
Modular Performance Analysis and
Interface-Based Design for

Embedded Real-Time Systems

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of

Doctor of Sciences

presented by

ErnestoWandeler
Dipl. El.-Ing. ETH Zurich

born 01.12.1978
citizen of Gansingen, AG

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Petru Eles, co-examiner

2006

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 82

ErnestoWandeler

Modular Performance Analysis and
Interface-Based Design for

Embedded Real-Time Systems

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

A dissertation submitted to the
Swiss Federal Institute of Technology (ETH) Zürich
for the degree of Doctor of Sciences

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Petru Eles, co-examiner
Examination date: 14. September, 2006

Abstract

System level performance analysis methods play an important role in
the design process of complex embedded systems. They allow to analyze
essential performance characteristics of a system design in an early design
phase and consequently support the choice of important design decisions
before much time and resources are invested in detailed implementations.

While formal analysis based methods for system level performance
analysis lead to hard bounded analysis results and can thus be employed
in the design of hard real-time systems, these methods are often restricted
in their modeling and analysis capabilities, and the obtained results are
often overly pessimistic due to a lack of details such analytical methods
can incorporate in their system analysis.

In this thesis we identify challenges for system level performance
analysis of embedded systems, and based on these challenges we further
develop and extend a framework for formal modular performance anal-
ysis and design of complex distributed embedded real-time systems. The
main contributions of this work are listed in the following.

• Novel models and methods are presented for performance analy-
sis of complex embedded systems that combine components with
various different processing semantics within one system design.

• Novel models and methods are introduced to address the challenges
of complex inputs, variable execution demands, and workload cor-
relations in performance analysis of complex embedded systems.

• The theory of Real-Time Interfaces that connects the principles of
Real-Time Calculus and interface-based design is introduced, to-
gether with a component system that enables interface-based em-
bedded real-time system design.

• Novel models and methods are introduced that facilitate the mod-
eling, analysis, and design of hierarchical scheduling policies in
complex embedded systems.

• A new MATLAB Toolbox is introduced that supports efficient sys-
tem level performance analysis and interface-based design of dis-
tributed embedded real-time systems.

Zusammenfassung

Methoden zur Performanzanalyse auf Systemebene spielen eine wichtige
Rolle im Designprozess von komplexen Eingebetteten Systemen. Sie
erlauben die Analyse von essentiellen Performanzcharakteristiken eines
Systemdesigns in einer frühen Designphase und helfen dabei wichtige
Designentscheidungen zu fällen bevor viel Zeit und viele Ressourcen in
Detailimplementationen investiert werden.

Während formale Performanzanalysemethoden es erlauben hart
begrenzte Analyseresultate zu finden, und dadurch auch im De-
signprozess von harten Echtzeitsystemen angewandt werden können,
sind die Modellierungs- uns Analysefähigkeiten dieser Methoden oft
eingeschränkt. Und aufgrund dem Mangel and Details welche diese
Methoden in die Analyse einbinden können, sind die erzielten Resultate
oft auch übermässig pessimistisch.

In der vorliegenden Arbeit identifizieren wir Herausforderungen
für die Performanzanalyse von Eingebetteten Systemen, basierend auf
welchen wir ein Framework zur formalen, modularen Performanzanal-
yse, und zum Design von komplexen, verteilten Eingebetteten Echtzeit-
systemen weiterentwickeln. Nachfolgend die wichtigsten Resultate.

• Es werden neue Modelle und Methoden präsentiert zur Performan-
zanalyse von Eingebetteten Systemen, welche Komponenten mit
verschiedenen Ablaufsemantiken in einem System kombinieren.

• Neue Modelle und Methoden werden eingeführt zur Analyse
von Eingebettete Systeme mit komplexen Einspeisungen, variablen
Abarbeitungsanforderungen, und Arbeitsbelastungskorrelationen.

• Die Theorie der Real-Time Interfaces wird eingeführt, zusammen
mit einem Komponentensystem welches Interface-basiertes Sys-
temdesign von Eingebetteten Echtzeitsystemen ermöglicht.

• Neue Modelle und Methoden werden eingeführt, welche die Mod-
ellierung, die Analyse, sowie das Design von hierarchischen Ablauf-
planungsmethoden in Eingebetteten Systemen unterstützen.

• Eine neue MATLAB Toolbox wird präsentiert, welche effiziente
Performanzanalyse sowie Interface-basiertes Design von verteilten
Eingebetteten Echtzeitsystemen ermöglicht.

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 System-Level Performance Analysis 2

1.1.1 The Role in the Design Process 2
1.1.2 Challenges of Performance Analysis 3
1.1.3 Formal Analysis vs. Simulation 4
1.1.4 Requirements . 6

1.2 Aim of this Thesis . 7
1.3 Thesis Outline and Contributions 8

I Modular Performance Analysis 11

2 Modular Performance Analysis with Real-Time Calculus 13
2.1 Overview . 14
2.2 Model of Environment . 15

2.2.1 Arrival Curves: A General Event Stream Model . . 15
2.2.2 Obtaining Arrival Curves 16
2.2.3 Determining the Resource Demand 17

2.3 Model of Resources . 19
2.3.1 Service Curves: A General Resource Model 19
2.3.2 Obtaining Service Curves 20

2.4 Model of Tasks and Components 20
2.5 System Performance Model 23

2.5.1 Flow of Data . 24
2.5.2 Scheduling and Arbitration 24

2.6 Analysis . 25
2.6.1 Performance Analysis 26
2.6.2 Sensitivity Analysis 27

2.7 Case Study . 27

vi Contents

2.7.1 A Distributed In-Car Navigation System 28
2.7.2 Constructing the System Performance Models . . . 33
2.7.3 System Analysis . 34

2.8 Related Work . 39
2.9 Discussion . 43

3 Abstract Components 45
3.1 Greedy Shapers . 46

3.1.1 Embedding Greedy Shapers 47
3.1.2 Concrete Greedy Shapers 48
3.1.3 Abstract Greedy Shapers 50
3.1.4 Applications and Experimental Results 52

3.2 Components with Multiple Inputs 59
3.2.1 Embedding Components with Multiple Inputs . . . 60
3.2.2 Abstract OR-Connector 62
3.2.3 Abstract AND-Connector 62
3.2.4 Experimental Results 65

3.3 Discussion . 69

4 Workload Variability and Correlations 71
4.1 Workload Transformations 72

4.1.1 Events and Workloads 73
4.1.2 Workload Curves . 74
4.1.3 Embedding Workload Transformations 75

4.2 Event-Based Workload Variability 76
4.2.1 Type Rate Curves . 77
4.2.2 Computing Workload Curves 79

4.3 Functional Workload Variability 80
4.3.1 Event Sequence Automata 80
4.3.2 Workload Variability Automata 81
4.3.3 Computing Workload Curves 82
4.3.4 Experimental Results 84

4.4 Workload Correlations . 88
4.4.1 An Application Scenario 88
4.4.2 Event-Based and Resource-Based Analysis 89
4.4.3 Workload Correlations Curves 92
4.4.4 Computing Workload Correlation Curves 95
4.4.5 Experimental Results 97

4.5 Solving the Maximum-Weight Path Problem 102
4.6 Related Work . 103
4.7 Discussion . 105

Contents vii

II Interface-Based Design 107

5 Interface-Based Design with Real-Time Interfaces 109
5.1 Interface-Based Design and A/G Interfaces 110
5.2 Real-Time Interfaces . 113

5.2.1 Abstract Real-Time Components 113
5.2.2 Interface Variables and Predicates 114

5.3 A Component System with Interfaces 115
5.3.1 Event Stream Component 116
5.3.2 Resource Component 116
5.3.3 Processing Component for FP Scheduling 116
5.3.4 Processing Component for RM Scheduling 119
5.3.5 Processing Component for EDF Scheduling 119
5.3.6 Processing Component for FIFO Scheduling 121

5.4 Applications and Experimental Results 122
5.4.1 Application Scenario 122
5.4.2 Interface-Based Schedulability Analysis 123
5.4.3 Interface-Based System Design 125
5.4.4 Interface-Based System Adaption 126
5.4.5 Interface-Based Admission Tests 128

5.5 Related Work . 129
5.6 Discussion . 131

6 Design & Analysis of Systems with Hierarchical Scheduling 133
6.1 Time Division Multiple Access 134

6.1.1 Performance Analysis 135
6.1.2 Parameter Selection 137
6.1.3 Experimental Results 140
6.1.4 Related Work . 145

6.2 Polling Servers . 146
6.2.1 Performance Analysis 146
6.2.2 Parameter Selection 149
6.2.3 Experimental Results 150
6.2.4 Related Work . 153

6.3 Discussion . 156

III Tool Support 157

7 Efficient Computation of Real-Time Calculus 159
7.1 Classification of VCCs . 161

7.1.1 Variability Characterization Curves 161
7.1.2 Classification Scheme 161

viii Contents

7.1.3 Practically Relevant Classes of VCCs 162
7.2 A Compact Representation for VCCs 165

7.2.1 Curve Segment Sequences 165
7.2.2 Compact VCCs . 166

7.3 Operations on Compact VCCs 167
7.3.1 Method . 168
7.3.2 Unary Operators . 168
7.3.3 Binary Operators . 169

7.4 Discussion . 172

8 The RTC Toolbox 173
8.1 Software Architecture . 173
8.2 Case Study . 175
8.3 Discussion . 176

Conclusions 177

Outlook 180

Bibliography 182

A Real-Time Calculus 197
A.1 Convolutions and Deconvolutions 197
A.2 Sub-Additivity and Sub-Additive Closure 198
A.3 Selected Properties . 198
A.4 Greedy Processing Component 199

A.4.1 Basic Function Processing 200
A.4.2 Remaining Service 201
A.4.3 Processed Events . 203

List of Publications 205

Curriculum Vitae 209

1
Introduction

Embedded systems are special-purpose information processing systems
that are closely integrated into their environment. An embedded system
is typically dedicated to a specific application domain, and knowledge
about this domain and the system’s environment are used to develop
customized and optimized system designs.

The embedding into a technical environment and the constraints im-
posed by a particular application domain often require a distributed im-
plementation of embedded systems, where a number of hardware com-
ponents communicate via some interconnection network. The hardware
components in such systems are often specialized and aligned to their
local environment and their functionality. And also the interconnection
networks are often not homogeneous, but may instead be composed of
several interconnected sub-networks, each with its own communication
protocol and topology. And in more recent embedded systems, the archi-
tectural concepts of heterogeneity, distributivity and parallelism can even
be observed on single hardware components themselves, as they are often
implemented as so-called systems-on-chip (SoC). In these components, a
collection of digital or analogue interfaces, busses, memory, and heteroge-
neous computing resources such as FPGAs, CPUs, controllers and digital
signal processors are implemented on a single device, and communicate
using networks-on-chip (NoC) that can be regarded as dedicated inter-
connection networks involving adapted protocols, bridges or gateways.

Embedded systems are typically reactive systems that are in contin-
uous interaction with their physical environment to which they are con-
nected through sensors an actuators. Consequently they must execute at
a pace determined by their environment. This has as result than many

2 Chapter 1. Introduction

embedded systems must meet real-time constraints, i. e. they must re-
act to stimuli within a time interval dictated by the environment. Such
a real-time constraint is called hard, if not meeting it could result in a
impermissible failure of the system, and it is called soft otherwise.

It becomes apparent that heterogeneous and distributed embedded
real-time systems as described above are inherently difficult to design
and to analyze. Particularly, as often not only the availability, the safety,
and the correctness of the computations of the whole embedded system
are of major concern, but also the timeliness of the computed results.

1.1 System-Level Performance Analysis
During the system level design process of an embedded system, a de-
signer is typically faced with questions such as whether the timing prop-
erties of a certain system design will meet the design requirements, what
architectural element will act as a bottleneck, or what the on-chip memory
requirements will be. Consequently it becomes one of the major chal-
lenges in the design process to analyze specific characteristics of a system
design, such as end-to-end delays, buffer requirements, or throughput
in an early design stage, to support making important design decisions
before much time is invested in detailed implementations. This analysis
is generally referred to as system level performance analysis.

1.1.1 The Role in the Design Process
Because of the many alternatives for partitioning, allocation, and bind-
ing in the system design, a designer of a complex embedded system is
confronted with a large design space. To cope with this large design
space, automated or semi-automated design space exploration is often
employed, where a large number of implementation choices are investi-
gated in order to determine design trade-offs between various possibly
conflicting design objectives, see e. g. [TKZ04]. Within the design space
exploration cycle, performance analysis plays a crucial role to evaluate
the quality of different system designs, as can be seen in Figure 1.

