

■

■ ■

0
.2
5
0
.3

0
.3
5
0
.4

0
.4
5
0
.5

0
.5
5
0
.6

0
.6
5
0
.7

0
.7
5
0
.8

0
.8
5
0
.9

0
.9
5 1

.

1
.0
5
1
.1

0

20

40

60

80

100

● EDF - VD

■ MCMSO

Sys. utilizationS
c
e
d
u
la

b
le

 t
a
s
k
 s

e
ts

 (
%

)

(a) Wi ∈ {200, 400}

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ●

■ ■ ■ ■ ■ ■ ■ ■ ■
■

■

■

■

■

■

■

■ ■

0
.2
5
0
.3

0
.3
5
0
.4

0
.4
5
0
.5

0
.5
5
0
.6

0
.6
5
0
.7

0
.7
5
0
.8

0
.8
5
0
.9

0
.9
5 1

.

1
.0
5
1
.1

0

20

40

60

80

100

● EDF -VD

■ MCMSO

(b) Wi ∈ {200, 400, 800}

● ● ● ●

●
●

●

●

● ● ● ● ● ● ● ● ● ●

■

■
■

■

■
■

■

■

■
■

■

■

■
■ ■ ■ ■ ■

0
.2
5
0
.3

0
.3
5
0
.4

0
.4
5
0
.5

0
.5
5
0
.6

0
.6
5
0
.7

0
.7
5
0
.8

0
.8
5
0
.9

0
.9
5 1

.

1
.0
5
1
.1

0

20

40

60

80

100

● GLOBAL

■ MCMSO

(c) Wi ∈ {200, 400}

● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

■
■

■

■

■

■

■

■

■

■

■

■
■ ■ ■ ■ ■ ■

0
.2
5
0
.3

0
.3
5
0
.4

0
.4
5
0
.5

0
.5
5
0
.6

0
.6
5
0
.7

0
.7
5
0
.8

0
.8
5
0
.9

0
.9
5 1

.

1
.0
5
1
.1

0

20

40

60

80

100

● GLOBAL

■ MCMSO

(d) Wi ∈ {200, 400, 800}

Min. Diff: 0%
Avg. Diff: 2.2%
Max. Diff: 16.2%
Opt. Time: 26.8s

Min. Diff: -6.7%
Avg. Diff: -1.2%
Max. Diff: 8.1%
Opt. Time: 60.5s

Min. Diff: -24%
Avg. Diff: 3.8%
Max. Diff: 53%
Opt. Time: 89.7s

Min. Diff: -31%
Avg. Diff: -3.6%
Max. Diff: 31%
Opt. Time: 159.7s

Figure 7: Schedulable task sets (%) vs. normalized utilization: MCMSO, EDF-VD (m = 1), GLOBAL (m = 4),
UL = 0.05, UL = 0.75, ZL = 1, ZL = 8, P = 0.3

the FMS application.
Similar to the simulation setup of Sec. 5, synthetic task

sets with no resource accesses are generated according to the
algorithm presented in [20] for 2 CLs. Per-task utilization
Ui is selected uniformly from [UL, UH] = [0.05, 0.75] and the
ratio Zi of the level-2 utilization to level-1 utilization is se-
lected uniformly from [ZL, ZH] =[1,8]. The probability that
a task τi has χi = 2 (high CL) is set to P = 0.3. Since TTS
supports fixed preemption points, if the assigned execution
time of a task is larger than the maximum frame length of
the TTS scheduling cycle, we assume that the task is split
into sub-tasks, each ”fitting” within a TTS frame. The sim-
ulations have been executed for two harmonic period sets.
In the first case, the task periods Wi are selected uniformly
from {200, 400} (2 periods) and in the second case, from
{200, 400, 800} (3 periods).

Figures 7(a)-7(d) show the fraction of task sets that are
deemed schedulable by the algorithms under comparison
(MCMSO and EDF-VD or GLOBAL) as a function of the
normalized system utilization, Usys/m. To check schedu-
lability of each randomly generated task set, we (i) ap-
ply MCMSO for TTS and (ii) check the sufficient condi-
tions of Eq. 8 and Eq. 9 for EDF-VD [5] (m = 1) and
GLOBAL [20] (m = 4), respectively. The schedulable frac-
tion has been computed for 1000 task sets per utilization
point in Figures 7(a)-7(b) and for 100 task sets, accord-
ingly, in Figures 7(c)-7(d). Below the figures, we show
the minimum, average and maximum difference between
the schedulable fraction under TTS and EDF-VD/GLOBAL
(Sched task sets(TTS) − Sched task sets(EDF − V D))
across all utilization points, as well as the maximum time re-
quired by the MCMSO optimizer to converge to an optimal
TTS solution.

The results show that in the case of harmonic task peri-
ods, schedulability under TSS and the selected state-of-the-
art algorithms is comparable. In single-core systems, TTS
can schedule up to 16.2% (U = 1.0) and on average 2.2%
more task sets that EDF-VD when the periods are selected
from {200, 400}. For the period set {200, 400, 800}, it can
schedule up to 8.1% (U = 1.0) more task sets. EDF-VD
performs on average better by 1.2% in this case.

In multicores, TTS seems to perform worse than
GLOBAL for low system utilizations (up to U = 0.55), but
it is more efficient in finding schedulable solutions as uti-
lization increases. Specifically, for the period set {200, 400},
TTS can schedule up to 24% (U = 0.45) less task sets than

GLOBAL and up to 53% (U = 0.65) more task sets. On av-
erage, it performs better than GLOBAL by 3.8%. Its perfor-
mance is slightly degraded for the period set {200, 400, 800}.
Then, TTS can schedule from 31% (U = 0.4) less to 31%
(U = 0.65) more task sets than GLOBAL, but on average,
schedulability under GLOBAL is higher by 3.6%.

Summarizing, the simulation results confirm that the per-
formance of TTS is very close to that of EDF-VD for
single-core systems. For multicores, TTS performs worse
than GLOBAL for low system utilizations, but its relative
capability in finding schedulable solutions increases with
the utilization. On average, schedulability under TTS and
GLOBAL is comparable. This is a very important conclu-
sion since the assumption of harmonic periods is not very
restrictive in the domain safety-critical real-time systems.
Under this, TTS, despite being designed for effective timing
isolation in MC environments, exhibits comparable perfor-
mance to state-of-the-art scheduling methods which target
mainly at efficiency.

