Exploring Energy Saving for
Mixed-Criticality Systems on Multi-cores

Sujay Narayana'?, Pengcheng Huang', Georgia Giannopoulou®, Lothar Thiele’ and R.Venkatesha Prasad!
fComputer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland
YEmbedded Software Group, TU Delft, The Netherlands

Abstract—In this paper we study a general energy mini-
mization problem for mixed-criticality systems on multi-cores,
considering different system operation modes, and static &
dynamic energy consumption. While making global scheduling
decisions, trade-offs in energy consumption between different
modes and also between static and dynamic energy consumption
are required. Thus, such a problem is challenging. To this end,
we first develop an optimal solution analytically for unicore and
a corresponding low-complexity heuristic. Leveraging this, we
further propose energy-aware mapping techniques and explore
energy savings for multi-cores. To the best of our knowledge, we
are the first to investigate mixed-criticality energy minimization
in such a general setting. The effectiveness of our approaches
in energy reduction is demonstrated through both extensive
simulations and a realistic industrial application.

I. INTRODUCTION

Energy minimization is a prime requirement in the design
of embedded systems, not only due to cost reduction reasons,
but also due to related thermal issues. With aggressive shrink-
ing of circuit footprint, power density of modern electronic
circuits is drastically increasing, leading to rise in tempera-
ture. This may result in overheating, causing the failure of
embedded systems if it is not handled properly [12, 29].

Recently, we are witnessing the rise of mixed-criticality
systems [2]. Such systems are emerging due to strong require-
ments from major industries like automotive and avionics, with
the essential idea to consolidate functionalities of different
safety criticality levels onto the same commercial-off-the-shelf
(COTS) computing platform. Consequently, the number of
computer systems could be greatly reduced, leading to compact
systems that may be potentially easier to design, integrate and
validate [6].

Although there is rich literature on energy minimization
techniques for conventional real-time safety-critical systems,
(see e.g. [5, 8] for excellent reviews), applying them to mixed-
criticality systems might not be straightforward. On one hand,
well-established methods like Dynamic Voltage and Frequency
Scaling (DVFS) or Dynamic Power Management (DPM) can
be applied to mixed-criticality systems. On the other hand,
mixed-criticality systems can react to runtime threats (majorly
task overruns) by switching between different operation modes
and making different service guarantees on different criticality
levels. This could consequently complicate energy reduction
decisions since, usually there exists a trade-off between energy
consumption in different modes [16].

To date, only a few works have been published to tackle
this challenging problem [15, 16, 21, 28]. An optimal solution
based on DVFS to minimize energy consumption for unicore
mixed-criticality systems is proposed in [16]. However, only
dynamic power consumption due to circuit switching activities
in one system mode is considered. Static energy consumption

due to leakage current and other system modes are neglected.
Other related works, although have different assumptions, all
share a common concept to sacrifice the performance of low
criticality tasks in order to manage/optimize system energy. An
approach based on DPM is presented in [21] to trade deadlines
of low criticality tasks for energy saving on multi-cores, while
deadlines of high criticality tasks are always guaranteed. A
DVFS method minimizing energy for unicore mixed-criticality
systems is presented in [15], while respecting system reliability
requirements. Rather than treating energy as an optimization
goal, energy utilization on critical tasks is advocated in [28]
when the system is short of energy supply, while allowing
deadline misses of low criticality tasks.

In this paper, we present a solution to a general energy
minimization problem for multi-core mixed-criticality systems.
Focusing on DVFS, we consider both static and dynamic
energy consumption and their trade-offs between different
system operation modes. We first propose an optimal solution
and an effective lightweight heuristic on a unicore. We then
extend these results to multi-core systems by designing new
energy-aware mapping techniques. Experimental results for our
proposed techniques demonstrate energy savings up to 35% on
random simulations and 50% for a flight management system.

The rest of this paper is organized as follows: In Sec. II
we describe our system model, while in Sec. III we present an
example to motivate our problem formulation. We present an
optimal analytical solution to our energy minimization problem
on a unicore in Sec. IV, while in Sec. V we present a corre-
sponding simple, yet effective, heuristic solution. Leveraging
our unicore solutions, we present different energy-aware task
mapping techniques in Sec. VI. We evaluate and conclude our
proposed techniques in Sec. VII and Sec. VIIL

II. SYSTEM MODEL

We introduce in this section our system model regarding
mixed-criticality and DVFS while briefly discussing mixed-
criticality scheduling.

A. Mixed-Criticality Task Model

We consider a mixed-criticality task set 7 consisting of
independent sporadic tasks {71, 72,..., 7|/} to be scheduled
on a platform with identical preemptive processors m =
{m1, 72, ..., |z }. Bach task 7; is specified by a minimum inter-
arrival time 73, a deadline D;, and an associated criticality
level of x;. We assume tasks have implicit deadlines (V7;,
D, = T;) and dual-criticality levels (V7;, x; can be either high
(HI) or low (LO)). In addition, to ensure timing safety, worst-
case execution time (WCET) estimations of HI criticality tasks
are more conservative than those of LO criticality tasks.



T a mixed criticality task set

X criticality level, x € {LO, HI}
Ci(x) WCET of task 7; on x criticality level
fo frequency at which WCETs are estimated
[fmin , fmax] || available frequency range with DVFS
X frequency of task 7; in x mode
o2 frequency of all x; criticality tasks in x2 mode
Iz opt optimal f¥2 for unicore energy minimization
Ux2 X2 mode utilization of all x; criticality tasks
by system energy consumption in y mode
Wy weight factor for x mode
T deadline shortening factor in EDF-VD
TLB, TUB lower and upper bounds of =
ZLB, LUB lower and upper bounds of = at fZX = fmax

ZLBopt» TUBopt || Optimal lower and upper bounds of x

TABLE I: Adopted notations

To further improve resource efficiency, the state of the art
mixed-criticality model [2] assumes to measure task WCETs
on all criticality levels. Any HI criticality task 7; has a
LO criticality WCET C;(LO) and a more pessimistic HI
criticality WCET C;(HI). Any LO criticality task 7; has only
a LO criticality WCET C;(LO) and is not allowed to overrun
C;(LO). At runtime, the system starts with LO operation mode
and guarantees deadlines for all HI and LO criticality tasks
assuming their LO criticality WCETs. If any HI criticality task
overruns its LO criticality WCET, then the system switches to
HI operation mode and all LO criticality tasks are dropped in
order to guarantee HI criticality tasks. However, the system
can switch back to LO mode at any time when there are no
pending tasks [26]. We do not discuss the last scenario as it
is beyond the scope of this paper. For notational convenience,
we define U} for x1, x2 € {LO, HI} as follows:

Ci(xe2
> o

TiETAXI=X1 ¢

X2 —
UXl -

UX? denotes the total utilization of all x; criticality tasks
with their o criticality WCETs. For instance, U5 denotes
the utilization of HI criticality tasks with their LO criticality
WCETs. We further define 7, as the set of all x criticality
tasks, where x € {LO, HI}, and use [a]® to represent
min(a, ¢). All important notations are summarized in Table 1.