But even if design space exploration is not a part of the chosen design
methodology, performance analysis is often employed in the develop-
ment process of embedded systems, as not only the functional, but also
the non-functional constraints of a system must typically be validated
after each major design step.

Finally, performance analysis is often also employed after completion
of the system design phase, to validate and possibly certify the real-
time properties of an embedded system. Particularly for hard real-time

1.1. System-Level Performance Analysis 3

Allocation
Mapping

Scheduling/Arbitration

Application Architecture

Performance Analysis

Design Space
Exploration

Fig. 1: Performance analysis within the design space exploration cycle.

systems validation plays a crucial role and guarantees that the system
will never lead to an impermissible failure.

1.1.2 Challenges of Performance Analysis
System level performance analysis of complex distributed embedded sys-
tems faces many challenges that make the analysis difficult, and that po-
tentially cause inaccurate analysis results. In order to better understand
these challenges and to identify potential areas of research, we categorize
some of them in the following.

• Resource Sharing: Complex embedded systems typically host multi-
ple applications, with tasks executing concurrently on the various
distributed hardware components, and communicating via the in-
terconnection network. To control resource access of these tasks on
the various computation and communication components, a large
range of scheduling and arbitration policies are available. A sin-
gle system often employs various different policies on its respective
components, and with hierarchical scheduling emerging, different
policies may even be employed on a single component. However,
the choice of the scheduling and arbitration policy for a component
and its parametrization largely influence the performance of the
complete system.

4 Chapter 1. Introduction

• Interferences: Depending on the resource sharing policies that are
employed on a system, different applications may interfere with
each other. The performance of a single application then depends
on the processing load that other applications put on the system.
For the analysis of interferences, special care must be taken with
so-called scheduling anomalies that are often observed on complex
embedded systems. On these systems, the worst-case behavior
of one application sometimes occurs only when other applications
execute with their best-case behavior.

• Correlations: Various complex timing and workload correlations are
often observed when applications are executed on a distributed
embedded system. These correlations often foreclose the existence
of some worst-case situations, and their consideration can improve
the accuracy of the analysis results.

• Complex Inputs: The events on the input event streams of an embed-
ded system often do not arrive strictly periodically, but follow in-
stead possibly complex arrival patterns, and exhibit jittery or bursty
behavior. As a consequence, some events of a burst for example may
get buffered as the system’s resources are occupied processing the
preceding events of the same event stream, thus increasing buffer
requirements and end-to-end delays of the system. Moreover, the
events on a single event stream are often not homogeneous, but
carry instead different payloads or follow different execution paths
in an application’s task graph.

• Variable Execution Demands: The execution demand of a single appli-
cation task is often variable and depends for example on the payload
or the type of the event that is processed. And even if all processed
events are homogeneous, the execution demand may vary due to
caching effects.

• Processing Semantics: A distributed embedded system is typically
built up from a mixture of various components with different pro-
cessing semantics that each require specific analysis. This not only
necessitates to develop a specific analysis for every processing se-
mantics, but it also complicates system level performance analysis,
as the various specific analyses must be integrated with each other
to analyze a complete system.

1.1.3 Formal Analysis vs. Simulation
Most methods for system-level performance analysis can broadly be di-
vided into the two main classes of simulation-based and formal-analysis-

1.1. System-Level Performance Analysis 5

based methods. In the area of embedded real-time systems design, one
of the major differentiation criteria between these two classes of methods
is the quality of results that are obtained with the respective methods.

e.
g

. d
el

ay

worst-case

best-case

Dsim DanalDreal

implementation simulation analysis

upper bound

lower bound

0

Fig. 2: The range of end-to-end delays in a real-time system obtained from system
simulation and form formal analysis, compared to the range of end-to-end delays
observed on the real system implementation.

An implementation of an embedded real-time system must meet a
number of performance requirements related for example to end-to-end
delays, buffer requirements, or throughput. When we measure these
quantities on the final system implementation, we normally observe major
variations over time, as for example end-to-end delays may vary largely
due to different input data or interference between concurrent system ac-
tivities. However, there typically exists a worst-case and a best-case result
for every quantity, such that we know for example that every observed
end-to-end delay is larger or equal the best-case delay dBC and smaller or
equal the worst-case delay dWC. Or mathematically expressed, for all ob-
served delays d, we know dBC ≤ d ≤ dWC. We denote the range of possible
delays with Dreal = [dBC, dWC], as depicted in Figure 2. It is important to
note however that even though dBC and dWC exist, their values are usually
not know for sufficiently complex systems.

When we simulate the same system and measure the same end-to-end
delay on the simulated system, we typically also observe major variations

6 Chapter 1. Introduction

over time. And as in the final implementation, the observed delays are
within the range Dreal. However, as every simulation run is of finite length,
and as thus only a finite set of initial states, environment behaviors and
execution traces can be considered, the observed delays will typically
not reveal the worst-case and best-case results. This problem is well-
know as the problem of insufficient corner-case coverage in simulations.
Consequently, a system simulation can only reveal that there exist delays
in the range Dsim ⊂ Dreal, but it cannot foreclose the existence of delays
outside Dsim. And even if a simulation run exposes the worst-case or
best-case delay, we have typically no means to detect this, as dBC and dWC

are often not known.
In difference to simulation based methods, formal analysis based

methods are normally concerned with finding upper and lower bounds to
the worst-case and best-case results, respectively. With a correct analysis
based method, any resulting upper bound dupper to a delay will always be
larger or equal the worst-case delay dWC, and any resulting lower bound
dlower will always be smaller or equal the best-case delay dBC. Mathe-
matically expressed, we know dlower ≤ dBC and dWC ≤ dupper, and since
dBC ≤ d ≤ dWC, we can conclude that dlowre ≤ d ≤ dupper. Thus, a formal
analysis based method can guarantee that all observed delays in the real
system implementation are in the range Danal ⊃ Dreal.

From the above assessment it becomes clear that only formal analysis
based methods allow to guarantee that a hard real-time system strictly
adheres to its design time performance requirements.

1.1.4 Requirements
Based on the above discussion, we list some of the requirements that a for-
mal analysis based methodology for performance analysis of distributed
embedded systems should ideally satisfy.

• Correctness: The results of the performance analysis should be cor-
rect, i. e. there must exist no reachable system states and feasible re-
actions of the system environment such that the calculated bounds
are violated.

• Accuracy: The lower and upper bounds determined by the perfor-
mance analysis should be close to the actual worst case and best
case properties.

• Embedding into the Design Process: The underlying performance
model should be sufficiently general to allow the representation
of the application, of the environment, of the hardware platform,
and of the mapping including the resource sharing policies. Ideally,

1.2. Aim of this Thesis 7

the method should seamlessly integrate into the functional spec-
ification and design methodology. Moreover, the method should
be able to cope with incomplete design information, as typically
the lower layers are not designed or implemented yet in the early
design phases of a system.

• Modularity: As distributed systems are heterogeneous in terms of
the underlying execution platform, the diverse concurrently run-
ning applications, and the different used scheduling and arbitration
policies, modularity is a key requirement. In particular, a methodol-
ogy should support process composition, scheduling composition,
resource composition, as well as the building of components. Pro-
cess composition supports the analysis of task chains, as events
often need to be processed by several consecutive application tasks.
Scheduling composition is required, as within one implementation,
different scheduling policies are often combined, sometimes even hi-
erarchically within one component. Resource composition ensures
that systems consisting of different heterogeneous computing and
communication resources can be analyzed. And finally, it should be
possible to combine combinations of processes, associated schedul-
ing methods, and architectural elements into components. This way,
a designer can associate a performance component to a combined
hardware/OS/software module of the implementation that exposes
the performance requirements but hides internal implementation
details.

• Short Analysis Time: If the performance analysis is part of a design
space exploration, a short analysis time is important. In addition,
the underlying model should allow for easy reconfigurability in
terms of application, hardware platform, and allocation, mapping
and scheduling.

1.2 Aim of this Thesis
With this work, we aim to defend the following thesis:

“It is possible to formally analyze complex distributed embedded real-time sys-
tems with a modular and extensible framework for system level performance
analysis that enables the efficient computation of correct and accurate perfor-
mance analysis results, and that can seamlessly be embedded into an embedded
systems’ design process. It is further possible to extend the same framework to
actively support system design through interface-based design methodologies.”

8 Chapter 1. Introduction

1.3 Thesis Outline and Contributions
This thesis is subdivided into three major parts. In Part I, we extend the
modeling and analysis capacities of the Modular Performance Analysis
framework, in Part II we extend the applicability of the Modular Per-
formance Analysis framework into the area of interface-based design for
embedded real-time systems, and in Part III, we present methods and
tools to efficiently compute analysis results within the Modular Perfor-
mance Analysis framework. In the following we summarize the contents
and the main contributions of these three parts.

Part I: Modular Performance Analysis
The first part of this thesis focuses on extending the framework for Modu-
lar Performance Analysis by addresses some of the challenges for system
level performance analysis described in Section 1.1.2.

Chapter 2: Modular Performance Analysis with Real-Time Calculus

This chapter introduces the framework of Modular Performance Analysis
with Real-Time Calculus, which we will call in short the MPA framework.
Besides this introduction, the following main contribution can be identi-
fied in this chapter.

• We present an extensive case study of a distributed in-car navigation
system, where the MPA framework is used to answer design ques-
tions that typically arise in the early design phase of such a system.
This case study demonstrates how performance analysis with the
MPA framework can be seamlessly embedded into a UML-based
design process, and it presents the first application of sensitivity
analysis within the MPA framework.

Chapter 3: Abstract Components

This chapter addresses the challenge of different processing semantics
within a complex embedded system, as described in Section 1.1.2. In
particular, we identify the following main contributions of this chapter.

• We introduce a component that enables the modeling and analysis
of greedy shapers within the MPA framework, and we present a
range of applications of greedy shapers within embedded real-time
systems.

• We introduce components that enable the modeling and analysis of
tasks with multiple inputs, where the task activation is determined
as a boolean function of the event availability on the various inputs.

1.3. Thesis Outline and Contributions 9

Chapter 4: Workload Variability and Correlations

This chapter addresses the challenges of complex inputs, variable execu-
tion demands, and workload correlations in a complex embedded system,
as described in Section 1.1.2. In particular, we identify the following main
contributions of this chapter.

• We introduce Type Rate Curves that enable the modeling of event
type correlations on event streams, and that allow analysis of em-
bedded systems with event-based workload variability.

• We introduce Event Sequence Automata and Workload Variability
Automata that enable the modeling of event type correlations on
event streams and functional workload dependencies in compo-
nents, respectively, and that allow analysis of embedded systems
with event-based, as well as functional workload variability.

• We introduce Workload Correlation Curves that enable the model-
ing of workload correlations between components, and that allow
analysis of embedded systems with workload correlations.

Part II: Interface-Based Design
The second part of this thesis focuses on extending the MPA framework to
enable interface-based design for complex embedded real-time systems.

Chapter 5: Interface-Based Design with Real-Time Interfaces

This chapter introduces the necessary concepts, models, and methods to
enable interface-based design of embedded real-time systems within the
MPA framework. In particular, we identify the following main contribu-
tions of this chapter.

• We introduce the theory of Real-Time Interfaces that connects the
principles of Real-Time Calculus and interface-based design, and
that enables interface-based embedded real-time system design
within the MPA framework.

• We introduce a component system with Real-Time Interfaces, for
interface-based design within the MPA framework.

• We present a range of applications that demonstrate how Real-Time
Interfaces simplify and accelerate the design process of embedded
real-time systems, and how they could enable interesting on-line
applications.

10 Chapter 1. Introduction

Chapter 6: Design & Analysis of Systems with Hierarchical Scheduling

This chapter addresses the challenge of modeling, analyzing, and design-
ing hierarchical scheduling policies in a complex embedded system, as
described in Section 1.1.2. In particular, we identify the following main
contributions of this chapter.

• We introduce a component and its interface model that enable mod-
eling, analysis and design of hierarchical schedulers with a top-level
TDMA scheduler within the MPA framework. We further present
methods for optimal parameter selection of such a TDMA scheduler.

• We introduce a component and its interface model that enable mod-
eling, analysis and design of hierarchical schedulers with a top-level
polling server within the MPA framework. We further present meth-
ods that support parameter selection of such a polling server.

Part III: Tool Support
The third part of this thesis focuses on efficient computation and tool
support for the MPA framework.

Chapter 7: Efficient Computation of Real-Time Calculus

This chapter introduces models and methods to efficiently conduct system
level performance analysis and interface-based design within the MPA
framework. In particular, we identify the following main contributions
of this chapter.

• We introduce a compact representation for a special class of vari-
ability characterization curves.

