
Computability in Anonymous Networks:
Revocable vs. Irrecovable Outputs?

Yuval Emek1, Jochen Seidel2, and Roger Wattenhofer2

1 Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
yemek@ie.technion.ac.il

2 Distributed Computing, ETH Zürich, Zürich, Switzerland
{seidelj, wattenhofer}@ethz.ch

Abstract. What can be computed in an anonymous network, where
nodes are not equipped with unique identifiers? It turns out that the
answer to this question depends on the commitment of the nodes to
their first computed output value: Two classes of problems solvable in
anonymous networks are defined, where in the first class nodes are al-
lowed to revoke their outputs and in the second class they are not. These
two classes are then related to the class of all centrally solvable network
problems, observing that the three classes form a strict linear hierar-
chy, and for several classic and/or characteristic problems in distributed
computing, we determine the exact class to which they belong.
Does this hierarchy exhibit complete problems? We answer this question
in the affirmative by introducing the concept of a distributed oracle,
thus establishing a more fine grained classification for distributed com-
putability which we apply to the classic/characteristic problems. Among
our findings is the observation that the three classes are characterized
by the three pillars of distributed computing, namely, local symmetry
breaking, coordination, and leader election.

1 Introduction

We study computability in networks, referred to hereafter as distributed com-
putability. Distributed computability is equivalent to classic centralized (Turing
Machine) computability when the nodes are equipped with unique (compara-
ble) identifiers. However, as Angluin noticed in her seminal work [3], distributed
computability becomes fascinating in anonymous networks, where nodes do not
have unique IDs. What can be computed with deterministic algorithms merely
depends on the topology of the network, and it is well known that problems
like maximal independent set can be solved in an anonymous network only if
the nodes are allowed to toss coins. We therefore consider the distributed com-
putability of randomized algorithms running in anonymous networks. Notice that

? Due to space limitations most proofs are omitted or replaced by proof sketches in
this extended abstract. Also most results obtained in Section 4 are left out. We refer
the interested reader to the full version which is available at http://disco.ethz.

ch/publications/ICALP2014-revocability-full.pdf.

http://disco.ethz.ch/publications/ICALP2014-revocability-full.pdf
http://disco.ethz.ch/publications/ICALP2014-revocability-full.pdf

2 Yuval Emek, Jochen Seidel, and Roger Wattenhofer

in the scope of this paper, we do not impose any limitations on the complexity
resources (time, message/memory size, . . .), however, like in classic sequential
computability theory, we do require a correct result after a finite amount of time.

Apart from its theoretical interest, the study of anonymous networks is mo-
tivated by various real-world scenarios. For example, the nodes may be indistin-
guishable due to their fabrication in a large-scale industrial process [5], in which
equipping every node with a unique identifier (serial number) is not economically
feasible. In other cases nodes may not wish to reveal their unique identity out
of privacy and security concerns [24].

1.1 Setting

Distributed Problems. We consider simple (undirected, loop-free and no parallel
edges) connected finite graphs G, and denote the node and edge sets of a graph
G by V (G) and E(G) or V and E if G is clear from the context. A function
f : V (G) → L is called a labeling of the graph G, and we refer to the set L as
the set of values that f assigns to nodes in G. A distributed problem Π is a set
of three-tuples (G, i, o), where G is a graph as described above, and i and o are
input labels and output labels for G. For every problem there are two sets I(Π)
and O(Π) denoting the input values and output values of Π, i.e., the values that
the labels i and o assign, correspondingly. Such a three-tuple (G, i, o) ∈ Π is
called a (solved) instance of Π. An input instance of Π is a two-tuple (G, i) for
which there exists a valid output o satisfying (G, i, o) ∈ Π, and we also write
(G, i) ∈ Π for input instances of the problem. We restrict ourselves to problems
that are solvable in a centralized setting.

Randomized Anonymous Algorithms. Our definition of how distributed algo-
rithms work follows the convention of [30] for synchronized network systems
(message passing) with simultaneous starting times. Nodes execute the same
randomized and uniform algorithm in synchronous rounds, and in each round
we allow each node access to finitely many random bits. Every node v knows
its degree deg(v) and can distinguish between its neighbors Γ (v) (by means of
a bijection {1, . . . ,deg(v)} → Γ (v), cf. the port model). In each round every
node sends and receives a message of unbounded, yet finite, size to and from
each individual neighbor. To ease our discussion every node v is equipped with
one input register holding some problem-dependent input value and one output
register. The output register initially contains a special symbol ε indicating v is
not ready to return an output. Any value x 6= ε contained in v’s output register
is interpreted as v being ready to return its output and we say that v has output
x. A global configuration in which all nodes are ready is called a ready config-
uration. When algorithm A is in a ready configuration, we define A’s output
oA : V (G) → O by setting oA(v) to be the content of node v’s output register.
In the following, we consider two different notions of output revocability.

Definition (Output Revocability). An algorithm is referred to as a write-
once algorithm if every node is restricted to write to its output register at most
once. If this restriction is lifted, then we call it a rewrite algorithm.

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs 3

In other words, in a rewrite algorithm a node may revoke its output, e.g., by
writing ε to its output register. While every execution of a write-once algorithm
reaches at most one ready configuration, during the execution of a rewrite al-
gorithm many ready configurations can occur. Note that the converse does not
hold: an algorithm that is guaranteed to reach at most one ready configuration
is not necessarily a write-once algorithm. In the existing literature, algorithms
are typically considered to be write-once algorithms.

Definition (Correctness). Fix some problem Π and an algorithm A. A ready
configuration of A when invoked on an input instance (G, i) ∈ Π is said to be
valid if the output oA of A in this configuration is a valid output for (G, i).
Algorithm A is said to solve Π if it satisfies the following two conditions for
every input instance (G, i) ∈ Π: (1) A ready configuration is reached within
finite time with probability 1. (2) Every ready configuration that can occur with
a positive probability is valid.

The aforementioned definition of correctness requires that all occurring ready
configurations will be correct (i.e., correspond to a valid output). In Section 2
we show that our definition of correctness is robust to certain changes. Notice
that in the scope of this paper, we do not require that an algorithm terminates
in order to be correct. However, the algorithms designed throughout the paper
do terminate, and the general transformation techniques we present (i.e., com-
pilers/simulations) can be designed to ensure termination if the algorithms to
which the transformation is applied terminate.

The choice of output revocability has a significant impact on the problems
that an algorithm can solve. In the following the terms WO-algorithms and RW-
algorithms will thus be used to denominate write-once and rewrite algorithms
running in an anonymous network, respectively; RW and WO refer to the classes
of distributed problems solvable by these two types of algorithms. Lastly, we
denote by CF the class of distributed problems that are solvable in a centralized
setting (by a Turing machine), bearing in mind that this class essentially includes
every computable function on graphs. The distinction of these classes is justified
by the following observation. The full version of this paper contains a straight-
forward proof.

Observation. The classes of distributed problems satisfy WO ⊂ RW ⊂ CF (in
the strict sense).

1.2 Our Contribution

What can be computed in anonymous networks? As it turns out the effect out-
put revocability has on the distributed computability of anonymous networks
is remarkable. A total of 21 problems, including some of the most fundamental
problems in distributed computing, are classified according to the exact class to
which they belong (Section 4).

Does the hierarchy we present exhibit complete problems? To answer this
question we introduce the notion of accessing an oracle in a distributed setting

4 Yuval Emek, Jochen Seidel, and Roger Wattenhofer

and show that this notion is sound (Section 3). As the first stepping stone in this
effort we show that the classes WO and RW are robust against two modifications
to the aforementioned correctness condition (Section 2). In the full version of
this paper each of our 21 problems is then classified according to its hardness
or completeness for the three classes, thus obtaining a deeper understanding of
the intrinsic properties of these problems. For reasons of brevity this extended
abstract only gives a brief overview of those results (Section 4). Surprisingly,
the WO, RW, and CF classes turn out to capture exactly the three pillars
of distributed computing, namely, local symmetry breaking, coordination, and
leader election, respectively.

1.3 Related Work

The history of distributed computability starts with the work of Angluin [3]
proving that randomization does not help to elect a leader in anonymous net-
works. Later, it was shown that electing a leader in an anonymous ring network
is possible if the size n of the ring is known [25], in fact, a (2− ε)-approximation
of n is enough [1], not only in the special case of a ring but in general networks
[34]. It turns out that all these results, and many similar ones, come almost for
free once our characterization for the class RW (established in the full version)
is available.

There is a line of work that concentrates on deterministic distributed algo-
rithms for problems in CF, in particular if some parameters of the topology
of the graph (e.g., its size) are known, e.g. [35,10]. Deterministic algorithms are
interesting to investigate even if the graph is restricted to a ring [18,13], and also
assignments of not necessarily unique identifiers were studied in this context [31].

Another line of research studies computability in anonymous (directed) net-
works in connection with termination. Not unlike us it is argued that termi-
nation in distributed systems is an issue that is not directly evident, since one
may be interested in systems where nodes terminate independently of others.
The strongest anonymous model considered in [11] is equivalent to deterministic
write-once algorithms with knowledge of an upper bound to the network size.
When no prior knowledge is assumed the class of solvable problems can be fully
characterized using local views3 and recursive functions [14]. Extending their
approach, in the current paper an individual node executing a RW-algorithm
can never be entirely sure about termination. We show that the class RW lies
between the two classes WO (local termination) and CF (global termination).

Output revocability should not be confused with the concept of eventual
correctness, where the network eventually converges to a correct output. For
example, self-stabilizing algorithms [15] allow the system to return an incorrect
output for a finite amount of time, thus allowing a fault-tolerant algorithm to re-
cover from errors. With randomization, self-stabilizing leader election is possible
on general graphs [16], hence with randomization every CF-problem is eventu-
ally solvable in an anonymous network. In our terminology eventual correctness

3 Local views are only discussed in the full version of this paper.

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs 5

could be viewed as requiring that some ready configuration, not necessarily the
first one, is stable4 and valid. We require though that every output returned by
the network is correct, but we do allow the network to revoke partial outputs.
The problems solvable by self-stabilizing algorithms in directed graphs can be
characterized by fibrations [12] similar to our characterization for RW that is
presented in the full paper. The notion of eventual correctness is also used in
the scope of population protocols [5] in which nodes are modeled by finite state
machines, see [9] for an overview. In a clique network, the predicates a popu-
lation protocol can solve are exactly those expressible in first-order Presburger
arithmetic [5,6,7], whereas in bounded-degree graphs a Turing machine with
linearly bounded space can be simulated [4]. It was also studied how the cor-
rectness condition for population protocols affects solvability of the Consensus
problem [8].

Apart from these results, not much is known about distributed computability
(in contrast to distributed complexity). However, there are surprising connec-
tions between complexity and computability, which go beyond us borrowing the
terms hardness and completeness. Regarding network algorithms, in the last 30
years, a lot of research went into the question how fast a particular problem can
be computed by the network.

Naor and Stockmeyer [33] introduced the notion of locally checkable label-
ings in identified networks and ask how a constant-time deterministic algorithm
can decide whether the labeling represents a correct solution to a given prob-
lem. Follow-up work looked at the bit complexity required to solve problems
[26,21] and a problem hierarchy depending on the size of checkable labelings
was suggested [23], also for anonymous networks. Our work also yields a char-
acterization for the decision problems in RW. However, we do not restrict the
run-time to be constant and allow randomization for symmetry breaking. Prun-
ing algorithms [27] were inspired by the same line of research, in an effort to
remove the necessity of global knowledge about the graph. While our algorithms
are required to give a correct output in every execution [19,22] study the notion
of (p, q)-decidable decision problems (an anonymous randomized algorithm may
return a wrong output with constant probability) and find a hierarchy among
the solvable problem-classes depending on the success probabilities. If a random-
ized algorithm is allowed to fail (Monte-Carlo algorithm), then a leader can be
elected [32] with high probability (w.h.p, i.e., with probability 1 − n−c for any
c). Hence any CF-problem can be solved in an anonymous network w.h.p. In
contrast to that, we require a correct output with probability 1.

Non-deterministic algorithms running in an anonymous setting can fully de-
termine the structure of the radius t-ball around itself in [20], and thus solve
exactly the decision problems that are closed under so-called t-homomorphisms.
In our model only the local view can be retrieved. It may thus be surprising
that RW-algorithms can solve exactly the problems that such non-deterministic
constant-time algorithms can solve in a single round.

4 A configuration is said to be stable if the nodes no longer revoke their outputs, see
Section 2.

6 Yuval Emek, Jochen Seidel, and Roger Wattenhofer

2 Notions of Correctness

Our definition of a correct algorithm requires every ready configuration that
occurs throughout an execution to be valid. For WO-algorithms this requirement
is superfluous since its execution will reach at most one ready configuration.
However, RW-algorithms may invalidate or change a ready configuration after
it occurred. One may therefore wonder if strengthening the definition by allowing
only one durable ready configuration makes the class of solvable problems strictly
smaller. On the other hand one may be tempted to weaken this definition, in
hope to capture a larger class of problems by requiring only the first occurring
ready configuration to be correct. Perhaps surprisingly we show that these two
variants have no effect and are equivalent to the current definition of correctness.
This equivalence will play a key role when we reason about RW-algorithms in
the next section which covers distributed oracles.

Definition (Sustainable Correctness). A ready configuration is said to be
stable, if the nodes no longer revoke their outputs. Algorithm A is said to sus-
tainably solve a problem Π if it satisfies the following two conditions for every
input instance (G, i) ∈ Π: (1) A ready configuration is reached within finite
time with probability 1. (2) The first ready configuration that occurs is valid
and stable.

Definition (Loose Correctness). Algorithm A is said to loosely solve a prob-
lem Π if it satisfies the following two conditions for every input instance (G, i) ∈
Π: (1) A ready configuration is reached within finite time with probability 1.
(2) The first ready configuration that occurs is valid.

The class Sustainable-RW (respectively, Loose-RW) consists of every dis-
tributed problem that can be sustainably solved (resp., loosely solved) by a
RW-algorithm. Since sustainable correctness (resp., loose correctness) is a re-
striction (resp., a relaxation) of correctness as defined in Section 1.1, we con-
clude that Sustainable-RW ⊆ RW ⊆ Loose-RW. Note that the corresponding
classes Sustainable-WO and Loose-WO for WO-algorithms are equal to the class
WO due to the write-once restriction of these algorithms. The following theorem
states that also for RW-algorithms the three classes are, in fact, equal.

Theorem 1. The classes of problems solvable by RW-algorithms under the three
different notions of correctness satisfy Sustainable-RW = RW = Loose-RW.

The proof of Theorem 1 relies on a sustainability compiler that takes a RW-
algorithm A that loosely solves a problem Π and transforms it into a RW-
algorithm Â that sustainably solves this problem. At the heart of the compiler
lies the concept of inhibiting messages, i.e., a refinement of a simple concept
referred to as safe broadcast in which information is broadcast throughout the
whole network and no ready configuration is reached before all nodes have re-
ceived the information. Specifically, the inhibiting messages ensure that the first
ready configuration reached by algorithm Â is stable. We refer to the appended
full version of this paper for the details of the sustainability compiler and its
underlying inhibiting message technique.

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs 7

3 Distributed Oracles

In this section, we introduce the concepts of hardness and completeness, which
are central to this work and allow us to gain a deeper understanding how the
computability classes relate to each other. To that end, we introduce the notion
of an oracle working in a distributed setting.

Definition (Algorithm with access to a Π-oracle). Consider some problem
Π. A C-algorithm, C ∈ {WO,RW}, with access to a Π-oracle is a distributed
C-algorithm in which every node v is equipped with a designated oracle input
register and a designated oracle output register. Given some r ≥ 1, let ĩ(v) be
the content of v’s oracle input register in round r and let õ(v) be the content of
v’s oracle output register in round r+ 1. If (G, ĩ) is an input instance of Π, then
it is guaranteed that õ is a valid output for (G, ĩ). No assumptions are made on
the operation of the algorithm if (G, ĩ) /∈ Π.