B. Power Model and DVFS

We adopt a popular power model from [9, 24]. Assuming
a homogeneous multicore platform, the power consumption of
any processor is formulated as,

P(f)=Ps+ B[, (M

where P(f) is the total power consumed and P; stands for the
static power consumption due to leakage current. f denotes the
operating frequency of the processor and 5f® represents the
dynamic power consumption caused by switching activities,
where « and (8 are circuit dependent parameters. A common
assumption is that o > 2 [23, 25]. Hence, decreasing processor
frequency leads to a convex reduction of dynamic power, as
explored by the well-known DVES technique [8]. However,
with reduced frequency, leakage energy will increase as it takes
longer for jobs to complete. Thus there is a critical frequency
faie below which it is not beneficial to reduce frequency

energy-wise. For any job with workload of nc clock cycles,
[25] shows that f.; can be obtained as follows:

AP, + 2B P,
(f ! >:0<:>fcril:a

daf Bla—1)

As a result, we assume in this paper that each core in a

hardware platform is independently DVFS-capable and can

execute with any frequency in [ fiin, fmax]> Where fiin > feric-

The WCETs of tasks are estimated at frequency f;, where

Smin < fo < fmax. Notice that applying DVFS changes

the actual WCETs of tasks, such that x criticality WCET
Ci() fo

of task 7; becomes —~-~— while running at frequency f.

(©))

Note that we focus on processing energy consumed by CPUs
in this paper and neglect communication energy consumed
by memory systems, since the former is the major energy
source for modern computer systems and can amount to 75%-
80% of total system power consumption [10, 27]. Under
realistic models of task execution times and system energy
when considering communication [30], our proposed tech-
niques could be directly extended to minimize additionally
communication energy by treating the communication phases
of tasks as separate artificial tasks. Finally, we assume that the
processor energy consumption when inactive and the overheads
of switching between active and inactive states are negligible.
This assumption holds for platforms with deep-sleep modes
and negligible power mode transition overheads (e.g. current
NXP Kinetis series feature ~4us wakeup time from the state-
retaining deep-sleep mode [1]). We leave the complete solution
with consideration of various overheads as our future work.
However, we believe that the important findings of this paper
(e.g. energy trade-offs between different systems modes and
between static and dynamic energy consumptions, as well as
the benefits of isolated task mapping, see Sec. IV and Sec. VI)
would still hold.

C. Mixed-Criticality Scheduling

For mixed-criticality multi-core scheduling, either global
scheduling [22] or partitioned scheduling [18] can be applied.
In this paper, we focus on the latter since it is more common
in industrial embedded systems. Mixed-criticality scheduling is
strongly NP-hard even for simple task models on a uniproces-
sor [18]; thus, we particularly study the integration of decisions
regarding energy saving into a well-known approach, i.e., the
partitioned EDF-VD scheduling [4, 13]. Here, HI criticality
tasks are first mapped to all processors followed by mapping
of LO criticality tasks. Different bin packing techniques can
be adopted for task mapping, while system utilization bounds
are enforced on all cores to obtain a feasible schedule [4, 13].

After task mapping, scheduling on each processor follows
EDF-VD [3]. In EDF-VD, deadlines of all HI criticality tasks
are down-scaled by a multiplication factor z (0 < z < 1)
in LO mode to prioritize their executions. This will leave
enough time until their actual deadlines to accommodate extra
workload (overrun). Intuitively, a smaller = increases system
utilization in LO mode but decreases system utilization in HI
mode, as more jobs are completed in LO mode. As a result,
it affects scheduling in both LO and HI modes. For a task
set T running on a unicore, a feasible range of x exists [3].
Formally, we present this as follows.



Theorem 1. To guarantee system schedulability on a unicore
under EDF-VD, x must be set in the following range,

LO HIT !
U <o <[]
= LO :

Ulo

-uig =
Proof: This follows from (3) and Theorem 2 in [3]. M

Essentially, this theorem states that there is a lower bound
on x, below which LO mode will not be schedulable. Similarly,
an upper bound exists, beyond which HI mode will not be
schedulable. However, notice that with DVFS, system utiliza-
tion factors are scaled, and the test in Theorem 1 needs to be
performed with those of scaled utilization factors.

0<

III. PROBLEM FORMULATION

We motivate our work using a general setting for mixed-
criticality energy minimization on multi-cores, where both
static and dynamic power consumption are considered in all
system modes. Based on this, we provide a concrete problem
formulation here.

A. Motivation

Minimizing system energy only in one mode may not be
proper as the system can operate in different modes: [16]
advocates to consider only LO mode energy as they claim the
system is most likely to stay in this mode. However, with time
the probability of switching from LO to HI mode increases,
eventually reaching 1 (see e.g. [17]). To jointly consider
energy consumption in different system modes, we define the
weight factor wro (wyr) for LO (HI) mode, which indicates
the relative importance of minimizing system energy in each
mode. We assume normalized weight factors (i.e. wyo+wp; =
1). Such weight factors would help to make global energy
saving decisions to trade-off energy consumptions in different
system modes. In practice, one could interpret them as the
percentages of time (or alternatively, the probabilities) that the
system operates in the corresponding modes. The motivation to
consider static energy is rather straightforward — static power
could overwhelm dynamic power as the CMOS technology
level improves [19]. Thus, it is critical to minimize static
energy along with dynamic energy [11].

We use the following motivational example to quantify
the impact of weight factors and static energy on energy
minimization. We first evaluate the case when the system runs
on a unicore and then proceed to multi-cores with an additional
consideration of task mapping strategies.

Example 1. Consider the task set as shown in Table II,
which is schedulable on a unicore under EDF-VD (base
frequency f, = 1.2GHz). The processor is DVFS-capable,
where [fmin, fmax] = [0.7,1.2]GHz. We assume o = 3,
B = 1W/GHz® and P; = 0.8W [25]. We calculate the
total weighted energy consumption in LO and HI modes with
varying weight factors wyo and wy;.

1) Unicore: We consider 3 strategies to show the impact
of weight factors and static energy on energy minimization:

SA No DVFS, where tasks execute on base frequency fp.

SB DVFS where only dynamic energy is optimized (Ps set
to zero during optimization according to our algorithm
in Sec. V). However, when calculating the total system
energy, we include static energy consumption.

T Xi T; C»L(LO) CZ (HI)
71 | HI | 40 4 12
> | HI | 75 6 18
73 | HI | 40 3 9

74 | LO | 100 6 6

75 | LO | 80 5 5

TABLE II: Example mixed-criticality taskset
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Fig. 1: Motivational example: Energy consumption under im-
pacts of weight factors, static energy and task mapping

SC DVEFS where both static and dynamic energy are opti-
mized according to our algorithm in Sec. V.

We summarize our results in Figure 1a. Indeed, we can observe
that energy can be greatly reduced by employing DVFS. If we
compare Strategy A with C, 41% of total energy consumption
is saved by employing DVFS when wio = 0.1. In addition,
we observe that weight factors greatly affect the total energy
consumption for all strategies. For example, in Strategy C, the
minimal system energy consumption can vary by 38% when
wro changes from 0.1 to 0.9. This further implies that the
choice of weights is critical. That is, either neglecting HI mode
energy (wro — 1) or neglecting LO mode energy (wpo — 0)
would lead to overly optimistic or pessimistic results. However,
detailed domain knowledge of the applications may be required
to select meaningful weight factors. By comparing strategies
B and C, we also observe that optimizing static energy can
further reduce the total energy consumption of the system. For
all the weight factors considered, Strategy C achieves ~10%
more energy savings than Strategy B.