• We introduce methods to efficiently compute various Real-Time Cal-
culus curve operation on these compact variability characterization
curves.

Chapter 8: The RTC Toolbox

This chapter concentrates on tool support for the MPA framework. We
identify the following main contribution.

• We introduce the Real-Time Calculus (RTC) Toolbox for MATLAB.
The RTC Toolbox was developed as part of this thesis to support
system level performance analysis and interface-based design of
embedded real-time systems with the MPA framework. Moreover,
the toolbox was also used to validate the various models and meth-
ods presented in this thesis, and to prove their applicability.

Part I

Modular Performance Analysis

2
Modular Performance Analysis

with Real-Time Calculus

In the domain of communication networks, powerful abstractions have
been developed to model flow of data through a network. In particular
Network Calculus [LT01] provides the means to deterministically rea-
son about timing properties of data flows in queuing networks, and can
be viewed as a deterministic queuing theory. Real-Time Calculus (RTC)
[TCN00] extends the concepts of Network Calculus to the domain of real-
time embedded systems, and in [CKT03] a unifying approach to Modular
Performance Analysis with Real-Time Calculus has been proposed. It
is based on general event, resource and task models, allows for hierar-
chical scheduling and arbitration, and can take computation as well as
communication resources into account.

With Real-Time Calculus, hard upper and lower bounds can be com-
puted to various performance criteria in a real-time system, such as end-
to-end delays of event streams, or buffer requirements. The framework
of Modular Performance Analysis with Real-Time Calculus hence quali-
fies to analyze hard real-time systems, and thus clearly distinguishes itself
from probabilistic performance estimation methods, or from performance
estimation through simulation.

This chapter introduces the framework of Modular Performance Anal-
ysis with Real-Time Calculus, which we will call in short the MPA frame-
work in the following. The next section provides an overview on the fun-
damental elements of the MPA framework and on their relation within the
framework. The individual elements are introduced in more detail in Sec-
tions 2.2–2.6. An extensive case study of a distributed in-car navigation

14 Chapter 2. Modular Performance Analysis with Real-Time Calculus

system is then presented in Section 2.7, where the MPA framework is used
to answer design questions that typically arise in the early design phase of
such systems. Besides demonstrating the typical application of the MPA
framework for performance analysis, the case study also presents the
first application of sensitivity analysis within the MPA framework. The
chapter concludes with an overview on related methods for performance
analysis in Section 2.8, and a discussion in Section 2.9.

2.1 Overview
The central idea of Modular Performance Analysis (MPA) is, to first build
a so-called performance model of the concrete system that bundles all in-
formation needed for performance analysis with Real-Time Calculus. The
abstract performance model thereby unifies essential information about
the environment, about the available computation and communication re-
sources, about the application tasks and dedicated HW/SW components,
as well as about the system architecture itself.

Within the system performance model, environment models describe
how a system is being used by the environment: how often will events (or
function calls) arrive and how much data is provided as input to the sys-
tem, and how many events and how much data is generated in return by
the system and is fed back to the environment. Resource models provide
information about the properties of the computing and communication
resources that are available within a system, such as processor speed and
communication bus bandwidth. And finally, application task models
or dedicated HW/SW component models provide information about the
processing semantics that is used to execute the various application tasks
or to run the dedicated HW/SW components. The system model that is
typically obtained following the well-known Y-Chart scheme as proposed
in [KDVW97] specifies how the different models are put together to build
the system performance model. The system model thereby captures in-
formation about the applications and the available hardware architecture
of the system, and it also defines the mapping of tasks to computation
or communication resources and specifies the scheduling and arbitration
schemes used on these resources.

Figure 3 presents an overview on the fundamental elements of Modu-
lar Performance Analysis and the relations between them. Following, we
will introduce the model of the environment in Section 2.2, the model of
computation and communication resources in Section 2.3, and the model
of application tasks and dedicated HW/SW components in Section 2.4.
The construction of the system performance model is presented in Sec-
tion 2.5, and its analysis is explored in Section 2.6.

2.2. Model of Environment 15

Model of Environment
(Arrival Curves)

Model of Resources
(Service Curves)

Model of Tasks
& Components

(Abstract Components)

Performance Model

Analysis

Environment

Resources

Tasks &
Components

System Model

Application

Architecture

Allocation
Mapping

Scheduling

Fig. 3: Elements of Modular Performance Analysis.

2.2 Model of Environment
The environment models describe how a system is being used by the
environment: how often will system functions be called, how much data
is provided as input to the system, and how much data is generated by
the system back to its environment. In the framework of Modular Perfor-
mance Analysis the concept of arrival curves that was first introduced by
Cruz in [Cru91] is used to model event streams of the environment.

2.2.1 Arrival Curves: A General Event Stream Model
A trace of an event stream can conveniently be described by means of
a differential arrival function R[s, t) that denotes the sum of events that
arrive in the time interval s ≤ τ < t, with R[s, s) = 0, and with s, t ∈ R.
Sometimes, we will also use the cumulative arrival function R(τ) that
is defined as R(τ) = R[0, τ) for all τ ≥ 0. While any arrival function R
always describes one concrete trace of an event stream, a tuple α(Δ) =

16 Chapter 2. Modular Performance Analysis with Real-Time Calculus

[αu(Δ), αl(Δ)] of upper and lower arrival curves provides an event stream
model, representing all possible traces of an event stream.

For this, the upper arrival curve αu(Δ) provides an upper bound on the
number of events that are seen on the event stream in any time interval of
length Δ, and analogously, the lower arrival curve αl(Δ) provides a lower
bound on the number of events in a time interval Δ. In other words, in
any time interval of length Δ there will always arrive at least αl(Δ) and at
most αu(Δ) events on an event stream that is modeled by α(Δ).

Def. 1: (Arrival Curves) Let R[s, t) denote the number of events that arrive on an event
stream in the time interval s ≤ τ < t. Then, R, αu and αl are related to each other
by the following inequality

αl(t − s) ≤ R[s, t) ≤ αu(t − s),∀t ≥ s ≥ 0 (2.1)

with αl(0) = αu(0) = 0.

Note that in contrary to the conventional definitions of arrival curves
by Cruz [Cru91], and Le Boudec and Thiran [LT01], we use differential
arrival functions R[s, t) that extend to the whole time domain, i. e. s, t ∈ R.
Cruz, and Le Boudec and Thiran use only cumulative arrival functions
R(τ) that are defined for positive time instances only, i. e. τ ≥ 0. With
our extended definition, we will be able to obtain tighter performance
analysis results, as we will see later in Section 2.4.

2.2.2 Obtaining Arrival Curves
In order to be applicable in the analysis of hard real-time systems, arrival
curves must represent guaranteed bounds on the possible occurrence of
events on the modeled event streams. In consequence of this requirement,
they are typically obtained from a formal specification or description. Ar-
rival curves thereby substantially expand the modeling power of classical
deterministic standard event arrival patterns such as sporadic, periodic,
periodic with jitter, or others.

Ex. 1: A common set of standard event arrival patterns that is used in literature can
be specified by the parameter triple (p, j, d), where p denotes the period, j the
jitter, and d the minimum inter-arrival distance of events in the modeled stream
[RZJE02], [Ric05]. Event streams that are specified using these parameters can
directly be modeled by the following arrival curves:

αl(Δ) =
⌊
Δ − j

p

⌋
(2.2)

αu(Δ) = min
{⌈
Δ + j

p

⌉
,
⌈
Δ

d

⌉}
(2.3)

2.2. Model of Environment 17

In Figure 4, the relation between these parameters and the corresponding
arrival curves is graphically depicted. Note that in this particular example the
jitter is larger than the period which is typical for a so-called event streams with
bursts.

2

4

6

8

10

ev

en
ts

αu

αl
p

j

d

p

pj

Δ

p

Fig. 4: Relation between the parameter triple (p,j,d) and corresponding arrival curves.

Relations as shown in the previous example can typically also be
obtained between any other deterministic event arrival specification and
arrival curves. Figure 5 shows some more examples of arrival curves that
are obtained from deterministic event arrival specifications.

Sometimes it may also be useful to determine the arrival curves corre-
sponding to a set of finite length event stream traces, obtained for example
from observation or simulation. For this, a sliding window approach can
be used. Even though the so obtained curves must not be used for anal-
ysis of hard real-time systems, they can be useful to analyze systems
with soft real-time constraints that are common for example in the area
of multimedia applications. For more details see [MLCO04] or [Max05].

2.2.3 Determining the Resource Demand
As defined above, the arrival curvesαu andαl denote the number of events
that arrive on an event stream in any given time interval. For performance
analysis we are however not so much interested in the number of events
that arrive, but rather in the resource demand that these arriving events
produce on a processor or on a HW/SW component. We must therefore
introduce resource based arrival curves. While event based arrival curves
represent the number of arriving events per unit of time interval, the

18 Chapter 2. Modular Performance Analysis with Real-Time Calculus

0 10 20 30
0

2

4

6

8

10

Δ

ev

en
ts

αu

αl

0 10 20 30
0

2

4

6

8

10

Δ

ev

en
ts

αu

αl

0 10 20 30
0

2

4

6

8

10

Δ

ev

en
ts

αu

αl

0 10 20 30
0

2

4

6

8

10

Δ

ev

en
ts

αu

αl

(a)

(d)(c)

(b)

Fig. 5: Examples of arrival curves that are obtained from deterministic event arrival
specifications. (a) Models a periodic event stream. (b) Models a periodic event
stream with jitter. (c) Models a periodic event stream with bursts. (d) Models
an event stream with more complex deterministic timing behavior: the modeled
event stream may exhibit short steep bursts, longer lasting less steep bursts, and
the maximum long-term period does not equal the minimum long-term period.

resource based arrival curves represent the generated resource demand
per unit of time interval.

In the most basic scenario, every arriving event generates the same
resource demand on a HW/SW component, i. e. the worst-case execution
demand equals the best-case execution demand. Resource based arrival
curves can then be obtained directly by multiplying the event based ar-
rival curves with a constant that represents the resource demand of a
single event. And analogously, event based arrival curves are obtained
by dividing resource based arrival curves by the same constant.

In more complex systems, the events arriving on an event stream may
be of one of several different event types, each having a different resource
demand, or it may be known that not all events lead to the worst-case

2.3. Model of Resources 19

execution demand. In such systems, automata may be used to represent
possible arrival patterns of the different event types, and the information
captured in these automata may then be used to transform event based
to resource based arrival curves. A similar approach may also be used
to model system state dependent resource demands, as introduced for
example by caches. Chapter 4 will elaborate on these topics.

In this thesis we will typically assume that workload transformations
are implicitly performed wherever required. For easier readability we will
then use α to denote both event based as well as resource based arrival
curves. In Chapter 4 where we want to explicitly distinguish between
event based and resource based curves, we will decorate the former with
a bar (α).

2.3 Model of Resources
The resource models provide information about the properties of the
computing and communication resources that are available within a sys-
tem, such as processor speed and communication bus bandwidth. In
the framework of Modular Performance Analysis the concept of service
curves is used to model resources.

2.3.1 Service Curves: A General Resource Model
Analogously to the differential arrival function R[s, t) that is used to de-
scribe a concrete trace of an event stream, the concrete availability of a
computation or communication resource can be described by a differen-
tial service function C[s, t) with s, t ∈ R, where C[s, t) denotes the sum of
available resource units, e. g. processor cycles or transmittable bits on a
bus, in the time interval s ≤ τ < t, with C[s, s) = 0. Sometimes, we will also
use the cumulative service function C(τ) that is defined as C(τ) = C[0, τ)
for all τ ≥ 0.

And analogously to arrival curves that provide an event stream model,
a tuple β(Δ) = [βu(Δ), βl(Δ)] of upper and lower service curves provides a
resource model. The upper service curve βu(Δ) provides an upper bound
on the available resources in any time interval of length Δ, and the lower
service curve βl(Δ) provides a lower bound on the available resources in a
time interval Δ. And in other words again, in any time interval of length
Δ there will always be at least βl(Δ) and at most βu(Δ) resource capacity
available on a resource that is modeled by β(Δ).

Def. 2: (Service Curves) Let C[s, t) denote the number of processing or communication
cycles available from a resource over the time interval s ≤ τ < t. Then C, βu and

20 Chapter 2. Modular Performance Analysis with Real-Time Calculus

βl are related by the following inequality

βl(t − s) ≤ C[s, t) ≤ βu(t − s),∀t ≥ s ≥ 0 (2.4)

with βl(0) = βu(0) = 0.

