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Abstract8

We study the incentives of banks in a financial network, where the network consists of debt contracts9

and credit default swaps (CDSs) between banks. One of the most important questions in such a10

system is the problem of deciding which of the banks are in default, and how much of their liabilities11

these banks can pay. We study the payoff and preferences of the banks in the different solutions to12

this problem. We also introduce a more refined model which allows assigning priorities to payment13

obligations; this provides a more expressive and realistic model of real-life financial systems, while it14

always ensures the existence of a solution.15

The main focus of the paper is an analysis of the actions that a single bank can execute in16

a financial system in order to influence the outcome to its advantage. We show that removing17

an incoming debt, or donating funds to another bank can result in a single new solution that is18

strictly more favorable to the acting bank. We also show that increasing the bank’s external funds19

or modifying the priorities of outgoing payments cannot introduce a more favorable new solution20

into the system, but may allow the bank to remove some unfavorable solutions, or to increase its21

recovery rate. Finally, we show how the actions of two banks in a simple financial system can result22

in classical game theoretic situations like the prisoner’s dilemma or the dollar auction, demonstrating23

the wide expressive capability of the financial system model.24
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1 Introduction31

The world’s financial system is a complex network where financial institutions such as banks32

are connected via various kinds of financial contracts. If some financial institutions go33

bankrupt, then others might suffer as well; the financial network might experience a ripple34

effect. Two of the most common financial contracts are (i) debt contracts (some bank owes a35

specific amount of money to another bank) and (ii) Credit Default Swaps (CDSs). A CDS36

is a simple financial derivative where the payment obligation depends on the defaulting of37

another bank in the system. The combination of debt contracts and CDSs turns out to38

provide a simple and yet expressive model, which is able to capture a wide range of interesting39

phenomena in real-life financial markets [9, 22, 18, 17].40

Given a set of banks and a set of payment obligations between these banks, one of the41

most natural questions is to decide which of the banks can fulfill these obligations, and42

which of them cannot, and hence are in default. The problem of deciding what portion of43

obligations banks can fulfill is known as the clearing problem. One can easily encounter44

a situation when this problem has multiple different solutions in a financial system. It is45

natural to study how much the individual banks prefer these solutions, i.e. what is their46

payoff in specific solutions of the system.47

In this paper we study the problem from the point of view of a single bank v. We analyze48

whether some simple actions of v can improve its situation in the network. In a financial49

system, the complex interconnection between the banks can easily result in situations where50

banks can achieve a better outcome in surprising and somewhat counterintuitive ways. For51

example, being on the receiving end of a debt contract is generally considered beneficial,52

because the bank obtains payment from this contract. However, in a system with debts and53

CDSs, it is also possible that if a bank v nullifies a debt contract as a creditor, then (through54

a number of intermediate steps in the network) this results in an even higher total payoff for55

v. Such phenomena are crucial to understand, since if banks indeed execute these actions to56

obtain a better outcome, then these opportunities will determine how the financial system57

changes and evolves in the future.58

We begin with a description of the financial system model recently developed by Schulden-59

zucker et. al. [22], which serves as the base model for our findings. We then introduce a60

more refined version of this model which also assigns priorities to each contract, and assumes61

that banks have to fulfill their payment obligations in the order defined by these priorities.62

We show that besides being more expressive and realistic, this augmented model still ensures63

the existence of a solution.64

Our main contribution is an analysis of various different actions that banks in the system65

can execute in order to increase their final payoff when the system is cleared. We first show66

that by removing an incoming debt (partially or entirely) or by donating extra funds to67

another bank, a bank might be able to increase its payoff. We then show that investing more68

external assets or reprioritizing its outgoing payments can also allow a bank to influence69

the system. However, these actions do not allow a bank to introduce more favorable new70

solutions, but they can allow the bank to remove unfavorable solutions from the system, or71

increase its own recovery rate.72

Finally, we present some simple examples where two banks try to influence the financial73

system simultaneously, resulting in situations that are identical to the classical prisoner’s74

dilemma or dollar auction game. This suggests that financial systems in this model can75

exhibit very rich behavior, and if two or more banks execute these actions simultaneously,76

this can easily lead to complex game-theoretic settings.77
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2 Related Work78

Numerous studies on the properties of financial systems are directly or indirectly based79

on the financial system model introduced by Eisenberg and Noe in [11]. This model only80

assumes simple debt contracts between banks. Different studies have later also extended this81

model with default costs [21], cross-ownership relations [25, 12] or so-called covered CDSs82

[17]. The related literature has studied the propagation of shocks in many different variants83

of these models [2, 8, 5, 4, 1, 13].84

One disadvantage of these models is that they can only describe long positions of banks85

on each other, meaning that a worse situation for one bank is always worse (or the same) for86

any other bank. For example, if a bank is unable to pay its debt, then its creditor receives87

less money, and it might not be able to pay its debts either. This already enables the model88

to capture many interesting phenomena, e.g. how a small shock causes a ripple effect in the89

network. However, long positions imply that there is a solution in these systems which is90

simultaneously the best for all banks. As such, the models cannot represent the opposing91

interests of banks in many real-world situations, and thus these models are not so interesting92

from a game-theoretic point of view.93

On the other hand, a more realistic model was recently introduced by Schuldenzucker,94

Seuken and Battiston [22]; we assume this model of financial systems in our paper. Besides95

debt contracts, this new model also allows credit default swaps between banks, which are96

essentially financial derivatives where banks are betting on the default of another bank. CDSs97

are a prominent kind of derivative that played a significant role in the 2008 financial crisis98