While applying the oracle in every round of the algorithm may seem powerful,
allowing the distributed algorithm to arbitrarily choose the rounds in which
the oracle is applied may require some sort of global coordination, which is
not necessarily possible. In comparison, a weaker definition of “accessing an
oracle” would be to allow application of the oracle only once in round 1. This
distinction does not make a difference for problems Π without inputs (|I(Π)| =
1), e.g., for graph theoretic problems like coloring, maximal independent set, or
determining the diameter, because the oracle is always applied on the same input
instance. It does however affect problems that do receive inputs (|I(Π)| ≥ 2),
e.g., Consensus or logical And and Or.

As stated above, based on the oracle concept, we will soon introduce the
notion of hard and complete problems for the hierarchy of problem classes. This
notion would be ill-defined if accessing an oracle to a problem ΠC ∈ C could
enhance the computational power of a C-algorithm. We ensure that the notion
of an algorithm with access to an oracle is sound in the following theorem. Note
that the statement of the theorem does not mention the case C = CF, since the
soundness of oracles for centralized models is well understood and in any case,
beyond the scope of the current paper.

Theorem 3 (Soundness). If a problem Π is solvable by a C-algorithm, C ∈
{RW,WO}, accessing an oracle to a problem ΠC ∈ C, then Π can also be solved
by a C-algorithm that does not access any oracle.

The key to proving this theorem is to show that in a C-algorithm Aa that
solves a problem Π with access to a ΠC-oracle, ΠC ∈ C, one can replace the
oracle access by simulating a C-algorithm Ar that solves ΠC without any oracle
access. This turns out to be a non-trivial task especially for RW-algorithms since
a node v simulating Ar cannot know for sure that the output returned by Ar will
not be revoked later on, i.e., whether it can be safely used for the execution of
Aa. In other words, node v does not know when such a result is valid so that the
execution of Aa can continue based on this result (as if it was returned by the

8 Yuval Emek, Jochen Seidel, and Roger Wattenhofer

ΠC-oracle). The technique we present to resolve this issue for RW-algorithms
is based on Theorem 1. Since the sustainability compiler (discussed in detail in
the full paper) works independently of the algorithm’s access to an oracle, the
arguments to establish Theorem 1 can be repeated to yield the following.

Lemma 4. Fix some problem Π ′. Let A be a RW-algorithm with access to a Π ′-
oracle loosely solving a problem Π and let Â be the RW-algorithm with access
to a Π ′-oracle obtained by applying the sustainability compiler to A. Then Â
sustainably solves Π with an access to a Π ′-oracle.

The ability to transform any RW-algorithm to ensure sustainable correctness
plays a key role in the proof of Theorem 3. Recall that our goal is to replace
the access to a ΠC-oracle of a C-algorithm Aa by a C-algorithm Ar solving
ΠC without any oracle access. In other words, the crux is to show how a C-
algorithm A can interleave the execution of algorithm Aa with an invocation
of Ar in every round in a correct manner, without any additional knowledge of
the run-time of Ar or properties of the underlying network. As noted before,
in the case C = RW, algorithm A faces the issue that an output returned to
a node v by Ar may not be part of a ready configuration and thus it is not
clear whether v should use this value as an output of the ΠC-oracle that Aa

invoked. Theorem 1 however relieves A from the burden of dealing with more
than one ready configuration of Ar, whereas Lemma 4 does the same with Aa.
Therefore, A is left with the task of determining when Ar and Aa have reached
a ready configuration.

In the full version of this paper we show how this can be accomplished by
carefully dividing the simulation into phases of a predetermined length and re-
cycling previously used random bits. Assuming that Theorem 3 is established
we introduce the concept of hard problems by borrowing the terminology from
sequential complexity theory.

Definition (Hardness). For two classes B ⊇ C, a problem Π is said to be B-
hard with respect to C, denoted by Π ∈ B-hardC, if for every problem ΠB ∈ B,
there exists a C-algorithm that solves ΠB with access to a Π-oracle. We say
that Π is complete in B with respect to C, denoted by Π ∈ B-completeC, if
additionally Π itself is contained in B.

Following our notational convention, we would refer to an NP-hard problem
as being NP-hardP . For example, the problem of electing a leader is well known
to be CF-hardWO since once a leader is available, this leader can assign unique
identifiers to all other nodes and solve the problem centrally. Our definition yields
the three hardness classes CF-hardRW, CF-hardWO and RW-hardWO, allowing
us to study how algorithms running in anonymous networks relate to centralized
algorithms as well as how the two output revocability notions relate among each
other. By definition, every CF-hardWO problem is both CF-hardRW and RW-
hardWO; in Section 5 we present a proof sketch for the following theorem, which
states that the converse direction is also true. A thorough proof appears in the
full version.

Theorem 7. It holds that CF-hardWO = CF-hardRW ∩RW-hardWO.

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs 9

4 Problem Zoo

We study the computability and hardness of 21 problems in our setting, and
develop different proof techniques to tackle this tedious task. In this extended
abstract we confine ourselves to summarize the fruits of our effort in Figure 1.
Exemplarily we also present the hardness result for logical Or which is necessary
for the sketched proof of Theorem 7 in Section 5.

Overview of Problems. We briefly explain the problems listed in Figure 1.

– Leader-Election: all but one node output “NOT LEADER”, while a single
node outputs “LEADER”.

– Uniqueness: determine whether all nodes have a unique input value.
– IDs: without any input, every node must return a unique identifier.
– α-Size-Apx: determine a value ñ such that n ≤ ñ ≤ α · n, where n is the

number of nodes in the network.
– Min-Cut: determine a partition of the network inducing a minimum cut as

well as the size of this cut.
– Min-Cut-Value: determine the size of a minimum cut.
– Min-Cut-Partition: determine a partition of the network inducing a min-

imum cut.
– Diameter: determine the diameter D of the network.
– α-Diameter-Apx: determine a value d̃ such that D ≤ d̃ ≤ α ·D.
– Min-Coloring: color the graph with the minimum number of colors.
– Coloring: determine some coloring of the graph.
– k-Hop-Coloring: color the graph so that the color of every node v differs

from the color of every other node in its k-hop neighborhood.
– MIS: determine a maximal independent set.
– k-Hop-MIS: find a maximal subset S of the nodes so that the distance be-

tween every two nodes in S is greater than k.
– Consensus: nodes return the same value x which is at least one node’s input.
– Coordination: determine whether all nodes have the same input.

CF

CF-hardRW

CF-hardWO
RW-hardWO

Min-Coloring
Min-Cut-Value

Factor-Multiplicity

Diameter
Min-Cut-Partition

Leader-Election
Min-Cut

Factor-Graph(≥ 2)-Size-Apx
(< 2)-Size-Apx

(≥ 3)-Hop-MIS
(≥ 3)-Hop-Coloring

Coordination

RW

Factor-Diameter
Consensus

WO

Coloring

2-Hop-MIS
2-Hop-Coloring

MIS

And
Uniqueness Or

IDs α-Diameter-Apx

Fig. 1. Classes CF, RW and WO, and the respective hardness classes.

10 Yuval Emek, Jochen Seidel, and Roger Wattenhofer

– And: nodes have input 0 or 1 and have to return the logical And of all inputs.
– Or: nodes have input 0 or 1 and have to return the logical Or of all inputs.
– Factor-Graph: agree on a mapping f inducing a factor F of the network

graph. Each node v returns F and its corresponding node f(v) in F .
– Factor-Diam: determine the diameter of a factor graph of the network.
– Factor-Multiplicity: determine the multiplicity of the smallest factor of

the network.

The last three problems on this list require the notion of graph factors5 which is
introduced in the full version of this paper. Connections from distributed com-
putability to graph factors were witnessed before, for example in [3]. For some
problems on the list, namely k-Hop-MIS, k-Hop-Coloring, and α-Size-Apx,
computability and/or hardness depends on the choice of k and α, respectively.

Of course for many problems on this list it is known whether they are con-
tained in WO or CF \WO. For example the well studied symmetry breaking
tasks MIS or Coloring with ∆ + 1 colors (where ∆ denotes the maximum
degree of a node in the graph) are known to be in WO [29,2,28]. The work
[17] presents WO-algorithms for each of the two problems 2-Hop-MIS and 2-
Hop-Coloring. An example of a previously known hardness result is that an
approximation α-Size-Apx with α < 2 is sufficient to find unique identifiers
with a WO-algorithm [34].

Example (Logical Or). Denote by ρ the output register of a node v. The
following “algorithm” loosely solves Or. In the first round if node v has input
0, then it sets ρ← 0, otherwise v sets ρ← ε. In the second round all nodes set
ρ← 1 regardless of their input.

This method highlights how convenient Theorem 1 can be for an algorithm
designer. The straight-forward solution however is no testimony to the crudeness
of Or, since the following argument shows that it is indeed RW-completeWO. We
show how to turn a RW-algorithm ARW solving Π ∈ RW into a WO-algorithm
AWO that solves Π with access to an Or-oracle. In algorithm AWO every node v
will simulate one round of ARW in every round; we denote v’s simulated output
register of ARW by ρRW, and the actual output register of AWO by ρWO. If in
round r the register ρRW = ε, then v writes 1 to the input register of the oracle,
otherwise it invokes the oracle with input 0. When the oracle answers 0 in round
r + 1, the network was in a ready configuration in round r and v sets ρWO to
the value contained in ρRW in round r.

5 Proof Sketch for Theorem 7

In this section we only present a sketch for the proof of Theorem 7; a compre-
hensive proof is presented in the appended full paper. Our proof is based on the
techniques introduced in Section 2 and utilizes the aforementioned completeness
result for Or. Theorem 7 states that if a problem Π is both CF-hardRW and

5 In the distributed computing literature, the concept of graph factors was also referred
to as covering graphs and graph lifts.

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs 11

RW-hardWO, then it is also CF-hardWO. Let Π ∈ CF-hardRW ∩ RW-hardWO

be a problem satisfying the premise. Denote by ALE a RW-algorithm solving
Leader-Election with an access to a Π-oracle, and by AOR a WO-algorithm
solving Or with an access to a Π-oracle respectively.

The idea is to design a WO-algorithm A solving Leader-Election with
access to a Π-oracle by simulating one execution of ALE and multiple executions
of AOR, where the task of the latter is to determine whether the former has
reached a ready configuration. That is, for every simulated round r of algorithm
ALE a corresponding simulation AOR, called the fork [r] of AOR, is initiated.
The input to fork [r] is 0 if v was ready in round r under ALE (v observes that
from the simulated outcome of ALE’s round r); the input is 1 otherwise. Since
in A the Π-oracle can only be accessed once in every round, algorithm A uses
a careful mechanism to schedule disjoint accesses by the simulated execution of
ALE and all forks to this scarce resource; we refer to the full version for the
details.

The logic of Or guarantees that fork [r] of AOR has output 0 if and only
if round r under ALE’s simulation is in a ready configuration. Since AOR is a
WO-algorithm, node v can immediately rely on a returned 0 value to conclude
that this indeed happened. Employing Lemma 4, one can assume that ALE

sustainably solves the leader election problem, thus ensuring that the output
returned in v’s simulated round r of ALE yields a correct output for Leader-
Election. This establishes Theorem 7.

References

1. Abrahamson, K., Adler, A., Higham, L., Kirkpatrick, D.: Probabilistic solitude
verification on a ring. In: PODC (1986)

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7(4), 567 – 583 (1986)

3. Angluin, D.: Local and global properties in networks of processors (extended ab-
stract). In: Theory of computing (1980)

4. Angluin, D., Aspnes, J., Chan, M., Fischer, M., Jiang, H., Peralta, R.: Stably com-
putable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis,
P.G., Welsh, M. (eds.) DCOSS (2005)

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC (2004)

6. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: PODC (2006)

7. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20, 279–304 (2007)

8. Angluin, D., Fischer, M., Jiang, H.: Stabilizing consensus in mobile networks. In:
Gibbons, P., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS (2006)

9. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) MiNEMA (2009)

10. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: PODC
(1999)

12 Yuval Emek, Jochen Seidel, and Roger Wattenhofer

11. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: DISC (2001)

12. Boldi, P., Vigna, S.: Universal dynamic synchronous self–stabilization. Distributed
Computing 15(3), 137–153 (2002)

13. Chalopin, J., Das, S., Santoro, N.: Groupings and pairings in anonymous networks.
In: DISC (2006)

14. Chalopin, J., Godard, E., Métivier, Y.: Local terminations and distributed com-
putability in anonymous networks. In: Taubenfeld, G. (ed.) Distributed Computing
(2008)

15. Dolev, S.: Self-Stabilization (2000)
16. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.

In: Toueg, S., Spirakis, P., Kirousis, L. (eds.) Distributed Algorithms (1992)
17. Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: PODC (2013)
18. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N.: Sorting and

election in anonymous asynchronous rings. J. Parallel Distrib. Comput. 64(2), 254–
265 (Feb 2004)

19. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: FOCS (oct
2011)

20. Fraigniaud, P., Halldórsson, M., Korman, A.: On the impact of identifiers on local
decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS (2012)

21. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: A new measure of difficulty for
communication tasks. In: PODC (2006)

22. Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized distributed deci-
sion. In: DISC (2012)

23. Göös, M., Suomela, J.: Locally checkable proofs. In: PODC (2011)
24. Guerraoui, R., Ruppert, E.: What can be implemented anonymously? In: DISC

(2005)
25. Itai, A., Rodeh, M.: Symmetry breaking in distributive networks. In: FOCS (1981)
26. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: PODC (2005)
27. Korman, A., Sereni, J.S., Viennot, L.: Toward more localized local algorithms:

removing assumptions concerning global knowledge. In: PODC (2011)
28. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing

21(1), 193–201 (1992)
29. Luby, M.: A simple parallel algorithm for the maximal independent set problem.

In: Theory of computing (1985)
30. Lynch, N.A.: Distributed Algorithms (1996)
31. Mavronicolas, M., Michael, L., Spirakis, P.: Computing on a partially eponymous

ring. In: OPODIS (2006)
32. Métivier, Y., Robson, J.M., Zemmari, A.: Analysis of fully distributed splitting and

naming probabilistic procedures and applications. In: Moscibroda, T., Rescigno,
A. (eds.) SIROCCO (2013)

33. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24(6), 1259–1277 (1995)

34. Schieber, B., Snir, M.: Calling names on nameless networks. In: PODC (1989)
35. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i-

characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89
(Jan 1996)

Computability in Anonymous Networks:
Revocable vs. Irrecovable Outputs

[Full Version]
Yuval Emek1, Jochen Seidel2, and Roger Wattenhofer2

1Faculty of Industrial Engineering and Management, Technion, Israel
yemek@ie.technion.ac.il

2Distributed Computing, ETH Zurich, Switzerland
{seidelj, wattenhofer}@ethz.ch

Abstract
What can be computed in an anonymous network, where nodes are not equipped with unique identi-

fiers? It turns out that the answer to this question depends on the commitment of the nodes to their first
computed output value: Two classes of problems solvable in anonymous networks are defined, where in
the first class nodes are allowed to revoke their outputs and in the second class they are not. These two
classes are then related to the class of all centrally solvable network problems, observing that the three
classes form a strict linear hierarchy, and for several classic and/or characteristic problems in distributed
computing, we determine the exact class to which they belong.

Does this hierarchy exhibit complete problems? We answer this question in the affirmative by in-
troducing the concept of a distributed oracle, thus establishing a more fine grained classification for
distributed computability which we apply to the classic/characteristic problems. Among our findings is
the observation that the three classes are characterized by the three pillars of distributed computing,
namely, local symmetry breaking, coordination, and leader election.

1 Introduction
We study computability in networks, referred to hereafter as distributed computability. Distributed com-
putability is equivalent to classic centralized (Turing Machine) computability when the nodes are equipped
with unique (comparable) identifiers. However, as Angluin noticed in her seminal work [3], distributed com-
putability becomes fascinating in anonymous networks, where nodes do not have unique IDs. What can
be computed with deterministic algorithms merely depends on the topology of the network, and it is well
known that problems like maximal independent set can be solved in an anonymous network only if the nodes
are allowed to toss coins. We therefore consider the distributed computability of randomized algorithms
running in anonymous networks. Notice that in the scope of this paper, we do not impose any limitations on
the complexity resources (time, message/memory size, . . .), however, like in classic sequential computability
theory, we do require a correct result after a finite amount of time.

