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Abstract. In this paper, we characterize, quantify, and correct timing
errors introduced into network flow data by collection and export via
Cisco NetFlow version 9. We find that while some of these sources of
error (clock skew, export delay) are generally implementation-dependent
and known in the literature, there is an additional cyclic error of up to
one second that is inherent to the design of the export protocol. We
present a method for correcting this cyclic error in the presence of clock
skew and export delay. In an evaluation using traffic with known timing
collected from a national-scale network, we show that this method can
successfully correct the cyclic error. However, there can also be other
implementation-specific errors for which insufficient information remains
for correction. On the routers we have deployed in our network, this limits
the accuracy to about 70ms, reinforcing the point that implementation
matters when conducting research on network measurement data.

1 Introduction

In the practice of network measurement, packet data is collected at one or more
observation points within a network. Some combination of transformations may
then be applied to the packets, such as sampling, or assembly into flows. This
transformed data then undergoes some combination of export, collection, aggre-
gation, filtering, storage, and analysis, in order to produce successively refined
information from which knowledge about the network is derived, whether for
research or operational purposes. Each of these stages may be seen as a function
applied to the result of the previous stage. Ideally, each of these functions should
lead to further refinement of the information of interest without introduction of
error or loss of fidelity. Some of these stages, especially observation, export, and
collection, should have no impact on the information content at all.

However, this is not the case. Each stage in the measurement process may
introduce error. Some of these sources of error are well-known, such as failing
to properly provision measurement devices leading to packet loss, or failing to
synchronize clocks among distributed observation points. Other errors have more
obscure causes. In this work, we examine a cyclic source of timing error in flow
data exported via Cisco Netflow version 9 (v9) [1] which, instead of having a
deployment- or implementation-time cause, is a consequence of the design of the
protocol itself. Together with load-dependent export delay and long-term drift
of the clocks from which timestamps are generated, we find that the accuracy of



timestamps in flow data exported using v9 is degraded by about three orders of
magnitude, to about two seconds in the worst case, instead of millisecond-level
precision implied by the protocol.

After discovering this error in a flow data set collected from a national-scale
network and stored as a sequence of raw NetFlow v9 export packets in received
order, we set about “peeling” these layers of error away, devising an algorithm
for correcting the cyclic error while compensating for delay and drift. We do this
only with reference to timing information on the NetFlow v9 export packets;
that is, the correction is independent of the individual flows exported. This is
important both for the scalability of the approach, and for its independence
on the actual content of the traffic. We find that our approach can completely
remove the protocol-induced cyclic error, in the general case allowing millisecond
timing resolution with NetFlow v9, even for flows exported in different export
packets. This is sufficient to sequence flows occurring between one millisecond
and one second apart, e.g. to determine the direction of a bidirectional flow as
in [2] when the connection establishment time is more than 1ms, or to enable
flow-based round-trip-time measurement for quality of service applications.

However, in practice we can only peel so far: on the Cisco 6500 and 7600 series
routers that collect the data in the network we measure, additional flow-level
inaccuracy of about 70ms remains, which we do not have sufficient information to
correct. We thereby confirm that deployment, implementation, and design-time
choices made in the systems collecting and processing the traffic data under study
do not have the neutral effect one could assume on the data. We further note
that this work quantitatively supports the common wisdom that router-based
flow measurement is generally insufficient for applications requiring precision
timing.

Section 2 characterizes the sources of timing errors we see in the examined
data set and section 3 quantifies them and presents concrete examples of artifacts
in the data caused by these sources. We then present and evaluate a method for
correcting cyclic error based solely on the export packet headers in section 4. In
section 5, we review related work in data fidelity for network measurement, and
we present our conclusions in section 6.

2 Characterizing Timing Error in NetFlow version 9

NetFlow v9 [1] exports flow data in records described by templates, allowing the
flexible inline definition of record formats. However, flow start and end times-
tamps are expressed as with older NetFlow versions, in terms of uptime, or the
time that has passed since the device started. This approach has the advantage
of not requiring a real-time clock at the metering process, which generates flows
from an observed traffic stream. We call these per-flow timestamps fstqr+ and
fend-

Flows are exported by an exporting process in protocol data units called export
packets by NetFlow v9. The exporting process stamps each outgoing packet with
an export timestamp pegpore expressed in UNIX epoch time (i.e., seconds since
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Fig. 1. Illustrating basetime error

midnight UTC, 1 January 1970). It also exports the time since the metering
process started pyptime. This arrangement is illustrated in Figure 1(a)’.