Note, that the above definition of lower service curves corresponds to
the definition of strict service curves in Network Calculus [LT01], while
the definition of upper service curves as provided above is not used in
[LT01]. Moreover, the above definition also differs from the definition by
Le Boudec and Thiran in [LT01] by the fact that the differential service
function C[s, t) that extends to the whole time domain, i. e. s, t ∈ R is used,
while Le Boudec and Thiran use cumulative service functions C(τ) that
are defined for positive time instances only, i. e. τ ≥ 0.

2.3.2 Obtaining Service Curves
Again in order to be applicable in the analysis of hard real-time systems,
service curves must also represent guaranteed bounds on the availability
of the modeled resources. In consequence of this requirement, they are
typically obtained from a formal specification or description, using data
sheets or analytically derived properties.

Ex. 2: In the simplest case of an unloaded processor, whose capacity we measure in
available processing cycles per time unit, both the upper and the lower resource
curves are equal and are represented by straight lines βu(Δ) = βl(Δ) = f · Δ,
where f equals the processor speed, i. e. the number of available processing cycles
per time unit.

Figure 6 shows some examples of service curves that model the re-
source availability on processors or communication channels.

For the analysis of soft real-time systems it may sometimes also be
useful to use a sliding window approach to determine the service curves
corresponding to a measured resource availability.

2.4 Model of Tasks and Components
The application task or dedicated HW/SW component models provide
information about the processing semantics that is used to execute the
various application tasks or to run the dedicated HW/SW components.

In an embedded system, an incoming event stream is typically pro-
cessed by a sequence of tasks and components, that we all will interpret

2.4. Model of Tasks and Components 21

0 10 20 30
0

5

10

15

Δ

cy

cl
es

βu

βl

(c)

0 10 20 30
0

5

10

15

Δ

cy

cl
es

βl = βu

(a)

0 10 20 30
0

5

10

15

Δ

cy

cl
es

βu

βl

(b)

0 10 20 30
0

5

10

15

Δ

cy

cl
es

βu

βl

(d)

Fig. 6: Examples of service curves. (a) Models a resource with full availability. (b)
Models a bounded delay resource as defined in [MFC01]. (c) Models the resource
availability of one slot on a time division multiple access (TDMA) resource. (d)
Models a periodic resource as defined in [SL03].

as tasks on a task chain that are executed on possibly different hardware
resources.

Figure 7(a) shows such a component. A trace of an event stream,
described by R, enters the component and is processed using a resource
whose availability is described by C. After being processed, the events
are emitted on the output of the component, resulting in an outgoing
event stream trace, described by R′, and the remaining resources that
were not consumed to process the event trace R are made available to
other components and are described by an outgoing resource availability
C′.

The relations between R, C, R′ and C′ depend on the processing se-
mantics of the component. The outgoing event stream R′ will typically
not equal the incoming event stream R, as it may, for example, exhibit
more (or less) jitter. Analogously, C′ will differ from C.

22 Chapter 2. Modular Performance Analysis with Real-Time Calculus

0

2

4

6

8

t

0

2

4

6

8

t 0

2

4

6

8

t

0

2

4

6

8

t

C’(t)

C(t)

R’(t)R(t)

GP

0

2

4

6

8

Δ

FP
0

2

4

6

8

Δ 0

2

4

6

8

Δ

0

2

4

6

8

Δ
β’(Δ)

β(Δ)

α’(Δ)α(Δ)

GP

(a) (b)

Fig. 7: (a) A concrete component, processing an event stream on a resource. (b) An
abstract component, processing an abstract event stream on an abstract resource.

In the MPA framework, we model such a component as an abstract
component as shown in Figure 7(b). Here, an abstract event stream α(Δ)
enters the abstract component and is processed using an abstract resource
β(Δ). The output is then again an abstract event stream α′(Δ), and the
remaining resources are expressed again as an abstract resource β′(Δ).

Internally, such an abstract component is specified by a set of functions,
that relate the incoming arrival and service curves to the outgoing arrival
and service curves:

α′ = fα(α, β) (2.5)
β′ = fβ(α, β) (2.6)

For a given abstract component, these relations fα and fβ depend on the
processing semantics of the modeled concrete component, and must be
determined such that α′(Δ) correctly models the event stream with event
trace R′(t) and that β′(Δ) correctly models the resource availability C′(t).

Ex. 3: As an example of an abstract component, consider a concrete component that is
triggered by the events of an incoming event stream. A fully preemptable task
is instantiated at every event arrival to process the incoming event, and active
tasks are processed in a greedy fashion in FIFO order, while being restricted
by the availability of resources. Such a component can be modeled as an ab-
stract component with following internal relations1 [CKT03] that are proved in

1See Appendix A.1 for a definition of ⊗,
, ⊗ and

2.5. System Performance Model 23

Appendix A.4:

α
′u
GP = min{(αu ⊗ βu)
 βl, βu} (2.7)

α
′l
GP = min{(αl
 βu) ⊗ βl, βl} (2.8)

β
′u
GP = (βu − αl)
 0 (2.9)

β
′l
GP = (βl − αu) ⊗ 0 (2.10)

Note that these relations are only valid with arrival and service curves as
defined in this thesis, that are based on differential arrival and service functions
R[s, t) and C[S,T) that extend to the whole time domain. With the arrival and
service curves defined by Cruz [Cru91] and by Le Boudec and Thiran [LT01],
that are based on cumulative arrival and service functions R(τ) and C(τ) that are
only defined for the positive time domain, the above tight relations are not valid.

Components with the processing semantics described in the above
example are very common in the area of real-time embedded systems,
and we will refer to them as a Greedy Processing (GP) components.

To model a component with different processing semantics, we have
to determine the appropriate internal relations fα and fβ to obtain a cor-
responding abstract component. In Chapter 3 we will present a HW
component with different processing semantics and we will establish the
appropriate internal relations.

2.5 System Performance Model
At this point, we know how to model event streams, computation and
communication resources, as well as single application tasks and HW/SW
components. But in order to analyze performance criteria of a system, we
need to build a system performance model. The system performance model
thereby captures information about the applications and the available
hardware architecture. Moreover it also reflects the mapping of tasks
to computation or communication resources and specifies the scheduling
and arbitration schemes used on these resources, as defined by the system
model.

To obtain the performance model of a system, we first need to model
all event streams that trigger the system, all computation and communi-
cation resources that are available to the system, as well as all tasks and
components in the system, using the corresponding abstract representa-
tions as described in the preceding sections. Then, by correctly intercon-
necting the arrival and service inputs and outputs of all these models,
we obtain the system performance model. An example is depicted in
Figure 15.

24 Chapter 2. Modular Performance Analysis with Real-Time Calculus

2.5.1 Flow of Data

The arrival inputs and outputs in the system performance model are in-
terconnected to reflect the flow of data in the system. An interconnection
between two components thereby signifies that the events created on the
output of the first component trigger the connected subsequent compo-
nent.

The flow of data is thereby not limited to one-to-one connections. The
events created on the output of a single application task or HW/SW com-
ponent may serve as input to multiple subsequent tasks or components.
And analogously, a single application task or HW/SW component may
be triggered by the output of multiple preceding tasks or components.
While the one-to-many connections are straightforward to model, the
many-to-one connections are more involved and Chapter 3 will elaborate
on these.

2.5.2 Scheduling and Arbitration

The service inputs and outputs in the system performance model are
interconnected to reflect the resource sharing policies in the system. To
elaborate on these service interconnections, suppose that several tasks
of a system are allocated to the same resource. In the concrete system,
these tasks share this resource according to a scheduling or arbitration
policy. In the performance model, this scheduling or arbitration policy
on a resource can then be modeled by the way the abstract resources β are
distributed among the different abstract tasks.

Consider for example preemptive fixed priority scheduling: a task
A with the highest priority may use all available resources of a CPU,
whereas a task B with the second highest priority only gets the resources
that were not consumed by A. This resource sharing policy is modeled
in the performance model by using the service curves β′A that exit the
abstract GP component A as input to the abstract GP component B.

For some other scheduling or arbitration policies, such as generalized
processor sharing (GPS) [PG93, PG94] or time division multiple access
(TDMA), the available resources must be distributed differently, while
for some policies, such as earliest deadline first (EDF) or non-preemptive
scheduling, different abstract components, with tailored internal relations
(2.5) and (2.6), must be established. Some examples of how to model
different scheduling policies are depicted in Figure 8.

2.6. Analysis 25

βs1

αA’

share

sum

βs2

βs2
’ βs1

’

β’

β

αB’

αA

αB

β

αA’

β’’

αB’

αA

αB

β’

β

αA’

EDF

β’

αB’

αA

αB

βslot1

TDMA

βslot1

αA’

αB’

αA

αB

βslot2
’βslot1

’

(a) (b)

(c) (d)

GP

GP

GP

GP

GP

GP

Fig. 8: Modeling of various scheduling and arbitration policies in the system perfor-
mance model. (a) Tasks with preemptive fixed priority (FP) scheduling. (b)
Tasks with earliest deadline first (EDF) scheduling. (c) Tasks with generalized
processor sharing (GPS) scheduling. (d) Tasks with time division multiple access
(TDMA) scheduling.

2.6 Analysis

After interconnecting all models of a system to the system performance
model as described in the previous section, this performance model cap-
tures all the information that builds the basis for performance analy-
sis. Various performance criteria, such as end-to-end delay guarantees
or buffer requirements can be computed analytically in the performance
model. The exact analysis methods may thereby slightly vary for different
abstract components but remains deterministic at all times. Following,
we present the performance analysis methods for GP components. The
analysis methods for other abstract components are mostly very similar
or even equal to these.

26 Chapter 2. Modular Performance Analysis with Real-Time Calculus

2.6.1 Performance Analysis
When an event stream with arrival curves α is processed by a GP com-
ponent on a resource with service curve β, then the maximum delay dmax

experienced by any event on the event stream is bounded by [LT01]:

dmax ≤ sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ + τ)}

} de f
= Del(αu, βl) (2.11)

On the other hand, the maximum buffer space bmax that is required to
buffer an event stream with arrival curve α in the input queue of a GP
component on a resource with service curve β is bounded by [LT01] :

bmax ≤ sup
λ≥0

{αu(λ) − βl(λ)} de f
= Bu f (αu, βl) (2.12)

In Figure 9, the relations between α, β, dmax and bmax are depicted
graphically. From this figure, we see that dmax and bmax are bounded by the
maximum horizontal and maximum vertical distance between the upper
arrival curve and the lower service curve respectively. This corresponds
to the intuition, that dmax and bmax occur when the maximum load arrives
at the time of minimum resource availability.

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

Δ

dmax
bmax

αu

βl

Fig. 9: Delay and backlog obtained from arrival and service curves

Using (2.11) and (2.12), the total end-to-end delay experienced by an
event at the system or the total buffer requirement at a resource can be
computed as the sum of the single delays and the single buffer require-
ments at the various abstract components, respectively.

Besides this strictly modular analysis approach the MPA framework of
also enables a partly holistic analysis of certain subsystems. In particular,

2.7. Case Study 27

when an event stream is processed by a sequence of tasks or components,
we can exploit the phenomenon known as “Pay Bursts Only Once” [LT01],
and the end-to-end delay guarantee can be tightened to:

dmax ≤ Del(αu, βl
1 ⊗ βl

2 ⊗ . . . ⊗ βl
n) (2.13)

and analogously when the buffers of several consecutive tasks or compo-
nents use the same shared memory, the total required buffer space can be
tightened to:

bmax ≤ Bu f (αu, βl
1 ⊗ βl

2 ⊗ . . . ⊗ βl
n) (2.14)

Besides enabling the computation of the various end-to-end delay
guarantees and buffer requirements in a system, the system performance
model may also provide other interesting insights to a system, that may
for example be obtained by analyzing the characteristics of the outgoing
service curves. This analysis may among other things expose the uti-
lization of the various computation or communication resources in the
system.

2.6.2 Sensitivity Analysis
Besides only computing the various performance metrics of a system at
a specific design point, it is often also useful to perform a sensitivity
analysis for the various metrics. The results of such an analysis will allow
to identify the bottlenecks of a system design and will consequently help
to come up with more robust designs.

In [RJE05] Racu et al. present a method for sensitivity analysis that
aims at determining the minimum or maximum permissible value for
various system parameters. The presented method is based on a binary
search algorithm and is also directly applicable to the MPA framework.

An alternative approach to sensitivity analysis aims at determining
the partial derivatives of performance metrics towards changes of system
parameters at the specific design point. Since it is typically not possible to
determine these partial derivatives analytically, we can instead determine
them by conducting a set of successive system performance analyses with
infinitesimal parameter variations around the design point.

