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ABSTRACT
The next generation of embedded software has high perfor-
mance requirements and is increasingly dynamic. Multiple
applications are typically sharing the system, running in par-
allel in different combinations, starting and stopping their
individual execution at different moments in time. The dif-
ferent combinations of applications are forming system exe-
cution scenarios. In this paper, we present the distributed
application layer, a scenario-based design flow for mapping
a set of applications onto heterogeneous on-chip many-core
systems. Applications are specified as Kahn process net-
works and the execution scenarios are combined into a finite
state machine. Transitions between scenarios are triggered
by behavioral events generated by either running applica-
tions or the run-time system. A set of optimal mappings
are precalculated during design-time analysis. Later, at run-
time, hierarchically organized controllers monitor behavioral
events, and apply the precalculated mappings when starting
new applications. To handle architectural failures, spare
cores are allocated at design-time. At run-time, the con-
trollers have the ability to move all processes assigned to a
faulty physical core to a spare core. Finally, we apply the
proposed design flow to design and optimize a picture-in-
picture software.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; C.1.4 [Parallel archi-
tectures]: Distributed architectures

General Terms
Algorithm, Design, Performance

Keywords
On-chip many-core systems, design flow, scenario-based
model of computation, MPSoC, mapping optimization
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1. INTRODUCTION
Real-time physics, artificial intelligence, or 3D rendering

effects will soon be state-of-the-art in embedded devices and
have in common that they have high performance require-
ments, are highly parallelizable, and increasingly dynamic.
The demand for a high degree of visual realism in multi-
media applications has driven system architects to use on-
chip many-core systems [16]. Intel’s SCC processor [10] is a
prominent example of such an on-chip many-core architec-
ture. By incorporating 48 cores into a single processor, the
SCC processor is a prototype of future embedded platforms.
Even more, the next generation of on-chip many-core sys-
tems is supposed to have hundreds of heterogenous cores [3].
Thus, traditional methods to design multiprocessor system-
on-chips are not anymore appropriate to many-core systems
that are architecturally more complex.

The software of future embedded systems is composed of
a set of applications and only a fraction of all applications
is running in parallel. We call a scenario a certain system
state with a predefined set of running or paused applica-
tions. Typically for embedded systems, the number of possi-
ble scenarios is restricted and the scenarios are known at de-
sign time. Consequently, a design flow for mapping dynamic
streaming applications onto on-chip many-core systems has
to provide three key features to the system architect. First, a
high-level specification model that hides unnecessary imple-
mentation details but provides enough flexibility to specify
dynamic interactions between applications. Second, an op-
timal mapping of the application onto the architecture in a
transparent manner. Third, run-time support to dynami-
cally change the workload of the system.

This paper proposes the distributed application layer
(DAL), a scenario-based design flow that supports design,
optimization, and simultaneous execution of multiple appli-
cations targeting heterogenous many-core systems. Appli-
cations are specified as Kahn process networks (KPNs) [11].
KPNs are suitable for a general description of a high-level
design flow as they are determinate, provide asynchronous
execution, and are capable to describe data-dependent be-
havior. In case a higher predictability is required, the ap-
plication model can be restricted, e.g., to synchronous data
flow (SDF) graphs [15]. To coordinate the execution of dif-
ferent applications, we use a finite state machine (FSM),
where each scenario is represented by a state. Transitions
between scenarios are triggered by behavioral events gener-
ated by either running applications or the run-time system.

The design flow that we propose in this paper is illus-
trated in Fig. 1. During design-time analysis, a set of opti-



Figure 1: Overall structure of the scenario-based
design flow.

mal mappings is calculated. Later, at run-time, the run-time
manager monitors behavioral events, and applies the precal-
culated mappings to start, stop, resume, and pause applica-
tions according to the FSM. As the number of scenarios is
restricted, an optimal mapping could be calculated for each
scenario. However, assigning each scenario a different map-
ping might lead to bad performance due to reconfiguration
overhead. For example, the user does not want to experience
an interruption of the music when starting a different appli-
cation. Therefore, processes are assumed resident, i.e., an
application has the same mapping in two connected scenar-
ios. The result of this approach is a scalable mapping solu-
tion where each application has assigned a set of mappings
that are individually valid for a subset of scenarios.

The run-time manager is made up of hierarchically orga-
nized controllers that follow the architectural structure and
handle the behavioral and architectural dynamism. In par-
ticular, behavioral dynamism leads to transitions between
scenarios, and architectural dynamism is caused by tem-
porary or permanent failures of the platform. The con-
trollers monitor for behavioral events, change the current
scenario, and start, stop, resume, or pause certain applica-
tions. Whenever they start an application, they select the
mapping assigned to the new scenario. To handle failures
of the platform, spare cores are allocated at design-time so
that the run-time manager has the ability to move all pro-
cesses assigned to a faulty physical core to a spare core. As
no additional design-time analysis is necessary, the approach
leads to a high responsiveness to faults.

The contributions of this paper can be summarized as
follows:

• The considered scenario-based model of computation
for streaming applications is formally described.

• We propose a novel hybrid design-time / run-
time strategy for mapping software specified by the
scenario-based model of computation onto heteroge-
neous on-chip many-core platforms.

• We formally describe a hierarchically organized run-
time manager to handle the behavioral and architec-
tural dynamism of on-chip many-core systems.

• Extensive experiments are carried out to show the ef-
fectiveness of the proposed approach. In particular,
the scenario-based design flow is used to design and
optimize a picture-in-picture software.

The remainder of the paper is organized as follows: First,
related work is discussed. Afterwards, the considered class
of on-chip many-core platforms is discussed in Section 3. In
Section 4, the proposed model of computation is detailed.
Section 5 describes the hybrid design-time / run-time map-
ping optimization strategy. Finally, in Section 6, case studies
are shown to illustrate the presented concepts.