From these two timestamps, the time at which the device started (which we
call the true basetime or tpese) is given by tiese = Pexport — Puptime. Lhe start
and end time in UNIX epoch seconds for each flow in the packet can then be
determined by adding tp,se to each of the per-flow timestamps fsiqrt and feng
for each flow in the packet.

This would be the ideal situation. However, while the uptime is expressed
in milliseconds, the export time is truncated to second-level precision before
export due to the design of the NetFlow v9 packet header, implicitly flooring it.
Therefore, the derived basetime from each packet is in effect given by tgpese =
| Dewport | — Puptime- The implicit floor operation causes the milliseconds part of
the export timestamp not to be accounted in the basetime derivation, injecting a
cyclic error of up to one second subtracted from the derived basetime, which can
consequently cause errors in the flow timestamps leading to incorrect sequencing
of flows exported in different export packets.

Further complicating this situation are two effects of the architecture and its
use of separate clocks. First, the two clocks are not necessarily synchronized; that
is, one second does not necessarily pass on the real time clock for each second on
the uptime counter. This clock skew can be a result of inaccuracy in either of the
two clocks. The magnitude of the skew observed in our data set is on the order
of seconds per day, and appears to be stable over time. Second, the timestamp
from the uptime counter and the timestamp from the real time clock are not
necessarily applied simultaneously to the export packet. Export packets may
be held at the Exporting Process due either to resource exhaustion or explicit
export rate limiting. This delay can inject a further subtractive error into the
derived basetime. Delays observed in our data set are uncommon, intermittent,
correlated with periods of heavy load, and on the order of less than one second.
These three sources of error are illustrated in Figure 1(b); here, we show the

! Here we use terminology and arrangement from the IPFIX architecture [3], since the
IPFIX architecture was based on that from NetFlow v9.



true basetime, and the dotted lines define the area within which the derived
basetimes fall.

To see how this would affect flow measurement, consider the following ex-
ample: a flow f; starts at 1.000s after router start (i.e., true basetime), and a
flow fo which starts at 1.100s. The export packet containing f; is exported at
11.000s, and that containing fs at 11.950s. Assuming no drift or other delay on
this time scale, we then have:

tabaser = [11.000] — 11.000 = 0, tgpase2 = [11.950] — 11.950 = —0.950

f1 = tabaser + 1.000 = 1.000, f2 = tapase2 + 1.100 = 0.150

Even though f; started before f5, the apparent sequence is reversed.

We observe a further peculiarity of export in the data from our Cisco routers:
that of derived basetime quantization. The derived basetimes in our data set are
all divisible by 4ms. Whether this is a source of error or not is uncertain without
examining the implementation: the 4ms quantization could be caused either by
export driven by a 4ms interrupt, or by timestamps being stored internally in
4ms units.

Due to the magnitude of these errors, applications which perform time-series
aggregation with intervals greater than one second (e.g., most billing applica-
tions) are largely unaffected. However, we show in section 3 that any assump-
tion that devices exporting NetFlow v9 are capable of millisecond-level accuracy
and/or strict ordering of flows does not hold. We set out to see what could be
done to improve this situation.

The most troublesome source of error on a per-flow basis is the cyclic error.
The timestamps of the flows skew at the same rate as that of the basetime, so
skew, while visible in the basetime series, is cancelled out for each flow. Therefore,
in section 4, we will focus on correcting cyclic error, treating skew, delay, and
quantization as complications to correction.

3 Quantifying Timing Errors in NetFlow v9

Our data set includes data collected from SWITCH?, the Swiss research and
education network. This network contains about 2.3 million IPv4 addresses, and
the typical total traffic volume ranges from 500 megabytes to one gigabyte per
second. We receive NetFlow v9 from six Cisco routers (6500 or 7600 series)
deployed around the SWITCH border; we designate these routers A-F. Each
router also exports flows from multiple Source IDs; these correspond to line
cards. Here we examine one week of data, 26 June to 3 July, 2010.