Apart from its theoretical interest, the study of anonymous networks is motivated by various real-world
scenarios. For example, the nodes may be indistinguishable due to their fabrication in a large-scale industrial
process [5], in which equipping every node with a unique identifier (serial number) is not economically feasible.
In other cases nodes may not wish to reveal their unique identity out of privacy and security concerns [26].

1

1.1 Setting
Distributed Problems. We consider simple (undirected, loop-free and no parallel edges) connected finite
graphs G, and denote the node and edge sets of a graph G by V (G) and E(G) or V and E if G is clear from
the context. A function f : V (G) → L is called a labeling of the graph G, and we refer to the set L as the
set of values that f assigns to nodes in G. A distributed problem Π is a set of three-tuples (G, i, o), where G
is a graph as described above, and i and o are input labels and output labels for G. For every problem there
are two sets I(Π) and O(Π) denoting the input values and output values of Π, i.e., the values that the labels
i and o assign, correspondingly. Such a three-tuple (G, i, o) ∈ Π is called a (solved) instance of Π. An input
instance of Π is a two-tuple (G, i) for which there exists a valid output o satisfying (G, i, o) ∈ Π, and we also
write (G, i) ∈ Π for input instances of the problem. We restrict ourselves to problems that are solvable in a
centralized setting.

Randomized Anonymous Algorithms. Our definition of how distributed algorithms work follows the
convention of [36] for synchronized network systems (message passing) with simultaneous starting times.
Nodes execute the same randomized and uniform algorithm in synchronous rounds, and in each round we
allow each node access to finitely many random bits. Every node v knows its degree deg(v) and can distinguish
between its neighbors Γ(v) (by means of a bijection {1, . . . ,deg(v)} → Γ(v), cf. the port model). In each
round every node sends and receives a message of unbounded, yet finite, size to and from each individual
neighbor. To ease our discussion every node v is equipped with one input register holding some problem-
dependent input value and one output register. The output register initially contains a special symbol ε
indicating v is not ready to return an output. Any value x 6= ε contained in v’s output register is interpreted
as v being ready to return its output and we say that v has output x. A global configuration in which all
nodes are ready is called a ready configuration. When algorithm A is in a ready configuration, we define A’s
output oA : V (G) → O by setting oA(v) to be the content of node v’s output register. In the following, we
consider two different notions of output revocability.

Definition (Output Revocability). An algorithm is referred to as a write-once algorithm if every node is
restricted to write to its output register at most once. If this restriction is lifted, then we call it a rewrite
algorithm.

In other words, in a rewrite algorithm a node may revoke its output, e.g., by writing ε to its output
register. While every execution of a write-once algorithm reaches at most one ready configuration, during
the execution of a rewrite algorithm many ready configurations can occur. Note that the converse does not
hold: an algorithm that is guaranteed to reach at most one ready configuration is not necessarily a write-once
algorithm. In the existing literature, algorithms are typically considered to be write-once algorithms.

Definition (Correctness). Fix some problem Π and an algorithm A. A ready configuration of A when
invoked on an input instance (G, i) ∈ Π is said to be valid if the output oA of A in this configuration is a
valid output for (G, i). Algorithm A is said to solve Π if it satisfies the following two conditions for every
input instance (G, i) ∈ Π:
1. A ready configuration is reached within finite time with probability 1.
2. Every ready configuration that can occur with a positive probability is valid.

The aforementioned definition of correctness requires that all occurring ready configurations will be
correct (i.e., correspond to a valid output). In Section 2 we show that our definition of correctness is robust
to certain changes. Notice that in the scope of this paper, we do not require that an algorithm terminates in
order to be correct. However, the algorithms designed throughout the paper do terminate, and the general
transformation techniques we present (i.e., compilers/simulations) can be designed to ensure termination if
the algorithms to which the transformation is applied terminate.

The choice of output revocability has a significant impact on the problems that an algorithm can solve.
In the following the terms WO-algorithms and RW-algorithms will thus be used to denominate write-once
and rewrite algorithms running in an anonymous network, respectively; RW and WO refer to the classes

2

of distributed problems solvable by these two types of algorithms. Lastly, we denote by CF the class of
distributed problems that are solvable in a centralized setting (by a Turing machine), bearing in mind that
this class essentially includes every computable function on graphs. The distinction of these classes is justified
by the following observation.

Observation. The classes of distributed problems satisfy WO ⊂ RW ⊂ CF (in the strict sense).

Proof. RW ⊂ CF: A Turing machine can simulate an algorithm running in an anonymous network. On
the other hand, the techniques from [3] can be used to show that leader election is not in RW, but it
is clearly possible in the centralized setting.

WO ⊂ RW: It is clear from the definition that every WO-algorithm is also a RW-algorithm. In Section 4.1.2,
we will show that for example Consensus is in RW, but not in WO.

1.2 Our Contribution
What can be computed in anonymous networks? As it turns out the effect output revocability has on the
distributed computability of anonymous networks is remarkable. A total of 21 problems, including some of
the most fundamental problems in distributed computing, are classified according to the exact class to which
they belong (Section 4).

Does the hierarchy we present exhibit complete problems? To answer this question we introduce the
notion of accessing an oracle in a distributed setting and show that this notion is sound (Section 3). As the
first stepping stone in this effort we show that the classes WO and RW are robust against two modifications
to the aforementioned correctness condition (Section 2). Each of our 21 problems is then classified according
to its hardness or completeness for the three classes (Section 4.2), thus obtaining a deeper understanding of
the intrinsic properties of these problems. Surprisingly, the WO, RW, and CF classes turn out to capture
exactly the three pillars of distributed computing, namely, local symmetry breaking, coordination, and leader
election, respectively.

1.3 Related Work
The history of distributed computability starts with the work of Angluin [3] proving that randomization
does not help to elect a leader in anonymous networks. Later, it was shown that electing a leader in an
anonymous ring network is possible if the size n of the ring is known [30], in fact, a (2 − ε)-approximation
of n is enough [1], not only in the special case of a ring but in general networks [40]. It turns out that
all these results (and many similar ones) come almost for free once our graph-theoretic characterization for
the class RW is established. The connection between computation in anonymous networks and products of
graphs (graph coverings) which was first observed in Angluin’s seminal work plays an important role in this
characterization.

There is a line of work that concentrates on deterministic distributed algorithms for problems in CF, in
particular if some parameters of the topology of the graph (for instance, its size) are known, e.g. [42, 10].
Deterministic algorithms are interesting to investigate even if the graph is restricted to a ring [18, 13], and
also assignments of not necessarily unique identifiers were studied in this context [37].

Another line of research studies computability in anonymous (directed) networks in connection with
termination. Not unlike us it is argued that termination in distributed systems is an issue that is not directly
evident, since one may be interested in systems where nodes terminate independently of others. Different
forms of termination and prior knowledge are studied in this line of work, where the strongest anonymous
model considered is equivalent to deterministic write-once algorithms with knowledge of an upper bound
to the network size [11]. When no prior knowledge is assumed the class of solvable problems can be fully
characterized using local views1 (quasi-coverings) and recursive functions [14]. Extending their approach,

1See Section 4.1.1 for a definition.

3

in the context of the current paper an individual node executing a RW-algorithm can never be entirely sure
about termination. We show that the class RW lies between the two classes WO (local termination) and
CF (global termination).

Output revocability should not be confused with the concept of eventual correctness, where the network
eventually converges to a correct output. For example, self-stabilizing algorithms [15] allow the system to
return an incorrect output for a finite amount of time, thus allowing a fault-tolerant algorithm to recover
from errors. With randomization, self-stabilizing leader election is possible on general graphs [16], hence
with randomization every CF-problem is eventually solvable in an anonymous network. In our terminology
eventual correctness could be viewed as requiring that some ready configuration, not necessarily the first one,
is stable2 and valid. We require though that an output is returned after finite time and that every output
returned by the network is correct, but we do allow the network to revoke partial outputs. The problems
solvable by self-stabilizing algorithms in directed graphs can be characterized by fibrations [12], the directed
analog to factors1 of graphs.

The self-stabilization concept is also used in the scope of population protocols, introduced by Angluin
et al. [5]. Population protocols are an example for asynchronous distributed automata with restricted
computational power. In this model, nodes cannot do arbitrary computations, as they are modeled by finite
state machines, see [9] for an overview. Regarding computability in a clique network, [5, 6, 7] conclude
the predicates solvable to be exactly those expressible in first-order Presburger arithmetic. On graphs with
bounded degree a Turing machine with linearly bounded space can be simulated [4]. It was also studied how
the correctness condition for population protocols affects solvability of the Consensus problem [8].

Apart from these results, not much is known about distributed computability, as a large fraction of
research deals with complexity rather than computability. However, there are surprising connections be-
tween complexity and computability, which go beyond us borrowing the terms hardness and completeness.
Regarding network algorithms, in the last thirty years, a lot of research went into the question how fast a
particular problem can be computed by the network. Literally hundreds of new upper and lower bounds
have been found. The fastest algorithms deliver a result within constant time, independent of the size of
the network, see [41] for a recent survey. It is intriguing that our research which is about computability has
most connections to this “fastest” class of distributed algorithms.

Naor and Stockmeyer [39] introduced the notion of locally checkable labelings (essentially an apply-
once oracle) in identified networks and ask the question how a constant-time deterministic algorithm can
decide whether the labeling represents a correct solution to a given problem. Follow-up work looked at the
bit complexity required to solve decision problems [31] and a problem hierarchy depending on the size of
checkable labelings was suggested [25], also for anonymous networks. Our work also yields a characterization
of decision problems in RW. How apply-once oracles can be used to make broadcast and wake-up schemes
more efficient was studied in [21]. However, we do not restrict the run-time to be constant and allow
randomization for symmetry breaking. Pruning algorithms [32] that build a solution gradually in a write-
once fashion were inspired by the same line of research, in an effort to remove the necessity of global knowledge
about the graph. While our algorithms are required to give a correct output in every execution, [19, 22]
study the notion of (p, q)-decidable decision problems (an anonymous randomized algorithm is allowed to
return a wrong output with constant probability) and find a strict hierarchy among the classes of solvable
problems depending on the success probabilities. If a randomized algorithm is allowed to fail (Monte-Carlo
algorithm), then a leader can be elected [38] with high probability (w.h.p, i.e., with probability 1− n−c for
any c). Hence any CF-problem can be solved in an anonymous network with high probability, whereas we
require a correct output with probability 1.

Non-deterministic algorithms running in an anonymous setting can fully determine the structure of the
radius t-ball around itself in [20], and thus solve exactly the decision problems that are closed under so-called
t-homomorphisms, that is, homomorphisms that preserve the structure t hops around every node, regardless
of access to unique identifiers. In our model only the local view can be retrieved. It may thus be surprising
that RW-algorithms can solve exactly the problems that such non-deterministic constant-time algorithms
can solve in a single round.

2A configuration is said to be stable if the nodes no longer revoke their outputs, see Section 2.

4

Lastly, it is worth mentioning that in the context of shared memory systems a notion of distributed
oracles in an asynchronous environment is studied. Usually such an oracle is applied once to implement a
protocol (algorithm), and the tasks (e.g., consensus) also form hierarchies by their ability to implement each
other [27, 34, 23]. Unlike in our model, computability in shared memory systems is hindered by asynchronous
execution rather than the network structure and has surprising connections to topology [28]. Nonetheless
variants of the consensus tasks turn out to be complete for the class RW.

2 Notions of Correctness
Our definition of a correct algorithm requires every ready configuration that occurs throughout an execution
to be valid. For WO-algorithms this requirement is superfluous since its execution will reach at most
one ready configuration. However, RW-algorithms may invalidate or change a ready configuration after it
occurred. One may therefore wonder if strengthening the definition by allowing only one durable ready
configuration makes the class of solvable problems strictly smaller. On the other hand one may be tempted
to weaken this definition, in hope to capture a larger class of problems by requiring only the first occurring
ready configuration to be correct. Perhaps surprisingly we show that these two variants have no effect and
are equivalent to the current definition of correctness. This equivalence will play a key role when we reason
about RW-algorithms in the next section which covers distributed oracles.

Definition (Sustainable Correctness). A ready configuration is said to be stable, if the nodes no longer
revoke their outputs. Algorithm A is said to sustainably solve a problem Π if it satisfies the following two
conditions for every input instance (G, i) ∈ Π:
1. A ready configuration is reached within finite time with probability 1.
2. The first ready configuration that occurs is valid and stable.

Definition (Loose Correctness). Algorithm A is said to loosely solve a problem Π if it satisfies the following
two conditions for every input instance (G, i) ∈ Π:
1. A ready configuration is reached within finite time with probability 1.
2. The first ready configuration that occurs is valid.

The class Sustainable-RW (respectively, Loose-RW) consists of every distributed problem that can be
sustainably solved (resp., loosely solved) by a RW-algorithm. Since sustainable correctness (resp., loose
correctness) is a restriction (resp., a relaxation) of correctness as defined in Section 1.1, we conclude that
Sustainable-RW ⊆ RW ⊆ Loose-RW. Note that the corresponding classes Sustainable-WO and Loose-WO
for WO-algorithms are equal to the class WO due to the write-once restriction of these algorithms. The
following theorem states that also for RW-algorithms the three classes are, in fact, equal.

Theorem 1. The classes of problems solvable by RW-algorithms under the three different notions of cor-
rectness satisfy Sustainable-RW = RW = Loose-RW.

The proof of Theorem 1 is based on a simple concept referred to as safe broadcast in which information is
broadcast throughout the whole network and no ready configuration is reached before all nodes have received
the information. When a node v receives a previously unseen message M that should be safely broadcast, it
writes ε to its output register for at least one round and forwards M to all its neighbors. This ensures that
M propagates through the network together with a front of non-ready nodes, so that no ready configuration
can be reached during the dissemination of M .

Based on the safe broadcast concept, we develop a generic technique called inhibiting messages which
will also be useful when designing algorithms in Section 4. For every node v, this programming technique
employs a register ρ, usually chosen to be v’s output register, and a list L containing pairs (i, x) where i is
an integer, typically a round or phase number, and x is an arbitrary value. Two methods are provided for
every node v, where the invocation of these methods is determined by user defined conditions: A node v
can (1) append a new pair (i, x) to L; and (2) broadcast an inhibiting message Mi for i. The operation is
as follows. If v sends or receives an inhibiting message Mi, then for all x the pairs (i, x) are removed from

5

L. Whenever L is empty, node v sets ρ ← ε. Assuming that L is non-empty, denote by (imin, xmin) a pair
in Q that satisfies imin ≤ i for all pairs (i, x) in Q. In that case, the default value stored in ρ is the value
xmin. The one exception to this rule occurs when v receives an inhibiting messageMimin , in which case v sets
ρ ← ε in the current round, which means that ε is written to ρ between any two consecutive non-ε values.
Notice that the front of non-ready nodes propagates through the network with the inhibiting message Mi

only as long as Mi invalidates the output currently contained in the output registers.
We employ inhibiting messages to show that the class RW is robust against the stated modifications to

the definition of a correct algorithm. The proof of Theorem 1 relies on a sustainability compiler that takes a
RW-algorithm A that loosely solves problem Π and transforms it into a RW-algorithm Â that sustainably
solves this problem. Specifically, under algorithm Â, every node v simulates A; to avoid confusion, let ρ̂
be v’s output register under Â and let ρ be v’s register simulating the output register of A. The compiler
is based on sending inhibiting messages, where the register upon which the inhibiting message technique
operates is ρ̂ and the integers i of the technique are identified with the round numbers. In every round r, if
v is not ready in round r under A, then node v broadcasts an inhibiting message Mr, that is, v broadcasts
an inhibiting message for r if ρ = ε. If on the other hand v’s register ρ contains the value x 6= ε in round r,
then v appends the pair (r, x). Theorem 1 is established by proving the following lemma.

Lemma 2. Let A be a RW-algorithm loosely solving a problem Π and let Â be the RW-algorithm obtained
by applying the sustainability compiler to A. Then Â sustainably solves Π.