[14]; as such, they have been studied in various works in the financial literature [10, 18, 9].99

While the model still remains relatively simple with these two kind of contracts, it now also100

allows us to model short positions, when it is more favorable for a bank if another bank101

is worse off. This increases the expressive power of the model dramatically, allowing us to102

capture a wide range of properties of practical financial systems.103

The work of Schuldenzucker et. al. analyzes their model from a complexity-theoretic104

perspective. The authors show that in the base variant of this model, each system has at least105

one solution; however, if we also assume so-called default costs, then some systems might not106

have a solution at all. In case of default costs, they also describe sufficient conditions for the107

existence of a solution. Their follow-up work shows that it is computationally hard to decide108

if a solution exists, and also to find or approximate a solution of the system [23].109

However, to our knowledge, the model has not been analyzed from a game-theoretic110

perspective before. Our paper aims to lay the foundations of such an analysis, by evaluating111

a variety of simple (and yet realistic) actions that allow nodes to influence the network due to112

the presence of short positions. Since banks often have conflicting interests in these systems,113

these actions can easily lead to interesting game-theoretical dilemmas.114

The only similar game-theoretic analysis we are aware of is the recent work of Bertschinger115

et. al. [6], set in the original model of Eisenberg and Noe. Instead of having institutional116

rules for payment obligations in case of default, [6] assumes that banks can freely select117

the order of paying their outgoing debts, or even decide to make partial payments in some118

contracts. The paper discusses the properties of Nash-Equilibria and Social Optima in this119

setting. While this has a connection to our observations in Section 5.3, we analyze the results120

of such actions in a significantly more complex model with CDSs.121

In general, measuring the sensitivity or complexity of a financial network has also been122

exhaustively studied [15, 3, 5, 4]. The topic also has a major importance for financial123

authorities in practice, who regularly conduct stress tests to analyze real-world financial124
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systems. The clearing problem, in particular, also plays an important role in the European125

Central Bank’s stress test framework [7], for example.126

3 Financial system model127

The model introduced by [22] describes a financial network as a set of banks (i.e. nodes),128

denoted by V , with different kinds of financial contracts (i.e. directed edges) between specific129

pairs of banks. Banks in our examples are usually denoted by u, v or w. Every bank in the130

system has a predefined amount of external assets, denoted by ev for bank v.131

3.1 Debt and CDS contracts132

We assume that each contract in the system is between two specific banks u and v. A133

contract obliges u (the debtor) to pay a specific amount of money to bank v (the creditor),134

either unconditionally or based on a specific event. The amount of payment obligation in the135

contract is the weight (in financial terms: the notional) of the contract.136

While these contracts might be connected to earlier transactions between the banks (e.g.137

a loan offered by v to u in the past which results in a debt contract from u to v in the138

present), we assume that these initial payments are implicitly represented in the external139

assets of banks, and thus the external assets and the contracts together provide all the140

necessary information to describe the current state of the system.141

The outgoing contracts of bank v altogether specify a given amount of total payment142

obligations for v. If v is unable to fulfill all these obligations, then we say that v is in default.143

In this case, we are interested in the portion of liabilities that v is still able to pay, known144

as the recovery rate of v and denoted by rv. The definition implies that we always have145

rv ∈ [0, 1], and v is in default exactly if rv < 1. The recovery rates of all banks is represented146

together in a recovery rate vector r ∈ [0, 1]V .147

The model allows two kinds of contracts between banks in the system. In case of a simple148

debt contract, u has to pay a specific amount to v unconditionally, i.e. in any case. On the149

other hand, credit default swaps (CDSs) are ternary financial contracts, made in reference to150

a third bank w known as the reference entity. A CDS describes a conditional debt which151

only requires u to pay a specific amount to v if w is in default. In particular, if the weight of152

the CDS is δ and the recovery rate of w is rw, then the CDS incurs a payment obligation of153

δ · (1− rw) from u to v.154

In practice, CDSs often describe an insurance policy on debt contracts for the creditor155

bank. If v is the creditor of a debt coming from w, and v suspects that w might go into156

default and thus will be unable to pay some of its debt, then v can enter into a CDS as a157

creditor with some other bank u in the system, in reference to w. If w indeed defaults and158

cannot pay its liabilities to v, then v instead receives some payment from u. Nonetheless,159

there could be other reasons for banks to enter CDS contracts, e.g. speculative bets about160

future developments in the market.161

3.2 Assets and liabilities162

Since payment obligations in CDSs depend on the recovery rate of other banks, the assets163

and liabilities of a bank are defined as a function of the vector r. The liability of u towards v164

is the sum of payment obligations from all simple debt contracts and CDSs, i.e.165

lu,v(r) = cu,v +
∑
w∈V

cwu,v · (1− rw),166
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where cu,v denotes the weight of the simple debt from u to v, and cwu,v denotes the weight167

of the CDS from u to v with reference to w (understood as 0 if the contracts do not exist).168