2.7 Case Study
The case study presented in this section is inspired by a system archi-
tecture definition study for a distributed in-car radio navigation system.
Such a system typically executes a number of concurrent applications
that share a common platform. Nevertheless, each application might

28 Chapter 2. Modular Performance Analysis with Real-Time Calculus

have hard individual performance requirements that need to be met by
the platform. During the system definition phase, several candidate plat-
form architectures might be proposed by the engineers and the system
architect needs to evaluate each one. Typical questions that need to be
answered are: (1) does this platform meet the performance requirements
of all applications (2) how robust is the platform with respect to changes
in application or architecture parameters and (3) can components be re-
placed in the architecture by cheaper (and less powerful) components to
save cost but still ensuring to meet the performance criteria of all appli-
cations? We present the applications and the architecture candidates in
Section 2.7.1. In Section 2.7.2 we briefly show how these are modeled in
the MPA framework. And finally, in Section 2.7.3 we will analyze typical
design questions, as the ones mentioned above.

2.7.1 A Distributed In-Car Navigation System
An overview of the system under consideration is presented in Figure 10,
it is composed of three main clusters of functionality:

Man-Machine Interface The man-machine interface (MMI) takes care
of all interaction with the user, such as handling key inputs and
graphical display output.

Navigation Functionality The navigation functionality (NAV) is respon-
sible for destination entry, route planning and turn-by-turn route
guidance giving the driver both audible and visual advices. The
navigation functionality relies on the availability of a map database,
typically stored on a CD or DVD, and positioning information, e. g. ,
speed and GPS. The latter is not shown here.

Radio Functionality The radio functionality (RAD) is responsible for ba-
sic tuner and volume control as well as handling of traffic informa-
tion services such as RDS TMC (Radio Data System / Traffic Message
Channel). RDS TMC is broadcast along with the audio signal of ra-
dio channels.

The key question that is investigated in this case study is how to
distribute the functionality over the available resources, such that we
meet the global timing requirements. To achieve this goal, the following
steps are taken:

1. Identify key usage scenarios and system functions.

2. Quantify event rates, message sizes and execution times.

3. Identify resources and their communication structure.

2.7. Case Study 29

NAV RAD

MMI

MAP DB

Fig. 10: High-level overview of a distributed radio navigation system

4. Quantify resource and communication capacities.

5. Compose the MPA performance models, calculate and evaluate.

A general description of a new product is typically made during the
initial phase of an industrial product creation process. For example,
an Operational Concept Description from the IEEE 12207 system life cycle
standard [IEE98] may be produced. Such a document does not only list
functional and non-functional requirements, boundary conditions and
other restrictions for the design, it should also contain high-level use-
cases. These use-cases are the starting point for the design of the system
architecture. During the steps 1 and 2 of the recipe described above,
the use-cases and associated sequence diagrams are first analyzed and
annotated for MPA analysis. Although there is no principle limit to
the amount of scenarios that can be analyzed, it is not uncommon to
first concentrate on those scenarios that are expected to have the highest
impact on the set of requirements to be met. It is the system architect
who makes this decision, often based on previous experience. In our case
study, we have selected three distinctive scenarios:

Change Volume The user turns the rotary button and expects instanta-

30 Chapter 2. Modular Performance Analysis with Real-Time Calculus

neous audible feedback from the system. Furthermore, the visual
feedback (the volume setting on the screen) should be timely and
synchronized with the audible feedback. This seemingly trivial
use-case is actually quite complex because many components are
affected. Changing volume might involve commanding a digital
signal processor (DSP) and an amplifier in such a way that the qual-
ity of the audio signal is maintained while changing the volume.
This scenario is shown in detail in Figure 11. Note that three opera-
tions are identified, HandleKeyPress, AdjustVolume and UpdateScreen.
Execution times, event rates and message sizes are estimated and
annotated in the sequence diagram together with the principle tim-
ing requirements applicable to this scenario.

 : User
 : MMI : Radio

keyPress()

SetVolume()

HandleKeyPress()

AdjustVolume()

NoticeAudibleChange()

UpdateScreen()

32 events
per second
(at most)

4 bytes
32 per second

GetVolume()

NoticeVisualChange()

4 bytes
32 per second

Vo
l K

2V
 (K

ey
p

re
ss

 to
 V

is
u

al
) d

el
ay

 <
 2

00
 m

se
c

an
d

Vo
l A

2V
 (A

u
d

ib
le

 to
 V

is
u

al
) d

el
ay

 <
 5

0
m

se
c

Execution time estimates
HandleKeyPress() 1E5 instructions
AdjustVolume()
UpdateScreen() 5E5 instructions

1E5 instructions

Fig. 11: Annotated sequence diagram for the Change Volume scenario.

Address Look-up Destination entry is supported by a smart interface. By
turning a knob the user can move from letter to letter; by pressing
it the user will select the currently highlighted letter. The map
database is searched for each letter that is selected and only those
letters in the on-screen alphabet are enabled that are potential next
letters in the list. This scenario is shown in detail in Figure 12.
Note that the DatabaseLookup operation is expensive compared to

2.7. Case Study 31

the other operations and that the size of the output value of the
operation is 16 times larger than the input message.

 : User
 : MMI : Navigation

Address Lookup()

keyPress()

NavResult()

DatabaseLookup()

UpdateScreen()

NoticeVisualChange()

once per second

A
d

d
r d

el
ay

 <
 2

00
 m

se
c message size 4 bytes

once per second

message size
64 bytes

HandleKeyPress()

Execution time estimates
HandleKeyPress() 1E5 instructions
DatabaseLookup() 5E6 instructions
UpdateScreen() 5E5 instructions

Fig. 12: Annotated sequence diagram for the Address Look-up scenario.

TMC Message Handling Digital traffic information is very important for
in-car radio navigation systems. It enables features such as auto-
matic re-planning of the planned route in case a traffic jam occurs
ahead. It is also increasingly important to enhance road safety by
warning the driver, for example when a ghost driver is spotted on
the planned route. RDS TMC is such a digital traffic information
service. TMC messages are broadcast by radio stations together
with stereo audio sound. RDS TMC messages are encoded: only
problem location identifiers and message types are transmitted. The
map database is accessed to translate these identifiers and to con-
struct human readable text. The TMC message handling scenario is
shown in Figure 13.

The scenarios sketched above have an interesting property: they can
occur in parallel. RDS TMC messages must be processed while the user
changes the volume or enters a destination. However Change Volume and
Address Look-up can not occur at the same time because they share a com-
mon resource: the rotary button is used for both. The architecture shown

32 Chapter 2. Modular Performance Analysis with Real-Time Calculus

 : Radio Station
 : Radio : Navigation : MMI : User

Receive()

Receive()

HandleTMC()

UpdateScreen()

NoticeVisualChange()

300 messages
per 15 minutes
32 bytes each
uniform distribution

300 messages
per 15 minutes
64 bytes each

30 messages
per 15 minutes
64 bytes each

TM
C

 d
el

ay
 <

 1
 s

ec
 fo

r u
rg

en
t T

M
C

 m
es

sa
g

es

HandleTMC()

DecodeTMC()

Execution time estimates
HandleTMC() 1E6 instructions
DecodeTMC() 5E6 instructions
UpdateScreen() 5E5 instructions

Fig. 13: Annotated sequence diagram for the TMC Message Handling scenario.

in Figure 10 suggests to assign the three clusters of functionality each to its
own processing unit. The computation resources are interconnected by a
single communication bus. Does this architecture meet our requirements
and is it the best architecture for our applications?

22 MIPS

11 MIPS113 MIPS

72 kbps

MMI

NAV RAD

(a)

113 MIPS

72 kbps

NAV

22 MIPS

MMI

(b)

11 MIPS

RAD

57 kbps

22 MIPS260 MIPS

72 kbpsNAV

RAD

130 MIPS113 MIPS

72 kbpsNAV RADMMI

MMI

(c) (d)

260 MIPS

RAD

MMI

NAV

(e)

Fig. 14: Alternative system architecture proposals to explore.

Figure 14 shows that there are many more potential architectures that
might be applicable. Note that the capacity of the resource units and
communication infrastructure is quantified, completing step 3 and 4 of

2.7. Case Study 33

our recipe. Observe that architecture (b) can only be evaluated if we
introduce an additional task on the MMI resource that transfers the data
from one communication link to the other, in the case that NAV wants to
communicate to RAD or vice versa.

2.7.2 Constructing the System Performance Models
Sufficient information is now available to construct the MPA performance
models for each architecture. The model for architecture (a) is shown in
Figure 15.

RAD

βCPU2

CPU2

βBUS

BUS
MMI

αVOL

βCPU1

GP GP

GP

GP

GP

GP

GP

GP

GPGP

CPU1

βCPU3

CPU3

MMI

αTMC’

αVOL’

αTMC

Fig. 15: Performance model for system architecture (a) of Figure 14

The data flow of the sequence diagrams can be followed in the MPA
model. For example the Change Volume scenario from Figure 11. Events
arrive at the MMI where HandleKeyPress is executed and the result is
forwarded, via the communication bus, to RAD. AdjustVolume is executed
and the result is sent back to MMI via the same communication bus.
Finally, UpdateScreen is executed and the scenario is completed. The load
scenario data α is extracted from the annotations in the sequence diagram.
The resource model data βon the other hand is extracted from the informal
deployment diagrams shown in Figure 14.

As described in Section 2.5, the order in which the service inputs and
output of the components are connected in the MPA performance model

34 Chapter 2. Modular Performance Analysis with Real-Time Calculus

determine their priority. In this case, the Change Volume scenario is as-
signed a higher priority than Handle TMC. The system architect decides
the initial priority setting again based on experience. This does not hinder
the evaluation in any way, since the priorities are easily changed by re-
arranging the vertical order of the scenarios. A MPA performance model
must be constructed for each proposed architecture. This is normally
a simple tasks because it merely involves reconnecting event flows and
service flows between abstract components.

2.7.3 System Analysis
In this section, we will look at some typical design problems that occur
during the early phases of a system design cycle.

For a correct interpretation of the results, we need to remember that in
order to be applicable for the analysis of hard real-time systems, the MPA
framework is designed to compute hard upper and lower bounds for all
system characteristics. While these upper and lower bounds are always
hard, they are in general not tight (exact). So, the analysis performed
is conservative and the computed maximum delays are therefore hard
upper bounds to the real maximum delays in the real system.

Due to this conservative approach, it may be that we reject a sys-
tem architecture that would fulfill all system requirements in reality, but
for which the analysis cannot guarantee the fulfillment of all system re-
quirements. The other way around, we can guarantee that any system
architecture accepted by the analysis fulfills all system requirements in
reality.

To compute the end-to-end delay of an event stream in a given sys-
tem architecture, we first construct the performance model of the given
system architecture as described in the previous section. By applying the
transformations given in formulas 2.7 - 2.10 at every abstract component
of the performance model, we eventually end up with the output event
streams and the remaining system resources. We then use formula 2.11
to compute the upper bound of the maximum delay of an event stream
at every performance component it passes in the performance model. Fi-
nally, we sum up all these delays or use formula 2.13 to obtain a hard
upper bound on the maximum end-to-end delay of the event stream in
the given system architecture.

We will now present three typical design problems and show how
they are analyzed:

Prob. 1: In Figure 14, five different system architectures are proposed for the in-car radio
navigation system. How do these system architectures compare with respect to
the different end-to-end delay requirements of the three use-cases?

2.7. Case Study 35

We build the performance model for the Change Volume & TMC Message
Handling situation (depicted in Figure 15), as well as the performance
model for the Address Lookup & TMC Message Handling situation. For
both models, we compute the upper bounds to the end-to-end delay
of every event stream as described in the last section, and we take the
end-to-end delays obtained from the two analysis runs (for the TMC
delay, we take the maximum value of the two runs). From the results
presented in Figure 16, we see that all proposed system architectures
fulfill the requirements on the different maximum end-to-end delays that
are specified in the sequence diagrams in Figures 11, 12 and 13. The results
also suggest that architectures (D) and (E) process the input data to the
system particularly fast. This may be explained partly by the reduced
communication overhead in these architectures, but most probably, these
architectures are also over-dimensioned.

0

10

20

30

40

50

0

10

20

30

0

20

40

60

80

0

150

300

450

A EDCBA EDCB A EDCB

A EDCB A EDCB

Change Volume K2V Delay Change Volume A2V Delay

TMC Handling DelayAddress Lookup Delay

D
el

ay
 [m

s]
D

el
ay

 [m
s]

Fig. 16: Maximum end-to-end delays for the five system architectures in Figure 14.

Prob. 2: Suppose that the in-car radio navigation system is implemented using archi-
tecture (A). How robust is this architecture? Where is the bottleneck of this
architecture?