2) Multi-core: For mixed-criticality systems on multi-
cores, we have to further consider the impact of task mapping
on energy minimization. To this end, we compare three dif-
ferent approaches — two state of the art mapping techniques
(Baruah’s method [4] and Gu’s method [13]) and a new method
EM3 proposed in this paper (see Sec. VI).

We apply the aforementioned techniques to the task set
of Table Il on a dual-core platform, with the same power
parameters on each core. We apply our unicore energy min-
imization technique (Sec. V) individually on all cores. The
total energy for each mapping method is calculated by deriving
the weighted energy consumption in different system modes
on each core and then summing them up across all cores.
Figure 1b shows the normalized total energy consumption
obtained using different mapping techniques. As we can ob-
serve, indeed the task mapping can greatly affect the achievable
energy saving. As an example, with wro = 0.5, EM3 achieves
up to 25% energy reduction compared to the previous methods.
The reason for this is that our method can balance the
workload better across different cores in order to improve
energy savings. We provide detailed explanations in Sec. VI.



Similar to unicore, we can also see that weight factors play a
critical role in energy minimization for multi-core platforms.

In summary, through the above example, we have demon-
strated that, weight factors, static energy and mapping tech-
niques all play a critical role in the mixed-criticality energy
minimization problem. Motivated by this, we proceed to for-
mally define our problem.

B. Problem Formulation

As discussed earlier, due to intrinsic intractability of
the mixed-criticality scheduling problem, we divide-and-
conquer the energy minimization problem by solving two sub-
problems: (i) We first perform energy-aware task mapping;
(ii) we then develop and apply unicore DVFS techniques to all
cores. However, the first problem is dependent on the second,
as we want to find mapping techniques that could explore
best the energy saving potentials of unicore solutions. In the
following, we formulate these two subproblems.

1) Unicore problem: For our problem here, we assume that
T is our considered task set on one core. To apply DVFS, the
essential problem is to assign each task an operating frequency
in each system mode, such that energy is minimized while
mixed-criticality real-time guarantees are satisfied.

Let us denote the frequency of task 7; in mode x as
1, where x € {LO, HI} (uniformly represented by function
F: 7 x {LO, HI} — R™). To consider energy minimization
for both system modes, we first need to define a proper energy
objective. To this end, we express the importance of minimiz-
ing LO mode energy with a weight factor w o (similarly wyy
for HI mode), where, wio,wnr € [0,1], wo = 1 — wpr. We
do not pose any restriction on how to obtain wro and wys.
Our formulation is rather general: if w o = 1 A wyg = 0, we
minimize only LO mode energy; if wi o = 0.5 Awy = 0.5, we
then minimize the average energy consumption in both modes.

First, for one hyper-period in LO mode (II,T;), we calcu-
late the normalized total energy consumption in this interval as
the actual energy consumption divided by the interval length,

Ero =wLo Z T- fLO (Ps + B(f72)). 3)

TiET

Similarly, we normalize the system energy consumption in a
hyper-period in HI mode (Hxi:HlT,;) as

By = wn Z

Ti ETHI

T, fHI (P4 B @&

Finally, our goal is to minimize the system energy across both
operation modes, where,

E = Ero + Fi, )

and the optimal task frequencies in different system modes
need to be chosen ( fiX, V7;Vx). Furthermore, energy should
be minimized while satisfying the mixed-criticality real-time
requirements. Using Theorem 1, we can get a new schedula-
bility condition when task utilizations are scaled under DVFS.
We show the application of DVFS to EDF-VD, extending the
result of Theorem 1 using the following corollary.

Corollary 1. Consider a task set 7 scheduled by EDF-VD on
a unicore. Assume that, with DVFS, task 7; has frequency fX

in system mode Y, then the feasible range of x is,

ﬁLO 1_ U'HI
0< $LO <e<| ~LOHI I ©)
1-Uis Ulo
where
C i(L
o=y el Guoy- SUDk e
TiETXl v 4
C;(LO C;(HI) — C;(LO
07(HI) _ ( Lo)fb ( ( ) fH[ ( ))fb 7 VTi € Tar.

Notice that, according to Corollary 1, with increasing

X Y1;, the lower bound of x after DVFS does not increase,

while the upper bound does not decrease as all utilization

factors decrease. Thus, we know for any possible DVFS

strategy,  must be within the absolute respective bounds when

X = fmax, V7i¥x. We denote the lower and upper bounds in
this case as &g, ¢y € [0, 1], respectively.

To apply DVES to save energy, we need to ensure that
(5) is minimized while (6) is satisfied. With reformatting and
constraint transformation, we can formulate our unicore energy
minimization as a convex program. We capture this with the
following theorem.

Theorem 2. The unicore energy minimization problem can be
formulated as a convex program given by:

minimize E = Fio+ Em @)
Lo

s.t. LUl <1 ®)

UM + U < 1 ©)

T € [l‘LB, JTUB] (10)

VTivaa fZX S [fminv fmax} (11)

The convexity of the program can be easily verified [7]. Our
energy objective is a convex function of task frequencies and
the left-hand sides of our constraints are also convex functions
of task frequencies and the deadline scaling factor. Although
the convex formulation suggests practical algorithms [7] to
solve our problem, we will theoretically investigate our prob-
lem and develop more insights in later sections.

2) Multi-core problem: Assuming partitioned scheduling
in this paper, we still need to find an energy efficient task
mapping onto a multi-core platform, such that by applying
unicore DVFES locally on each core, the total energy consumed
by all tasks on all cores is minimized. Let us denote task
mapping with function M : 7 — 7. In addition, since we
apply EDF-VD on each core locally, we define the deadline
scaling factors on all cores through function X : 7 — R, Our
multi-core problem can then be formalized as follows.

Definition 1 (Mixed-Criticality Energy Minimization on Mul-
ti-core). Given a task set 7 on a DVFES-capable platform ,
find M, X and F such that the total energy consumption on all
cores for different modes is minimized.

IV. A UNICORE OPTIMAL SOLUTION

We proceed to acquire a deeper insight into our unicore
energy minimization problem. Since we have a convex formu-
lation (Theorem 2), we first apply the Karush-Kuhn-Tucker



(KKT) optimality conditions [20] to our problem. Due to the
intrinsic computation complexity involved, we then show how
to reduce the actual search space.

A. KKT conditions

Let us first introduce the KKT conditions for solving
general optimization problems. Consider a problem of the form

minimize f(2)
s.t. hi(z) =0 Vi=1,..,n
gi(2) <0 Vj=1,...m

where h;(z) and g;(z) are the equality and inequality con-
straints for a continuous function f(z), respectively.