The total liabilities of u is then the sum of liabilities to all other banks, i.e.169

lu(r) =
∑
v∈V

lu,v(r).170

In contrast to this, the actual payment from u to v can be lower than lu,v(r) if u is in171

default. In this case, the model assumes that u makes payments based on the principle of172

proportionality, i.e. it uses all of its assets to make payments to creditors, in proportion173

to the respective liabilities. In practice, this means that u can pay an ru portion of each174

liability, and thus its payment to v is defined as pu,v(r) = ru · lu,v(r).175

On the other hand, the assets of v is the sum of its external assets and its incoming176

payments, i.e.177

av(r) = ev +
∑
u∈V

pu,v(r).178

Recall that a recovery rate describes the portion of liabilities that a bank can pay. Hence179

given the assets and liabilities of each bank v, the recovery rate rv must satisfy rv = 1 if180

av(r) ≥ lv(r), and rv = av(r)
lv(r) otherwise. A vector r is called a solution (in financial terms: a181

clearing vector) if it describes an equilibrium point for these equalities, i.e. if for each bank182

v, rv satisfies this constraint for the assets and liabilities defined by r. Previous work has183

expressed this by defining the update function f : [0, 1]V → [0, 1]V as184

fv(r) =
{

1, if av(r) ≥ lv(r)
av(r)
lv(r) , if av(r) < lv(r)

,185

and defining a solution as a fixed point of the update function.186

In order to model the utility function of nodes in the system, we define the payoff (in187

financial terms: equity) of a bank v as the amount of remaining assets after payments if a188

node is not in default, and 0 otherwise, i.e. qv(r) = max(av(r)− lv(r), 0). We assume that189

the aim of each bank is to maximize its own payoff.190

Note that assets, liabilities and payoffs are always defined with regard to a certain recovery191

rate vector r. However, in order to simplify notation, we do not show r explicitly when it is192

clear from the context, and instead we simply write e.g. av or qv.193

Figure 1 shows an example financial system with three banks u, v and w, with a consistent194

notation to that of [22, 23]. The system has eu = 2, ev = 1 and ew = 0. There are two195

debts of weight 2 in the system: one from u to v, the other from u to w. Finally, the system196

contains a CDS from w to v (also of weight 2), which is in reference to bank u.197

Regardless of recovery rates, bank u has liabilities lu = 4 and assets au = 2, so ru = 1
2 in198

any case. This implies that u can only make payments of ru · 2 = 1 to both v and w. Given199

ru = 1
2 , the CDS induces a liability of 2 · (1 − ru) = 1 from w to v. Since w receives an200

incoming payment of pu,w = 1 from u, we have aw = lw = 1, so w can still pay its liability201

and has a recovery rate of rw = 1. Finally, v has incoming payments pu,v = 1 and pw,v = 1,202

external assets ew = 1, and no liabilities. This implies av = 3 and lv = 0, and thus rv = 1.203

Hence (ru, rv, rw) = ( 1
2 , 1, 1) is the only solution of the system, providing a payoff of qu = 0,204

qw = 0 and qv = 3 to the banks.205

We also use two sanity assumptions introduced by previous work to exclude degenerate206

cases [22]. First, we assume that no bank enters into a contract with itself or in reference to207

itself. Furthermore, since CDSs are regarded as an insurance on debt, we require that if a208

bank w is a reference entity of some CDS, then w is the debtor of at least one debt contract209

of positive weight.210
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2

2 2

u v

w

2 1

0

Figure 1 Example financial system with three banks. External assets are shown in rectangles
besides the nodes, simple debt contracts are shown as blue arrows from debtor to creditor, and CDSs
are shown as brown arrows from debtor to creditor, with a dotted line specifying the reference entity.

4 Payments with priorities211

While the principle of proportionality is a simple and natural assumption, financial systems212

often have more complex payment rules in practice. Thus we also introduce a more general213

model of payments with priorities.214

That is, we assume that there is a constant number of priority classes P , and each215

contract belongs to one of these priority classes. If a node v is in default, then it first spends216

all its assets to fulfill its liabilities in the highest priority class. If v does not have enough217

assets to fulfill all such obligations, it spends all its assets on the payments for these edges,218

proportionally to the amount of liabilities. On the other hand, if v has more assets than219

highest-priority liabilities, then v pays for all the liabilities in this highest priority level, and220

continues using the rest of its assets for the lower-priority liabilities in a similar fashion.221

More formally, in our modified model, each contract in the network receives another222

priority parameter (besides its weight), which is an integer in {1, ..., P}. The value 1 denotes223

the highest priority (i.e. liabilities that have to be paid first), while class P denotes the224

lowermost priority level.225

Given a clearing vector r, for each node v, let l(ρ)
v denote the total amount of liabilities226

of v due to edges on priority level ρ. Let us also introduce the notation l(≤ρ)
v =

∑ρ
i=1 l

(i)
v .227

Assume that v has total assets of av, and a liability of lv,u on priority level ρ towards another228

node u. Then the payment of v to u is defined as229

pv,u =


0, if av ≤ l(≤ρ−1)

v

av−l(≤ρ−1)
v

l
(ρ)
v

· lv,u, if av ∈
(
l
(≤ρ−1)
v , l

(≤ρ)
v

)
lv,u, if av ≥ l(≤ρ).

v

230

For an example, consider a modified version of the network in Figure 1. Assume we231

now have 2 priority levels: the debt from u to w is on the higher level, while the other two232

contracts are on the lower level. For the case of u, this still means lu = 4, au = 2 and ru = 1
2233

as before. However, now u uses its 2 units of assets to pay its full liability to w, since this234

contract has higher priority than the debt to v. Hence pu,v = 0 and pu,w = 2, resulting in235

aw = 2. Since ru = 1
2 still implies lw = 1 for the CDS, the rest of the payments and recovery236

rates remain unchanged: we still have pw,v = 1 and rw = rv = 1. However, the payoffs of the237

banks in the system are now qu = 0, qw = 1 and qv = 2.238

The main motivation for introducing payment priorities is that in many cases, it is very239

close to what happens in real-world financial systems. In many countries, economic laws240

provide a specific priority list for companies to follow when paying their debts in case of a241
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default. This might start with salaries and other payments to the employees of the company242

first, then specific kind of debt contracts, and so on.243

Another advantage of priorities is that we can often use them to replace so-called default244

costs. Default costs (also studied in [22, 23]) are an extension of the original model, assuming245

that when banks go into default, they immediately lose a specific portion of their assets.246