Figure 2 shows the density of exported derived basetimes for a single source.
The upper part of the figure is a density map of exported basetimes by offset
from the maximum observed basetime. The lower part shows the number of
export packets per second for the same time period.

The vast majority of basetimes fall within the skewed one-second cyclic error
band. Note the daily seasonality in the density of basetimes. There is a maximum
number of flows which can be exported in an export packet (ep), so higher

2 http://www.switch.ch
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Fig. 2. Derived basetime density distribution, and basetime correction, for a single
source on a single router (A/513).

traffic load leads to larger flow counts leads to larger export packet counts. This
increases the number of unique derived basetimes seen per second. However, this
density is not uniformly distributed among the possible values within the cyclic
error band, a fact which further complicates correction. Delay also increases with
traffic load, due to resource exhaustion and/or rate limiting in the exporting
process. However, the number of delayed export packets is relatively low even
under load.

We examine the errors on each source on each router in Table 1. Here, errors
are reported in relation to the presumed real basetime as determined by the
correction mechanism detailed in section 4; therefore we report the rate of unique
observed derived basetimes per second and the correction interval parameter
used. These will be explained further below.

Mean drift is a per-source, not a per-router parameter; we hypothesize that
this is related to some physical property of the clocks on each of these line cards.
Drift ranges from about -2s/day to +1s/day.

The minimum and maximum measured error show that the range due to
cyclic error and delays ranges from 1050ms to 2280ms; lower values demonstrat-
ing predominantly cyclic error, with higher values as evidence of more delay. The
width of the band between the 5th and 95th percentile ranges between about
950ms and 1200ms, demonstrating that the vast majority of this error is cyclic.
Note that all error measurements for the routers are values divisible by four
milliseconds; this is an artifact of the 4ms quantization mentioned above.

We also examined the output of the softflowd® NetFlow v9 metering and
exporting process, which was developed independently from the Cisco codebase.
softflowd was run on a small set of flows generated on an experimental local-
area network, running on a Mac OS X host. We observed the same cyclic error,
but negligible drift, negligible delay, and no quantization of derived basetimes.

3 http://www.mindrot.org/projects/softflowd/



Table 1. Overview of timing errors for each source on each router for the examined
week.

Router Source Drift [ms/day] Error [ms] Rate [s~!] |Correction
mean std. |max 95th 5th min |mean std. |interval [s]

0 -423 14.5 |4+344 -72 -972 -1052| 0.24 0.03 10800

513 -228 17.0 |[4+136 -56 -960 -1960[193.9 79.5 400

518 -423 7.9 |+208 -56 -976 -1876|157.4 39.2 400

0 -2039 355.4 [+280 -124 -1068 -1465[{0.005 0.0008 10800

513 | +560 41.8 | +28 -48 -988 -1020(314.7 64.5 400

517 | +81 35.4 |+244 -52 -992 -1592|201.2 41.7 400
0 +1543 49.9 |4256 +52 -848 -972|0.09 0.008 10800
518 |+1577 70 |+428 -48 -992 -1824|74.2 29.7 400
0 +1053 37.9 |[+112 +12 -924 -984 | 0.12 0.02 10800
517 |+1055 21.5 |+316 -52 -946 -1824[302.9 100.7 400
0 +239 38.3 | +60 -28 -928 -1012|0.11 0.02 10800
513 | +453 8.9 |+500 -48 -952 -1600|204.6 60.8 400
515 -17 21.7 |+280 -52 -968 -2000{333.5 101.9 400
0 +47 14.9 (4176 -40 -936 -1044|0.07 0.005 10800
513 446 20.5 | 488 -48 -948 -1328/15.6 7.0 10800
softflowd +5.5 12.0 | +16 -43 -940 -1001| 0.61 0.02 10800

DTHEEEogQQwm®mm > > >

4 Correcting Cyclic Timing Error

Having observed and quantified this error, we set out to devise a method for cor-
recting it. Since the basetime is related to the time at which the router started,
and router restarts in production networks are relatively rare events, correct
basetime information could be determined out-of-band via the router’s manage-
ment interface (e.g., SNMP or the command line). However, this method would
have two disadvantages. First, it requires the management interface of the router
to be accessible to the measurement infrastructure, which is not always desir-
able. Second, static out-of-band basetime determination ignores the drift of the
realtime clock, which is included in each of the flow timestamps; this error would
then need to be corrected in any event.