Theorem 3 (KKT conditions). According to [20], if the ob-
jective and constraint functions are continuously differentiable,
then a global minimal solution z* exists, when there exist
Lagrange multipliers A\; (1 < ¢ < n) and KKT multipliers
w1y (1 <5 < m), such that

+ZAVh +Zu] +9j(z) =0

sit. hi(2") =0 Vi:l,...n; gj( )§0 Vi=1,..m
pigi(z) =0 Vi=1,..m; p; >0 Vj=1,..m

B. Complexity involved with KKT for our problem

As we have a convex program with continuous decision
variables for our unicore problem (i.e. task frequencies are
continuously available and the deadline scaling factor is also
a continuous variable, see Theorem 2), we can directly apply
Theorem 3 to find the optimal solution. However, this could
be impractical as it leads to an exponential computational
complexity.

Theorem 4. Solving our unicore mixed-criticality energy
minimization problem directly by KKT conditions requires
solving 22Imol+4Iml+4 gystems of non-linear equations.

Proof: Notice that for our unicore problem as formulated
in Theorem 2, only inequality constraints exist. Thus, we
need to introduce only the slack variables p; in each of the
complementary slackness equations, (;g;(z) = 0, where at
least one of u; and g;(z) must be 0. With m such conditions,
there would be 2™ possible cases (u; = 0 or g;(z) = 0). For
constraints (8) - (10), we need to introduce four slack variables
(in (10) we have to consider both the upper and lower bounds).
According to (11), for each HI criticality task, we have to
introduce two slack variables for its frequency in each system
mode, leading to a total of 4|7yy| slack variables. Similarly, we
have 2|71 0| slack variables for LO criticality tasks (they are
not executed in HI mode). This would lead to 22/mol+4[ml+4
binary cases to check for the optimal solution, where in each
case, we have to solve a system of non-linear equations. N

To reduce the intrinsic high complexity encountered, we
proceed towards an in-depth analysis of the energy minimiza-
tion problem, aiming to reduce the actual search space.

C. Reduction of search space

1) Optimality condition in f}: Considering only dynamic
energy consumption in LO mode, [16] proved that the system
energy consumption is minimum when all tasks of the same

criticality level share the same frequency in each mode. We
now generalize this result to consider additional static energy
consumption and system energy in both LO and HI modes. Let
us introduce 3 frequency variables f3, fi® and fHl, where
I represents the frequency of all x; crltlcahty tasks in xo
system mode. Formally, we have the following result.

Theorem 5. For the unicore mixed-criticality energy mini-
mization problem as specified in Theorem 2, in an optimal
solution all tasks of the same criticality level share the same
frequency in each mode, i.e.,

LO _ fLO. LO
V7 € TL0, f; Lo; VTi € Tr, f;

fLO A fHI fHI

Proof: Detailed proof is provided in Appendix A. [ |

Theorem 5 can be derived by applying KKT conditions sepa-
rately to several subproblems of our unicore problem. We refer
the interested readers to Appendix A for detailed explanations.
Using Theorem 5, the search space in task frequencies can be
greatly reduced and the energy objective (3) and (4) can be
simplified as follows,

Evo =wio foULG (Ps/ 6 + B(fi0)* )

+weofoUi (Ps/fit + B0, (12)
Ew =wn /Uit (Ps/ fitt + B(fi) ™).

2) Optimality condition in x: We continue to derive the
necessary conditions in x (the deadline shortening factor) for
any unicore solution to be optimal. We find this by relating the
choice of = with energy consumption in both system modes.

According to Theorem 5, let us denote the frequencies in
an optimal solution as fL L0 opt* I, o and f}‘#opt. Let us further
define K, L and M as follows,

K — Z LO fb I Z Ci(LO)fb’
xi=HI xi=LO i (13)
M=1-3Y (Ci(HD) — Cy(LO)) fo
o T; le t
Xx:=HI op

Using Corollary 1, we can derive the lower and upper bounds
for x in an optimal solution as,

_ f HI opt fb _ / HI opt 14
TLBopt = Lo / ’ ( )
— <> Jb LO opt
LO opt
r yLo U _gLo 1
1— 8 .fb - HIHI = fb
. HI opt Jar opt
xUBopt - ULO
Gl (15)
1
- M K / HI opt
L / LO opt
where [a]¢ = min(a,c). Now, we consider choosing the

optimal deadline scaling factor wop. To ensure schedulability,
it must follow that, TLBopt < Topt < TUBopt (see Corollary 1).

From (14) and (15), we observe that fﬁgot and/or fHI opt

can be decreased by increasing xppgy Or decreasmg TUBopt>
thus minimizing LO mode energy'. Similarly, I  can be
g gy - Y. Jui opt

IRecall that fii, > ferit and reducing frequency is always beneficial in
saving both static and dynamic energy.



decreased by decreasing zypqpy to save energy in HI mode. As
a result, as long as task frequencies are not minimal (f,;,) and
TLBopt 7 TUBopr» WE can reduce either LO mode frequencies or
HI mode frequencies to bring the lower and upper bounds on x
closer. This process can only stop if, (i) all task frequencies are
already lowered to f,in, or (ii) TLBopt = TUBopt- WE summarize
our observations on this necessary optimality condition using
the following theorem.

Theorem 6. An optimal solution to our unicore problem as
formulated in Theorem 2 exists in one of the two following
cases:

LO _ fHI _ ¢
HI — JHI = Jmin-

2 Equilibrium case, i.€. TLBopr = Topt = TUBopt-

1 Extreme case, i.e. fLo =

Proof: This directly follows from discussions above. W

Notice that Theorem 6 generalizes a similar condition
in [16], where only dynamic energy in LO mode is considered.

D. Optimal solution with KKT

Using Theorem 5 and Theorem 6, we have a much reduced
search space. We could apply KKT conditions again to our
unicore problem. Notice that, according to Theorem 6, the
optimal solution could only exist in the extreme case or the
equilibrium case. For the extreme case, we only need to
test whether the system is feasible while running at fiy.
Therefore, we only need to apply KKT to the equilibrium
case. We can add the equilibrium constraints to our problem
formulation as shown in Theorem 2, while minimizing a much
simplified energy objective (12). Our simplified problem can
be formulated as follows:

minimize (12)
s.t. (14), (15), TLBopt = Topt = LUBopt> (16)

(8)7 (9)7 I]jga I]-floa HI [fmlm fmax]

Notice that, at equilibrium, we can remove the [-] 1 operator
to make Typ.y differentiable. For a feasible system, when
TLBopt = TUBopt < 1, this is evident; when TLBopt = TUBopt =
1, using (14) and (15) we have,

LO HI LO
1- (fU”‘ )fb_ (U”f‘ ”‘)fb 1- (f >fb
HI opt HI opt Hl opt
< U9 =1

(#)
A7)
As a result we can apply KKT to our simplified problem (16).
We need to introduce two Lagrange multipliers \; for the
equilibrium constraint, two slack variables () for each of
the frequency variables fLO’ HI and f Then, Theorem 3
can be directly applied. A critical observation is that, with
reduced search space, we only need to solve 2° systems of

non-linear equations as compared to 22I7ol+4lmul+4 for our
original problem (Theorem 4).