This represents the fact that in practice, once a company goes into default, it has a range247

of immediate payment obligations (e.g. employees’ wages) before it can make payments to248

other banks. If we instead represent the bank’s employees as a separate node in the network,249

and model this payment obligation with a high-priority edge, then this might allow us to250

model some of these obligations without the use of default costs.251

This observation is crucial because the introduction of default costs comes at a significant252

price: intuitively speaking, default costs introduce a point of discontinuity into the update253

function, and as a result, some financial systems do not have a solution at all [22]. In contrast254

to this, without default costs, systems always have at least one solution, as shown by a255

fixed-point argument in [22]. We point out that the same fixed-point theorem proof also256

applies in our model with payment priorities: even though the functions pu,v(r) and av(r)257

become significantly more complicated, they are still continuous.258

This shows that by introducing priorities, we obtain a model that is significantly more259

realistic on one hand, but also ensures the existence of a solution at the same time.260

I Theorem 1. Every financial system with payment priorities has at least one solution.261

Proof (sketch). The proof of this claim is identical to the same proof in the original financial262

system model, described in the results of [22]. The main idea of the proof is to apply the263

fixed-point theorem of Kakutani [16], which ensures the existence of a fixed point of the264

update function f , and thus a solution. This proof can still be applied after the introduction265

of priorities, since both av(r) and lv(r) still remain a continuous function of r, and so does the266

update function fv(r) = min(av(r)
lv(r) , 1), at least in the domain where lv(r) > 0. The technical267

part of the proof is slightly more complicated, since one has to consider the lv(r) = 0 case268

separately. For more details on this proof, we refer the reader to the work of [22]. J269

5 Influencing the financial system270

We now discuss a wide range of actions that a bank can execute in order to obtain a more271

favorable outcome in the system. Note that except for Section 5.3 which explicitly studies272

readjusting priorities, all the results also hold in the base model without priorities.273

5.1 Removing an incoming debt274

One of the most natural actions for a bank v would be to simply cancel a debt contract275

in which v is a creditor. Since the creditor is considered the beneficiary of a debt, in some276

financial/legal frameworks, the regulations may indeed allow a bank to nullify an incoming277

debt contract. However, in case of a financial system with short positions, it is actually278

possible that in the end, this indirectly increases the payoff of v.279

I Theorem 2. Removing an incoming debt of v can increase the payoff of v.280

More precisely, our claim is as follows: there exists a financial system S such that (i) S281

has only one solution r, in which v has payoff qv and an incoming debt contract, and (ii)282

in the modified financial system S′ obtained by removing this debt, there is again only one283

solution r′, in which the payoff q′v satisfies q′v > qv.284
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Figure 2 A bank v removing one of
its incoming debts

2/γ0
2

1
1

1

w

u

v

2/γ0 0

2−γ0

0

2

Figure 3 A bank v removing a γ0

portion of an incoming debt

Proof. Consider the network in Figure 2. Note that the unlabeled nodes in this system can285

always pay all their liabilities, so their recovery rate is always 1. Originally, the system has286

au = 1 and lu = 2, thus ru = 1
2 in any case. This implies aw = 2 · (1 − 1

2 ) = 1, and thus287

rw = 1. With rw = 1, v obtains no payment from its incoming CDS at all, so the payoff of v288

in this only solution is qv = pu,v = ru · 1 = 1
2 .289

One the other hand, consider the system obtained by removing the debt contract from u290

to v. In this case, au = lu = 1, and thus ru = 1. This means that w receives no incoming291

payments at all, and with aw = 0, we have rw = 0. As a result, v obtains a payment of292

2 · (1− rw) = 2 from its incoming CDS, so we have qv = 2. J293

The proof shows that releasing an outgoing debt increases the recovery rate of u, which294

indirectly yields an extra payoff for v. Note that v could also achieve this result by donating295

funds to u, i.e. by increasing eu by 1. This is even more realistic in a legal framework: the296

owner(s) of bank v can simply donate a specific amount to bank u, who would accept it in297

hope of avoiding default. Naturally, this is only a favorable step to v if by donating x units298

of money, it can increase its own payoff by more than x.299

I Theorem 3. Donating external assets to another node u can be a favorable step.300

More precisely, there is a system S such that (i) S has only one solution r, in which301

node v has payoff qv, and (ii) in the system S′ obtained by replacing external funds of u by302

e′u := eu + x, there is again only one solution r′ which satisfies q′v > qv + x.303

The proof of the theorem is identical to that of Theorem 2: if v increases eu by x = 1 in304

Figure 2, then again ru = 1, which ultimately provides a payoff of qv = 3 (as opposed to the305

original 1
2 ). Note that in general, this action may allow banks to improve their position by306

affecting a bank that is arbitrarily far in the topology of the network.307

While our main focus in the paper is a theoretical analysis of these improvement techniques,308

we point out that these operations are not only theoretical anomalies in the model; there309

are known examples when some institutions indeed applied similar techniques in real-world310

financial networks [19].311

We also note that one could prove Theorems 2 and 3 on a smaller example system, where312

v only has an incoming debt from u and a larger outgoing CDS in reference to u. We have313

chosen this slightly larger example since it allows us to use a similar proof structure for all314

our claims in this section.315

Finally, if v can increase its payoff by releasing an incoming debt, it is natural to wonder316

if it is always optimal for v to erase the entire debt, or whether it could be beneficial to only317

reduce the amount in some cases. We show that reducing a debt to a given portion γ0 of its318

original weight can also be an optimal strategy.319
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I Theorem 4. For each constant γ0 ∈ [0, 1], there is a financial system where bank v achieves320

its maximal payoff by reducing an incoming debt by a γ0 portion of its original weight.321