2. RELATED WORK
Programming paradigms for many-core systems have to

tackle various new challenges. Techniques that worked well
for systems with just a few cores will become the bottleneck
in the next few years [25]. The KPN model of computa-
tion [11] is the basis of several frameworks for designing
multi-processor systems, such as Daedalus [19], DOL [24],
Koski [12], or SHIM [7]. As they provide a single mapping,
they are only able to handle dynamism by over-provisioning
the system.

To capture the increasing dynamism in future embedded
applications, mapping strategies are proposed that generate
a set of mappings at design-time [9, 17, 23]. Then, a run-
time mechanism selects the best fitting mapping depending
on the actual resource requirements of all active applica-
tions. The concept of system scenarios is introduced in [9]
by automatically analyzing a system for similarities from a
cost perspective. It has been applied in [23] to comprehend
the dynamic behavior of an application as a set of scenarios.
Each scenario is specified as an SDF [15] graph. In contrast,
our work just specifies the running and paused applications
per scenario, and each application is separately specified as
a KPN. We think that the KPN model of computation is
better suited to describe a high-level design flow and the
individual specification of each application enables a better
resource usage. Finally, multiple mappings that differ from
each other in terms of power consumption and performance
are generated in [17], but the approach is not scalable due
to the centralized run-time manager.

The concept of hybrid mapping strategies has already
been investigated in various other works. In [1], it is pro-
posed to compute various system configurations and to cal-
culate an optimal task allocation and scheduling for each
of them. At run-time, the decision whether a transition
between allocations is feasible, is based on precalculated mi-
gration costs. In our work, we assume that processes are res-
ident. This makes design-time analysis more complex, but
eliminates undesired disruption due to process migration.
Similarly, process migration is prohibited in [21]. They use
statistical methods to compute mappings for different in-
terconnected usage-scenarios. As the approach evaluates a
large number of mappings, it might not scale with the size of
the platform. A hybrid mapping strategy is proposed in [22]
that calculates several resource-throughput trade-off points
at design-time. At run-time, it selects the best point with
respect to available resources. However, the approach is re-
stricted to homogeneous platforms and the schedulability of
the system is only known at run-time.

In order to tolerate run-time processor failures, a multi-
step mapping strategy is proposed in [14]. After calculat-
ing a static mapping for all possible failure scenarios, a
processor-to-processor mapping is performed at run-time.
As analyzing and storing a mapping scenario for each failure
scenario is not scalable, we allocate spare cores at design-
time.

Various options to design a run-time manager have been
discussed in literature. On the one hand, a fully centralized
approach can be seen as a broker running on its own core.
While centralized approaches are widely used in multi-core
systems [17, 20], they impose a performance bottleneck on
many-core systems. On the other hand, a fully distributed
approach [4, 13] leads to a high complexity. Therefore, we



Figure 2: Sketch of a hierarchical on-chip many-core
platform.

propose a hierarchical centralized approach, that takes sys-
tem scalability into account at a low complexity.

The KPN model of computation has been extended in [8]
with the ability to support sporadic control events. How-
ever, the work includes neither concrete execution semantics
nor mapping strategies. By separately specifying the execu-
tion scenarios as an FSM, we are able to formally define
an execution semantic and to propose a hybrid design-time
/ run-time mapping strategy to efficiently execute multiple
dynamic KPNs on a many-core platform. Finally, we define
the semantics of a scenario change and propose a high-level
interface for behavioral and fault events.

3. ARCHITECTURE MODEL
In this section, the architecture model is introduced. In

order to describe the considered architecture in an abstract
manner, we use a hierarchical representation. The on-chip
many-core architecture A = {C,D,N (1), . . . , N (η), z} con-
sists of a set of cores C, a set of core types D, η sets of
networks N (1) to N (η), and a function z. The function
z : C → D assigns each core c ∈ C its type z(c) ∈ D.
The set of core types might be used to differ between DSP
and RISC components or to distinguish between different
operating frequencies. Each set of networks corresponds to
a communication layer so that the architecture consists of η
communication layers. A network n(k) ∈ N (k) is defined
as a subset of C. In particular, a network n(1) ∈ N (1)

represents the intra-core communication, i.e., |N (1)|=|C|

and for each c ∈ C, there is a network n(1) ∈ N (1) with
n(1) = {c}. The second set of networks N (2) partitions
the cores into tiles so that each core is assigned to exactly

one tile, i.e., we have
⋃

n(2)∈N(2) = C and n
(2)
i ∩ n

(2)
j = ∅

for all n
(2)
i , n

(2)
j ∈ N (2) and i 6= j. Similarly, every other

set of networks N (k) partitions the cores so that each net-
work n(k) ∈ N (k) contains multiple subordinate networks,
i.e., there exists a n(k) ∈ N (k) with n(k−1) ⊆ n(k) for all

n(k−1) ∈ N (k−1),
⋃

n(k)∈N(k) = C, and n
(k)
i ∩ n

(k)
j = ∅ for

all n
(k)
i , n

(k)
j ∈ N (k) and i 6= j. Finally, N (η) = {n(η)}

contains a single network hierarchically connecting all pro-
cessors, i.e., n(η) = C. Furthermore, the type of a network
is defined as concatenation of all core types of the network.

The hierarchical representation of the architecture is a
generalization of the well-known tile-based multiprocessor
model [6]. First prototypes of future on-chip many-core sys-
tems typically consist of three sets of networks, i.e., η = 3,
which correspond to the three communication layers intra-
core, intra-tile, and inter-tile communication [10, 18, 26]. A
shared bus is often used for intra-tile communication and a
NoC for inter-tile communication. Figure 2 sketches a typ-
ical on-chip many-core system with η = 3 and its abstract
representation is illustrated in Fig. 3.

Figure 3: Abstract representation of the many-core
platform sketched in Fig. 2.