Proof. Consider some input instance (G, i) ∈ Π and denote by η the execution of A on (G, i) that Â
simulates. Algorithm Â employs inhibiting messages. For the sake of the analysis let iv(r) denote the value
imin of node v in round r, or NIL if v’s queue is empty. In particular, if iv(r) 6= NIL, then the value stored
in v’s output register ρ̂ is the output of v in round r of η. By definition, η must reach a ready configuration
and the first ready configuration reached by η is valid; let r0 denote the round in which this valid ready
configuration is reached and let o0 be the valid output returned by η in that round. Notice that under
algorithm Â, no node broadcasts an inhibiting message for round r0, whereas at least one node broadcasts
an inhibiting message Mr for every round r < r0. This implies that under Â, eventually iv(r) = r0 for every
node v; let r1 ≥ r0 be the first round in which this happens. Starting from round r1, algorithm Â outputs o0
and the design of the inhibiting message technique guarantees that Â will not revoke this output. Therefore,
we only have to ensure that under Â, in all rounds r < r1 at least one node is not ready.

To that end, assume for the sake of contradiction that there exists a round r < r1 in which all nodes are
ready under Â. In that case iv(r) 6= NIL for every node v. If iv(r) = iu(r) for all u, v ∈ V (G) then A was in
a ready configuration in round r and thus r = r0 = r1. Therefore in round r under Â, there must be nodes
having outputs from two different rounds of η. Moreover, since G is connected there must exist two such
nodes u and v, {u, v} ∈ E(G). Since the sustainability compiler employs the inhibiting message technique,
we conclude that iu(r) 6= iv(r) and without loss of generality assume that iu(r) < iv(r). But this means,
that in some round r′ < r node v sent an inhibiting message for round iu(r) and this message reaches u in
round r′ + 1 ≤ r, in contradiction to the assumption that round iu(r) is non-inhibited for u in round r. It
follows that Â does not reach a ready configuration prior to round r1 which completes the proof.

3 Distributed Oracles
In this section, we introduce the concepts of hardness and completeness, which are central to this work and
allow us to gain a deeper understanding how the computability classes relate to each other. To that end, we
introduce the notion of an oracle working in a distributed setting.

Definition (Algorithm with access to a Π-oracle). Consider some problem Π. A C-algorithm, C ∈
{WO,RW}, with access to a Π-oracle is a distributed C-algorithm in which every node v is equipped
with a designated oracle input register and a designated oracle output register. Given some r ≥ 1, let ĩ(v)
be the content of v’s oracle input register in round r and let õ(v) be the content of v’s oracle output register
in round r + 1. If (G, ĩ) is an input instance of Π, then it is guaranteed that õ is a valid output for (G, ĩ).
No assumptions are made on the operation of the algorithm if (G, ĩ) /∈ Π.

6

While applying the oracle in every round of the algorithm may seem powerful, allowing the distributed
algorithm to arbitrarily choose the rounds in which the oracle is applied may require some sort of global
coordination, which is not necessarily possible. In comparison, a weaker definition of “accessing an oracle”
would be to allow application of the oracle only once in round 1. This distinction does not make a difference
for problems Π without inputs (|I(Π)| = 1), e.g., for graph theoretic problems like coloring, maximal inde-
pendent set, or determining the diameter, because the oracle is always applied on the same input instance.
It does however affect problems that do receive inputs (|I(Π)| ≥ 2), e.g., Consensus or logical And and
Or. It will be convenient to refer to this weaker manner of accessing an oracle as accessing an apply-once
oracle.

As stated above, based on the oracle concept, we will soon introduce the notion of hard and complete
problems for the hierarchy of problem classes. This notion would be ill-defined if accessing an oracle to a
problem ΠC ∈ C could enhance the computational power of a C-algorithm. We ensure that the notion of
an algorithm with access to an oracle is sound in the following theorem. Note that the statement of the
theorem does not mention the case C = CF, since the soundness of oracles for centralized models is well
understood and in any case, beyond the scope of the current paper.

Theorem 3 (Soundness). If a problem Π is solvable by a C-algorithm, C ∈ {RW,WO}, accessing an oracle
to a problem ΠC ∈ C, then Π can also be solved by a C-algorithm that does not access any oracle.

The key to proving this theorem is to show that in a C-algorithm Aa that solves a problem Π with
access to a ΠC-oracle, ΠC ∈ C, one can replace the oracle access by simulating a C-algorithm Ar that solves
ΠC without any oracle access. We will first prove that accessing apply-once oracles does not enhance the
computational power of RW- and WO-algorithms, since the two algorithms Aa and Ar can be executed
consecutively one after the other, or in other words, that algorithm Aa accessing an apply-once oracle can
be simulated without accessing an oracle by executing Ar first. This turns out to be a non-trivial task
especially for RW-algorithms since a node v simulating Ar cannot know for sure that the output returned
by Ar will not be revoked later on, i.e., whether it can be safely used for the execution of Aa. It therefore
does not know when such a result is valid so that a simulation of Aa can be invoked based on this result.
The technique we present to resolve this issue for RW-algorithms is based on Theorem 1. Actually, we will
need an extension of Lemma 2 (the key to the proof of Theorem 1) to RW-algorithms accessing a Π′-oracle
for some problem Π′. To that end, we observe that the construction of the sustainability compiler and the
arguments used in the proof of Lemma 2 can be repeated with no changes to yield the following.

Lemma 4. Fix some problem Π′. Let A be a RW-algorithm with access to a Π′-oracle loosely solving a
problem Π and let Â be the RW-algorithm with access to a Π′-oracle obtained by applying the sustainability
compiler to A. Then Â sustainably solves Π with an access to a Π′-oracle.

In other words, Lemma 4 states that the three notions of correctness for RW-algorithms are equivalent
even when the algorithm has an access to a Π′-oracle for some (arbitrary) problem Π′. This enables us to
establish the following lemma that states the soundness of apply-once oracles for RW-algorithms.

Lemma 5 (Consecutive RW Execution). Let ΠC be a problem in RW and let Aa be a RW-algorithm solving
an arbitrary problem Π with access to an apply-once ΠC-oracle. Then Π is solvable by a RW-algorithm
without access to any oracle.

Proof. Let Ar be a RW-algorithm solving ΠC. Employing Lemmas 2 and 4, we assume that Ar and Aa

sustainably solve ΠC and Π, respectively. We would like to show that Π ∈ RW by designing a RW-algorithm
A that solves Π without access to any oracle. This will be accomplished by letting A simulate the execution
of Aa, using Ar to replace Aa’s access to the apply-once ΠC-oracle. Algorithm A faces the issue that an
output returned to a node v by Ar may not be part of a ready configuration and thus it is not clear whether
v should use this value as an output of the ΠC-oracle that Aa invoked. To cope with that, algorithm A
performs a systematic search for some round in which Ar reaches a ready configuration.

Algorithm A simulates algorithms Ar and Aa; to avoid confusion, let ρ, ρr, and ρa denote the output
registers of v under A,A1, and Aa, respectively. Algorithm A works in phases, where phase p consists of 2p

7

rounds as follows. In each phase p, every node v first simulates p rounds of Ar; the role of this simulation
is to replace the access to the (apply-once) ΠC-oracle. While this simulation takes place, node v sets ρ← ε
ensuring that a ready configuration can only be reached in the second half of phase p. Node v is referred
to as sad if ρr = ε at the end of round p of phase p; otherwise, node v is referred to as happy. If node v
is sad, then it does not participate in the next p rounds of phase p and sets its output register ρ ← ε in
round 2p + 1. If node v is happy, then in the next p rounds of phase p, it simulates p rounds of Aa using
the value stored in ρr as the output of the ΠC-oracle (accessed by Aa) and sets ρ = ρa in every round of the
simulation. For convenience, let σa

p denote the sequence of rounds (of A’s execution) that are dedicated to
simulating algorithm Aa in phase p, i.e., σa

1 = [2], σa
2 = [5, 6] and so on. It will be important for the analysis

that when simulating algorithms Ar and Aa in phase p + 1, node v reuses the same random bits that were
used in phase p to which v only adds the random bits required for the simulation of round p + 1 in both
algorithms.

For the sake of the analysis, let ηr be the execution of algorithm Ar that corresponds to the simulation
performed by algorithm A. Notice that ηr is well-defined since under A, the simulation of Ar reuses the
same random bits in every phase, so that in all phases p, the first p rounds of Ar correspond to the first p
rounds of ηr. Denote by or the output obtained from the stable ready configuration reached by ηr. Based
on that, let ηa be the execution of algorithm Aa that corresponds to the simulation performed by algorithm
A in which the oracle access is replaced by or, and let oa denote the output obtained from the stable ready
configuration reached by ηa. The execution ηa and its output oa are well defined since Aa sustainably solves
Π and A reuses random bits to simulate Aa as well. Denote by tr and ta the rounds in which the stable ready
configurations of ηr and ηa are reached for the first time, respectively, and let t = max{tr, ta}. We argue that
algorithm A reaches the first ready configuration in phase t, namely in round σa

t (tr) of A’s execution, and
that the output of this ready configuration is oa, which together with Theorem 1 establishes the assertion
since A (at least) loosely solves Π.

To see that this is indeed true recall that under algorithm A, a node v may only set ρ to a non-ε value in
the second half of a phase that is dedicated to simulating Aa. In phases p < tr at least one node is sad, i.e.,
not ready in round p of ηr, and therefore not ready during the second half of phase p. On the other hand,
in phases p ≥ tr all nodes are happy and the simulation of Aa performed by A corresponds to the first p
rounds of ηa. The correctness of A now follows from the sustainable correctness of Aa.

The crux in the proof of Lemma 5 was to show how two RW-algorithms can be executed consecutively in
a correct manner. At first, it seems that the same technique is inapplicable to a WO-algorithm (accessing an
apply-once oracle), since under algorithm A described in the proof of Lemma 5, a node will revoke any output
it returned in the last round of a phase, i.e., algorithm A is not a WO-algorithm due to our construction.
However the technique can be slightly modified so that it is applicable to WO-algorithms as well.

To address the aforementioned issue, we make three adjustments to the construction of algorithm A when
it is applied to a WO-algorithm Aa with access to a ΠC-oracle, ΠC ∈WO. To describe the adjustments we
use the same terminology as in the proof of Lemma 5: (1) Node v is not allowed to change the value stored
in its output register ρ after the first value x 6= ε was written to it. (2) If v is sad at the end of round p
of phase p, then v broadcasts a sadness message for phase p. (3) If a happy node v in phase p receives a
sadness message for that phase (in one of the rounds σa

p(1), . . . , σa
p(p)), then v stops to participate in the

simulation of Aa, and in particular does not write to its output register ρ in the remainder of phase p.
The first adjustment immediately ensures that the resulting algorithm A is indeed a WO-algorithm. We

argue that A reaches a ready configuration in phase t, and that the output of A is oa (and therefore correct).
In phases p < t there is at least one node v that is sad or did not produce an output under algorithm Aa,
and therefore v does not become ready in the second half of phase p. In phases p ≥ t on the other hand, all
nodes are happy and the simulation of Aa corresponds to ηa.

Since A is a WO-algorithm we need to ensure that the output oA of A satisfies oA(v) = oa(v) for all nodes
v since a node that wrote to its output register in some phase p < t cannot revoke its output in later phases.
Consider some node v and denote by p the phase in which v writes to its output register. This occurs in round
s = σa

p(sa) dedicated to simulating round sa of Aa. All nodes u in the inclusive sa-hop neighborhood Γ+
ra(v)

must be happy in phase p (otherwise v would have received a sadness message). Moreover, the simulation

8

that a node u at distance d < sa from v performs of Aa agrees with ηa for the first sa− d rounds. Therefore
for node v, the first sa rounds of A’s simulation of Aa correspond to the first sa rounds of ηa. Since Aa

and Ar are both correct WO-algorithms, this implies that oA(v) = oa(v), which concludes our argument.
Lemma 6 follows.

Lemma 6 (Consecutive WO Execution). Let ΠC be a problem in WO and let Aa be a WO-algorithm
solving an arbitrary problem Π with access to an apply-once ΠC-oracle. Then Π is solvable by a WO-
algorithm without access to any oracle.

When trying to extend the proof of Lemma 5 in attempt to establish the RW case of Theorem 3, the
issue we needed to solve for RW-algorithms with an access to an apply-once oracle multiplies: Between every
two simulated rounds of Aa, one invocation of Ar is required to replace the oracle access, and a simulating
node cannot know for sure that an output obtained from Ar is part of a ready configuration for any such
simulation of Ar. However, the ideas used to prove Lemma 5 can be extended to cope with this difficulty.
We will show how to interleave single rounds in the simulation of an algorithm Aa accessing an oracle with
executions of an algorithm Ar that replaces the oracle.

Proof (of Theorem 3). Let C be either WO or RW, let ΠC be a problem in the class C, and let Ar be a
C-algorithm solving ΠC. Let Aa be a C-algorithm solving an arbitrary problem Π with access to a ΠC-oracle
(applied in every round of Aa). If C = RW, then by Theorem 1 and Lemma 4, we assume that Ar and Aa

sustainably solve ΠC and Π, respectively. We wish to simulate Aa and multiple invocations of Ar using a
C-algorithm A without access to any oracle. Denote by ρ the output register of node v. The construction
of algorithm A is similar to the construction we used in the proofs of Lemmas 5 and 6; the difference is that
in phase p, algorithm A should now simulate p invocations of algorithm Ar, one before each round of the
simulated execution of Aa, instead of just a single invocation. That is, we precede each round 1 ≤ i ≤ p of
Aa’s simulated execution under A with a simulation of an invocation of Ar that runs for p rounds and replaces
Aa’s access to the ΠC-oracle between rounds i− 1 and i. Specifically, phase p now consists of p2 + p rounds,
where each round r ≡ 0 (mod p + 1) of phase p is dedicated to simulating round r/(p + 1) of Aa, whereas
each round r 6≡ 0 (mod p+ 1) is dedicated to simulating round r (mod p+ 1) in invocation i = dr/(p+ 1)e
of Ar, occurring between rounds i − 1 and i of Aa. For convenience, let σa

p denote the sequence of rounds
(of A’s execution) that are dedicated to simulating algorithm Aa in phase p, i.e., σa

1 = 〈2〉, σa
2 = 〈5, 8〉 and

so on.
During phase p, it may happen that the simulation of invocation 1 ≤ i ≤ p of Ar in node v outputs ε,

which means that v cannot simulate round i of Aa; when this happens, node v becomes sad for the current
phase p. Recall that this means that v stops participating in the remainder of phase p and sets ρ ← ε.
Moreover, if C = WO, then in addition to that, v broadcasts a sadness message. As before, node v sets
ρ← ε during simulations of Ar, and when v is happy ρ is used to simulate the output register of Aa.

For the sake of the analysis we inductively define executions ηr
i of algorithm Ar and an execution ηa of

algorithm Aa. Let ηr
1 be the execution of algorithm Ar that corresponds to the simulation that A performs

to replace Aa’s first oracle access, and denote by or
1 the output obtained from the stable ready configuration

of ηr
1. Both ηr

1 and or
1 are well-defined since under A, the simulation of Ar reuses the same random bits in

every phase and due to the sustainable correctness of Ar. Let ηa
(1) be the first round of Aa’s execution ηa that

algorithm A simulates in which the first oracle access of Aa is replaced with or
1. Based on ηr

1, the first round
ηa

(1) in ηa is well-defined. We define the executions ηr
i and the remaining rounds of ηa inductively: (1) Let ηr

i

be the execution of algorithm Ar that corresponds to the simulation that A performs to replace Aa’s oracle
access after round i− 1 of ηa, and denote by or

i the output obtained from the stable ready configuration of
ηr
i . (2) Let ηa

(i) be the ith round in the execution of Aa that corresponds to the simulation performed by
algorithm A in which Aa’s oracle access is replaced by or

i. Note that (1) and (2) together are well-defined,
since the induction is based on ηa

(1) and ηr
(1), and the simulations of Ar and Aa reuse the same random bits

in every phase. Thanks to the sustainable correctness of Aa we denote by oa the output obtained from the
stable ready configuration ηa reaches.