Proof. Consider a modified version of our previous systems, as shown in Figure 3. We show322

that for any γ0 parameter, the optimal action of v in this system is to let go of γ0 portion of323

the incoming debt from u, i.e. to reduce its weight to 1− γ0.324

Assume that v reduces the incoming debt by a γ portion for some γ ∈ [0, 1], and let us325

analyze the final payoff of v as a function of γ. Note that a choice of γ = γ0 implies that326

au = lu exactly, and thus ru = 1, rw = 0 and qv = (1− γ0) + 2 = 3− γ0 as a result. Hence327

we have to show that qv < 3− γ0 in any other case.328

First consider the case when γ < γ0. Since u has lu = 1 + (1− γ) = 2− γ > 2− γ0, u is329

in default. Then ru = 2−γ0
2−γ , and thus w receives an incoming payment of330

aw = 2
γ0
·
(

1− 2− γ0

2− γ

)
= 2 · (γ0 − γ)
γ0 · (2− γ) .331

This is a decreasing function in γ, and it equals 1 exactly for γ = 0, so aw < 1 for any γ > 0,332

and thus w is in default with rw = aw. Then the amount v receives from the CDS is333

2 · (1− rw) = 2 ·
(

1− 2 · (γ0 − γ)
γ0 · (2− γ)

)
= 2 · γ · (2− γ0)

γ0 · (2− γ) .334

Since qv = (1− γ) · ru + 2 · (1− rw), we need to show that335

3− γ0 > (1− γ) · 2− γ0

2− γ + 2 · γ · (2− γ0)
γ0 · (2− γ) .336

After multiplying this by γ0 · (2− γ), expanding the brackets and removing terms that cancel337

out, we are left with γ0 · (4− γ0) > γ · (4− γ0), which naturally holds since γ < γ0.338

On the other hand, if γ > γ0, then au > lu, and thus ru = 1. This means rw = 0, so v339

receives an amount of 2 from the CDS, and has a total payoff of (1− γ) + 2 = 3− γ, which340

is again less than 3− γ0. Thus selecting γ = γ0 is indeed the best option for v. J341

5.2 Investing more external assets342

In light of Theorem 3, it is natural to ask if v can also increase its payoff by increasing its343

own external assets. In practice, this could easily happen in multiple ways, e.g. by creating344

more shares to raise capital for the bank, or by the owners of the bank investing further345

funds into the bank. If increasing ev by x would allow v to increase its payoff by more than346

x in the only solution, then the owners of v would indeed be motivated to invest these extra347

funds into the bank.348

However, somewhat surprisingly, it turns out that this is not possible in the same way as349

in previous cases: we cannot increase the payoff of v by more than x in the only solution of350

the system. More specifically, if a vector r′ is a solution to the new system and provides a351

payoff of q′v, then r′ was already a solution of the original system with a payoff of q′v − x.352

I Theorem 5. Assume that every solution of system S provides a payoff of at most qv for v.353

Then setting e′v = ev + x cannot introduce a new solution r′ with q′v > qv + x.354

Proof. Assume that such a new solution r′ is introduced. Since payoff is always nonnegative,355

qv ≥ 0, and thus q′v > x in r′. This means that we have a′v > x+ l′v in r′. Hence, even if e′v356

was reduced by x (back to its original value ev), then v could still pay all of its liabilities;357

thus the same recovery vector r′ and the same payments on each edge also provide a solution358

in the original system S. The payoff of v in this solution is q′v − x, which is larger than qv by359

assumption. This contradicts the fact that qv was the maximal payoff for v in S. J360
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Naturally, if v is in default, the recovery rate of v can indeed be increased in the only361

solution by injecting extra funds. However, an increase of rv does not translate to an increase362

in payoff, so it is a waste for the owners of v to invest resources for this.363

On the other hand, while it is not possible to produce a new, more favorable solution364

for v, it is possible to invalidate solutions that are unfavorable to v. That is, if the original365

financial system had multiple solutions with different payoffs for v, and v is unsure which366

of these solutions will be implemented by a financial authority, then it is possible that v367

can inject extra funds to remove a solution where its payoff is much smaller than in other368

solutions. This may allow v to increase its worst-case payoff, or its payoff in expectation (in369

case of a randomized choice of solution).370

I Theorem 6. Given a financial system S with two solutions, it is possible that setting371

e′v = ev + x removes a solution which is unfavorable to v.372

More precisely, there is a system S such that (i) S has two solutions r1 and r2, with373

solution r2 satisfying qv = 0, and (ii) in the system S′ obtained by setting e′v := ev + x, the374

only solution is r′ = r1, satisfying q′v > x.375

Proof. Consider the system in Figure 4, which has two solutions. The design of the system376

ensures ru = rv and rw = 1− ru. If rv = 1, then this implies ru = 1 and rw = 0, in which377

case v has av = 100, giving a solution with qv = 99. On the other hand, if rv < 1, then it378

has to satisfy379

rv = 100 · (1− rw)
1 = 100 · ru = 100 · rv.380

This is only satisfied if rv = 0, so this is the only other solution, providing qv = 0.381