Due to high power densities, on-chip many-core systems
are prone to failures. In this work, we restrict ourselves
to a failure of a core or a router. In case that a router
fails, the tile is not anymore available. In any case, we sup-
pose that either the failed component or any other com-
ponent detects the failure and sends a fault event to the
run-time manager. In order to handle architectural failures
at run-time, spare cores and tiles are allocated at design-
time. We call the abstract representation of the architec-
ture without spare cores and tiles virtual architecture VA.
VA = {VC,D, VN (1), . . . , VN (η), Vz} consists of a set of virtual
cores VC, the set of core types D of architecture A, η sets
of virtual networks VN (1) to VN (η), and a function Vz. The
function Vz : VC → D assigns each core Vc ∈ VC its type
Vz(Vc) ∈ D. It is the system architect’s task to specify the
spare components at design-time. One possibility to gen-
erate VA is to remove from each network n(i) ∈ N (i) one
subordinate network n(i−1) ∈ N (i−1) per network type so
that each network is able to correct one failure. Finally,
each virtual network Vn(i−i) can be mapped onto any physi-
cal network n(i−1) that belongs to the same superior network
n(i) and has the same type as Vn(i−1). Consider for example
the system illustrated in Fig. 2. Suppose that all cores are of

the same type and the system architect selects n
(1)
3 as spare

network of n
(2)
1 . Then the virtual networks Vn

(1)
1 and Vn

(1)
2

can be mapped onto the physical networks n
(1)
1 , n

(1)
2 , and

n
(1)
3 , but not on n

(1)
4 as it belongs to a different tile.

4. MODEL OF COMPUTATION
In this section, we formally define the scenario-based

model of computation for streaming applications. We first
discuss the specification of individual applications as KPNs.
Afterwards, the dynamic behavior of the system is captured
by a set of scenarios.

4.1 Application Specification
The KPN [11] model of computation is considered in this

paper to specify the application behavior. In particular,
an application p = (V,Q) consists of autonomous processes
v ∈ V that can only communicate through unbounded point-
to-point FIFO channels q ∈ Q. A process v ∈ V is a mono-
tonic and determinate mapping F from one (or more) input
streams to one (or more) output streams. As every process
v ∈ V is monotonic and determinate, there is no notion of
time and the output just depends on the sequence of tokens
in the individual input streams [8].

Conceptually, a KPN is non-terminating, i.e., once the
process network has started it does not stop running. As
this is not in accordance with the specification of a dynamic
system, we extend the definition of a KPN with the ability to
terminate and pause. To this end, we first propose the high-



level API illustrated in Listing 1 to specify KPN processes.
Roughly speaking, the init procedure is responsible for the
initialization and is executed once at the startup of the ap-
plication. Afterwards, the execution of a process is split into
individual executions of the fire procedure, which is repeat-
edly invoked by the system scheduler. Once an application
is stopped, the finish procedure is called for cleanup. Com-
munication is enabled by calling high-level read and write
procedures and each process has the ability to request a sce-
nario change by calling the send_event procedure.

Listing 1: Implementation of a KPN process using
the proposed API.

01 procedure INIT(ProcessData *p) // process initialization
02 initialize();
03 end procedure
04

05 procedure FIRE(ProcessData *p) // process execution
06 fifo−>read(buf, size); // read from fifo
07 if (buf[0] == eventkey)
08 send_event(e); // send event e
09 end if
10 manipulate();
11 fifo−>write(buf, size); // write to fifo
12 end procedure
13

14 procedure FINISH(ProcessData *p) // process cleanup
15 cleanup();
16 end procedure

Now, we are able to introduce and specify the four generic
actions start, stop, pause, and resume of a KPN p =
(V,Q). The semantic of those four actions is summarized
in Table 1. Stopping an application p might be problem-
atic. Therefore, the fire method of all processes v ∈ V is
aborted only at predefined points such as when process v
is calling a read or write procedure, or the execution of
the fire procedure is finished. In the case that a process
is blocked, i.e., the process attempts to read from an empty
channel, the blocking is resolved before the fire method
can be aborted. Finally, the finish procedure is executed
to perform cleanup operations.

4.2 Scenario Specification
The dynamic behavior of a system can be captured by

a set of scenarios. Each scenario represents a set of con-
currently running or paused applications. Scenario transi-
tions are triggered by behavioral events generated by either
running applications or the run-time system. Consider, for

Table 1: Description of the four generic action types
of a KPN p = (V,Q).

Action Description

start All processes v ∈ V and all FIFO channels q ∈ Q are
installed, and the init procedure of all processes v ∈

V is executed once. Afterwards, all processes v ∈

V are started and the fire method is continuously
called by the scheduler.

stop The fire method of all processes v ∈ V is aborted
and the finish method of all processes v ∈ V is
executed. Afterwards, all processes v ∈ V and all
FIFO channels q ∈ Q are removed.

pause The fire method of all precesses v ∈ V is inter-
rupted and all processes v ∈ V are temporary de-
tached from scheduler.

resume All processes v ∈ V are restarted and the fire

method is continuously called by the scheduler.

map

map 
and 

music

nav

nav 
and 

music

R: parking R: MAP, MP3

R: MAP R: MAP, NAV

R: MAP, NAV
H: MP3

R: running applications
H: paused applications

park-
ing

Figure 4: Example scenario specification of a (sim-
plified) car entertainment system.

example, the (simplified) car entertainment system shown
in Fig. 4. The software has five scenarios, with one to three
applications. After startup, the system enters the map sce-
nario where the MAP application is running and displaying
the current position of the car on a map. Depending on
the situation, the scenario might change. For example, the
driver starts to drive backwards so that the parking assistant
is started (scenario parking), the voice navigation notifies
the driver to take the next exit (scenario nav), or the driver
start listening to some music (scenario map and music). In
addition, the voice navigation might notify the driver to
change the driving direction while listening to music. To
this end, the system switches to the scenario nav and music,
and pauses the MP3 application.