With these definitions in mind, denote by ta the first round in which ηa is in a ready configuration.
Denote by tri the first round in which ηr

i is in a ready configuration and let tr = maxi<ta{tri}. Lastly, denote

9

by oa the output obtained from the stable ready configuration reached by ηa in round ta. We argue that
algorithm A reaches the first ready configuration in phase t = max{ta, tr}, specifically in round σa

t (ta), and
that the output of A in that phase is oa.

ηa

ηr1 ηr2 ηrta−1

ηa(1) ηa(2) ηa(ta) · · ·

trtr1
tr2

trta−1

trta

· · ·

ηrta · · ·

· · ·

· · ·

Figure 1: Executions ηa and ηr
i of Aa and Ar, respectively.

Assume for the sake of contradiction that in some phase p < t algorithm A reaches a ready configuration.
Due to our construction this can only occur in a round s = σa

p(sa) dedicated to simulating some round sa of
algorithm Aa. In that case all nodes are happy in round s, which can only occur if tri ≤ p for all i < sa. This
implies that the first sa rounds that A simulated of algorithm Aa correspond to the first sa rounds of ηa, i.e.,
ηa reaches a ready configuration in round sa = ta in contradiction with the choice of t. In phase p = t on the
other hand, for all i ≤ ta execution ηr

i reaches a ready configuration within p rounds. Therefore the first ta
rounds that A simulates of Aa correspond to the first ta rounds of ηa and A reaches a ready configuration
in round ta. In the case C = RW, the (at least loose) correctness of A now follows from the correctness of
Aa and the proof is concluded by applying Theorem 1.

For the case C = WO however, we need to ensure that the output oA of algorithm A satisfies oA(v) =
oa(v) for all nodes v, since in algorithm A a node v may write to its output register ρ prior to phase t. Let v
be a node that irrevocably sets ρ← oA(v) in phase p. This can only occur in round s = σa

p(sa) for some sa.
Since v did not receive a sadness message for phase p all nodes u in the inclusive sa-hop neighborhood Γ+

sa(v)
of v are happy in round s. In other words, all nodes u are ready in the first sa simulations of Ar performed
by A in phase p. It follows that for node v the first sa rounds of the sa simulations of Aa correspond to the
first sa rounds of ηa. Since Ar and Aa are both WO-algorithms we conclude that indeed oA(v) = oa(v).

Now that Theorem 3 is established we introduce the concept of hard problems by borrowing the termi-
nology from sequential complexity theory.

Definition (Hardness). For two classes B ⊇ C, a problem Π is said to be B-hard with respect to C, denoted
by Π ∈ B-hardC, if for every problem ΠB ∈ B, there exists a C-algorithm that solves ΠB with access to a
Π-oracle. We say that Π is complete in B with respect to C, denoted by Π ∈ B-completeC, if additionally
Π itself is contained in B.

Following our notational convention, we would refer to an NP-hard problem as being NP-hardP . For
example, the problem of electing a leader is well known to be CF-hardWO since once a leader is available, this
leader can assign unique identifiers to all other nodes and solve the problem centrally. Our definition yields
the three hardness classes CF-hardRW, CF-hardWO and RW-hardWO, allowing us to study how algorithms
running in anonymous networks relate to centralized algorithms as well as how the two output revocability
notions relate among each other. By definition, every CF-hardWO problem is both CF-hardRW and RW-
hardWO; it turns out that the converse direction is also true. In Section 5 we will have the necessary tools
to prove this statement, as cast in the following theorem.

Theorem 7. The hardness classes satisfy

CF-hardWO = CF-hardRW ∩RW-hardWO.

10

4 Problem Zoo

CF

CF-hardRW

CF-hardWO
RW-hardWO

Min-Coloring
Min-Cut-Value

Factor-Multiplicity

Diameter
Min-Cut-Partition

Leader-Election
Min-Cut

Factor-Graph(≥ 2)-Size-Apx
(< 2)-Size-Apx

(≥ 3)-Hop-MIS
(≥ 3)-Hop-Coloring

Coordination

RW

Factor-Diameter
Consensus

WO

Coloring

2-Hop-MIS
2-Hop-Coloring

MIS

And
Uniqueness Or

IDs α-Diameter-Apx

Figure 2: Classes CF, RW and WO, and the respective hardness classes.

In this section, we study the computability and hardness of various problems in our setting. A total of
21 problems are investigated as depicted in Figure 2, including variations of approximation guarantees or
output specification. First, we will focus on the computability of each problem, i.e., whether it is in WO, in
RW \WO, or in CF \RW. Later in Section 4.2, we will investigate the hardness of each of the problems.
Based on that, we establish Theorem 7 in Section 5.

4.1 Computability
Almost all results regarding (non-)computability of problems derived in this section are obtained using one
of two general proof frameworks. To characterize problems that can be solved by RW-algorithms, we find a
necessary and sufficient condition. For the class WO, we use a necessary condition that allows us to rule out
the inclusion of problems in this class. All but one result on non-computability can then be derived using
the two characterizations. For computability of problems in RW, the same characterization can be used,
while for problems in WO we refer to known algorithms.

4.1.1 Graph Factors, Products and Local Views

The key to our characterization of problems in RW is the notion of graph factors.3

Definition (Graph Factors). Let G andH be two simple undirected graphs and `G and `H two labelings of G
and H, respectively, such that `G and `H share the same co-domain. A surjective function f : V (G)→ V (H)
is called a factorizing map of G inducing H if it has the following properties:
1. if (u, v) ∈ E(G), then (f(u), f(v)) ∈ E(H) for every u, v ∈ V (G), that is, f is a graph homomorphism;
2. for every node v ∈ V (G), the restriction f |Γ(v) of f to v’s neighborhood is a bijection onto the neighbor-

hood Γ(f(v)) of v’s image f(v), that is, f is locally one-to-one and onto; and
3. the labeling functions satisfy `G(v) = `H(f(v)) for every node v ∈ V (G), that is, f preserves the labels.
If there exists such a factorizing map f , then we say that (G, `G) is a product of (H, `H) or equivalently, that
(H, `H) is a factor of (G, `G). A labeled graph (G, `G) is prime if all factors of (G, `G) are isomorphic, i.e.,
if the only factor of (G, `G) is the graph itself.

The above definition essentially corresponds to the definition given in [24] for covering graphs extended
to respect node labels. It is a known fact that |V (G)| must be an integer multiple m of |V (H)| (see, e.g.,

3In the distributed computing literature, the concept of graph factors was also referred to as covering graphs and graph lifts.

11

1

2 3

4

56

1

2

3

1

2 3 4 5 6

7

89101112

2

1 4

3

Figure 3: The cycles C3, C4 and C6 on 3, 4 and 6 nodes are factors of the 12-cycle C12 by mapping node i
in C12 to the node i (mod 3, 4 or 6) in the respective cycle. The prime factors of C12 are C3 and C4.

[24]). We say that (G, `G) is an m-product of (H, `H) or equivalently that (H, `H) is an m-factor of (G, `G),
denoted (G, `G) ∼= m·(H, `H) andm·(H, `H) ∼= (G, `G), respectively, when we want to emphasize the specific
value of m. It will be convenient to use the notation (G, `G) ∼= m · (H, `H) without explicitly specifying m
as well, in which case the exact value of m is typically not important. Note however that an m-product of
a graph is not necessarily unique (not even for m = 1). For two unlabeled graphs G and H, we assume that
`G and `H both assign the same label to all nodes, and we omit the labeling functions in our notation.

We will use factors of graphs to derive a characterization for problems with input and output labelings
i and o of a graph G, respectively. Note that the combined labeling (i, o) is also a labeling of G in which
every node v is labeled by the pair (i(v), o(v)). If (G, i) is an m-product of (G, i′) by a factorizing map f
and o is a valid output labeling of (G, i), then we denote the labeling o′(·) = o(f(·)) as the natural extension
of o to (G′, i′). Observe, that in this case (G′, i′, o′) ∼= m · (G, i, o).

Product graphs are used in the existing literature to derive negative results for computability of problems
by anonymous distributed algorithms, dating back to the seminal work of Angluin [3]. Those proofs are based
on lifting a computation that occurs in a graph (G, i) to some product (G′, i′) ∼= m · (G, i) and forcing node
v′ ∈ V (G′) to copy the execution of its image under the factorizing map f . This technique was used, for
example, to prove the impossibility of electing a leader in anonymous networks [3], and the same technique
can be used to show that Leader-Election is not in RW. As it turns out, graph products actually lead
to a complete characterization of problems in RW.

Theorem 8 (Characterization of RW). Problem Π is in RW if and only if

∀(G, i) ∈ Π, ∃o : (G, i, o) ∈ Π s.t.
∀(G′, i′) ∈ Π, ∃o′ : (G′, i′, o′) ∈ Π s.t.
(G′, i′) ∼= m · (G, i) =⇒ (G′, i′, o′) ∼= m · (G, i, o) . (1)

Consider a problem Π whose input instances are arbitrary labeled graphs with O(Π) = {YES,NO}, and
fix some subset Y of the input instances. The problem Π is is called a (distributed) decision problem (cf.
[31, 25]), if for every (G, i) ∈ Y , all nodes must output YES and for every input instance (G, i) 6∈ Y , at least
one node outputs NO. The instances in the set Y are referred to as the YES-instances of Π. Theorem 8
implies that the class of decision problems in RW is exactly the class of decision problems that are closed
under taking products of the solved problem instances, namely if (G, i, o) ∈ Π and (G′, i′, o′) ∼= m · (G, i, o),
then (G′, i′, o′) ∈ Π.

The proof of Theorem 8 relies in part on the aforementioned lifting technique [3]. More specifically, fix
some instance (G, i) and let (G′, i′) be a product of that instance by the factorizing map f . For every node
v ∈ V (G), let η(v) denote the execution of an algorithm A that is invoked on (G, i) from the perspective of v.
Note that η is fully determined by the random bits used by each node in the course of A’s execution. Denote
by η′(·) := η(f(·)) the natural extension of η to (G′, i′). In η′ every node v will perform exactly the same
execution as its image f(v), and if an output o is reached in execution η of A, then the output o′(·) = o(f(·)),
i.e., the natural extension of o to (G′, i′), is reached in execution η. We shall refer to execution η′ as lifting
η from (G, i) to (G′, i′) and conclude with the following lemma.

12

1

2

3

1

2 3

1 3 1 2

2 3 1 2 23 1 3

Figure 4: Cycle on 3 nodes and the corresponding local view of depth 4 as seen by node 1.

Lemma 9 (Lifting an Execution [3]). Consider some RW-algorithm A and let (G, i) and (G′, i′) be two
labeled graphs satisfying (G′, i′) ∼= m · (G, i) with factorizing map f : V (G′) → V (G). For every finite
execution η of A on (G, i) ending in a ready configuration with output o, there exists a finite execution η′ of
A on (G′, i′) ending in a ready configuration with output o′ such that o′(v) = o(f(v)) for every v ∈ V (G′).

In particular, if no valid output labeling for (G, i) can be naturally extended to a valid output labeling
for (G′, i′), then it is also not possible for an algorithm to (always) return a correct output in both graphs.
Theorem 8 is also closely related to the Factor-Graph problem introduced in Section 4.1.2 and therefore
deferred until then. A necessary condition for problems in WO can be defined using local views.

Definition (Local View). Consider some randomized algorithm A. Let (G, `) be a labeled graph and let v
be a node in V (G). Fix some assignment β of random bits to the nodes and denote by βt(v) the (finitely
many) random bits used by v in all rounds r ≤ t. The depth-t local view of v under β is the rooted tree Lβt (v)
of depth t with a labeling `t defined as follows. For every node v, the local view Lβ0 (v) contains only a single
vertex4r and the labeling `0(r) is (`(v),deg(v), β0(v)). From the labeled forest Ft(v) := {Lβt (u) | u ∈ Γ(v)},
the depth-(t + 1) local view Lβt+1(v) is constructed in two steps: (1) Prune the sub-tree corresponding
to node v from the root vertex ru of every Lβt (u), u ∈ Γ(v), to obtain the pruned local view L′βt (u); let
F ′t (v) = {L′βt (u) | u ∈ Γ(v)} be the forest containing the pruned local views of v’s neighbors. (2) Construct
Lβt+1(v) from the pruned local views in F ′t (v) by introducing a new root r as the parent of ru for all u ∈ Γ(v).
The labeling `t+1(r) := (`(v),deg(v), βt+1(v)), whereas for all nodes in the pruned sub-trees L′βt (u) of r, the
labeling remains unchanged. In cases where no assignment of random bits is assumed the (deterministic)
depth-t local view Lt(v) is obtained in the same way by excluding βt(v) in the vertex labels.

Informally, the depth-t local view of node v captures the network from v’s point of view in round t. Local
views without random bits were used before, e.g., to discuss solvability of leader election in the context of
deterministic anonymous algorithms [42]. Theorem 10 relies on the possibility that nodes whose executions
are indistinguishable from v’s perspective under deterministic algorithms may remain indistinguishable from
v’s perspective for a finite amount of time also under randomized algorithms.

Theorem 10. Problem Π is not in WO if

∃(G, i) ∈ Π s.t. ∀o : (G, i, o) ∈ Π, ∀t ∈ N, ∃(G′, i′) ∈ Π s.t.
∀o′ : (G′, i′, o′) ∈ Π, ∃v ∈ G, ∃v′ ∈ G′ s.t.
Lt(v) = Lt(v′), and (2)
o(v) 6= o′(v′) . (3)

4 To avoid the confusion between the basic elements in the graph G and those in the rooted tree Lβt (v), we refer to the
former as nodes and to the latter as vertices.

13

Proof. Let W (Π) denote the characterization for a problem Π stated in the theorem. Assume for the sake
of contradiction that there exists a problem Π ∈WO for which W (Π) holds and let A be a WO-algorithm
solving Π. Invoke A on the input instance (G, i) promised by W (Π) to obtain A’s output o after t steps and
denote the random bits used by node v up to round t in this execution of A by βt(v). Let (G′, i′) ∈ Π be the
labeled graph promised by W (Π) for (G, i, o) and t. For every valid output o′ to (G′, i′), the property W (Π)
guarantees the existence of two nodes v ∈ V (G) and v′ ∈ V (G′) satisfying both (2) and (3). Constraint
(2) implies that with positive probability nodes v and v′ observe the same execution up to (and including)
round t, namely if Lβt (v) = Lγt (v′) for some assignment of random bits γ to nodes in G′. Therefore, with
positive probability, v′ will return an output o′(v′) = o(v). But (3) implies that o′ cannot be a valid output
for (G′, i′), in contradiction to the assumption that algorithm A solves Π.

4.1.2 Results

We start by briefly stating the proof techniques derived from Theorems 8 and 10 that we use to establish
computability results.

Π 6∈WO: The inclusion of Π in WO will be disproved by finding an input instance (G, i) ∈ Π and for all
valid outputs to (G, i) and arbitrary t, a construction of an input instance (G′, i′) ∈ Π in which the depth-t
local view of some node v′ ∈ V (G′) is the same as that of some node v ∈ V (G), but the output of v′ must
differ from that of v.

Π 6∈ RW: The inclusion of Π in RW will be disproved by finding an input instance (G, i) ∈ Π and for
all valid outputs o to (G, i), an input instance (G′, i′) ∈ Π satisfying (G′, i′) ∼= m · (G, i) such that no natural
extension of o to (G′, i′) is a valid output for that instance.

Π ∈ RW: The inclusion of Π in RW will be established by showing that for every input instance (G, i) ∈
Π, there is a valid output o such that for every input instance (G′, i′) ∈ Π satisfying (G′, i′) ∼= m · (G, i), the
natural extension of o to (G′, i′) is a valid output for that instance.

The two techniques for RW rely on Theorem 8, which we did not prove yet. Therefore, after giving a
brief overview of problems known to be in WO, we will focus on proving the theorem first.