Now assume that v invests x = 1 extra funds to have ev = 1. In this case, the system382

always has rv = 1, hence ru = 1 and rw = 0. This implies that v obtains a payment of383

100 in the CDS, resulting in a payoff of qv = 100. Even if we subtract the extra x = 1384

investment, v has an extra payoff of 99, and thus it has indeed increased its worst-case payoff385

significantly. J386

5.3 Readjusting priorities387

Assuming payments with priorities as discussed in Section 4, it is also interesting to know if388

a node can improve its situation by readjusting the priorities of its outgoing edges. That is,389

in a more flexible regulation framework, banks may be allowed to choose to some extent the390

order in which they fulfill their payment obligations. However, we show that similarly to the391

previous case, readjusting the priorities of outgoing edges cannot introduce a better solution.392
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I Theorem 7. Assume that every solution of system S provides a payoff of at most qv for v.393

Then redefining v’s outgoing priorities cannot introduce a new solution r′ with q′v > qv.394

Proof. Assume that such a new solution r′ is introduced. Payoff is nonnegative, so qv ≥ 0,395

and thus q′v > 0. This implies that a′v > l′v in r′, i.e. v is able to pay all of its liabilities in396

every outgoing contract. However, in this case, the priorities on the outgoing edges do not397

matter; hence r′ is a solution of S′ regardless of how the priorities of outgoing contracts are398

chosen. In particular, r′ is already a solution of the initial system S before the priorities399

were reorganized, giving the same payoff q′v in S. This contradicts the fact that qv was the400

maximal payoff for v in S. J401

However, it is again possible that v can increase its recovery rate by readjusting priorities.402

Recall that in the previous case of increasing the bank’s own external assets, we did not403

explore this possibility, since it required the bank v to invest extra funds while not yielding404

(the same amount of) extra payoff. However, readjusting priorities is an action that v might405

be able to execute free of charge. Thus if we define the recovery rate as the secondary406

objective function of a bank (i.e. even if v is in default and thus has 0 payoff, it is not407

oblivious to the outcome, and prefers a higher recovery rate), then redefining priorities may408

allow v to achieve a more preferred outcome without having to invest any extra funds.409

I Theorem 8. Redefining v’s outgoing priorities can increase the recovery rate of v.410

Proof. Consider the system in Figure 5 with a choice of δ = 1
2 . Originally, each contract411

is in the same (lower) priority class. Bank v never has enough assets to pay its liabilities,412

hence u is also in default. In this case, we have ru = rv and rw = 2− 2 · ru, so v receives413

δ · (1− rw) = δ · (2 · rv − 1) funds from the CDS. This means that414

rv = δ · (2 · rv − 1) + 1
2 ,415

which, after reorganization, gives δ − 1 = 2 · (δ − 1) · rv, and thus rv = 1
2 . This is the only416

solution of the system if δ 6= 1.417

Now assume that v is able to raise the debt towards u to the higher priority level. In418

this new system, v first fulfills its payment obligation to u, which is always possible from its419

external assets. Hence ru = 1 in this case, implying rw = 0 and thus a payment of 1
2 to v in420

the CDS. This implies rv = 3
4 in the only solution of the new system. J421

We again point out that the previous work of Bertschinger et. al. [6] discusses a similar422

phenomenon in debt-only networks, i.e. how redefining the priorities of v’s outgoing payments423

can result in an increased recovery rate for v.424

Finally, we show that redefining priorities can allow v to remove an unfavorable solution,425

and thus increase its worst-case or expected payoff as in the previous subsection.426

I Theorem 9. Given a financial system S with two solutions, redefining v’s outgoing427

priorities can remove a solution which is unfavorable to v.428

Proof. Consider the system in Figure 5 with a choice of δ = 100. As discussed in the proof429

of Theorem 8, if rv < 1, then the only solution is rv = 1
2 . However, the large δ value now430

allows another solution in the original system: if rv = 1, then ru = 1 and rw = 0, ensuring431

that v indeed has enough funds to pay its liabilities. The two solutions come with payoffs of432

qv = 0 and qv = 98, respectively.433

Now if v raises its debt towards u to the higher priority level, then ru = 1 is always434

guaranteed, so rw = 0 and thus v indeed has a payoff of 98 in the only solution. J435
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6 Game-theoretic dilemmas in financial systems436

Finally, we briefly show that the attempts of banks to influence the system can also easily437

lead to situations that can be described by classical game-theoretic settings.438

We first show an example where if two nodes simultaneously try to influence the system439

to their advantage, then the resulting situation is essentially identical to the well-known440

prisoner’s dilemma [20]. We then show that with some modifications to this network, we can441

also obtain financial systems that represent other well-known two-player-two-strategy games,442

e.g. the chicken or stag hunt game [20]. Finally, we show a different network design that443

allows us to model the multiple-round setting of a dollar auction [24].444

6.1 Prisoner’s dilemma445

For an example of the prisoner’s dilemma, consider the financial system in Figure 6, where446

banks v1 and v2 want to influence the system to achieve a better outcome. Assume that in447

the current legal framework, the only step available to these banks is to completely remove448

their incoming debt contract from u (as in Theorem 2); both banks can decide whether449

to execute this step or not. Note that canceling a debt increases the recovery rate of u,450

which indirectly implies a larger payment on the CDS for both v1 and v2, and thus can be451

beneficial for both banks. Applying prisoner’s dilemma terminology, we also refer to the step452

of canceling the debt as cooperation, and the step of not canceling the debt as defection.453

Now let us analyze the payoff of v1 and v2 in each strategy profile. Note that rw = 1− ru,454

so the payment on the CDSs for both v1 and v2 is 3 · (1− rw) = 3 · ru in any case.455