Formally, we define the above described dynamic behav-
ior of a system by an FSM F = (S,E, T, P, s0, a, r, h) that
consists of the set of scenarios S, the set of events E, the
set of directed transitions T ∈ S×S, the set of applications
P , an initial scenario s0 ∈ S, and three functions a, r, and
h. The function a : T → E maps a transition t ∈ T to a
set of triggering events a(t) ⊆ E for all t ∈ T . The function
r : S → P assigns each scenario s ∈ S a set of running ap-
plications r(s) ⊆ P and the function h : S → P assigns each
scenario s ∈ S a set of paused applications h(s) ⊆ P . As
we suppose that there is only one instance of an application,
r(s)∩h(s) = ∅ for all s ∈ S. Figure 5 presents an example of
an FSM F = (S, T,E, P, s0, a, r, h) with four scenarios s0, s1,
s2, and s3 among which s0 is initially active. The scenarios
are linked by the set of transitions T = {t1, t2, t3, t4, t5} such
that t1 = (s0, s1), t2 = (s1, s2), t3 = (s2, s3), t4 = (s3, s1),
and t5 = (s3, s0). The function a assigns each transition its
triggering events. For example, the transition t2 from sce-
nario s1 to scenario s2 happens when the events e2 or e3 are
detected in scenario s1. Finally, the functions r and h assign
each scenario a list of running and paused applications.

4.3 Execution Semantics
The above introduced model of F is a Moore machine,

i.e., each scenario has a list of running and paused appli-
cations, and each transition between scenarios has a set of
events that trigger the transition. However, in terms of exe-
cution, each transition is associated with a set of actions. For
example, transition t1 of the FSM F illustrated in Fig. 5 is
associated with the action {pause application p1}, and tran-
sition t4 is associated with the actions {stop application p3,
start application p2}.

Therefore, in terms of execution, we map the system evo-
lution to a Mealy machine and transform F into a new
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Figure 5: Example of an FSM F =
(S, T, E,P, s0, a, r, h).

FSM F̃ = (S,E, T̃ , P, t0, a, u
s, ut, up, ur) that consists of the

set of scenarios S, the set of events E, the set of directed
transitions T̃ ∈ S × S, the set of applications P , an initial
transition t0 ∈ T , and six functions a, us, ut, up, and ur.
S, E, P , and a : T → E are defined as in Section 4.2 and
T̃ = T∪t0. The functions u

s, ut, up, and ur assign each tran-
sition t ∈ T̃ the set of applications to be started, stopped,
paused, and resumed. Suppose that transition t = (sx, sy),
then us(t), ut(t), up(t), and ur(t) are formally defined as:

start: us(t) = r(sy) \ (r(sx) ∪ h(sx)) ⊆ P

stop: ut(t) = (r(sx) ∪ h(sx)) \ (r(sy) ∪ h(sy)) ⊆ P

pause: up(t) = h(sy) ∩ r(sx) ⊆ P

resume: ur(t) = r(sy) ∩ h(sx) ⊆ P

In other words, whenever transition t ∈ T̃ is triggered, all
applications p ∈ us(t) are started, all applications p ∈ ut(t)
are stopped, all applications p ∈ up(t) are paused, and all
applications p ∈ ur(t) are resumed.

In terms of execution, the initial transition t0 takes place
after startup so that the FSM enters scenario s0. Whenever
an event e ∈ E is received that corresponds to one of the
outgoing transitions of the current scenario, the transition
takes place. In other words, an event e ∈ E triggers a tran-
sition t ∈ T if and only if e ∈ a(t), t = (sx, sy), and sx is the
current scenario of the FSM.

Conceptually, the reaction of the system to an event is
immediate, i.e., the actions listed in Table 1 are performed
in zero time. However, as the production and execution
of these actions take a certain amount of time, we have to
come up with additional rules, which preserve the described
semantics. In particular, we assume that a transition is only
triggered if the system is in a stable scenario. A stable sce-
nario is reached if the execution of all actions triggered by
the previous transition is completed. This rule is required
as events might arrive faster than they can be processed. If
the system is not yet in a stable scenario, the execution of
new actions might cause the system to move to an unknown
or wrong scenario. Practically, this requirement can be re-
alized by storing all incoming events in a FIFO queue so
that the events are processed in a First-Come-First-Served
(FCFS) manner. If the current scenario has an outgoing
transition that is sensitive to the head event of the FIFO
queue, the transition takes place and the event is removed
from the FIFO queue. Otherwise, the event is removed with-
out changing the active scenario.

Figure 6: Overall mapping optimization approach
with design-time and run-time component.

5. HYBRID MAPPING OPTIMIZATION
In this section, we present a hybrid design-time / run-time

strategy for mapping streaming applications onto on-chip
many-core platforms. The design-time component calculates
an optimal mapping for each application and scenario where
the application is either running or paused. At run-time, the
dynamic mapping of the applications onto the architecture
is controlled by a run-time manager, which monitors events,
chooses an appropriate mapping, and finally executes the
required actions, see Fig. 6.

5.1 Design-Time Analysis and Optimization
In this subsection, we introduce the proposed approach for

design-time optimization. We minimize the maximum core
utilization subject to utilization and communication con-
straints so that we obtain a system with a balanced work-
load.

5.1.1 Motivational Example
We start with an example. Consider the car entertain-

ment system outlined in Fig. 4. As the workload of scenario
nav is different from the workload of scenario map and mu-
sic, different mappings should be used in both scenarios to
optimize the performance. However, changing the process
to core assignment with each scenario transition might lead
to bad performance due to reconfiguration overhead. There-
fore, the approach proposed in this paper assumes that pro-
cesses are resident, i.e., once a process is mapped onto a core,
it will not be remapped to another core. In other words, if
an application is active in two connected scenarios, it has
the same mapping in both scenarios. We think that this re-
striction is well suited for embedded systems where process
migration leads to non-negligible costs in terms of time and
system overhead. For example, consider again the car enter-
tainment system. The MAP application will have the same
mapping in all active scenarios. However, the mapping of
the NAV application might be different in the scenarios nav
and nav and music as they are not connected by a direct
transition.