To investigate the robustness of architecture (A), we first compute its
sensitivity towards changes in the input data rates. These sensitivity
results are shown in Figure 17. The height of the columns in this figure
depict the increase of end-to-end delays relative to the respective specified
maximum end-to-end delays, in dependence to increasing input data

36 Chapter 2. Modular Performance Analysis with Real-Time Calculus

rates. For example, the tallest column in Figure 17 shows us that if
we increase the data rate of the Change Volume scenario slightly (i. e. by
3 %, to 33.3 events/s), the end-to-end delay of the TMC message handling
increases by 1.14 % of its specified maximum end-to-end delay (i. e. 1.14 %
of 1000 ms or 11.4 ms).

0

0.2

0.4

0.6

0.8

1

1.2

Change Volume

Vol K2V

Vol A2V

Addr

TMC

[%]

Address Lookup Receive TMC

Fig. 17: Sensitivity of the end-to-end delays in architecture (A) towards changes in the
input data rates.

From the results shown in Figure 17, we see that architecture (A) is
very sensitive towards increasing the input data rate of the Change Volume
scenario, while increasing the input data rate of the Address Look-up and
the TMC Message Handling scenarios do not affect the response times at the
specific design point. And in fact, further analysis reveals that in order to
guarantee all system requirements, we must not increase the input data
rate of the Change Volume scenario by more than 7 %, while we could
increase the input data rate of the other two scenarios by a factor of more
than 20.

After investigating the system sensitivity towards changes in the input
data rates, we investigate the system sensitivity towards changes in the
resource capacities. These sensitivity results are shown in Figure 18. The
height of the columns in this figure depicts the increase of end-to-end
delays relative to the respective specified maximum end-to-end delays,
in dependence to decreasing resource capacities. For example, from the

2.7. Case Study 37

tallest column in Figure 18 we know that if we decrease capacity of the
MMI processor by 1 % (i. e. to 21.78 MIPS), the end-to-end delay of the
TMC message handling increases by 3.22 % of its specified maximum
end-to-end delay (i. e. 3.22 % of 1000 ms or 32.2 ms).

0

0.5

1

1.5

2

2.5

3

3.5

NAV RADIO MMI BUS

[%]

Vol K2V

Vol A2V

Addr

TMC

Fig. 18: Sensitivity of the end-to-end delays in architecture (A) towards changes in the
resource capacities

From the results shown in Figure 18, we see that architecture (A) is
most sensitive towards the capacity of the MMI processor. This suggests
that the MMI processor is a potential bottleneck of architecture (A). To
investigate this further, we compute the end-to-end delay of the TMC
Message Handling for different MMI processor capacities. The results of
these computations are shown in Figure 19.

From Figure 19, we see that indeed at its given operation point, the
end-to-end delay of the TMC Message Handling in architecture (A) is very
sensitive towards changes of the MMI processor capacity. And the anal-
ysis reveals that with a decrease of the MMI processor capacity to 89 % of
its initial capacity, we cannot guarantee finite response times anymore.

To sum up, the above analysis results suggest that increasing the ca-
pacity of the MMI processor would make architecture (A) more robust. To
support this statement, we individually increase the capacity of each re-
source by 20 %, and we then analyze how much we can increase the input
data rate of the Change Volume scenario while still fulfilling the require-

38 Chapter 2. Modular Performance Analysis with Real-Time Calculus

0.9 1 1.1 1.2 1.3 1.4 1.5
0

200

400

600

800

Relative MMI Processor Speed

TM
C

 D
el

ay
 [m

s]

+20%

Fig. 19: End-to-end delay of the TMC Message Handling as a function of the relative MMI
processor speed in architecture (A).

ments. Remember, with the initial resource capacities, we can increase
the data rate of the Change Volume scenario by 7 % and the data rate of the
other two scenarios by a factor of more than 20 while still guaranteeing all
requirements. From this analysis, we learn that increasing the resource
capacities of the RAD processor, the NAV processor and the BUS does
not allow to increase the input date rate of the Change Volume scenario
more than with the initial capacities, while increasing the MMI processor
capacity allows us to increase the data rate of the Change Volume scenario
by 60 %.

Prob. 3: Suppose system architecture (D) is chosen for further investigation. The results
of Problem 1 indicate, that architecture (D) is probably over-dimensioned. How
should the two processors in this system architecture be dimensioned, to obtain
an economic system that still fulfills the end-to-end delay requirements of all
scenarios?

We compute the upper bound to the end-to-end delay of every event
stream in architecture (D) for different processor capacities. The results
are shown in Figure 20.

In the plots in Figure 20, the NAV processor capacity is varied in steps
of 5 % from 100 % down to 10 % of its initial capacity. At the same time,
the MMI/RAD processor capacity is varied in steps of 5 % from 100 %
down to 20 % of its initial capacity.

As we see from the plots, the delays of the Change Volume scenario
are not much affected by changes of the NAV processor capacity and

2.8. Related Work 39

0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

100

200

300

400

500

0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

500

1000

1500

0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

10

20

30

40

50

0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

10

20

30

40

50

Rel. N
AV Proc. Speed

Rel. MMI/RAD Proc. Speed

D
el

ay
 [m

s]

Address Lookup Delay TMC Handling Delay

Change Volume K2V Delay Change Volume A2V Delay

Fig. 20: Delays of the various event streams as a function of the processor speeds in
architecture (D).

the delay of the Address Look-up scenario on the other hand is not much
affected by changes of the MMI/RAD processor capacity. On the other
hand, the delay of the TMC Message Handling Scenario is affected by the
changes of both processor capacities. From the results, we learn that we
could decrease both the NAV processor capacity as well as the MMI/RAD
processor capacity down to 25 % of their initial capacity (i. e. 29 MIPS
and 33 MIPS, respectively) while still guaranteeing the fulfillment of all
system requirements.

2.8 Related Work
There is a large body of work devoted to system-level performance anal-
ysis of embedded system architectures. For an extensive overview see for
example [GVNG94], [Gri04] or [TW05] as well as the references therein.

Most methods for system-level performance analysis of embedded
system architectures can broadly be divided into the two main classes of
simulation based methods and formal analysis based methods. Addition-
ally there exist also stochastic analysis methods, see e. g. [FM03], [Leh96]
or [Lin98], which we however will not discuss further in this context.

40 Chapter 2. Modular Performance Analysis with Real-Time Calculus

Currently, the use of simulation based methods for performance es-
timation is the state of the art in industry, and system designers mostly
rely on commercial tool suites such as Cadence’s VCC [VCC], Mentor
Graphics’ Seamless [Sea], ARM’s MaxSim [Max] or Synopsis’ SystemStu-
dio [Sysb]. Besides these commercial tool suites there exist also open
frameworks for simulation based performance estimation such as Sys-
temC [Sysa, GLMS02] or SimpleScalar [Sim].

The main advantage of using simulation based methods is that many
dynamic and complex interaction in a system architecture can be taken
into account. However, in terms of guaranteeing correctness, simulation
based approaches typically suffer from insufficient corner case cover-
age, because any concrete simulation-run can in general not guarantee to
cover all corner cases. Hence simulation based methods do not reveal
worst-case bounds on essential system properties like end-to-end delay
of events, throughput, and memory requirement. In addition, they often
suffer from long running times (depending on the accuracy aimed for)
and from high set-up effort for each new architecture and mapping to be
analyzed.

To overcome the latter two disadvantages of strictly simulation based
methods, approaches were proposed that combine simulation and anal-
ysis for performance estimation. In [LRD01] Lahiri et al. combine simu-
lation and analysis by a hybrid trace-based simulation methodology, and
in [KPBT06] Künzli et al. propose a method to combine SystemC based
simulation [BBB+03] with formal analysis based on Real-Time Calculus.
While these mixed methodologies help to shorten simulation run-times,
the problem of insufficient corner case coverage still remains.

To guarantee correctness of performance analysis results, methods
based on formal analysis must be adopted. These methods do not only
guarantee to deliver worst-case (and best-case) results for various system
properties, but they often also exhibit fast analysis run-times. The main
disadvantage of formal analysis based methods is typically their lack to
incorporate complex interactions and state-dependent behavior. Anal-
ysis results are therefore often pessimistic, but this pessimism does not
threaten their correctness.

Analytical performance models for DSP systems and embedded pro-
cessors were proposed in [Aga92] and [FW03]. Here, the computation,
communication, and memory resources of a processor are all described
using simple algebraic equations that do not take into account the dy-
namics of the applications such as variations in resource loads and shared
resources. These methods are therefore lacking in accuracy and the analy-
sis results typically show large deviations from the properties of the final
system implementation.

On the other hand there exists a large body of literature on scheduling

2.8. Related Work 41

of tasks on shared computing resources, see e. g. [But97] and the refer-
ences therein. In particular in the real-time systems domain many results
are available on schedulability analysis and worst-case response time
analysis of individual tasks on single processor systems with various
scheduling policies. Examples are analysis methods for fixed-priority,
rate-monotonic [LL73], deadline monotonic [LW82], or earliest deadline
first scheduling [LL73, BRH90], or for time triggered policies like TDMA
or round-robin.

Several proposals have been made to extend the concepts of classi-
cal scheduling theory to distributed systems. Such extensions must in
particular consider the delays caused by the use of possibly shared com-
munication resources that can typically not be neglected. The analytic
integration of processor and communication infrastructure scheduling is
often referred to as holistic scheduling analysis. But rather than denot-
ing a specific performance analysis method, holistic scheduling analysis
comprises a collection of techniques for scheduling analysis of distributed
embedded systems.

The seminal work of Tindell and Clark [TC94] was the first approach
towards holistic scheduling analysis. Tindell and Clark combine fixed
priority preemptive scheduling on processing resources of a distributed
system with TDMA scheduling on the interconnecting communication
bus. This work was improved in accuracy by Yen et al. [YW95] by taking
into account data dependencies, and by Pop et al. [PEP00] by considering
control dependencies. Later many holistic scheduling analysis techniques
for various other combinations of scheduling and arbitration policies have
been investigated, see e. g. [TBW95], [PEP02], [PEP03] or [GH03] and the
references therein.

In the collection of holistic scheduling analysis techniques, every tech-
nique is tailored towards a particular combination of input event model,
resource sharing policy and communication arbitration. While this per-
mits detailed analysis of the temporal behavior of a specific distributed
system, it has the drawback that a new analysis method must be de-
veloped for every new input event model, communication protocol, re-
source sharing policy and combinations thereof. This circumstance not
only restricts the applicability of holistic scheduling analysis, but the
consequently large heterogeneous collection of different techniques also
makes it difficult to use holistic scheduling analysis in practice. This latter
problem was however largely relaxed by Gonzálex Harbour et al. with
the release of the Modeling and Analysis Suite for Real-Time Applica-
tion (MAST) [GGPD01] that implements and aggregates several holistic
scheduling analysis techniques within an open source tool suite.

A more general approach to extend the concepts of classical schedul-
ing theory to heterogeneous distributed systems was presented by Richter

42 Chapter 2. Modular Performance Analysis with Real-Time Calculus

et al. in [RE02], [RZJE02] and [RJE03]. In contrast to the holistic scheduling
analysis that attempts to extend classical scheduling analysis to special
classes of distributed systems, Richter et al. propose a compositional per-
formance analysis methodology with the main goal to directly exploit the
successful results of classical scheduling theory, in particular for sharing
a single processor or a single communication link.

In this compositional approach, every single processor or communi-
cation link of a distributed system is analyzed locally. To interconnect the
various components, the method relies on a set of standard event arrival
patterns. Based on the arrival patterns of the incoming event streams
and on the scheduling policy of the component, the appropriate classical
analysis technique is chosen individually for every single processor or
communication link to compute the worst-case and best-case response
time of every event stream at the component as well as to compute the
arrival patterns of the outgoing event streams that will trigger succeeding
components. The local analysis results are then combined to obtain global
end-to-end delays and buffer requirements.

The approach is however only feasible if the arrival patterns of the
incoming event streams at a component fit the basic models for which
results on computing bounds on the response times are available. To
overcome this limitation, Richter et al. define two types of interfaces that
may be placed between components. Event Model Interfaces (EMIF) per-
form a type conversion between certain arrival patterns, i. e. they change
the mathematical representation of event streams. Event Adaption Func-
tions (EAF) on the other hand must be used whenever there exists on
EMIF. In this case, the HW implementation of the analyzed system must
be changed in order to make the system analyzable, e. g. by adding play-
out buffers between components.