If both of the nodes cooperate (i.e. both debts are removed), then u can pay its remaining456

liabilities, thus ru = 1. This implies a payment of 3 on the CDS, which is the only asset of457

the acting nodes in this case; hence qv1 = qv2 = 3.458

If both of the nodes defect (no debt is removed), then we only have ru = 1
3 , resulting in a459

payment of 1 from the CDS. However, in this case, both v1 and v2 also get a direct payment460

of 5 · ru = 5
3 from the defaulting u, which adds up to a total payoff of 8

3 = 2.6̇.461

Finally, assume that only one of the nodes cooperate (say, v1). With only one of the462

outgoing debts removed, u will have a recovery rate of ru = 1
2 . This results in a payment of463

3
2 on the CDS for both nodes. However, note that v2 still has an incoming debt contract464

from u, and receives a payment of 5 · ru = 5
2 on this contract. This implies qv1 = 3

2 = 1.5,465

while qv2 = 4 for the strategy profile. The symmetric case yields qv1 = 4 and qv2 = 1.5.466

Since the payoffs are ordered exactly as in a prisoner’s dilemma, we obtain an essentially467

equivalent situation if the two banks are not allowed to coordinate. For both players, defection468

is always a dominant strategy. E.g. for v2, defection yields a payoff of 4 (instead of only 3)469

if v1 cooperates, and it yields a payoff of 2.6̇ (instead of only 1.5) if v1 defects. Thus the470

Nash-Equilibrium is obtained when both players defect, with qv1 = qv2 = 2.6̇. However, both471

players would be better off with mutual cooperation, which gives qv1 = qv2 = 3.472

Note that we only assumed for convenience that banks can only remove their entire debt;473

the behavior is similar if v1 and v2 can freely select the portions γ1 and γ2 of incoming debt474

that they keep. In particular, by differentiating the payoff qv1 = 3+5·γ1
1+γ1+γ2

, one can show that475

defection is indeed the best response of v1 for any choice of γ2, and vice versa.476

6.2 Stag Hunt477

Next, we analyze the financial system in Figure 7, which represents the coordination game478

known as stag hunt [20]. We again assume that the two acting nodes v1 and v2 can only479
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execute the action of completely removing their incoming debt contract from u1 and u2,480

respectively. As before, we refer to the decisions of removing and not removing the debt as481

cooperation and defection, respectively.482

Recall that canceling an incoming debt and donating funds to another bank are very483

similar operations in some sense. With a slight modification to our system, we could also484

present the same example game in a setting where the acting banks must decide to donate485

or not donate a specific amount of funds to a bank. For our example systems, we select the486

action that allows a simpler presentation.487

Let us analyze the payoffs in the different strategy profiles. If both players cooperate,488

then both u1 and u2 will only have a liability of 2, which implies ru1 = ru2 = 1. In this case,489

w receives no payment from either of the CDSs, resulting in rw = 0. This means that both490

v1 and v2 get a payment of 3 from their incoming CDSs. With their debt contracts canceled,491

we get qv1 = qv2 = 3.492

If both players defect and keep their debt contract, then both u1 and u2 will have a493

recovery rate of only 1
2 . This implies a payment of 1 to w on both CDSs, so w avoids default494

with rw = 1. This means that the acting nodes will not receive any payment on the CDS.495

On their debt contracts, they both receive 1
2 · 2, i.e. qv1 = qv2 = 1.496

Finally, assume that v1 cooperates but v2 defects. In this case, we end up with recovery497

rates of ru1 = 1 and ru2 = 1
2 . Thus w only receives payment on the CDS that is in reference498

to u2. However, this payment of 1
2 · 2 is already enough for w to fulfill its liabilities, and499

hence rw = 1. Again, v1 and v2 do not receive any payment on the CDS. However, v2 still500

has an incoming debt contract that ensures a payment of 1
2 · 2 = 1, while v1 has no assets at501

all. Thus the solution provides qv1 = 0 and qv2 = 1. In a symmetric manner, the case when502

v2 cooperates and v1 defects incurs qv1 = 1, qv2 = 0.503

Thus the system represents a game where the players are incentivized to coordinate their504

strategies. Both the case when both banks cooperate and when both banks defect is a pure505

Nash-Equilibrium, with mutual cooperation being the social optimum. However, if a bank is506

unsure whether the other bank will cooperate, it might be motivated to defect in order to507

avoid the risk of getting no payoff at all.508

6.3 Chicken game509

We also provide an example of the chicken game (also known as the hawk-dove game [20]),510

when the pure Nash-Equilibria are obtained in the asymmetric strategy profiles.511

Consider the financial system in Figure 8, and assume the acting banks v1 and v2 now512
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have the options to either donate 1 unit or money to another bank, or do not donate money513

at all. Due to the structure of the network, the nodes are motivated to donate this 1 unit of514

money to u, since this results in a payment on their incoming CDS contract. We again refer515

to donating a unit of money to u as cooperation, and not donating as defection.516

If both nodes defect, then u still has no assets at all, implying ru = 0. This results in517

rw = 1, and hence the acting nodes receive no incoming payment, so qv1 = qv2 = 0.518

If both nodes cooperate, then u has more than enough assets to pay its liabilities, resulting519

in ru = 1 and rw = 0. This means that both nodes get a payment of 3 in the CDS. After520

subtracting the amount they have donated, we get qv1 = qv2 = 2.521

However, to ensure that u does not go into default, it is enough if only one of the two522

nodes make a donation. I.e. if v1 cooperates but v2 defects, then u still has 1 asset, which523

already implies ru = 1, rw = 0 and a payment of 3 to both v1 and v2 on their incoming524