5.1.2 Mapping Specification
The design-time component calculates an optimal map-

ping for each application and scenario where the applica-
tion is either running or paused. Thus, the output of the
design-time analysis is a collection M of optimal mappings
and exactly one mapping m of M is valid for a pair of an
application and a scenario.



Formally, a mapping m ∈ M is a triple (p, Sm, Bm) where
p is an application, Sm ⊆ S is a subset of scenarios, and
Bm ∈ V × VC the set of binding relations. Sm denotes the
set of scenarios for which mapping m is valid. As processes
are resident, the same mapping might be valid for more than
one scenario. Finally, a binding relation (v, Vc) ∈ Bm denotes
that process v is bound to the virtual core Vc.

In the following, we propose a two-step procedure to cal-
culate the mappings m ∈ M . First, we calculate pairs
<p, Sm> of an application p and a subset of scenarios Sm

so that the size of each subset is minimized and no process
migration is required if application p is using the same map-
ping in all scenarios s ∈ Sm. At the end of the first step,
we allocate for each pair <p,Sm> a mapping m ∈ M . Af-
terwards, in a second step, we calculate for each mapping
m ∈ M a set of optimized binding relations Bm so that an
objective function is minimized and additional architectural
constraints are fulfilled.

5.1.3 Mapping Generation
In a first step, we calculate pairs <p, Sm> of an applica-

tion p and a subset of scenarios Sm so that the size of each
subset is minimized and additional constraints are fulfilled.
The additional constraints ensure that no process migration
is required if application p is using the same mapping in all
scenarios s ∈ Sm. In particular, we can identify the follow-
ing three constraints:

Constraint 1: Each application is mapped:

pℓ ∈ (r(s) ∪ h(s))

⇒ ∃ m = (p, Sm, Bm) ∈ M : pℓ = p and s ∈ Sm.

Constraint 2: Two mappings do not overlap:

m1 = (p, Sm1 , Bm1) and m2 = (p, Sm2 , Bm2)

⇒ Sm1 ∩ Sm2 = ∅.

Constraint 3: Process migration is not allowed:

pℓ ∈ ((r(s1) ∪ h(s1)) ∩ (r(s2) ∪ h(s2))) and t = (s1, s2) ∈ T

⇒ ∃ m = (p, Sm, Bm) ∈ M : pℓ = p and s1, s2 ∈ Sm.

The mapping generation problem can be solved by calcu-
lating for each application p the maximally connected com-
ponents of a subgraph that just contains all scenarios where
p is either running or paused. Then, we can generate a
new pair <p, Sm> for each component of this subgraph.
Algorithm 1 presents the pseudocode to calculate all pairs
<p, Sm>. The algorithm generates the pairs <p, Sm> by
sequentially analyzing all applications. First, a subgraph
G = (Ssub, T sub) is determined by removing all scenarios
s ∈ S in which application p is neither running nor paused.
Then, we determine the maximally connected components
Gconn
i = (Sconn

i , T conn
i ) ∈ Gconn of subgraph G. In other

words, the scenarios are partitioned into non-overlapping
sets such that there is no transition between nodes in differ-
ent subsets Gconn

i and the subsets are as large as possible.
Finally, a new pair <p,Sconn

i > is generated for all maximally
connected components. By relying on a breadth-first search
algorithm to calculate the set of all maximally connected
components, the calculation of all pairs has a computational
complexity of O (|P |·(|T |+|S|)).

Finally, as application p uses the same mapping in all
scenarios s ∈ Sm, we can allocate for each pair <p, Sm> a
mapping m = (p, Sm, ·) ∈ M .

Algorithm 1: Pseudocode to generate all pairs
<p, Sm> of an application p and a subset of scenarios
Sm so that the number of elements per subset is min-
imized and the constraints specified in Section 5.1.3
are fulfilled.

Input: FSM F = (S, T,E, P, s0, a, r, h)
Output: set of pairs <p, Sm>
01 for all applications p ∈ P do
02 Ssub ← (s ∈ S|p ∈ (r(s) ∪ h(s))).

⊲all scenarios where p is running or paused
03 T sub ← (t = (s1, s2) ∈ T |

p ∈ (r(s1) ∪ h(s1)) and p ∈ (r(s2) ∪ h(s2)))
⊲all transitions that affect p

04 G ← (Ssub, T sub)
05 Gconn ← set of all maximally connected components of G
06 for all Gconn

i ∈ Gconn do ⊲gen. pairs for each component
07 add <p, Sconn

i > ⊲add to the set of pairs
08 end for
09 end for

5.1.4 Mapping Optimization
In the second step, we calculate for each mapping m ∈ M

the set of binding relations Bm so that the objective func-
tion, i.e., the maximum core utilization, is minimized and
a set of predefined architectural constraints are fulfilled.
The number of firings of process v per time unit is f(v)
and the maximum execution time of process v on a core of
type d is w(v, d). Furthermore, Ms ⊆ M denotes the sub-
set of all mappings with s ∈ S and p ∈ r(s), i.e., Ms =
{(p, Sm, Bm) ∈ M |p ∈ r(s) and s ∈ Sm}. The binding rela-
tions Bm are calculated so that the maximum core utiliza-
tion is minimized, and the utilization and communication
constraints are met in each scenario:

Objective function: The optimization goal of this prob-
lem is to minimize the maximum core utilization. In order
to incorporate the different scenarios into a single objective
function, we assign each scenario s ∈ S an execution prob-
ability χs [21] so that the object function can formally be
stated as:

min


max

Vc∈VC

∑

{s∈S}

∑

{m∈Ms}

∑

{v∈V :(v,Vc)∈Bm}

χs · f(v) · w(v, Vz(Vc))


 .