Many extensions have been worked out for the compositional ap-
proach described above, leading to a powerful framework for system-
level performance analysis that was eventually implemented in the
SymTA/S tool suite [JRE04, HHJ+05, Sym]. Nevertheless, the approach
also has some inherent drawbacks. First of all, the compositional ap-
proach is bound to a limited set of classical arrival patterns that is often
not sufficient to represent event streams with complex timing behaviors.
These must be represented in one of the supported arrival patterns, usu-
ally with loss in accuracy. Furthermore, arrival patterns often need to be
adapted between components, either again with loss in accuracy (EMIF),
or even with enforcing a change in the system HW implementation (EAF).
Furthermore, the approach is not compositional in terms of the resources,
as their service is not modeled explicitly. For example, if several schedul-
ing policies need to be combined in one resource (hierarchical scheduling),
then for each new combination an appropriate analysis method must be

2.9. Discussion 43

developed. In this way, the approach suffers from similar problems as the
holistic methods described earlier.

The results obtained with the formal analysis based methods described
so far, including the MPA framework, are in general hard upper bounds
to the worst-case result and hard lower bounds to the best-case result of
the various analyzed properties of a system. In contrast to these methods,
Timed Automata based performance analysis is capable to compute the
exact worst-case and best-case of various properties of a system. Timed
Automata were first proposed by Alur et al. in [AD94], and in [EWY99]
Ericsson et al. showed that timed automata can be used as task models
for event-driven systems and that the schedulability problem in such a
model can be transformed to a reachability problem for timed automata
and is thus decidable. Timed Automata based schedulability analysis is
implemented in the TIMES tool [AFM+02, Tim], that is however limited
to the schedulability analysis of single processor systems.

But it is also possible to model complex component behaviors in dis-
tributed systems in any level of detail using Timed Automata, these mod-
els can then be analyzed for example using the UPPAAL tool environment
[BDL, Upp]. However, the limitation to synchronous communication in
Timed Automata, but also the existence of different event types in the
modeled system requires in general to explicitly model all buffers in a
stream based multi-processor application with asynchronous communi-
cation. But since a single buffer of size b that may hold events of e different
types, already requires e(b+1)−1 states in an Timed Automata model, anal-
ysis of a distributed system with explicitly modeled buffers will quickly
lead to state-space explosion, turning the analysis effort to be prohibitive.

This problem was addressed by Hendriks and Verhoef in [HV06],
where they propose a Timed Automata based approach to performance
analysis where buffers between components are modeled with global
variables if they do not hold events of different event types. But, while
this technique defers the problem of state-space explosion, it does not
dispose of it. And even though the size of the Timed Automata model
of a distributed system is often drastically reduced with this approach,
model checking times are typically still by several orders of magnitude
longer than with any of the previously described formal analysis based
methods.

2.9 Discussion
The framework of Modular Performance Analysis is tailored towards per-
formance analysis of distributed real-time systems, where independent
applications share a common execution platform to process event streams.

44 Chapter 2. Modular Performance Analysis with Real-Time Calculus

In such systems, the framework can be used to compute hard upper and
lower bounds on maximum end-to-end delays and buffer requirements,
but also other performance criteria such as individual resource utiliza-
tions may be analyzed. The obtained analysis results are deterministic
and provide hard upper and lower bounds for any analyzed quantity.
This enables the framework to be used for the analysis of hard-real time
systems. However, as a consequence it is not possible to obtain average
case results for any performance criteria in a system.

In contrast to most formal analysis based methods that were discussed
in the last section the MPA framework follows a completely different ap-
proach to performance analysis, which relies neither on any standard
event arrival patterns nor on the results of classical scheduling analysis.
The followed approach leads to a high degree of generality and modular-
ity. The key enabling factor for this generality and modularity within the
MPA framework, and for the easy analyzability of system performance
models, is the consequent representation of all time-varying quantities
(event streams and resources) in the time interval domain. This abstrac-
tion from the time domain to the time interval domain does however also
not come for free. In particular, it is for example difficult to accurately
exploit implicit timing correlations between event arrivals on different
event streams within the MPA framework.

3
Abstract Components

The central building blocks of a system performance model are the
abstract components, that model the application tasks and dedicated
HW/SW components of an embedded system. In a concrete system,
application tasks and dedicated HW/SW components have ingoing event
streams as input and generate outgoing event streams on their output.
The characteristics of the outgoing event streams are thereby determined
by the characteristics of the ingoing event streams and the processing
semantics of the component, and depend sometimes also on the compu-
tation or communication services that are available to the component. In
the system performance model on the other hand, event streams are mod-
eled as arrival curves, and service availabilities as service curves, and an
abstract component therefore relates ingoing arrival and service curves
on its input to outgoing arrival and service curves on its output. The
internal relations of the abstract component are thereby determined by
the processing semantics of the modeled concrete component, such that
the outgoing arrival curves correctly model the outgoing event streams
in the concrete system, and that possible outgoing service curves cor-
rectly model the remaining computation or communication services in
the concrete system.

The previous chapter introduced an abstract component with its inter-
nal relations, that models what we call a greedy processing component,
and that is used for example to model tasks for preemptive fixed priority
scheduling. Greedy processing components are very common in the area
of real-time embedded systems, and large parts of a system can often be
modeled with these components. However, more complex embedded

46 Chapter 3. Abstract Components

system may also contain components with different processing seman-
tics. To model these components for performance analysis within the
MPA framework, new abstract components with corresponding internal
relations must be defined.

This chapter introduces three new components with different process-
ing semantics, and establishes the corresponding abstract components for
analysis within the MPA framework, together with the internal relations,
and with methods to determine performance metrics such as experienced
delays and buffer requirements. The next section first introduces an ab-
stract component to model a greedy shaper. Greedy shapers are a special
instance of traffic shapers, and their use within multiprocessor systems
often allows to drastically reduce the total buffer requirements of a sys-
tem. In Section 3.2, two new abstract components are then introduced
that allow to model tasks with multiple inputs, where the task activation
is determined as a boolean function on the events arriving on the various
inputs.

3.1 Greedy Shapers
In the area of broad-band networking, traffic shaping is a well-known
and well-studied technique to regulate connections and to avoid buffer
overflow in network nodes, see e. g. [GSE+98] or [RBGW97]. A traffic
shaper in a network node buffers the data packets of an incoming traffic
stream and delays them such that the output stream conforms to a given
traffic specification. A shaper may ensure for example that the output
stream has limited burstiness, or that packets on the output stream have
a specified minimum inter-arrival time. A greedy shaper is a special
instance of a traffic shaper, that not only ensures an output stream stream
that conforms to a given traffic specification, but that also guarantees that
no packets get delayed any longer than necessary.

By limiting the burstiness of the output stream of a network node,
shapers typically drastically reduce the buffer requirements on subse-
quent network nodes. And in particular if some sort of priority schedul-
ing is used on a network node to share bandwidth among several incom-
ing streams, then a limited burstiness of high-priority streams leads to
better responsiveness of low-priority streams. In addition, under some
circumstances, shaping comes for free from a performance point of view.

Due to these favorable properties, shapers also play an increasingly
important role in the design of real-time embedded systems. Particu-
larly, since modern embedded systems are often implemented as multi-
processor systems with a considerable amount of on-chip traffic. But
despite their growing importance in this area, no methods exist to incor-

3.1. Greedy Shapers 47

porate shapers into a system-level performance analysis. Hence it is until
now not possible to determine the effect of shapers to end-to-end delay
guarantees of buffer requirements in such systems.

Within the framework of Network Calculus [LT01], Le Boudec and
Thiran present methods to analyze the effects of traffic shapers in com-
munication networks. However, in the area of performance analysis
of embedded systems, it is only Richter et al. [RJE03] that introduces
a restricted kind of traffic shaping through the event adaption functions
(EAF). But EAF’s play a crucial role in the fundamental ability of Richter’s
compositional method to analyze systems, and a designer has therefore
only a very limited freedom to place or leave away, or even to parameter-
ize EAF’s.

In this section, we will extend the MPA framework to enable per-
formance analysis of embedded systems with greedy traffic shapers. It
has to be noted here, that in [LT01], Le Boudec and Thiran challenge the
ability of Real-Time Calculus [TCN00] to analyze traffic shapers, and in
[SJNL05], Schiøler et al. even claim that it is not possible to analyze traffic
shapers within the MPA framework.

3.1.1 Embedding Greedy Shapers
In Figure 21(a) a greedy shaper component is depicted that shapes an
ingoing event stream R(t) with a shaping curve σ. After being shaped,
the events are emitted on the component’s output, resulting in a shaped
outgoing event stream R′(t).

(a) (b)

0

2

4

6

8

Δ

GS
0

2

4

6

8

Δ
0

2

4

6

8

Δ

σ

α’(Δ)α(Δ)

0

2

4

6

8

Δ

0

2

4

6

8

t
0

2

4

6

8

t

σ

R’(t)R(t)

σ

Fig. 21: (a) A concrete greedy shaper, shaping a concrete event stream. (b) An abstract
greedy shaper, shaping an abstract event stream.

To enable analysis of systems with greedy shapers within the MPA
framework, we need to introduce a new abstract component that models
a greedy shaper, as depicted in Figure 21(b). Here, an abstract event
stream α(Δ) enters the abstract greedy shaper component to be shaped
with the shaping curve σ. The shaped output is then again an abstract

48 Chapter 3. Abstract Components

event stream α′(Δ). According to (2.5) and analogously to (2.7) and (2.8)
we consequently need to find relations that relate the incoming arrival
curves to the outgoing arrival curves in order to specify such an abstract
greedy shaper component:

α′ = fGS(α, σ) (3.1)

Following, we will first explain the behavior and the implementation
of concrete greedy shapers, and we will then introduce the internal rela-
tions that define an abstract greedy shaper component within the MPA
framework.

3.1.2 Concrete Greedy Shapers
A greedy shaper with a shaping curve σ delays events of an input event
stream, such that the output event stream has σ as an upper arrival curve.
Additionally, a greedy shaper ensures that no events get delayed any
longer than necessary.

Greedy shapers can therefore be used to ensure that an event stream is
upper bounded by an upper arrival curve αu. For this, the event stream R
is input to a greedy shaper with shaping curve σ ≤ αu. The output event
stream R′ of the greedy shaper is then upper bounded by αu.

To analyze the behavior of a greedy shaper, consider a greedy shaper
with shaping curveσ, which is sub-additive and withσ(0) = 0, and assume
that the shaper buffer is empty at time 0, and that it is large enough so
that there is no event loss. In [LT01], Le Boudec and Thiran prove that for
an input event trace R to such a greedy shaper, the output event trace R′
can be computed as:

R′ = R ⊗ σ (3.2)

In practice, a greedy shaper with a shaping curve

σ(Δ) =
⌊
min
∀i
{(bi) + riΔ}

⌋
(3.3)

with σ(0) = 0 can be implemented using a cascade of so-called leaky
bucket greedy shapers. Every leaky bucket greedy shaper is a greedy
shaper with a shaping curve σi(Δ) = �(bi) + riΔ�, and can be implemented
using some sort of leaky bucket with bucket size bi that is filled (instead
of emptied) at a constant rate of ri. If an event arrives at such a leaky
bucket greedy shaper, it can pass the shaper immediately if the fill level
of the bucket is larger or equal 1. Otherwise the event gets delayed until
the bucket got filled enough again. Finally, every event that is sent on the
output of the shaper reduces the bucket fill level by 1.

At such a leaky bucket stage, the first �bi� events of a burst can pass
without any delay. But further events of the burst will be delayed and

3.1. Greedy Shapers 49

can only pass at a rate of ri. If no events arrive for some time, the bucket
will eventually be full again, allowing another burst of �bi� events to pass.

Algorithm 1 shows the pseudo code to implement a leaky bucket
greedy shaper. Initially, the bucket is full and the clock is reset to c = 0.
Then the shaper does a blocking read on its FIFO input buffer. If an
event is available on the FIFO input buffer, it is immediately sent to the
shaper output. But before sending the event, the new bucket fill level
f is computed as the sum of the last computed bucket fill level and the
amount c · r by which the bucket got filled since the last clock reset and
hence the last update of the fill level. The fill level is thereby limited by the
bucket size b. Immediately after sending the event, the bucket fill level is
reduced by 1 and the clock is reset to c = 0. If necessary, the shaper then
waits until the bucket fill level is larger or equal 1 again before doing the
next blocking read on its FIFO input buffer.

Algorithm 1 Leaky bucket greedy shaper with bucket size b and filling
rate r.