Therefore, we focused on generating a corrected basetime estimating the true
basetime from the derived basetime information. Our first attempt at this con-
sisted of a simple robust maximum detector. The primary problem with this
method is it requires a rather high packet density; otherwise it has a tendency
to “follow” downward-cycling derived basetimes into the cyclic error band. The
problem also initially appeared to be suited to simple linear regression, but the
widely variable density of derived basetimes within the cyclic error band ruled
this method out.

We therefore settled on a correction mechanism based on sliding density
windows. Recalling the density diagram in Figure 2, we first take the set of
derived basetimes for a specified “horizontal” (export time) interval, called the
correction interval. We then slide a one-second “vertical” (derived basetime)
interval over the correction interval, and select the position for this interval
which maximizes the derived basetime density within the rectangular correction
window. The top (maximum derived basetime) of this window is then taken to
be the corrected basetime. For source 513 on router A, the corrected basetime
is shown as the top line in Figure 2.



16000

800 - 0946 ‘ 1
x  data point: - = = = 09:46am 4
10001 goge o 14000 0959am | /7 N\
: oy e
o ~1200|| —800s s 3 12000/ = =~ 10:20am | £V N i
2 ——10800s . 3 DY A7 "
= -1400 il *\F“ ; ! v\
2 ) H [ § 10000 RAeVAY AN
5 -1600 ’;“%L‘ xﬂq’% ) 8000 i ‘ ! ‘\ "‘\
2 = ! 7 Yo \
% 18007 | % I % 5, 6000 AN L
R P E LR P e 5
SN N Tl L e e ) =\
-2200F 5 x $% %% %x o o fTE = Y
x % x X X 2000 ’ '8 17} 3
2400 % x * ¥ . 8 8 \
X L L L L L ] 0 L L L
60 61 62 63 64 65 66 -1000  -500 0 500 1000
Time [hours] Offset from maximum density [ms]

(a) Stability of corrected basetime varies (b) Density distributions within the cor-

with correction interval size

rection window vary over time

Fig. 3. Illustrating density-window basetime correction

The correction interval is selected based upon the density of derived base-
times for a given source, which is itself dependent on the traffic volume. In
principle, it should be chosen to observe at least several wraparounds of the
cyclic error. Figure 3(a) shows the effect that different correction intervals have
on the corrected basetime series, observing the effects of three different windows
on correcting the relatively low-density source 0 of router C. In general, longer
correction intervals provide more stable and therefore more accurate corrections,
but require more processing as they must consider more data points, and would
lead to longer delays in reporting corrected times during stream processing. For
this study, we selected a 400 second window for higher density sources, and a
10800 second (three hour) window for lower density sources.

Figure 3(b) illustrates how this correction method works in the presence of
variable density of derived basetimes. Here we show the derived basetime density
as a function of the position of the vertical interval for three different correction
windows. Even though the density distributions differ greatly, the method leads
to the same basetime correction.

4.1 Evaluation

To measure the effective accuracy of the cyclic error correction method, we
compared exported flow timestamps to known flow timing. We placed a traffic-
generating host on the measured network to send single-packet UDP flows to
known hosts outside the network, chosen such that these flows would be routed
across a known source on a known router in our collection infrastructure. We
saved the injection time for each flow key, and compared this to the timestamps
on the flows exported via NetFlow, both with uncorrected derived basetimes as
well as basetimes corrected using the method described above.

The CDF of the deviation from known timing of per-flow timestamps over
30 hours of data over 3-4 September 2010 for source 513 on router A are shown
in Figure 4(a).
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Fig. 4. Corrected and uncorrected flow start times

Here, we see that the flow timestamps calculated from uncorrected basetimes
exhibit a uniform deviation to about 1s, caused mainly by the cyclic error in the
basetime. If the cyclic error were the only remaining error in the data, we would
expect the flow timestamps calculated using the corrected basetimes to exhibit
no more than a few milliseconds of error to account for the one-way delay between
the source and the router at which the flows were measured.