V. A SIMPLE & EFFECTIVE UNICORE HEURISTIC

As shown in Sec. IV, even by limiting the problem search
space (without loss of optimality), applying the well-known
KKT approach to our problem still incurs high complexity (2°
systems of non-linear equations). We proceed now to develop
a computationally simple yet effective heuristic solution to our
unicore problem.
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Fig. 2: LO mode and HI mode energy as a function of f{il
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Fig. 3: Different cases to check in Algorithm 1

A. Intuition

As already discussed, there exists a trade-off between en-
ergy consumption in different system modes. With increasing
fHL system energy consumption in HI mode will be increased
(see (12)). However, this could generate more system slack in
LO mode, allowing reduction of LO mode task frequencies to
reduce LO mode energy. In other words, increasing f{i could
potentially increase the optimal upper bound of the scaling
factor xypey as presented in (15). Due to the equilibrium
optimality condition (Theorem 6), this could enable us to
increase the optimal lower bound of x as well by decreasing
task frequencies in LO mode, see (14). Similarly, increasing
LO mode task frequencies could potentially decrease HI mode
system energy.

Moreover, the main intuition is that the second order differ-
entials of both LO and HI mode minimal energy consumption
(12) are non- negative with respect to fIIfII. According to (1) and
(12), with increasing ff, dynamic energy consumption in HI
mode becomes dominant compared to static energy consump-
tion, leading to a higher rate in energy increase. Furthermore,
as fil increases, LO mode energy reduces asymptotically to
an absolute lower bound when all task frequencies in LO mode
are fmin. The above observations are clear if we consider the
same example from Table II and plot ErLoy and Eupepy as a
function of f}l, as shown in Figure 2. We will show later in this
section how to derive Flogp and Eyjey. Due to the trade-off
between LO and HI mode energy consumption, there exists
a fil in the feasible range leading to the minimum overall

energy. We aim to find such a fi| using a simple heuristic.

B. Heuristic algorithm

In the extreme case (i.e., all task frequencies are fi,i,), we
need to confirm the system schedulability using Corollary 1.

In the equilibrium case, we propose a heuristic approach to
find the optimal solution based on the intuitions discussed in
this section. Let us denote with E{oopt Btiigp) the first order
differential of the minimal LO (HI) mode energy consumption



Algorithm 1: A simple and effective unicore heuristic

input : 7, fb» fmiLrb, fmax}tho and wy
OUtPUt fLO opt? fHI opt’ fHI opt’ xOPt

1 if System feasible when fLS = f5° = fill = f,ax
according to Corollary 1 then

2 if System feasible when f = HI = II_}III = fmin
according to Corollary 1 then

3 ‘ Xf — fmin VX1VX2;

4 else

5 Determine the feasible range of fiIl according
to the Corollary 1 (f5° and fL9 set to fiax);

6 If E’ is non-negative at the smallest feasible

H,, set this as fm opt (case 1);

7 If E’ is non-positive at the biggest feasible fiI,
set this as fHl opt (Cas€ 2);

8 If the above does not hold, we do a binary
search to find the fHI such that £/ = 0; set this
as fgllom (case 3);

9 return Success;

10 else

11 | return Failure;

with respect to fiil. E/op would be non-decreasing since the
second order differentials of ELOOpt and EHIOPl are both non-
negative. Let the feasible range of fiff be [fi . Al 1,
where f}}IIIImin is the minimum HI mode frequency required to
ensure HI mode schedulability (When LO mode frequencies of
tasks are fixed at fmax) and fHI max 18 SIMply friax. If there
exists an optimal fH! within this range, then it must be in one
of these three cases as shown in Figure 3.

Cl1 F opt = 0 in the feasible range of fHI Eope is always
increasing, and the optimal solution exists at fHi . .

C2 FE’ <0 in the feasible range: Eqy is always decreasing
and the optimal solution exists when le opt = fmax-

C3 The above do not hold: There exists a stationary point
E’ = 0 such that the minimal energy can be achieved.
We perform binary search to locate this stationary point.

The above heuristic solution is shown in Steps 7-9 in Algo-
rithm 1, which only involves logarithmic computation com-
plexity due to binary search. As for the calculation of the
1% order differentials, We refer the interested readers to Ap-
pendix B. Further, f L0 opt” fHI opt and xp are also calculated

there based on fHI opt”

VI. ENERGY MINIMIZATION ON MULTI-CORES

In Sec. IV and Sec. V, we presented our unicore solu-
tions to the mixed-criticality energy minimization problem.
Focusing on partitioned scheduling, we proceed now to extend
our unicore techniques to multi-cores by further proposing
energy-aware task mapping techniques. For all the mapping
techniques, we assume that unused cores are turned off in
order to conserve energy. In the following, we first briefly
discuss two existing mixed-criticality task mapping techniques.
We then propose new energy-aware mapping techniques and
platform allocation strategies.

A. Overview of Baruah’s and Gu’s methods

Let us first discuss two state of the art mixed-criticality
mapping techniques, which are designed to enhance system
schedulability rather than energy efficiency.

Baruah’s method [4]: In this method, tasks are mapped
onto multiple cores using First-Fit (FF) bin-packing, i.e., any
task is assigned to an immediate core where it fits first. This
is done first for HI criticality tasks and then for LO criticality
tasks, while system utilizations are upper bounded in each
phase to admit a feasible schedule (UX +ULS < 3/4 UM <
3/4). When mapping is successful, local EDF VD scheduhng
can be applied independently on each core [3]. However,
due to the fact that Baruah’s method only aims at enhancing
system schedulability (i.e., using FF to maximize the system
utilization on each core), it leaves little room or slack to apply
DVES to save energy.

Gu’s method [13]: To further enhance mixed-criticality
schedulability on multi-cores, this method first assigns all
HI criticality tasks onto multi-cores by Worst-Fit (WF) bin-
packing, with the intuition that HI criticality workload should
be balanced across all cores to further admit a fair mix of HI
and LO criticality workloads on each core. Mapping of LO
criticality tasks is done in the same way as that for Baruah’s
method. However, Gu’s method still allows high utilization of
cores (due to greedy mapping of LO criticality tasks), where
little room/slack can be explored to save energy by DVES.

B. Energy Minimized Mixed-criticality Mapping (EM3)

Both Baruah’s and Gu’s methods can incur heavily loaded
cores, where little can be done by DVFS to save energy.
Thus, we first develop a technique aiming at balancing the
mixed-criticality workloads on all cores. Achieving this is
rather straightforward, we apply WF to map both HI and LO
criticality tasks. Supposing we have allocated %k cores to be
used:

1  HI criticality tasks are mapped onto k cores using WF
in the order of decreasing utilization, with cumulative HI
mode utilization on each core upper bounded by %

2 LO criticality tasks are mapped onto k cores using WF in
order of decreasing utilization, with cumulative LO mode
utilization on each core upper bounded by %.

3 DVES strategy is applied to the task set on each core
using the heuristic solution presented in Sec. V, and all
tasks are scheduled using EDF-VD.

4 To find the optimal number of processors being used,
kopt, we repeat the above steps and perform a linear
search across all feasible allocations to find ko with the
minimum total energy consumption.