Constraint 4: In order to make sure that the cores are able
to handle the processing load, the following relation has to
be satisfied for all cores Vc ∈ VC and all states s ∈ S of the
FSM F :

∑

{m∈Ms}

∑

{v∈V :(v,Vc)∈Bm}

f(v) · w(v, Vz(Vc)) ≤ 1.

Constraint 5: Similarly, we can formulate the bandwidth
requirement for each network by adding the data volume per
time unit of each channel. Then, the aggregated data vol-
ume for each network n must be smaller than its supported
rate. As the applications are mapped onto a virtual archi-
tecture, one has to consider all possible separations between
the processes. However, due to the hierarchical structure of
the architecture, a virtual network is only mapped onto a
physical network within the same superior network so that
the maximum separation is bounded.

5.2 Run-Time Manager
In this subsection, we discuss the required run-time sup-

port to execute a set of applications P on an on-chip many-



Algorithm 2: Pseudocode to calculate the process
network pc for the hierarchical control mechanism.

01 function ComputeController(architecture A)
02 V ← V ∪ master ⊲add master controller
03 ComputeLayer(v, η − 1, A, V , Q)
04 pc = (V,Q)
05 return pc

06 end function
07

08 function ComputeLayer(vp, l, A, V , Q)

09 for all n ∈ N(l) do
10 if l == 2 then
11 V ← V ∪ slave ⊲add slave controller
12 else
13 V ← V ∪ interlayer ⊲add interlayer controller
14 ComputeLayer(v, l− 1, A, V , Q)
15 end if
16 Q← Q ∪ (v, vp) ∪ (vp, v) ⊲add channels between contr.
17 end for
18 end function

core architecture A. The required run-time support is pro-
vided by a run-time manager that has the task to gener-
ate commands towards the operating system to ensure the
execution semantics described in Section 4.3. Tradition-
ally, run-time managers are either centralized or distributed.
However, as a centralized approach comes with a perfor-
mance bottleneck and a distributed approach leads to a high
complexity, both approaches do not fulfill the requirements
of embedded many-core systems. In this paper, we propose
to split the workload among hierarchically organized con-
trollers. In the following, we first discuss the general ideas
of a hierarchical control mechanism and then describe the
functionality of each individual controller.

5.2.1 Hierarchical Control Mechanism
The general idea of the hierarchical control mechanism is

to assign each network n ∈ {N (2), . . . , N (η)} its own con-
troller vc ∈ V c that handles all inner-network dynamism.
In particular, the controller assigned to a network n ∈ N (2)

monitors for behavioral and fault events. Whenever such a
controller receives an event, it handles the event if it just
affects the controller’s network, and otherwise it sends the
event to the controller of its superior network.

As the controllers communicate via FIFO channels qc ∈
Qc, the hierarchical control mechanism can be represented
as a process network pc = (V c, Qc). Algorithm 2 shows the
pseudocode to generate the process network pc for architec-
ture A. To provide bidirectional communication, two FIFO
channels connect each controller with its superior controller.

Figure 7 illustrates the process network pc for the archi-
tecture shown in Fig. 3. The controllers can be categorized
into three different types:

• A slave controller is responsible for a tile, i.e., for a
network n(2) ∈ N (2). All architectural units in network
n(2) and all processes v assigned to a core c ∈ n(2) are
able to send events to the slave controller. In order to
control the execution of a process, a slave controller
is also able to send commands to the underlying oper-
ating system.

• A interlayer controller is responsible for a network
n(i) ∈ N (i) with i = [3, η − 1] and η the number of
communication layers. It receives all events that can-
not be handled by its subordinates. The interlayer

controller processes an event if it only affects its own

Figure 7: Run-time manager for the architecture il-
lustrated in Fig. 3. vc2, v

c
3, and vc4 are slave controllers

and vc1 is the master controller. n
(1)
3 , n

(1)
6 , n

(1)
7 , and

n
(2)
3 are spare networks.

network. Otherwise, it sends the event to its superior
controller.

• The master controller is responsible for network
n(η) ∈ N (η). It processes all events that cannot be
handled by any other controllers.

Nowadays, all cores of a tile often share the same operating
system so that one slave controller can dynamically allocate
processes to all cores of the tile. In case that each core
has its dedicated operating system, we assign each core its
own slave controller to ensure the interaction between the
control mechanism and the operating system.

5.2.2 Hierarchical Event Processing
A controller of the hierarchical control mechanism only

handles events that just affect the controller’s network. Oth-
erwise, the controller sends the event to the controller of its
superior network. In the following, we detail this procedure
for an interlayer controller.

So far, we have seen that events can be categorized into
two groups that cause different behavior. The first group
contains behavioral events that trigger a scenario change.
The second group contains fault events that are of the form
(tag, n), where tag denotes the fault type, and n the af-
fected network. Fault events only change the mapping of
the virtual architecture VA onto the physical architecture A,
but not the mapping of the applications onto the virtual ar-
chitecture VA. Consequently, each controller consists of two
components, see Fig. 6. The first component is responsi-
ble to handle behavioral events and ensures the execution
semantics. It is just aware of the virtual architecture VA,
i.e., it generates commands towards VA. The second compo-
nent processes the fault events and redirects the commands
to the corresponding physical network.

Next, we detail the procedure of an interlayer controller
when it receives a fault event. To this end, we suppose that
controller vc belongs to network n(k). Once it receives a fault
event of the form (fault, n(l)), it executes the procedure

outlined in Algorithm 3. If n(l) is not a subordinate network
of n(k), i.e., l 6= k − 1, vc has only to reinstall the affected
channels (Lines 9–11). Otherwise, if n(l) is a subordinate

network of n(k), i.e., l = k − 1, vc has handle the fault by
migrating all processes mapped onto the faulty network n(l)

to a spare physical network (Lines 2–8).
As a fault can be handled without additional mapping op-

timization, the system has a high responsiveness to faults.
In case that a network n(l) is not anymore faulty, it sends a
reintegration event of the form (available, n(l)) to the con-

troller, which marks n(l) as a spare network.