We see this in the softflowd data, as shown in 4(b). This demonstrates that
our cyclic error correction method can completely eliminate the timing error in-
troduced by the design of the NetFlow v9 protocol. However, even after applying
corrected basetimes, there is an additional source of about 70ms of uniformly
distributed error on Cisco routers. Further investigation shows this to be con-
stant across sources and routers, and independent of time, load, or other factors
measured in this work. Therefore, we conclude that this error is implementation-
specific and an unavoidable property of the packet or flow handling of this specific
implementation, either within the metering process or between the metering and
exporting processes.

5 Related Work

The question of the fidelity of data used in Internet measurement studies is
well-addressed in the literature. The effects of sampling of packets (e.g., as in
[4]) as well as flows (e.g., as in [5]) have been widely studied. However, these
works tend to be theoretical, focusing more on the mathematical properties of
the techniques used and the essential tradeoff between overhead and utility than
on the effects of specific implementations or protocols used in the collection of
the data used.

Sommer and Feldmann [6] examined the information loss associated with
flow measurement as opposed to directly operating on packet data, and find
that for one particular application, TCP connection summary generation, flow
data suffices “[using] large enough time intervals”: an acknowledgement of the
impact that flow timeouts and timing in general have on later analysis.



Paxson [7], in establishing a set of best practices for Internet measurement
studies, classifies sources of error into precision, accuracy, and misconception.
It discusses timing precision and accuracy and discusses the need to consider
and calibrate for measurement infrastructure induced error in source data sets.
It advocates the export of metadata along with source data for measurement
studies, a call we reiterate in our conclusions.

A closer antecedent for the present work is Cunha et. al. [8], which provides
a similar study of largely implementation-related artifacts in flow data produced
by the Juniper routers which generated commonly-used datasets from Abilene
and GEANT. These artifacts were related to timeout and flow cache expiry, and
as such have a destructive impact on the distribution of flow duration.

The IETF addressed various design issues with NetFlow v9 in the specifi-
cation of the IPFIX protocol [9]. Crucially, IPFIX supports flexible timestamps
from second to nanosecond resolution, and allows the association of an absolute
timestamp with every flow. As it does not mandate the export of potentially
inconsistent timestamps in each message, it does not suffer from the cyclic error
we present in this work. However, it does not necessarily address other sources
of inaccuracy within the implementation of the metering or exporting process.

6 Conclusions

In seeking to maximize the timing precision available from data exported via
Cisco NetFlow v9, we discovered and quantified a cyclic source of up to one sec-
ond of error in flow timestamps, inherent in the design of the protocol. Correcting
this cyclic error can improve the accuracy of NetFlow v9 data to millisecond-
level. However, inaccuracy remains within the examined Cisco implementation
which we do not have sufficient information to correct, limiting our effective cor-
rection for our production dataset to one order of magnitude, for about 70ms
accuracy.

The set of routers from which we receive NetFlow v9 data represents an
admittedly small sample of deployed implementations. However, the cyclic error
is a protocol issue. It is therefore implementation-independent, and should affect
NetFlow v9 export from any vendor. We note that an implementation built with
an awareness of the cyclic error could avoid it, by faking the system uptime
and/or export timestamps in order to export real basetimes, but we did not
observe this behavior in any examined NetFlow implementation.

In addition, we presume that similarities in NetFlow v9 metering and export
process implementations could lead to implementation-specific sources of error
similar to those we observed on Cisco devices on implementations from other
vendors. These measurements are an area for future work. The guidance to take
from our work in any case is this: researchers using NetFlow v9 data sets should
not assume better than second-level accuracy unless employing a method for
correcting cyclic basetime error such as the one we present here, and should
measure the residual error specific to their metering and exporting processes.



In this work, we were able to observe and correct timing error from the Net-
flow v9 export packet headers which is not apparent from an examination of
flow data alone. This leads us to reiterate the call in [7] to export and maintain
implementation-specific metadata alongside flow data used for research. Our ex-
perience in this work additionally indicates the wisdom of keeping measurement
data in as “raw” a form as possible. While all flow data is theoretically the same,
and should be freely convertible among formats, this is not the case in practice:
as we have shown, implementation matters.
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