Note: (i) If a core contains only LO criticality tasks
after the task mapping, we ensure that the system utilization
does not exceed 1 rather than applying the sophisticated
mixed-criticality schedulability test [4], since we have a sin-
gle criticality scheduling problem. (ii) If possible, we select
the minimal set of cores among all allocations leading to
the minimal energy consumption. This could minimize the
overhead incurred by utilizing additional cores (e.g., non-
zero inactive/sleep state energy and power state transition
overheads), which we do not explicitly address in this paper.

C. Isolated Mixed criticality Mapping (IM3 Method)

The above described EM3 method aims to balance mixed-
criticality workloads on multi-cores to save energy. We will
now present a drastically different approach to solve the
multi-core energy minimization problem by isolating tasks of
different criticality levels on different cores. Although this is a



Algorithm 2: Isolated Mixed-criticality Mapping Method
inpllt LT, W, fb» fmins fmaxa wLo and WHI
output: M, F, X ~
Set I = [UL§ =1 and ho = [UHff $2-1;
if lo + ho < || then
for Iy + ho <i < |n| do
linear search for { and h, such that I; > Iy A
hi > hg A l; + h; =i A energy is minimized;
5 | Among all 4, select [; and h; such that total energy
is minimized and output M, F, X in this case;
return Success;

W N =

7 else
8 | return Failure;

common industrial practice to provide independent guarantees
to different criticality levels, the hope is that criticality isolation
could also enable energy saving.

Conventionally, when only schedulability is considered,
the mainstream research advocates integrating workloads of
different criticality levels on each processing core, such that
smart resource management can be deployed to reconfigure
the system under runtime threats by exploring the asymmetric
guarantees on different criticality levels. As a result, resource
efficiency can be enhanced compared to isolation methods [2].
However, when energy minimization is the primary goal,
mixing workloads from different criticality levels might not
be advantageous. On one hand, mixing workloads on all cores
can help to achieve global workload balancing, leading to
better energy savings. On the other hand, applying mixed-
criticality scheduling reduces the maximum attainable system
utilization on each core (e.g. 2 for partitioned EDF-VD [4]),

4
thus hampering energy savings.

In the new IM3 method, all LO criticality tasks are mapped
onto [ cores and all HI criticality tasks are mapped onto another
h cores, such that 2 < (I 4+ h) < |n|, where |r| is the total
number of cores available. Both LO and HI criticality tasks
are mapped onto their dedicated cores, using WF in the order
of decreasing utilization. The choice of [ and h depends on the
total utilization of LO and HI criticality tasks, respectively. We
apply a simple heuristic to find the best [ and h such that the
total normalized energy consumption is minimum, as presented
in Algorithm 2.

To explain Algorithm 2 briefly, we first set the minimum
number of required cores for LO criticality tasks to be schedu-
lable as [ULY ff >~ (for HI criticality tasks as [Uyj fi .
Next, we do linear search through the feasible space of total
allocated cores, the allocations of LO criticality cores and HI
criticality cores, such that the system energy on all allocated
cores is a minimum. We select in the end the total core
allocation and corresponding ! and h such that energy is a
minimum across all possible allocations. Note that, the total
energy of the system is computed using (12) for all core
allocations and task mappings. Since LO and HI criticality
tasks are isolated, the utilization of LO criticality tasks can
be optimally up-scaled to 1 on [ cores under DVFS and EDF
scheduling [16] (when isolated, LO criticality tasks only have
one system mode as they only have one level of WCETSs). For
HI criticality tasks, since two levels of WCETs exist, we apply
EDF-VD (by excluding LO criticality tasks due to isolation)
and our unicore solution (Sec. V) on each of the h cores.

Due to isolation, it is not needed to consider weight factors
for LO criticality tasks as they are not abandoned. However,
it is required for HI criticality tasks as two operation modes
exist, and those tasks can have different frequencies in different
modes to minimize the overall energy consumption.

VII. EVALUATION

In this section, we evaluate our proposed energy minimiza-
tion techniques for mixed-criticality systems with extensive
simulations on both randomly generated synthetic task sets
and a real-life Flight Management System (FMS). Assuming
synthetic task sets, we first present the results with unicore and
then with multi-cores. We then perform energy evaluations on
a realistic FMS. Last, we evaluate the proposed task mapping
techniques in terms of multi-core schedulability for synthetic
task sets.

A. Experimental setup for extensive simulations

To validate our proposed techniques in a general set-
ting, we implemented a well-known mixed-criticality task
generator [4, 14, 16] to generate 1000 random feasible task
sets at each system utilization point. The task generator was
controlled by the following parameters: (i) U, the maximum
of task utilizations in LO and HI system modes; (ii) [Uy;, Upy),
utilization of any LO criticality task is uniformly drawn from
this range; (iii) [Uni, Upy), LO mode utilization of any HI
criticality task is uniformly drawn from this range; (iv) A, the
ratio of C;(HI) to C;(LO) for any HI criticality task; and (v)
Py, the probability that a task is of HI criticality level. In
all experiments, we assume that each core on the platform is
DVFS-capable with {fmin, fb, fmax} = {0.55, 0.85, 1}GHz.
We fix Ps = 0.5W, o = 2 and 8 = 1.76W/GHz" [23, 25],
unless stated otherwise. With this setup, we apply our proposed
techniques to the synthetic task sets to minimize energy; we
calculate normalized energy consumption averaged over 1000
task sets at each system utilization point. Note that for our
experiments on multi-cores, we assume that unused cores are
turned off to further save energy.

B. Evaluation on unicore

We consider U; = 0.75, [Uy,U,] = [0.001,0.01],
[Uhl> Uhu] = [0.05, 0.1], and we fix wWLo = WH = 0.5,
Py = 0.5 and A = 1.4, unless stated otherwise. With our
experiments, we study the impact of various factors on unicore
energy minimization.

1) Impact of Weights: First, we show the impact of weight
factors on energy minimization for different system modes.
We calculate the normalized total energy with different weight
factors wro (and wyr = 1 —wie) in the range [0, 1] in steps of
0.1, for a = 2,2.5,3. Our results are shown in Figure 4a. As
we can observe, the choice of weight factors can greatly affect
potential energy savings. In particular, the minimal expected
energy decreases by ~50% with wio increasing from 0 to 1.
The reason is that the system utilization in HI mode is signif-
icantly higher than that in LO mode (~40% more due to task
generation parameters). This further implies that the choice
of the right weight factors is crucial to the mixed-criticality
energy minimization problems — considering either only HI
mode (wrp = 0) or LO mode (w o = 1) would lead to overly
optimistic or pessimistic results. In practice, knowledge of the
particular system considered would help choosing such weight
factors. Furthermore, as expected, with higher dynamic power
(a), the minimal system energy consumption is increased.
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2) Impact of Ps: We continue to show the impact of
static energy on energy minimization. We calculate the total
energy with (S+D) or without (D) considering P, during
optimization. However, in calculating total energy both static
and dynamic energy are included in both cases. Our results
are presented in Figure 4b for wio in the range [0, 1], and
P, = 0.2,0.5,0.8W. It is evident from the figure that static
energy plays an important role in our energy minimization
problem; with increasing Ps, the achievable minimal energy
consumption is increased significantly. For example, when
wro = 0.5, the minimal system energy consumption is
increased by 31% (D) and 28% (S+D) when P; increases
from 0.5W to 0.8W. Furthermore, in all cases, including static
energy during optimization saves more energy. In particular,
with increasing P, it is more important to consider minimizing
static energy. When P; = 0.2W, minimizing in addition static
energy leads to 4% more reduction of total energy. This is
further increased to 8% when P, = 0.8W.