Algorithm 3: Pseudocode to handle a fault event
(fault, n(l)) under the assumption that controller vc

belongs to network n(k).

Input: fault event (fault, n(l))

01
Vn← virtual network mapped onto n(l)

02 if l == k − 1 then ⊲n(l) is subordinate of n(k)

03 if n(k) has a spare subordinate network n(l)
s of the same

type as n(l) then ⊲vc handles the fault

04 migrate Vn to n(l)
s

05 else ⊲vc is unable to handle the fault, reports n(k) as faulty

06 send (fault, n(k)) to superior network and return
07 end if
08 end if
09 for all q ∈ Q that connect a v mapped onto Vn with a v

mapped onto a physical core c ∈ n(k) and c /∈ n(l) do
10 reinstall q
11 end for
12 if ∃q ∈ Q that connects a v mapped onto Vn with a v mapped

onto a physical core c /∈ n(k) then

13 send (fault, n(l)) to superior network
14 end if

6. EXPERIMENTAL RESULTS
In this section, we provide evaluation results by means of

a prototype implementation of DAL. The goal is to demon-
strate that a) the hierarchical control mechanism has low
overhead, b) the proposed scenario-based model of compu-
tation enables the design of complex embedded systems, and
c) the proposed hybrid mapping optimization strategy out-
performs static mapping approaches and results in a maxi-
mum utilization that is close to the one of the optimal (local)
mapping.

6.1 Control Mechanism
To measure the overhead of the hierarchical control mech-

anism, we developed a prototype implementation of DAL
targeting an Intel i7-2720QM processor with four cores run-
ning Linux. The system is configured to form an architecture
with three communication layers and only one tile so that
the hierarchical control system consists of two controllers.
The workload between the two controllers is split so that
the master controller is aware of the applications and the
slave controller is responsible for installing and removing
processes and FIFO channels. We selected a different split-
ting as described in Section 5.2 to individually measure the
overhead generated by the behavioral dynamism and by the
interaction with the operating system.

The application set consists of the fullload applica-
tion and the pulse application. The fullload applica-
tion computes a predefined set of operations before stop-
ping. Therefore, its execution time only depends on other
processes running on the same core. The pulse applica-
tion sleeps for a certain time interval, the so-called switching
time. Then it sends an event to the run-time manager that
tells the controller to stop and restart the pulse applica-
tion. Each application is mapped onto a POSIX thread and
scheduled by the operating system’s scheduler. The over-
head of the control mechanism is estimated by comparing
the absolute execution times of the fullload application
for different mappings, see Table 2 for the detailed mapping
configurations.

In Fig. 8, the absolute time to execute the fullload ap-
plication is compared for four mapping configurations and
different switching times. The switching time defines the

Table 2: Mapping configurations to measure the
overhead of the control mechanism. M denotes the
master and S the slave controller.

core 0 core 1 core 2 core 3

A) m s fullload pulse
B) m s, fullload - pulse
C) m, fullload s - pulse
D) m, s, fullload - - pulse

interval between each scenario change request. As the
fullload application is running independent of the sce-
nario changes, its absolute execution time only depends on
the workload of the other processes that are running on the
same core. Therefore, we can use the absolute execution
time of the fullload application as an indicator for the
overhead generated by the controllers.

While the master controller generates no overhead, run-
ning the fullload application on the same core as the
slave controller increases the absolute execution time of
the fullload application. If the slave controller and the
fullload application are running on the same core, the
execution time of the fullload application is extended by
1.3% if the switching time is set to 64ms and by 8.1% if
the switching time is set to 1ms.

6.2 System Specification and Optimization
To evaluate the performance of the proposed optimiza-

tion strategy, we design a multistage picture-in-picture (PiP)
software for embedded video processing systems targeting
Intel’s SCC processor [10].

6.2.1 Example System
We extended the Eclipse SDK with the ability to visually

specify the FSM, the topology graph of an application, and
the abstract model of the architecture. Figure 9 shows a
screenshot of the extended Eclipse SDK with the FSM of
the considered PiP software. The software is composed
of eight scenarios and three different video decoder appli-
cations. The HD application processes high-definition, the
SD application standard-definition, and the VCD application
low-resolution video data. The software has two major ex-
ecution modes, namely watching high-definition (scenario
HD) or standard-definition videos (scenario SD). In addi-
tion, the user might want to pause the video or watch a pre-
view of another video by activating the PiP mode (i.e., start-
ing the VCD application). Due to resource restrictions, the
user is only able to activate the PiP mode when the SD ap-
plication is running or paused, or the HD application is
paused. For illustration purpose, we use different motion
JPEG (MJPEG) decoders as applications. The process net-
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Figure 8: Comparison of the time to execute the
fullload application in different mapping configu-
rations. The different mapping configurations are
detailed in Table 2.



Figure 9: FSM of the PiP software. Paused appli-
cations are indicated by a (p) following the applica-
tion’s name.

Figure 10: Process network of the VCD application.

work of the VCD application is depicted in Fig. 10 and the
three different video decoder applications are summarized
in Table 3. The motion JPEG (MJPEG) decoder is able to
decode a certain number of frames in parallel. In particular,
the ss (“split stream”) process reads the video stream from
a playout buffer and dispatches single video frames to sub-
sequent processes. The sf (“split frame”) process unpacks
and predicts DCT coefficients so that the dec (“decode”)
process can decode one DCT block per activation. Finally,
the mf (“merge frame”) process collects the DCT blocks, and
the ms (“merge stream”) process collects the decoded frames.