MIS and other Local Symmetry Breaking. The well studied symmetry breaking tasks Maximal-
Independent-Set (MIS), (∆ + 1)-Coloring and Maximal-Matching are indeed in WO: The famous
Luby-algorithm [35, 2] satisfies the WO condition already. Similarly, there are algorithms to solve (∆ + 1)-
Coloring [33]5 and Maximal-Matching [29] that are WO-algorithms. Two other problems studied before
are 2-Hop-MIS and 2-Hop-Coloring in which two nodes in the independent set or two nodes having the
same color, respectively, must not have a common neighbor. In [17] both problems were found solvable
by WO-algorithms using an even weaker computational model. The algorithm from [17] that solves 2-
Hop-Coloring uses up to ∆2 − ∆ + 1 colors, which is a simple upper bound on the number of required
colors.

Factor-Graph. In the Factor-Graph problem, nodes in the network (G, i) are required to agree on a
factor (H, j) of (G, i). That is, every node v ∈ G should output the same factor (H, j) of (G, i) (with inputs
and uniquely named nodes), and its own name f(v) in H, where f is the factorizing map inducing H. Had
we proven Theorem 8 already, it would follow from the definition that Factor-Graph it is in RW. Instead
we use this problem to establish the theorem, starting with the following observation which is essential for
the first half of the proof.

Lemma 11. There is a RW-algorithm solving Factor-Graph.

Proof. We present a RW-algorithm A that solves Factor-Graph on arbitrary input instances (G, i).
Algorithm A progresses in phases where during each phase p, every node v constructs a candidate factor
(Gp, ip). Nodes in V (Gp) are identified by a randomly chosen (candidate) identifier βp(v), and an edge

5The algorithm for (∆ + 1)-Coloring described in the cited work also works if no upper bound on ∆ is known by replacing
a node of degree d in the overlay graph with a complete graph on d + 1 nodes.

14

{βp(u), βp(v)} is added to E(Gp) if the edge {u, v} is present in E(G). All nodes v ∈ V (G) start in phase 1,
and advance from phase p to p+ 1 if v sends or receives an inhibiting message for phase p.

In the beginning of a phase p, all nodes v first choose a random bit string βp(v) containing p random
bits. Node v then exchanges βp(v), its input i(v), and its degree deg(v) with every neighbor. After v
received a message containing the corresponding values of every neighbor, it broadcasts a my-neighborhood
message Mp(v) containing (βp(v),deg(v), i(v)), and the corresponding values of all its neighbors. While v
receives my-neighborhood messages Mp(u) from other nodes u, node v gradually constructs its candidate
factor (Gp, ip) by inserting the node βp(u) with the label i(u) contained in Mp(u), and edges to all of u’s
neighbors. Note that some edges may point to nodes that were not yet inserted into the graph. We say that
v detects an inconsistency, if either two messages Mp(u) 6= Mp(u′) are received for which βp(u) = βp(u′),
or if a message from a node u with degree deg(u) was received that did not contain deg(u) + 1 different
identifiers for u and its neighbors. When v detects an inconsistency it broadcasts an inhibiting message for
phase p. A node v sending an inhibiting message for the current phase p sets its output register to ε and
starts phase p + 1. If v did not receive an inhibiting message for a phase p and all endpoints of edges in
(Gp, ip) were inserted, then v returns the output ((Gp, ip), βp(v)).

We start the analysis of algorithm A by showing that A’s output is correct if a ready configuration is
reached. For this, observe that if two neighboring nodes u and v are in different phases pu and pv respectively,
then u or v is currently broadcasting an inhibiting message and is therefore not ready. When on the other
hand all nodes are in the same phase p and all nodes are ready, then no node detected an inconsistency in
(Gp, ip). Therefore the returned graph (Gp, ip) is the same graph for every node, and we have to show that
βp is a factorizing map inducing (Gp, ip). The function βp is surjective, because every node in V (Gp) has a
preimage in G. Further βp is a graph homomorphism since for every edge {u, v} in G the edge {βp(u), βp(v)}
is inserted into Gp. The inconsistency detection ensures that the restriction βp|Γ(v) is an injection on Γ(βp(v))
for every node v. Because the input labeling ip(βp(v)) is defined by the input value assigned to v, the function
βp respects the graph labeling, and we conclude that m · (Gp, ip) ∼= (G, i) for some m. It is left to show that
A reaches a ready configuration with probability 1. But this will happen at latest in a phase p0 in which
every node chooses a unique random identifier, because this ensures that every my-neighborhood message is
unique. In this case the algorithm will return a graph Gp0 that is isomorphic to G.

Having established that Factor-Graph is a problem in RW, we now present the proof of Theorem 8.

Proof (of Theorem 8). Let R(Π) denote the graph theoretic characterization (1) stated in the theorem, that
is

R(Π) =∀(G, i) ∈ Π,∃o : (G, i, o) ∈ Π s.t.
∀(G′, i′) ∈ Π,∃o′ : (G′, i′, o′) ∈ Π s.t.
(G′, i′) ∼= m · (G, i) =⇒ (G′, i′, o′) ∼= m · (G, i, o).

We wish to prove that Π ∈ RW⇔ R(Π), and we prove both directions of the if and only if separately.
if: Let Π be a distributed problem that satisfies R(Π); we prove that then Π must be in RW. To

accomplish that, we describe a RW-algorithm A solving Π with access to a Factor-Graph-oracle. Since
Factor-Graph is solvable by a RW-algorithm without access to any oracle (Lemma 11) and oracles are
sound (Theorem 3), this is sufficient to conclude that Π ∈ RW. The key to algorithm A is to invoke
the Factor-Graph-oracle until returns a valid input instance (G, i) of Π. For every such instance, the
characterization R(Π) promises the existence of a valid output o to (G, i) satisfying that for every product
(G′, i′) ∼= m · (G, i), with (G′, i′) ∈ Π, the natural extension o′ of o to (G′, i′) is a valid output for (G′, i′).
Algorithm A exploits that as follows.

Fix some instance (G, i) ∈ Π. At the beginning of round r, node v appends a random bit to the (initially
empty) string βr−1(v) to obtain βr(v). Then, node v invokes the oracle with input (i(v), βr(v)). In all
rounds r > 1 the oracle output register of every node v contains a labeled graph (Hr, (jr, γr)) satisfying
(Hr, (jr, γr)) ∼= m · (G, (i, βr−1)), and every node receives a name fr(v) ∈ V (Hr) assigned to v by the
factorizing map inducing Hr. Node v now checks whether (Hr, jr) is an input instance of Π. If it is, then v

15

chooses the lexicographically smallest or that satisfies R(Π) for (Hr, jr) and writes or(fr(v)) to its output
register.

When in round r every node v returns some output or(v), the output of algorithm A is valid for the
instance (G, i) on which the algorithm is executed, because (G, i) ∼= m · (Hr, jr). Algorithm A will reach a
stable ready configuration with probability 1 within finite time, since the output from the oracle will satisfy
(Hr, jr) ∼= 1 · (G, i) in round r if every node tossed a unique random string βr−1(v) in round r − 1. Notice
that A does not need to change its output register once it wrote to it, which allows us to conclude that in
fact Factor-Graph is in fact RW-completeWO.

only if: For the sake of contradiction, assume that ¬R(Π) holds for some problem Π ∈ RW, that is

¬R(Π) =∃(G, i) ∈ Π s.t. ∀o : (G, i, o) ∈ Π,
∃(G′, i′) ∈ Π s.t. ∀o′ : (G′, i′, o′) ∈ Π :
(G′, i′) ∼= m · (G, i) ∧ ¬

(
(G′, i′, o′) ∼= m · (G, i, o)

)
.

Let A be a RW-algorithm solving Π, let η be an execution of A on the instance (G, i) promised by ¬R(Π),
and let o be the output of A obtained in η. Note that o satisfies (G, i, o) ∈ Π, and therefore the property
¬R(Π) guarantees the existence of some (G′, i′) ∈ Π with (G′, i′) ∼= m·(G, i) such that (G′, i′, o′) ∼= m·(G, i, o)
does not hold for any o′, i.e., the natural extension of o to (G′, i′) is not a valid output to (G′, i′). Lift the
execution η of A on (G, i) to obtain the execution η′ of A on (G′, i′). By Lemma 9 we see that A’s output o′
in execution η′ is the natural extension of o to (G′, i′), contradicting the assumption that A solves Π.

As stated in the if -part of the proof, Factor-Graph is RW-completeWO, and as such cannot be solved
by a WO-algorithm.

Corollary 12. Finding a factor of the input graph is RW-completeWO.

Coordination. In coordination problems nodes in the network keep track of some shared state and wish
to determine whether their shared state is in unison. This kind problem arises for example in atomic commit
protocols and in the two generals problem, where all participants in the network need to agree on the same
value before they can proceed. More formally, we consider the problem Coordination where the input
instances are all labeled graphs, and the solved instances satisfy the following. If all nodes are labeled with
the same input label, then all nodes output “UNISON”, otherwise there is at least one pair of nodes with
different labels and all nodes output “DISCORD”.

Coordination is not contained in WO. Let (G, i) be the 3-cycle with input 0, so the output to this
instance is “UNISON” for all nodes in G, and let v be any node in V (G). For arbitrary t, let further (H, j)
be the cycle on 2t + 1 nodes, in which exactly one node w gets input 1, and let v′ be the node in V (H)
furthest away from w. The depth-t local views of v and v′ are equal, but while node v ∈ V (G) must return
“UNISON” the only correct output of v′ ∈ V (G′) is “DISCORD”.

We stated that the class RW is essentially the class of coordination problems, and indeed we use the
characterization of Theorem 8 to show that Coordination is in RW. For this, let (G, i) be a labeled graph
in which all nodes get the same input x. In all products of (G, i) every node has input x, so returning
“UNISON” leads to a correct output in all products of (G, i). On the other hand, if (G, i) contains two
nodes u 6= v with different inputs x 6= y respectively, then all its products also contain nodes with different
inputs x and y, and therefore the output “DISCORD” for all nodes can be extended to all products of (G, i).
In Section 4.2 we show that Coordination is complete in RW.

Logical And & Or. The definition for the problems And and Or are straigt-forward: All nodes are
provided with a binary input value and have to compute the logical conjunction resp. disjunction of all those
inputs.

The problem And (Or) is not contained in WO for essentially the same reason as Coordination: Let
(G, i) be the 3-cycle with input 1 (0), so the only admissible output to this instance is 1 (0), and let v be any
node in V (G). For arbitrary t, let further (H, j) be the cycle on 2t+ 1 nodes, in which exactly one node w

16

gets input 0 (1), and let v′ be the node in V (H) furthest away from w. The depth-t local views of v and v′
are equal, but v and v′ are not allowed to return the same output. The two problems are, however, both in
RW (again for similar reasons as Coordination is). If an input instance (G, i) contains a node with input
0 (1 for Or), then all products of (G, i) also contain a node with that input, and the only correct output for
every node is 0 (1) in these instances. If on the other hand no node in (G, i) has input 0 (1), then the only
correct output in (G, i) is 1 (0) for every node, which is also true for all products of such an input instance.

Consensus. In the well-known binary Consensus problem nodes can have either 0 or 1 as possible input.
All nodes are required to agree on the same output, which must also appear as input to at least one node.

Like the Coordination problem Consensus is also not solvable by a WO-algorithm, but Theorem 10
cannot be used to disprove that. Instead, assume for the sake of contradiction that there is a WO-algorithm
A solving Consensus. Let (G0, i0) and (G1, i1) be 3-cycles, where in G0 every node gets input 0 and in G1
every node gets input 1. Execute A on both instances to obtain correct output labelings o0 and o1 after t0
and t1 rounds, respectively, and denote the random bits used in the execution of A up to round t on each
respective instance by βt and γt. Let u0 and u1 denote two arbitrary nodes in G0 and G1. Let further G′
be the cycle consisting of 2 · (t0 + t1 + 1) nodes, and denote by u′0 and u′1 two nodes in G′ with maximal
distance. It is possible to assign inputs and random bits δt to all nodes so that Lβt0(u0) = Lδt0(u′0) and
Lβt1(u1) = Lδt1(u′1), i.e., the two nodes u′0 and u′1 in G′ observe the same depth-t0 and depth-t1 local view
under δt as the corresponding nodes u0 and u1 did in G0 and G1, respectively. Thus, there is an execution
of A (by choosing the random bits as determined by δt) which leads to a configuration where the output
returned by u′0 will be 0, while that of u′1 will be 1, contradicting our assumption.

However, we can show that Consensus is in RW by applying Theorem 8. For this, let (G, i) be a labeled
graph in which all nodes get input 0. In all products of (G, i) every node has input 0, so agreeing to output
0 is valid in all products of (G, i). On the other hand, if (G, i) contains a node with input 1, then all its
products also contain a node with input 1, and therefore the output in which all nodes agree on 1 can be
extended to all products of (G, i).

Factor-Multiplicity. Another problem related to graph factors is Factor-Multiplicity: In an unlabeled
network G, every node should output the multiplicity m of a graph H such that m ·H ∼= G, and the number
of nodes in H is minimal among all possible factors of G. The last constraint prohibits the nodes from
answering 1 in every graph (each graph is of course a factor of itself).

The problem is not solvable for RW-algorithms: Let G be any prime graph, for example a 3-cycle, such
that the smallest factor of G has multiplicity 1. In any non-trivial product of G, this answer is however not
correct. Using this problem we will establish in Section 4.2.1 that the two hardness classes CF-hardRW and
CF-hardWO are distinct.

Factor-Diameter. Agreeing on the diameter of some factor of an input instance is certainly possible in
the RW model, as nodes able to agree on a factor, and may just output its diameter. To see that the problem
is not solvable by a WO-algorithm let G be the 3-cycle, so that the only admissible outputs for G will be
those in which the agreed upon factor H is a 3-cycle and all three nodes choose a different name. For every
t, construct the cycle G′ on p nodes where p > t is prime so that in particular, G′ is prime. Any arbitrarily
chosen v ∈ V (G) and v′ ∈ V (G′) satisfy Lt(v) = Lt(v′), but the only admissible output o′(v′) is bp/2c for
every v′ ∈ V (G′). However, the two problems differ in their hardness, as we will see in Section 4.2.1.

k-Hop-MIS, k-Hop-Coloring and Min-Coloring. In the k-Hop-MIS problem, nodes shall output a
maximal set in which any two nodes in the set have at least distance k (measured in hops), i.e., a shortest
path between them uses k+1 edges. Similarly, in a solution to the k-Hop-Coloring problem, nodes having
the same color must be at least k hops apart. As we saw earlier, both problems are in WO for k ≤ 2.

For k > 2 they are not in RW, and neither is coloring with the minimum amount of colors. To see this
for k-Hop-Coloring let G be the triangle so that every solution to G will use exactly three different colors.
Now, let G′ ∼= 2 · G be the 6-cycle. Any valid k-Hop-Coloring of G′ with k > 2 needs to use six colors,

17

2b 2w

4b 1b 1w 4w

3b 3w

Figure 5: Graph G, with unique minimum cut 1. Black and white nodes indicate the two partitions in the
output of the minimum cut.

2b 2w

4b 1b 1w 4w

3b 3w

2b’ 2w’

4b’ 1b’ 1w’ 4w’

3b’ 3w’

Figure 6: Graph G′, which is a 2-product of G from Figure 5, with increased cut value and double the
number of nodes. The dashed edges are replaced by the corresponding thick edges without violating the
graph factor property.

thus the natural extension of a valid output o to G cannot be a valid output for G′. On the other hand, a
Min-Coloring of the 6-cycle only needs two colors, therefore a natural extension of o to G′ will not be a
minimum coloring on the 6-cycle. Similarly, for k-Hop-MIS, a 2-product of a valid output on the 3-cycle
violates the distance requirement on the 6-cycle.

Diameter and approximating it. We consider the problem of finding the Diameter of the network as
well as the approximation problem Diameter-Apx. The problem is not in RW, which can be seen by—
again—taking G to be the triangle (with diameter one), and G′ to be the cycle on six nodes with diameter
three. The only valid output labeling for G cannot be extended to a valid output labeling on G′. As for the
approximation problem with approximation ratio α, let G′ be the 3bα + 1c-cycle. We will however see in
Section 4.2.1 that both problems are prime examples for the class of problems that are RW-hardWO.