3) Impact of A: To show the impact of extra workload,
we consider \ = g((&])) > 1 and 1000 different task sets for
each value of A\. When A\ = 1, there is no extra workload
as HI criticality tasks would never exceed their LO criticality
WCETs. With A > 1, there is always a timing safety concern
for HI criticality tasks as HI mode WCET increases. Figure 4c
shows the normalized minimal energy with A in the range
[1,3.9]. As we see, with increasing A, the minimal expected
energy consumption increases, simply because of increase in
HI mode system load. This trend with increasing energy stops
at A = 3.9, after which the system becomes infeasible even
when we set all task frequencies to fiax.

4) Impact of Py: Finally, we demonstrate the impact of
Py on energy minimization. We vary Py in the range [0, 1]
in steps of 0.1 and the results are shown in in Figure 4d
for « = 2,2.5,3. As we can observe, the expected minimal
energy increases with increasing FPy. This is because, if Py
increases, more HI criticality tasks are generated, leading to
higher extra workload in HI criticality system mode. However,
the LO mode system load is not affected since this is fixed

by U, in our task generator [2, 4, 16]. As a result, the total
system workload increases across LO and HI modes, leading
to increases in system energy consumption.

C. Evaluation on Multi-cores

Here, we consider 4 cores, Uy = 3, [Uy,Un] =
[Unt, Up] = [0.005,0.01], P; = 0.5, Pgp = 0.5, A = 14
and wr o = wy = 0.5 in all cases, unless stated otherwise. It
should be noted that weight factors are not necessary for LO
criticality tasks in IM3. However, for a fair comparison with
other methods, we include them and use the same equation
(12) to calculate the overall energy on each core. We obtain
our results by simulating different task mapping techniques on
the random task sets. Later we apply our unicore method (see
Sec. V) to minimize energy on all cores and to calculate the
total normalized energy.

1) Impact of number of cores: We obtain our results
by performing experiments on 4 to 10 cores and show our
results in Figure 5a. It is evident from the figure that, for all
varying number of cores, EM3/IM3 saves energy considerably
compared to other mapping techniques, e.g., 34%/31% more
saving than Baruah’s and 22%/20% more than Gu’s method
for 7 cores. The energy consumption for Baruah’s method is
constant — in all the cases, it employs FF method to map
tasks, leading to 4 utilized cores and high utilizations on those
cores. This decreases the chance to down-scale frequency on
active cores to save energy. In Gu’s method, only LO criticality
tasks are mapped using FF, whereas the HI criticality tasks are
mapped using WF to balance their workload on all cores. This
leads to better balanced workload across the cores, as well
as better energy savings than Baruah’s method. Our proposed
EM3 method performs load balancing for tasks on all criticality
levels, leading to highest energy savings in those three cases.

Furthermore, we observe that IM3 method achieves almost
comparable energy savings compared to EM3 method, which
matches our intuition in designing IM3 (see Sec. VI). This
leads us to the conclusion that criticality isolation is a good
option when minimizing system energy on multicores, with



7 | Criticality | T;(ms) | C;(LO) (ms) | C;(HI) (ms)
T1 HI 5000 15 21
T2 HI 200 18 25
T3 HI 1000 16 22
T4 HI 1600 20 28
Ts HI 100 18 26
Te HI 1000 17 24
T HI 1000 15 21
TS LO 1000 100 100
T9 LO 1000 80 80

T10 LO 1000 140 140
T11 LO 1000 100 100

TABLE III: FMS task set

the additional benefit of providing independences between
different criticality levels. Lastly, with increasing number of
cores, minimal system energy for all methods tends to decrease
as more cores can be used to balance workload.

2) Impact of weight factors: We evaluate our proposed
methods for different weight factors and show our results in
Figure 5b. As we can observe, for wi o € [0, 1] in steps of
0.1, EM3 always shows the best performance in energy saving
and IM3 follows closely. We also notice that, as wy o increases,
the total energy consumption also increases. This is because
on an average the LO mode utilization is higher than HI mode
utilization for the generated task sets here. Hence, when LO
mode weight factor increases, the total energy depends more
on LO mode energy and increases.

3) Impact of task utilization: Clearly, with increasing sys-
tem utilization, the system operates longer and it also increases
the achievable minimal energy. We evaluate this by increasing
the system utilization for generated task sets from 1 to 3 in
steps of 0.2. The obtained results are shown in Figure Sc.
For low system utilization — independent of task mapping
techniques — all tasks can execute closely at fi,;, in both
system modes and we observe minor or no differences among
the different methods. This trend changes while increasing the
system utilization. In fact at higher system utilizations both
EM3 and IM3 perform better as they explore more the load
balancing among cores to save energy. For instance, when
system utilization is 3, EM3/IM3 saves 35%,/32% more energy
than Baruah’s method and 23%/21% more than Gu’s method.

4) Impact of Py: To show the impact of Py, we vary
Pyr in the range [0, 1] in steps of 0.1. Figure 5d shows the
normalized total energy for different mapping techniques with
varying Py When the number of HI criticality tasks increases,
the extra workload adds up to the expected minimal energy.
This can be observed in Baruah’s method, EM3 and IM3.
However, Gu’s method is a special case; it only performs load
balancing for HI criticality tasks and is mostly influenced by
Py;. With increasing Py, it performs better load balancing,
which improves energy saving and diminishes the impact of
increased HI mode workload.

D. Evaluation with a flight management system

For unicore, we conducted experiments on a real-world
avionics application (a flight management system (FMS)),
which is used for aircraft localization, nearest airport selection
and trajectory computation. The task set consists of 11 tasks
as listed in Table III. In all experiments, we assume the pro-
cessor is DVFS-capable with finin/fo/ fmax = 0.5/0.8/1GHz,
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Fig. 6: Experiments on a flight management system

B = 1.76W/GHz® and P; = 0.8W. We assume o = 2, unless
otherwise mentioned.

We apply our proposed unicore heuristic on FMS and
summarize our results in Figure 6. Indeed, we can observe
that energy minimization is achieved by applying our unicore
heuristic: 30% — 50% of total energy is reduced by employing
DVEFS for weight factors in the range 0 — 1 (see Figure 6a).
Additionally, we observe the impact of weight factors on the
minimal expected energy for = 2,2.5,3 in Figure 6b:
The minimal expected energy increases with increasing wo,
since LO mode utilization is higher than HI mode utilization
in the considered task set; therefore, when more importance
is given to minimize LO mode energy, the expected overall
energy increases. Furthermore, as expected, with increasing «
(dynamic power), the minimal system energy increases.