CDS. After subtracting the donated funds, this gives qv1 = 2 and qv2 = 3. Similarly, if v2525

cooperates and v1 defects, we obtain qv1 = 3, qv2 = 2.526

The payoffs show that there is no dominant strategy in the game: if v1 cooperates, then527

the best response of v2 is to defect, while if v1 defects, then the best response of v2 is to528

cooperate. This implies that the two pure Nash-Equilibria are obtained in the strategy529

profiles when the banks choose the opposite strategies.530

Note that we can easily generalize this setting to the case of more than 2 acting nodes,531

resulting in the so-called volunteer’s dilemma. For any k, we can add distinct banks532

v1, v2, ..., vk that are all connected to the financial network in the same way (through an533

incoming CDS of weight 3 in reference to w), and all have the same two options of either534

donating 1 unit of money to u or not acting at all. Note that we also have to ensure that535

the (currently unlabeled) debtor of the CDSs to these acting nodes has enough resources to536

make payments on these CDSs in any case, i.e. it must have external assets of at least 3 · k.537

In this case, we obtain a game where again only one volunteer bank vi is required to538

make a donation to u, and this already ensures a payoff of 3 for every other bank (and a539

payoff of 2 for vi). In this game, the pure Nash-Equilibria are the strategy profiles where540

exactly one bank cooperates, and the remaining banks all defect.541

6.4 Dollar auction542

Finally, we show a representation of the dollar auction game [24] in financial systems. We543

find this example network even more interesting because it builds on a threshold behavior in544

the financial system model, i.e. that a minor difference in assets can lead to a completely545
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different outcome.546

Consider the system in Figure 9, and assume that banks u′ and v′ want to influence this547

system by donating extra funds to banks u or v (as in Theorem 3). Note that the payoff548

of u′ and v′ depends on the recovery rates of u and v, respectively, which in turn have a549

recovery rate depending on each other. Due to the design of the system, u′ prefers bank u to550

be in default, and thus it wants to increase ev; similarly, v′ prefers bank v to be in default,551

so it wants to increase eu. We assume that 1 unit of money is a very high amount in our552

context, and thus u′ and v′ cannot donate enough to ensure that u or v pays its debt entirely553

from external assets; i.e. we assume that eu, ev < 1 even after the donation of extra funds.554

For a convenient analysis, we assume that there is a small minimum amount ε of funds555

that u′ or v′ can donate in one step. In our example, we choose a δ value in the magnitude556

of this ε, e.g. δ = 6ε.557

Let us now analyze the recovery rates of u and v in the solutions of the system.558

The vector ru = rv = 1 cannot be a solution, since it would imply no payment on the559

incoming CDSs, and thus these recovery rates would only be possible if eu, ev ≥ 1.560

If a vector ru = 1, rv < 1 is a solution, then since v receives no incoming payments, we561

must have rv = ev
1 = ev. Thus bank u has assets of eu + 1− ev, which has to be at least562

1 for ru = 1 to hold. Hence this is only a solution if eu + 1− ev ≥ 1, i.e. eu ≥ ev. In a563

symmetric manner, rv = 1, ru = eu is only a solution if ev ≥ eu.564

If ru < 1, rv < 1 in a solution, then ru = eu + 1 − rv and rv = ev + 1 − ru must hold.565

This implies eu = ev, and ru + rv = 1 + eu. Hence if eu = ev, then any ru, rv with566

ru + rv = 1 + eu provides a solution.567

Thus as long as eu, ev < 1, the behavior of the system is as follows:568

If eu < ev, then the only solution is ru = eu, rv = 1. This means qu′ = δ · (1− eu) and569

qv′ = 0.570

If eu > ev, then the only solution is ru = 1, rv = ev. This implies qu′ = 0 and571

qv′ = δ · (1− ev).572

If eu = ev, then any ru, rv ≤ 1 with ru + rv = 1 + eu is a solution of the system. In the573

general case, qu′ = δ · (1− ru) and qv′ = δ · (1− rv).574

This describes a setting that is very similar to a dollar auction. In the beginning, with575

eu = ev = 0, we have a range of different solutions, and a choice among these depends on a576

financial authority. One of the banks (say, bank u′) decides to donate a small ε amount of577

funds to v; then with ev = ε > eu = 0, bank u′ receives a payment of δ · (1− 0) in the only578

resulting solution. At this point, the payoff of v′ is 0; however, at the cost of donating 2 · ε579

funds to u, it could achieve eu = 2ε > ev = ε, thus resulting in a single solution with a payoff580

of qv′ = δ · (1− ε). Since this increases the payoff of v′ by δ · (1− ε) at the cost of only 2ε,581

this is indeed a rational step for the appropriate δ and ε values. However, then u′ is again582

motivated to donate 2ε more funds to increase ev over eu again, and so on.583

Assuming that both u′ and v′ has at most 1
2 funds to donate, we always have eu, ev ∈ [0, 1

2 ].584

This shows that e.g. if we have eu > ev, then the payoff of bank v′ is always within585

qv′ = δ · (1− ev) ∈ [δ/2 , δ] = [3ε , 6ε].586

Hence in every step, it is indeed rational for v′ to donate another 2ε funds, since it increases587

its payoff from 0 to at least 3ε. After a couple of rounds, u′ and v′ will have both donated588

significantly more money than their payoff of at most 6ε. However, the banks are still always589

tempted to execute the next donation step to mitigate their losses.590
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