Min-Cut. A surprisingly interesting problem to study is the Min-Cut problem. There are basically three
ways to define the Min-Cut problem: We can require nodes to learn the value of the minimum cut, a
partition of the nodes (say, into black and white nodes) inducing the minimum cut, or thirdly, we can ask for
the combination of both. We denote those variants by Min-Cut-Value, Min-Cut-Partition and Min-
Cut, respectively. This does not change their computability (no variant can be solved in an anonymous
network), but we will in Section 4.2.1 find that the exact specification does make a difference for the hardness
of each single variant.

To prove that none of the problem variants is in RW, first observe that the graph G in Figure 5 has a
unique minimum cut. Therefore, every valid output to the min-cut problem in G must output the cut-value

18

and/or partition indicated in the figure. Because the graph G′ in Figure 6 is a product of G, but has a
different cut value, Min-Cut-Value is not solvable in RW. From this we can immediately follow that Min-
Cut can also not be solved. To see that Min-Cut-Partition is also not solvable, we alter G′ slightly to
obtain G′′ in which only the edges {2b, 3b} and {2b’, 3b’} are replaced to connect {2b, 3b’} and {2b’, 3b}
(as indicated in the figure), while the edges connecting {2w, 3w} and {2w′, 3w′} are left unchanged. G′′ has
a cut of size 1 and is also a product of G. Thus the only valid output o to G cannot be naturally extended
to obtain a valid output in every product of G.

Computing with unique identifiers: Leader-Election et cetera. In the Leader-Election problem,
we demand of a valid solution that there is exactly one node with output “leader”, and all other nodes return
“not leader”. As mentioned above, [3] showed that Leader-Election is not even solvable in the RW model.
It is well understood (see, e.g., [40]) that accessing a Spanning-Tree-oracle, or an oracle that equips every
node with a unique identifier (the IDs problem) is equivalent to having a single leader already for WO-
algorithms. The Uniqueness problem, in which nodes have to test whether every node is supplied with
a unique input and output “ALL UNIQUE” or “NOT ALL UNIQUE” depending on the outcome of this
test, is CF-completeWO as well. (Nodes can find unique identifiers by invoking the Uniqueness-oracle with
random strings of increasing length until it replies with “ALL UNIQUE”, but it is not in RW because no
solution for the 3-cycle can be extended to a solution on the 6-cycle). Similarly, knowing the network Size
n can be considered equivalent in our model, because nodes can broadcast random identifiers of increasing
length until they observe exactly n different identifiers. On the other hand, an approximation Size-Apx of
the network size with approximation guarantee α for the triangle G is not a valid approximation on a ring
of size 3bα + 1c, convincing us that not even on cycles one can find a α-Size-Apx with a RW-algorithm.
In [40] the authors present a Monte Carlo algorithm to construct a spanning tree that can be turned into a
Las Vegas algorithm if a (2− ε)-Size-Apx is known. Using our terminology, the same can be seen by giving
a RW-algorithm access to an apply-once oracle to α-Size-Apx and computing a Factor-Graph. Denote
the true network size by n, the approximation provided by the oracle by n̄ and the number of nodes in a
computed factor by nf. If it is guaranteed that n̄ < 2 · n, then a found factor H of G is indeed G itself if
and only if nf ≤ 2 · n̄, since |V (G)| must be an integer multiple of |V (H)|. On the other hand, when the
approximation factor α ≥ 2, the answer 6 can be supplied from the oracle in both the triangle graph as well
as in the ring of six nodes, and a RW-algorithm with access to such an oracle has no means of distinguishing
the two.

4.2 Hardness of Problems
The last discussion already gave us an understanding of problems that are known to be CF-hardWO, and
while investigating Factor-Graph we already found the problem to be RW-completeWO. In determining
the exact containment of each problem introduced in the last section, we find all three hardness classes
CF-hardWO, CF-hardRW and RW-hardWO and also the three corresponding classes of complete problems
to be non-empty and distinct.

4.2.1 Results

To show a problem Π ∈ B is B-hardC it will be sufficient to describe a C-algorithm that solves a complete
problem for C with access to a Π-oracle. In order to fully classify each problem we are also interested
in negative results regarding completeness to completely characterize each of the studied problems. The
following techniques derived from Theorems 8 and 10 will be used to show that a problem to not be in one
of the hardness classes.

Π 6∈ CF-hard RW: To prove that a problem Π does not empower RW-algorithm to solve problems in
CF we start with a graph (G, i). From this, we construct an m-product (G′, i′) ∼= m · (G, i) with m > 1.
We will have to ensure that there is a sequence of oracle answers to Π supplied to nodes in (G, i) that is
also a valid sequence of oracle answers to the corresponding nodes in (G′, i′). This is less of a problem, if Π
does not take any input (other than the topology of the graph itself), because the same oracle can be used

19

in every round. Treating the answers supplied by the oracle as additional input labels to each node, this
disproves the existence of a RW-algorithm accessing an oracle as an implication of Theorem 8.

Π 6∈ RW-hard WO: One needs to show that there is a problem Π′ in RW that cannot be solved in the
WO model, even if an oracle supplies each node with a solution to Π. We find an input instance (G, i) ∈ Π,
and for all valid outputs (G, i, o) ∈ Pi and finite t, we describe the construction of a graph (G′, i′). In the
construction we will specify two nodes v′ ∈ V (G′) and v ∈ V (G), and a sequence of t oracles for each graph,
such that depth-t local view of v (including the answers supplied by the oracles) is the same as that of v′,
but the output of v′ must differ from that of v. Treating the answers supplied by the oracle as additional
input labels to each node, Theorem 10 then implies that Π cannot be in WO.

We omit the previously discussed results on problems that are CF-hardWO and the completeness of
Factor-Graph, and start by presenting another problem that is complete in RW with respect to WO.

Coordination. Indeed, Coordination is RW-completeWO. We show how to turn a RW-algorithm ARW
solving Π without access to an oracle into a WO-algorithm AWO that solves Π with access to an Coordi-
nation-oracle. In algorithm AWO every node v will simulate one round of ARW in every round; we denote
v’s simulated output register of ARW by ρRW, and the actual output register of AWO by ρWO. If in round r
the register ρRW = ε, then v writes “NOT READY” to the input register of the oracle, otherwise it invokes
the oracle with input “READY”. When the oracle answers “UNISON” in round r+ 1 and node v was ready
in round r, the network was in a ready configuration in round r, and v sets ρWO to the value contained in
ρRW in round r.

Logical And & Or. The problem And as well as Or can be used in a similar way to determine whether
the network is in a ready configuration at the end of every simulated round. In the previous construction
we used to show hardness of Coordination, one only needs to replace the value “NOT READY” with 0 if
the simulating algorithm is accessing a And-oracle (with 1 for an Or-oracle), and the value “READY” with
1 (0) respectively.

Consensus. Consensus is not RW-hardWO. We prove this by showing that an oracle to Consensus
cannot be used to solve Or with a WO-algorithm. Once more, let (G, i) be the 3-cycle with input 0 so the
only admissible output to Or for this instance is 0. For any t, let (H, j) be the cycle on 2t + 1 nodes, in
which exactly one node w gets input 1 while all other nodes get input 0. Let v be any node in V (G) and
denote by νr(v) the content stored in v’s oracle input register in round r − 1 so that the value νr(v) is a
valid answer from the Consensus-oracle in round r for all nodes in G. Let further v′ be the node in V (H)
with maximum distance to w. Since Lt(v) = Lt(v′) the value νr(v) is the same as νr(v′), the value that
v′ provides to the oracle in round r, for all r ≤ t. Regardless of the input of w to the oracle, the answers
νr(v) = νr(v′) are also valid in (H, j) for r ≤ t. Thus we have Lt(v) = Lt(v′), but o(v) = 0, while in a
valid output labeling o′, node v′ must output 1. Note that the same reasoning can also be used to disprove
hardness of other problems such as k-Set-Agreement.

Factor-Multiplicity. We show that the problem of finding the multiplicity of a smallest (by number of
nodes) factor of an unlabeled graph is CF-hardRW. To establish that, we define the helper problem ΠM . The
input instances (G, i) ∈ ΠM are all graphs G in which the label assigned to every node by i is the multiplicity
m of the smallest factor H ∼= m ·G. An output labeling o is valid, if in o, exactly one node is labeled “leader”
while all others are labeled “not leader”. Observe that ΠM ∈ RW if and only if there exists a RW-algorithm
A that solves Leader-Election with an access to an (apply-once) Factor-Multiplicity-oracle.

We argue that ΠM is indeed in RW. To that end, we prove that ΠM fulfills the characterization of
Theorem 8. Let G be some graph and let H be its smallest (prime) factor, where G ∼= m ·H. By definition,
the input labeling i satisfies i(v) = m for every node v ∈ V (G). Consider some graph (G′, i′) ∼= c · (G, i). If
c > 1, then (G′, i′) ∼= (c ·m) ·H and therefore, (G′, i′) is not an input instance of ΠM for the input labeling
i′ that assigns m to all nodes. Otherwise, if c = 1, then the factorizing map f : V (G)→ V (H) is in fact an

20

2t+ 2 2t+ 3

2t+ 4

v′1 v′2 v′3

Figure 7: Counterexample showing that Factor-Diam is not RW-hardWO. Dashed edges indicate a path
of the denoted length, node labels indicate the mapping of nodes to the 3-cycle factor.

isomorphism and for every valid output o to (G, i), the natural extension o(f(·)) is a valid output to (G′, i′).
The argument follows since every graph is either prime or a product of another prime graph.

Next, we show that Factor-Multiplicity is not RW-hardWO. To see this, we argue that a WO-
algorithm with access to a Factor-Multiplicity-oracle cannot solve Or. Again, let (G, i) be the triangle
in which all nodes get input 0, so in a correct output to this instance all nodes will agree on 0; the only
valid answer from the oracle is multiplicity 1 since the triangle is a prime graph. Now, for arbitrary t let
(G′, i′) be the cycle on p > 2t nodes where p is prime in which all but one node have input 0, and exactly
one node w′ gets input 1. Let v be any node in (G, i) and let v′ be a node in (G′, i′) furthest away from w′;
in particular, the distance between v′ and w′ is least t. Then both v and v′ observe the same depth-t local
view, but in a valid output to (G′, i′) all nodes must agree to return 1.

Factor-Diameter. As we have established the Factor-Graph problem as being RW-hardWO, one might
think that a WO-algorithm with access to a Factor-Diam-oracle is able to solve problems in RW. This is
not the case, and thus Factor-Diam is another example of a problem in RW that is not RW-hardWO. The
sufficient condition stated in Theorem 10 is not strong enough to disprove this problems hardness. We will
however use a very similar technique that relies on multiple nodes in G to “reappear” in G′.

As usual, let G be the triangle, so the only valid answer from the oracle is 1, and denote by v1, v2 and v3
the three nodes in G. For any t, let G′ be the ring of size 3(2t+4) as depicted in Figure 7. Then G is a factor
of G′, and therefore 1 is a valid answer of the Factor-Diam-oracle to any node in G′. The paths between
the three nodes depicted in Figure 7 contain at least 2t + 2 nodes. For every finite t, fix an assignment βt
of random bits to nodes. Because the t-hop neighborhoods of the three nodes in G′ do not overlap, it is
possible to find γt that satisfies Lβt (vk) = Lγt (v′k) for k ∈ {1, 2, 3}. This assignment of random bits γ will
occur in G′ with positive probability. Because the local views of v1, v2 and v3 in G′ will then be the same as
that in G, they will also return the same output. In particular, all will agree on the triangle as the factor,
and each one will map itself do a different node in the triangle. But this means each path between v′1, v

′
2

and v′3 must be of length 1 (mod 3). This cannot be the case, because the three paths have different lengths
even modulo 3, contradicting our assumption.

k-Hop-MIS, k-Hop-Coloring and Min-Coloring. None of these problems is CF-hardRW nor RW-
hardWO for any constant k. Let G be the (2k + 1)-cycle, and fix a solution (G, s) to k-Hop-MIS, k-Hop-
Coloring or Min-Coloring to be the oracle supplied to nodes in G. To see that none of the problems is
CF-hardRW, let G′ ∼= 2 · G be the 4k + 2-cycle and s′ a natural extension of s to G′, so s′ is also a valid
oracle to the chosen problem. But since G′ is a 2-product of G a RW-algorithm cannot elect a leader in
both G and G′, not even with access to an oracle to one of the problems k-Hop-MIS, k-Hop-Coloring
or Min-Coloring. We use the same graph G to show that they are not RW-hardWO by arguing why Or
cannot be solved using a WO-algorithm with access to an oracle to any of the three problems. Let (G, i)
be an input instance to Or on the (2k + 1)-cycle in which every node v in G receives input i(v) = 0 so
that for all nodes the only valid output is o(v) = 0. For arbitrary t, let (Ht, jt) ∼= t · (G, i) be the cycle on
t · (2k+ 1) nodes in which exactly one node w receives input 1, while all other nodes v′ get input 0. Because
the problems do not depend on any input, we may safely assume an oracle to one of the problems supplies
the same answer in every round. Denote by st the natural extension of s from (G, i) to (Ht, jt) such that
st is a valid oracle in (Ht, jt). The node v′ in (Ht, jt) which is furthest away from w and its corresponding
node v in G satisfy Lt(v) = Lt(v′), even when taking st into account, and while the only valid output of v

21

1

2 3

4 5

6

Figure 8: Graph G with diameter 3.

1 1′

2 3 3′ 2′

4 5 5′ 4′

6 6′

Figure 9: Graph G′, which is a 2-product of G
from Figure 8, with diameter 3. The six dot-
ted edges were changed as indicated by the thick
edges.

is 0, node v′ must output 1.

Diameter and approximating it. Approximating the diameter to an arbitrary factor of α (including 1)
is not CF-hardRW. To see this, observe that the graph G in Figure 8 is a factor of G′ in Figure 9. Since
both have diameter 3, the answers supplied by an oracle in G are also valid for corresponding nodes in G′.
However, a valid output for Leader-Election in G cannot be naturally extended to obtain a valid output
in G′. In contrast to that, the approximation problem α-Diameter-Apx is RW-hardWO for arbitrary
approximation guarantees α. This is the case because a WO-algorithm can solve Or by broadcasting all
input values for D rounds if the answer supplied by the oracle to α-Diameter-Apx is D. If after D rounds
of broadcasting node v received a message containing input 1, then v returns 1, otherwise v returns 0. It
follows that any upper bound on the network diameter (or its size) is RW-hardWO. This is true even if not
all nodes are equipped with the same upper bound, which simplifies the proof regarding the hardness result
of Min-Cut-Partition for RW with respect to WO in the following section.

Min-Cut. Neither Min-Cut-Value nor Min-Cut-Partition are CF-hardRW, because the two graphs
G and G′ from Figures 5 and 6 have the same minimum cut value (share the “same” partition inducing the
minimum cut). Thus the same answer supplied by the oracle to G is also valid in G′ for Min-Cut-Value
or Min-Cut-Partition, respectively, but G′ has twice the number of nodes than G. Min-Cut-Value is
also not RW-hardWO. To see that, observe that all cycles share a minimum cut size of 2. With the same
argument as for the Factor-Multiplicity problem, a WO algorithm cannot use this information to solve
the Or problem. On the other hand, we find that Min-Cut-Partition is RW-hardWO.

Proof (that Min-Cut-Partition is RW-hardWO). We show that using a WO-algorithm A with access to
an (apply-once) oracle for the Min-Cut-Partition problem, every node v can determine an upper bound
on the diameter. Since α-Diameter-Apx is RW-hardWO for any α, this is sufficient to prove our claim.
Given a partition of the network into black and white nodes, we refer to a node which has a neighbor in the
opposite partition as a border node. By the term depth of a node v we denote the minimum distance of v to
a border node within the same partition, i.e, border nodes have depth zero. Observing that the degree of
each node is an upper bound on the cut size, the main idea is now to bound the diameter of the network in
terms of the maximum depth of a node in each partition.