E. Schedulability evaluation with different mapping methods

We evaluate our proposed mapping methods for schedula-
bility compared to the state-of-the-art techniques (Baruah’s [4]
and Gu’s [13] methods). We generate 1000 random task sets
at each utilization point similarly to our previous experiments,
and map them onto a multi-core platform consisting of 4 cores.
We use task generation parameters as follows: A = 1.25,
[Uy, Up] = [0.002,0.02], [Up;, Upy] = [0.01,0.1] and Py =
0.2. The number of task sets that are schedulable for different
mapping techniques is evaluated with varying U, in the range
2.7 — 3.1, in steps of 0.1.

U; | Baruah Gu EM3 | IM3

2.7 1000 1000 | 1000 | 1000
2.8 1000 1000 | 1000 | 823

2.9 1000 1000 | 1000 | 648

3.0 926 918 811 312

3.1 0 0 0 0

TABLE IV: Number of task sets that are schedulable with
different mapping techniques

We summarize our results in Table IV. As we can see,
when utilization is low (U; = 2.7), no matter what mapping
technique we use, all task sets are schedulable on 4 cores. As
the system utilization increases, IM3 shows the worst perfor-
mance in terms of schedulability as it cannot mix workload
from different criticality levels to improve schedulability. In
addition, we observe that Baruah’s method is actually better
than Gu’s method in terms of schedulability. The reason is that
in Gu’s method, further fine tunings on mixing workloads on
all cores and on EDF-VD scheduling are performed, which are
not considered here. Last, we can find that the EM3 mapping
technique has a schedulability performance close to Baruah’s
and Gu’s methods.



VIIL.

Mixed-criticality systems are emerging as a significant
trend for future automotive, avionic and medical systems.
In this paper, we have explored energy minimization for
such systems on modern DVFS-capable multi-core processors.
Compared to the state of the art, we took a general setting
where both static and dynamic energy consumption in all
system operation modes are considered. To tackle the difficulty
in trading off energy consumption in different modes to jointly
minimize the overall energy, we first proposed an optimal
unicore solution and then a corresponding low computation
complexity heuristic. Based on this, we further developed
energy-aware mapping techniques to explore energy savings
on multi-cores. Experiments were conducted for both a flight
management system and synthesized task sets. The results val-
idated our proposed techniques, demonstrating energy savings
as high as 35% (random simulations on multi-cores).

CONCLUSION

Our proposed techniques assume EDF scheduling and fo-
cus on processing energy of the CPUs. It would be interesting
to further consider other scheduling techniques, energy sources
(e.g. communication energy) and various system overheads
(e.g. timing and energy overheads when switching between
different power states). However, we believe that the important
findings in this paper would still hold in such an extension, e.g.
trade-offs between energy consumptions in different system
modes and the energy benefits of isolated scheduling.
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APPENDIX A
PROOF OF THEOREM 5

Proof: First, let us consider only HI mode energy and
show that all HI criticality tasks should share same execution
frequency in HI mode in an optimal solution. Likewise, we
can prove similar statements for LO mode task frequencies.

Considering only two HI criticality tasks 7; and 7; in the
system, we prove using KKT conditions that they share same



execution frequency; by induction, this will hold for any pair

of HI criticality tasks and our statement follows.
We denote HI mode utilizations of 7; and 7; on base
_ Ci(HD — Ci(HD
frequency fy as wu; and u; (u; = 55—, u; = —H—),

respectively. Using (5), we can compute HI mode energy as

By = wyy (Uzﬁ;[ (Ps + B(fiM)%)

(18)

Let u;y; be the allowed total HI criticality system utiliza-
tion after any DVFS strategy. In (18), fi! and f; are the
variables to be decided, such that while applying DVFS to
minimize energy Eyy wi L + u;j L < wiy; so that system

» Ui Jym = i+j Y

schedulability is preserved. We find the optimal f{' and f}"
using KKT conditions. Let us first summarize our problem as
f b .f b
i + Ujﬁ < Uit (19)
i J
Based on Theorem 3, let us adjoin the inequality constraint
with the energy objective and introduce a KKT multiplier (u),
(18) is at a minimum when

Vg, gy B+ iV g g (F1 1) =0 (20)
Jo fo

s.t. 9( iHI7fJHI> :Uiﬁ—i-ujﬁ—uiﬂ <0;
i J

+wnr (u L (P, +5(fjm)a)>

minimize (18) s.t. wu;

21

o o _ ey
I uiﬁ—kujﬁ—ui” =0Ap=0

7 J

Under KKT, (20) and (21) must both hold, by solving (20)
alone further, we have

o7 0
i | = ( 0 ) (22)

afm

& wafoui(—Po(fI) 2 +Ba=1)(F)*7?) = phru(fi) 72

& Bla—1)(fMe = P+ -
WHI
1/a
HI Py + wim
A= (m—n =

and similarly,
And wHIbej(—Ps(f;ll)_z-i-/é’(a—l)(f;ﬂ)a—?) = ufbuj<f;n>—2

& Blo— (AN =Pt o

m 1/«
PR f]Hl — <M> (24)
Bla—1)

From (23) and (24), we obtain fzHI = f;’H for which (18)
is minimized. Hence, both tasks share the same execution
frequency. By induction, any pair of HI criticality tasks share
the same frequency and our statement holds. Similarly, it can
be proved that all LO criticality tasks in LO system mode
share same execution frequency and all HI criticality tasks in
LO system mode share same execution frequency. [ |

APPENDIX B
15T ORDER DIFFERENTIAL CALCULATION FOR
ALGORITHM 1

After presenting the general idea for our heuristic solution,
we proceed to detail how we calculate £y, and Eyy,. Enris
a single-variate monotonically increasing function of fHI (see
(12)). Therefore, with fixed fII_I'III, Eiope €quals Eyy and the first
order differential can be directly calculated. For Ej,_ . the
calculation is less trivial as we still need to find the right LO
mode task frequencies leading to the minimal LO mode energy.
We achieve this by first deriving Ey o,y for any given f{{f based
on a similar condition to Theorem 6; we then calculate Eﬁoopt
empirically as the principal linear part.

Considering only Ejo, with fixed fHl, we can prove the
LO mode energy is a minimum either when all LO mode task
frequencies are minimum (f,;,) or at the equilibrium case,
similarly to Theorem 6. For the former case, Ejoqpy can be
directly calculated; for the equilibrium case, we have

K/fl-]iloopt — = M — K/fl%loopt (25)
a0  — t = T A0
1_L/fﬁ90pt * L/fﬁlooopt

K/fﬁloopt_FM_ K/fLO

HI opt
A I A
& Topt = M,
where M is a function of fiij defined in (13) (f{,,, replaced

with ffl as we are fixing the latter). We can derive one step

further and establish a relation between fif’ . and fig
o M_K/fﬁ?opt o Lo K/M (26)
L/fﬁ‘(())opt ot 1- L/f]f.‘gopt .

Thus, we can represent ffi’, as a function of fi§ ; con-
sequently, to find FEjo.y, we finally have a single-variate
optimization problem in a constrained search space where both

1 ope and fiQ, must be drawn from the feasible frequency
space. Such a problem can be easily solved by looking at the

first order conditions for optimization.