All three video decoders read their playout buffers at a
constant rate of 25 frames/second. The maximum execution
time of a process, and the data volume per time unit and
channel has been determined by running the applications on
Intel’s SCC processor with as in Section 6.3.

6.2.2 Mapping Optimization
Next, we show how the hybrid mapping optimization

strategy compares to other mapping strategies. To this end,
we extended the PISA framework [2] to solve the mapping
optimization problem proposed in Section 5.1. In particular,
PISA is extended to calculate the collection M of optimal
mappings so that exactly one mapping m of this collection
is valid for each pair of an application and a scenario. Vi-
olations of the bandwidth constraints are avoided by im-
posing a big penalty on the maximum utilization. PISA
solves the mapping optimization problem by either generat-
ing 1000 random solutions and selecting the best of them as
overall solution, or using the evolutionary algorithm (EA)
SPEA2 [27].

In the following, we compare the performance of four dif-

Table 3: Configuration of the three video decoder
applications of the PiP software.

app resolution pixels / frame # processes # chan.

HD 1280× 720 921600 98 128
SD 720× 576 414720 50 64
VCD 320× 240 76800 11 12
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  global optimal local optimal dynamic random dynamic optimal

Figure 11: Comparison of the maximum core utiliza-
tion for different numbers of available cores and dif-
ferent optimization strategies. The dynamic optimal
mapping strategy represents the hybrid scenario-
based mapping optimization strategy proposed in
this paper.

ferent mapping strategies when minimizing the maximum
core utilization for different numbers of available cores:

• The dynamic optimal mapping strategy represents
the hybrid design-time / run-time mapping optimiza-
tion strategy solved using EAs.

• The dynamic random mapping strategy represents
the hybrid design-time / run-time mapping optimiza-
tion strategy solved by selecting the best of 1000 ran-
dom solutions.

• The global optimal mapping strategy calculates a
single static mapping for the system, i.e., it does not
make use of the different execution scenarios. The
global optimal strategy is solved using EAs.

• The local optimal mapping strategy calculates a
single mapping for each scenario. Individually calcu-
lating a single mapping for each scenario might lead
to the situation where an application has a different
mapping in two connected scenarios, thus, the local

optimal strategy requires run-time support for pro-
cess migration. EAs are used to solve the local op-

timal strategy.

The results of this comparison are plotted in Fig. 11 for
the scenarios SD / VCD and HD. Utilizations larger than
one imply that the mapping strategy is unable to find a
schedulable mapping for the considered number of available
cores.

As expected, the local optimal mapping strategy re-
duces the maximum utilization the most as it calculates the
local optimal mapping for just one scenario. However, the
unavoidable run-time support for process migration leads to
non-negligible costs in terms of time and system overhead.
The hybrid design-time / run-time mapping optimization
strategy, i.e., the dynamic optimal mapping strategy, re-
sults for the SD / VCD and HD scenarios in a utilization
that is on average 0.01 and 0.05 larger than the utilization
calculated by the local optimal mapping strategy.

PISA is unable to find a valid mapping for theHD scenario
when the global optimal mapping strategy is used and
less than 39 cores are available. On the other hand, PISA
is already able to find a valid mapping for 30 cores and the
HD scenario when the dynamic optimal mapping strategy
is used. Compared to the global optimal mapping strat-
egy, the dynamic optimal mapping strategy reduces the
utilization on average by 0.51 for the SD / VCD scenario
and 0.16 for the HD scenario.



As the dynamic optimal mapping strategy does not only
optimize a single scenario, the utilization might be increased
with the number of available cores. For example, the max-
imum utilization of scenario HD is slightly increased when
moving from 32 to 33 available cores. Finally notice that
the selection of the solver has a high influence on the perfor-
mance of hybrid design-time / run-time mapping optimiza-
tion strategy. Selecting the best of 1000 random solutions
might even result in a performance that is worse than the
global optimal mapping strategy.

6.3 Real World Deployment
Based on Intel’s SCC processor, we discuss a prototype

implementation of the scenario-based model of computation.
The goal is to evaluate the effort of a real world deploy-
ment of both the hierarchical control mechanism and KPNs
according to the presented semantics. As a Linux operat-
ing system is running on each core of the SCC processor,
a separate slave controller is assigned to each core to en-
sure the communication between the hardware, the oper-
ating system, and the run-time manager. In addition, the
master controller is running on a dedicated core. Processes
are mapped onto POSIX threads and scheduled by the op-
erating system’s scheduler. Inner-core communication is re-
alized by local FIFO buffers and the RCKMPI library [5] is
used for inter-core communication. Depending on the map-
ping, the controllers decide at run-time which communica-
tion type is suitable. As controllers are just KPN processes,
no additional software is required to run them. All KPN
processes are stored as shared objects and loaded on request
of a slave controller. In addition, slave controllers have
the ability to destroy running processes, and to install and
remove communication channels.

The compiled code requires about 26KB and 275KB of
static memory for the slave and master controller on In-
tel’s SCC processor. This shows that the run-time system
only introduces a small overhead in terms of memory usage.

7. CONCLUSION
In this paper, we proposed the distributed application

layer (DAL), a scenario-based design flow for mapping
streaming applications onto heterogeneous on-chip many-
core systems. Applications are modeled as Kahn process
networks and a finite state machine is used to specify dif-
ferent execution scenarios. Behavioral events generated by
either running applications or the run-time system trigger
transitions between scenarios. The proposed mapping opti-
mization strategy consists of two components. The design-
time component calculates for each application a set of op-
timized mappings individually valid for a subset of scenar-
ios. At run-time, hierarchically organized controllers moni-
tor events, choose an appropriate mapping, and finally exe-
cute the required actions. We demonstrated that the hybrid
design-time / run-time mapping optimization strategy out-
performs global mapping optimization strategies and that
the proposed scenario-based model of computation enables
the design of complex embedded systems.
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