To accomplish that, algorithm A proceeds in three stages: The only purpose of the first stage is to locally
gather necessary information from the oracle prior to the second stage. The main stage of A is the second
one, in which nodes compute an upper bound on the diameter of each partition individually. Lastly, the
third stage’s role is to combine the two individual upper bounds to compute an upper bound on the diameter
of the whole network, and disseminate the bound throughout the network.

In the beginning of the first stage of algorithm A each node v invokes the Min-Cut-Partition-oracle to
determine whether it is in the black or in the white partition. Thereafter, node v sends a message containing
the name of its partition to all of its neighbors, so that every node can determine whether it is a border

22

D + 3 D + 2

D + 2 D + 1

D

b

Figure 10: Illustration of the proof that Min-Cut-Partition is RW-hardWO. A border node b that has
observed a node at depth D,D+ 1 or D+ 2 will wait long enough to receive a message from the closest node
next in depth.

node. Every non-border node v initializes its depth value d(v) ← ∞, while border nodes b set d(b) ← 0.
Additionally, border nodes b initialize a value D(b) = 0 to keep track of the maximum observed depth inside
b’s partition. Following that, all nodes enter the second stage of A.

The first round of the second stage starts with all border nodes b sending the message (D ≥ 0) to all
neighbors within the same partition. This initiates parallel breadth-first searches inside each partition to
determine the depth of every node, and to report back the maximum depth of a node inside each partition.
More specifically, when a node v with d(v) <∞ receives a message (D ≥ i) for some i, then v forwards this
message to all members within the same partition. If on the other hand a node v with d(v) = ∞ receives
a message (D ≥ i), then v does not forward this message, but instead it sets d(v) ← i + 1 and broadcasts
the message (D ≥ i+ 1) among all members of the same partition. A border node b that receives a message
(D ≥ i) additionally updates D(b)← i accordingly, thus keeping track of the maximum observed depth of a
node inside its partition. The crucial point is that a border node b enters stage three, if it does not receive
an update to D(b) in round 2D(b) · (deg(b) + 1) + 2 of stage two. In other words, a border node b adjusts
the time at which it will enter stage three of algorithm A with each update to D(b).

When both nodes b and w of a cut edge {b, w} have entered stage three of algorithm A, both b and
w exchange their corresponding values D(w) and D(b). If a border node b has exchanged D(b) with its
neighbor w, broadcasts the message (diam ≤ (2 · deg(b) + 1) · (D(b) +D(w))). Nodes v receiving a message
(diam ≤ i) for the first time enter stage three and set their output register to i after forwarding the message
to all their neighbors.

We have to prove two things, namely that the upper bound broadcast by a border node is indeed an
upper bound for the diameter, and that no border node broadcasts an incorrect value prematurely. To see
the latter, it suffices to show that any border node b as illustrated in Figure 10 will wait long enough before
starting with the third stage of the algorithm. Our proof will be by induction on the maximum depth d(v)
of a node v, where we show that if b has received a message (D ≥ D(b)), then it will also receive a message
indicating a maximum depth of D(b) + 1 from a node of that depth that is closest to b, if there is one.
The initial step is for d(v) = 0, i.e., the partition of b contains only border nodes, in which case there is
nothing to show. For the induction step, let v be a node with depth d(v), and assume the border node b
has learned the maximum depth of a node within the partition is at least D(b) = d(v)− 1 by the induction
hypothesis. Let b′ denote a border node closest to b having a node v′ at distance d(v) with d(v′) = depth(v).
The distance from b to b′ is bounded by 2 · deg(b) · D(b), since the shortest path between b and b′ that
remains inside the same partition contains at most deg(b) border nodes, and the distance between any two
border nodes on that path is at most 2 · D(b). Any node u with depth i will broadcast its distance in
round i of stage two, and this message will arrive at the closest border nodes (in distance i) after 2i rounds.
Thus, node b′ will start forwarding the message (D ≥ d(v′)) received from v′ in round tv′,b′ = 2d(v′) of
stage two, and this message has to travel at most additional tb′,b = 2 · deg(b) · D(b) steps to reach b. But
tv,b′ + tb′,b = 2 · (D(b) + 1) + 2 ·deg(b) ·D(b) is exactly the round until which b waits for a message indicating

23

a possibly larger depth. Thus, no border node prematurely transmits an incorrect partition depth to its
neighboring nodes in the opposite partition.

Lastly, the found value is indeed an upper bound on the diameter by a similar argument. The degree
deg(b) of b in is an upper bound for the size of the cut, and therefore a shortest path between any two nodes
u and v can cross the cut at most deg(b) times and contains at most deg(b) border nodes.

It follows that Min-Cut is also RW-hardWO, since the output includes the value of a minimum cut and,
in particular, a valid output to Min-Cut-Partition. In fact, Min-Cut is CF-hardRW as is established in
the following proof.

Proof (that Min-Cut is CF-hardRW). We describe an algorithm A that elects a leader among all border
nodes of the white partition. This will be accomplished by choosing a new random identifier for every white
border node in each round. The main insight is that it can be checked whether every node tossed a unique
identifier by counting the number of cut edges incident to different identifiers, and comparing this number to
the size of the cut provided by an oracle. To that end, in a preliminary step of A every node v once invokes
the oracle to Min-Cut so that v is supplied with the value of the minimum cut k and its partition denoted
by black or white. After obtaining an answer from the oracle every node sends a message indicating the
partition it is in to all neighbors, enabling every node v to determine the number c(v) of cut edges incident
to v.

For the remainder of algorithm A all white border nodes w, i.e., nodes inside the white partition with
c(w) > 0, are referred to as candidate leaders. Nodes inside the black partition and white nodes with
c(v) = 0 set their output register ρ ← “not leader”. In every round r, every candidate leader w chooses an
identifier βr(w) by appending one random bit to the previous identifier βr−1(w), and broadcasts the message
M = (r, βr(w), c(w)) among all white nodes. If some node v receives two messages M , M ′ containing the
same round numbers r and identifiers βr(w), but a different number of cut edges c(w), then v broadcasts an
inhibiting message for round r. For all candidate leaders w denote by Mw(s) the set of different messages
M that were sent in round s and received by w so far. Denote further by cw(s) :=

∑
(s,β,c)∈Mw(s) c the total

number of cut edges from different nodes received by w for round s, and by sw the smallest non-inhibited
round s for w that satisfies cw(s) = k, i.e., the first non-inhibited round in which every candidate leader
tossed a different identifier. Whenever sw is not defined in round r, node w sets its output register ρ ← ε.
When on the other hand sw is defined in round r, node w checks whether the identifier it chose in round sw
was the smallest among those appearing in Mw(sw). If this is the case, node w sets ρ← “leader”, otherwise
it sets ρ← “not leader”.

To see that the algorithm is correct, assume for the sake of contradiction that in round r all nodes are
ready and two different candidate leaders u,w output “leader”. Since all nodes are ready no node is currently
sending an inhibiting message, and because both u and w output “leader” the round numbers su and sw are
both defined and not inhibited for any node; assume w.l.o.g. that su ≤ sw. On the other hand, the value
cu(su) must be the same as cw(sw), namely they must both be k. This can only be the case if both u and
w have received a message from all candidate leaders for round su and sw respectively . In round r node w
received all messages sent by other candidate leaders in round sw, and therefore w must also have received
all the messages sent by candidate leaders in round su. Because round su is not inhibited for any node we
conclude that su = sw and since no inhibiting message is being sent in round r also Mu(su) = Mw(sw) must
hold, contradicting that both u and w output “leader”. Lastly, algorithm A will reach a ready configuration
after every candidate leader tossed a unique identifier.

One can also give a WO-algorithm solving Leader-Election with access to a Min-Cut oracle by
using a more careful construction and analysis. It is however easier to see that Min-Cut is CF-hardWO
by applying Theorem 7, i.e., because Min-Cut is both CF-hardRW and RW-hardWO it must also be CF-
hardWO. This completes our effort to identify in which classes each of the presented problems lie, and we
turn ourselves to proving the missing link in the last argument, namely Theorem 7.

24

5 Proof of Theorem 7
The techniques introduced in Section 2 together with the completeness result for Or found in Section 4.2.1
allow us to present a proof for Theorem 7. A key ingredient in the proof is the notion of a fork, which is
a sub-process of the execution dedicated to simulating some algorithm A. The fork’s name [r] will indicate
the round number in which the simulation was started. A fork [r] dedicated to A encapsulates the complete
state required to simulate A, and messages sent and received by [r] are identified by the fork’s name.

The theorem states that if a problem Π is both CF-hardRW and RW-hardWO, then it is also CF-hardWO.
Let Π ∈ CF-hardRW ∩RW-hardWO be a problem satisfying the premise. Denote by ALE a RW-algorithm
solving Leader-Election with an access to a Π-oracle, and by AOR a WO-algorithm solving Or with
an access to a Π-oracle respectively. Employing Lemma 4, we assume that ALE in fact sustainably solves
Leader-Election. We wish to establish the assertion by presenting a WO-algorithm A solving Leader-
Election with access to a Π-oracle.

Of course, algorithm A cannot directly simulate ALE because it is a RW-algorithm. We would therefore
like to perform multiple simulations of AOR in order to detect a ready configuration of ALE. Unfortunately,
these multiple simulations cannot be carried out concurrently since each one of them requires its own inde-
pendent access to the Π-oracle, whereas A accesses the Π-oracle only once per round. Instead, we will use
a careful forking mechanism to schedule disjoint accesses to this scarce resource.

Algorithm A simulates ALE in phases, starting from phase 1, where each phase p is responsible for
executing round p of the simulation of ALE. Indeed, in round 1 of phase p, node v executes round p of
this simulation accessing the Π-oracle. Following that, node v initiates a fork called [p] dedicated to the
simulation of AOR. The input to fork [p] is 0 if v was ready in round p under ALE (v observes that from
the outcome of round 1 of phase p); the input is 1 otherwise. In the next p rounds of the phase, forks
[1], [2], . . . , [p] (all dedicated to AOR) are executed, one fork per round (say, in lexicographic order), so in
total phase p consists of p + 1 rounds. The output of A is determined as follows: if fork [r] for some r ≤ p
has output 0 during phase p, then v writes the output value of ALE’s round r (which was obtained during
phase r) to A’s output register.

The fixed execution order of the forks simulating AOR guarantees that every fork [p] is executed in a
synchronized manner, that is, all nodes execute round r of this fork in the same round under A. The logic
of Or guarantees that fork [r] of AOR has output 0 if and only if round r under ALE’s simulation is in a
ready configuration. Since AOR is a WO-algorithm, node v can immediately rely on a returned 0 value to
conclude that this indeed happened. Moreover, as ALE is sustainably solving the leader election problem,
the output returned by v under A must lead to a correct output for Leader-Election, thus establishing
Theorem 7.

25

References
[1] Abrahamson, K., Adler, A., Higham, L., Kirkpatrick, D.: Probabilistic solitude verification on a ring.

In: Proceedings of the fifth annual ACM symposium on Principles of distributed computing (1986)
[2] Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal inde-

pendent set problem. Journal of Algorithms 7(4), 567 – 583 (1986)
[3] Angluin, D.: Local and global properties in networks of processors (extended abstract). In: Proceedings

of the twelfth annual ACM symposium on Theory of computing (1980)
[4] Angluin, D., Aspnes, J., Chan, M., Fischer, M., Jiang, H., Peralta, R.: Stably computable properties of

network graphs. In: Prasanna, V., Iyengar, S., Spirakis, P., Welsh, M. (eds.) Distributed Computing in
Sensor Systems (2005)

[5] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively
mobile finite-state sensors. In: Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing (2004)

[6] Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: Proceedings of
the twenty-fifth annual ACM symposium on Principles of distributed computing (2006)

[7] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols.
Distributed Computing 20, 279–304 (2007)

[8] Angluin, D., Fischer, M., Jiang, H.: Stabilizing consensus in mobile networks. In: Gibbons, P., Ab-
delzaher, T., Aspnes, J., Rao, R. (eds.) Distributed Computing in Sensor Systems (2006)

[9] Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato, B., Miranda, H.,
Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications (2009)

[10] Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Proceedings of the eigh-
teenth annual ACM symposium on Principles of distributed computing (1999)

[11] Boldi, P., Vigna, S.: An effective characterization of computability in anonymous networks. In: Pro-
ceedings of the 15th International Conference on Distributed Computing (2001)

[12] Boldi, P., Vigna, S.: Universal dynamic synchronous self–stabilization. Distributed Computing 15(3),
137–153 (2002)

[13] Chalopin, J., Das, S., Santoro, N.: Groupings and pairings in anonymous networks. In: Proceedings of
the 20th international conference on Distributed Computing (2006)

[14] Chalopin, J., Godard, E., Métivier, Y.: Local terminations and distributed computability in anonymous
networks. In: Taubenfeld, G. (ed.) Distributed Computing (2008)

[15] Dolev, S.: Self-Stabilization (2000)
[16] Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election. In: Toueg, S., Spirakis,

P., Kirousis, L. (eds.) Distributed Algorithms (1992)
[17] Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: PODC (2013)
[18] Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N.: Sorting and election in anonymous

asynchronous rings. J. Parallel Distrib. Comput. 64(2), 254–265 (Feb 2004)
[19] Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: Foundations of Computer Science

(FOCS), 2011 IEEE 52nd Annual Symposium on (oct 2011)
[20] Fraigniaud, P., Halldórsson, M., Korman, A.: On the impact of identifiers on local decision. In: Baldoni,

R., Flocchini, P., Binoy, R. (eds.) Principles of Distributed Systems (2012)
[21] Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: A new measure of difficulty for communication tasks.

In: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing
(2006)

[22] Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized distributed decision. In: DISC (2012)
[23] Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free computing. In: Peleg,

D. (ed.) DISC (2011)
[24] Godsil, C.D., Royle, G.: Algebraic Graph Theory (2001)
[25] Göös, M., Suomela, J.: Locally checkable proofs. In: Proceedings of the 30th annual ACM SIGACT-

SIGOPS symposium on Principles of distributed computing (2011)
[26] Guerraoui, R., Ruppert, E.: What can be implemented anonymously? In: Proceedings of the 19th

international conference on Distributed Computing (2005)
[27] Herlihy, M., Rajsbaum, S.: A classification of wait-free loop agreement tasks. Theoretical Computer

Science 291(1), 55 – 77 (2003), <ce:title>Distributed Computing</ce:title>
[28] Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–

923 (Nov 1999)
[29] Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal matching. Information

Processing Letters 22(2), 77 – 80 (1986)
[30] Itai, A., Rodeh, M.: Symmetry breaking in distributive networks. In: Proc. 22nd Annual Symp. Foun-

dations of Computer Science SFCS ’81 (1981)
[31] Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: Proceedings of the twenty-fourth annual

ACM symposium on Principles of distributed computing (2005)
[32] Korman, A., Sereni, J.S., Viennot, L.: Toward more localized local algorithms: removing assumptions

concerning global knowledge. In: Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium
on Principles of distributed computing (2011)

[33] Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)
[34] Liu, X., Xu, Z., Pan, J.: Classifying rendezvous tasks of arbitrary dimension. Theoretical Computer

Science 410(21–23), 2162 – 2173 (2009)
[35] Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: Proceedings of the

seventeenth annual ACM symposium on Theory of computing (1985)
[36] Lynch, N.A.: Distributed Algorithms (1996)
[37] Mavronicolas, M., Michael, L., Spirakis, P.: Computing on a partially eponymous ring. In: Proceedings

of the 10th international conference on Principles of Distributed Systems (2006)
[38] Métivier, Y., Robson, J.M., Zemmari, A.: Analysis of fully distributed splitting and naming probabilistic

procedures and applications. In: Moscibroda, T., Rescigno, A. (eds.) SIROCCO (2013)
[39] Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–

1277 (1995)
[40] Schieber, B., Snir, M.: Calling names on nameless networks. In: Proceedings of the eighth annual ACM

Symposium on Principles of distributed computing (1989)
[41] Suomela, J.: Survey of local algorithms. ACM Comput. Surv. (to appear), preliminary version
[42] Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i-characterizing the solvable

cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (Jan 1996)