Given a clock c ∈ R≥0 that is continuously running and that can be reset
to c = 0.

init
reset c
f = b // bucket fill level

while true do
blocking read of event e on FIFO input buffer
f = min{ f + c · r, b}
send event e
f = f − 1
reset c
wait max{0, 1− f

r }
end while

In Figure 22, a shaping curve is depicted that can be implemented by
a cascade of two leaky buckets. The first leaky bucket has a bucket size
of b1 = 1 and a leaking rate of r1 = 1/4, while the second leaky bucket has
a bucket size of b2 = 2.8 and a leaking rate of r2 = 1/15.

It is also possible to implement greedy shapers with more complex
shaping curves than (3.3). For this, the greedy shaper needs to consider
the history of sent events and compare it against the shaping curve to
determine the next point in time when an event can pass the shaper.
The implementation of such a greedy shaper would typically be more
complex than a simple cascade of leaky bucket greedy shapers, and in

50 Chapter 3. Abstract Components

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

σ

b1

b2

r2

r1

R’(t)R(t)

σ
b1, r1 b2, r2

Fig. 22: A greedy shaper that is implemented by a cascade of two leaky bucket stages
and the resulting total shaping curve.

practice one would therefore often approximate a complex shaping curve
by a shaping curve as defined in (3.3).

In practice, one of the simplest examples of a shaper is the play-out
buffer that is read at a constant rate. Play-out buffers are widely used in
multimedia processing, and can be implemented by a single leaky bucket
greedy shaper.

An interesting property of greedy shapers is that re-shaping does not
increase delay or buffer requirements. That is to say, if an event stream
R(t) that is constrained by the upper arrival curve αu is the input to a pro-
cessing component as depicted in Figure 23, and if a greedy shaper with
shaping curve σ ≥ αu is used to re-shape the output event stream, then the
maximum delay experienced by any event is not increased by adding the
greedy shaper, i. e. dmax,tot = dmax,GP. Moreover, if the greedy shaper with
shaping curve σ ≥ αu and the input buffer to the processing component
access the same shared memory, then the total buffer requirement is also
not increased by adding the greedy shaper, i. e. bmax,tot = bmax,GP. These
properties are sometimes referred to as "greedy shapers come for free",
and Le Boudec and Thiran prove them in [LT01].

3.1.3 Abstract Greedy Shapers

Thm. 1: (Abstract Greedy Shapers) Assume an event stream that is modeled as an
abstract event stream with arrival curves [αu, αl] serves as input to a greedy
shaper with a sub-additive shaping curve σ with σ(0) = 0. Then, the output of
the greedy shaper is an event stream that can be modeled as an abstract event

3.1. Greedy Shapers 51

dmax,tot

dmax,GP

GP
R’(t)

R(t) R’’(t)σ

Fig. 23: Cascade of a processing component and a greedy shaper that re-shapes the
output event stream.

stream with arrival curves

αu′
GS = α

u ⊗ σ (3.4)

αl′
GS = α

l ⊗ (σ
σ) (3.5)

Further, the maximum delay and the maximum backlog at the greedy shaper are
bounded by

dmax,GS = Del(αu, σ) (3.6)
bmax,GS = Bu f (αu, σ) (3.7)

Proof. To prove (3.4) we use the fact that R
 R is the minimum upper
arrival curve of a cumulative function R, and we use the properties

(f
 g)
 h = f
 (g ⊗ h)
(f ⊗ g)
 g ≤ f ⊗ (g
 g)

that are proven in [LT01]. We can then compute

R′
 R′ = (R ⊗ σ)
 (R ⊗ σ)
= ((R ⊗ σ)
 R)
 σ
= ((σ ⊗ R)
 R)
 σ
≤ (σ ⊗ (R
 R))
 σ
≤ (σ ⊗ αu)
 σ
= (αu ⊗ σ)
 σ
= αu ⊗ σ

To prove (3.5) we use the fact that R
R is the maximum lower arrival
curve of a cumulative function R, and we use the property

(f ⊗ g)
(h ⊗ j) ≥ (f
h) ⊗ (g
 j)

52 Chapter 3. Abstract Components

that we prove in Appendix A.3. We can then compute

R′
R′ = (R ⊗ σ)
(R ⊗ σ)
≥ (R
R) ⊗ (σ
σ)
≥ αl ⊗ (σ
σ)

To prove (3.6), we compute

d(t) = inf{τ ≥ 0 : R(t) ≤ R′(t + τ)}
= inf{τ ≥ 0 : 0 ≤ inf

0≤u≤t+τ
{σ(t + τ − u) + R(u) − R(t)}}

≤ inf{τ ≥ 0 : 0 ≤ inf
0≤u≤t

{σ(t − u + τ) − αu(t − u)}}
≤ inf{τ ≥ 0 : 0 ≤ inf

0≤v
{σ(v + τ) − αu(v)}}

= inf{τ ≥ 0 : sup
0≤v
{αu(v) − σ(v + τ)} ≤ 0}

= sup
0≤Δ

{inf{τ ≥ 0 : αu(Δ) ≤ σ(Δ + τ)}}

To prove (3.7), we compute

b(t) = R(t) − R′(t) = R(t) − (σ ⊗ R)(t)
= R(t) − inf

0≤u≤t
{σ(t − u) + R(u)}

= R(t) + sup
0≤u≤t

{−σ(t − u) − R(u)}
= sup

0≤u≤t
{R(t) − R(u) − σ(t − u)}

≤ sup
0≤u≤t

{αu(t − u) − σ(t − u)}
= sup

0≤v≤t
{αu(v) − σ(v)} ≤ sup

0≤Δ
{αu(Δ) − σ(Δ)}

�

Relations (3.4) and (3.5) can now be used as internal relations of an
abstract greedy shaper, and (3.6) and (3.7) can be used to analyze delay
guarantees and buffer requirements of greedy shapers in a performance
model.

3.1.4 Applications and Experimental Results
In the domain of embedded systems, we may identify two main applica-
tion areas for traffic shaping. First, shapers may be used system-internally,
to re-shape internal traffic streams to reduce global buffer requirements
and end-to-end delays, and secondly, shapers may be added at the bound-
aries of a system, to ensure conformant input streams and to thereby

3.1. Greedy Shapers 53

Shared
BUS

CNI1

(b)

CPU1

TR1 σ1
R1’ R1’’R1

CNI2
CPU2

TR2 σ2
R2’ R2’’R2

CNI3

CNI4

R1’’’

R2’’’

CPU1

TR1
R1’’R1 σ1

TR2
R2’’R2 σ2

TR3
R3’’R3 σ3

R1’

R2’

R3’

MPSoC

(a)

Fig. 24: (a) A system architecture with internal re-shaping to reduce global buffer re-
quirements. (b) A system architecture with external input-shaping to prevent
internal buffer overflows.

prevent internal buffer overflows caused by malicious input. Figure 24
shows two example systems from both of these two application areas.

Following, we analyze these two systems, and we discuss an addi-
tional application of greedy shapers. The analysis results will clearly
reveal the positive influence of greedy shapers to a system’s performance
and buffer requirements when applied internally, or to a system’s robust-
ness when applied externally.

3.1.4.1 Internal Shaping for System Improvement

Consider a distributed real-time system with 2 CPU’s that communicate
via a shared bus, as depicted in Figure 24 (a). CPU1 and CPU2 both
process an incoming event stream R1 and R2, and send the resulting event
streams R′′

1 and R′′
2 via the shared bus to other components. The shared

bus implements a fixed-priority protocol, where sending the events from
CPU1 has priority over sending the events from CPU2. Events that are
ready to be sent get buffered in the communication network interfaces
CNI1 and CNI2 that connect CPU1 and CPU2 with the shared bus.

In this system, R′′
1 may differ considerably from R1. For example R′′

1
may be bursty even when R1 is a strictly periodic event stream. This
may happen for example, if besides TR1, other tasks are executed on CPU1

using a TDMA scheduling policy. Or also if FP scheduling is used and TR1

has a low priority. In both cases, the processor may not be available to TR1

during some time interval in which all arriving events of R1 get buffered,

54 Chapter 3. Abstract Components

and it may be fully available to TR1 during a later time interval in which
all the buffered events will be processed and emitted, leading to a burst
on R′′

1 . Now suppose that event stream R′′
1 is bursty. Whenever a burst of

events arrive on R′′
1 , the shared bus gets fully occupied until all buffered

events of R′′
1 are sent. During this period, event stream R′′2 will receive

no service, and R′′
2 will experience a delay caused by the burstiness of R′′

1 .
Moreover, also the buffer demand in CNI2 will increase with increasing
burstiness of R′′

1 .
In this system, it may be an interesting option to place a greedy shaper

at the output of CPU1, that shapes event stream R′
1. This greedy shaper

will limit the burstiness of R′′1 , and will therefore reduce the influence of
CPU1 and R1 to the delay of R′

2 and the buffer requirements of CNI2.
To investigate the effect of adding greedy shapers to the system with

internal re-shaping in Figure 24(a), we analyze it with the MPA frame-
work, using the abstract greedy shaper component that we introduced in
the last section.

We assume that R1 and R2 are both strictly periodic with a period
p = 1ms. Further we model both CPU’s as bounded delay resources: the
CPU may not be available to process the tasks TSi for up to 5ms. But after
this period of at most 5ms, the processor is fully available and can process
5 events per ms (βu

CPU1 = β
u
CPU2 = 5Δ[e/ms], βl

CPU1 = β
l
CPU2 = max{0,Δ −

5}[e/ms]). The bus can send 2.5 events per ms (βu
BUS = β

l
BUS = 2.5Δ[e/ms]).

With this specification, we analyze the four different system designs
that are depicted in Figure 25. First, we analyze the system without
greedy shapers (Figure 25 (a)), secondly, we place a greedy shaper only
at the output of CPU1 to shape R′

1 (Figure 25 (b)), then, we place a greedy
shaper only at the output of CPU2 to shape R′

2 (Figure 25 (c)), and finally
we will add two greedy shapers to shape both R′

1 as well as R′
2 (Figure 25

(d)). We use the upper arrival curves αu
R1 and αu

R2 as shaping curves σ1 and
σ2, respectively, and we assume that the buffers of the greedy shapers and
the corresponding processing tasks access the same memory. Using the
four depicted performance models, we analyze the maximum required
buffer spaces of the different buffers, as well as the end-to-end delays of
both event streams R1 and R2.

From the results that are shown in Table 1, we learn that placing greedy
shapers helps to reduce the total buffer requirements from 25 down to 14
events that need to be buffered at most. Moreover, the greedy buffers
also reduce the end-to-end delay of both event streams, namely by 7.4%
for R1, and by a total of 40% for R2. We also recognize the well-known
property of greedy shapers that re-shaping is for free [LT01]. Since we
use σ1 = αu

S1 and σ2 = αu
S2, the greedy shapers effectively only re-shape R1

1
and R2

2, and therefore the buffer requirements of CPU1 and CPU2 are not
affected by adding the greedy shapers.

3.1. Greedy Shapers 55

CNI1

GP

βCPU1

α1’
GS GP

α1’’ α1’’’α1

βBUS

σ1

(d)

CPU1

CNI2

GP

βCPU2

α2’
GS GP

α2’’ α2’’’α2

σ2

CPU2

CNI1

GP

βCPU1

GP
α1’’ α1’’’α1

βBUS

(c)

CPU1

CNI2

GP

βCPU2

α2’
GS GP

α2’’ α2’’’α2

σ2

CPU2

CNI1

GP

βCPU1

α1’
GS GP

α1’’ α1’’’α1

βBUS

σ1

(b)

CPU1

CNI2

GP

βCPU2

GP
α2’’ α2’’’α2

CPU2

CNI1

GP

βCPU1

GP
α1’’ α1’’’α1

βBUS

(a)

CPU1

CNI2

GP

βCPU2

GP
α2’’ α2’’’α2

CPU2

Fig. 25: Performance models of the four system architecture scenarios with internal re-
shaping.

scenario buffer delay
CPU1 CPU2 CNI1 CNI2 Tot S1 S2

(a) 6 6 4 9 25 5.4 9
(b) 6 6 1 6 19 5 5.8
Δ% - - −75% −33% −24% −7.4% −36%
(c) 6 6 4 4 20 5.4 8.6
Δ% - - - −56% −20% - −4.4%
(d) 6 6 1 1 14 5 5.4
Δ% - - −75% −89% −44% −7.4% −40%

Tab. 1: Total buffer requirements and end-to-end delays of the four system architecture
scenarios depicted in Figure 25.

56 Chapter 3. Abstract Components

3.1.4.2 Input-Shaping for Separation of Concerns

Typical large embedded systems often process several event streams in
parallel. To achieve separation of concerns in such systems, they are often
implemented using time-triggered scheduling policies, or servers. While
these scheduling policies help to decouple the influence of the various
event streams to each other, they often do not use the available resources
efficiently. On the other hand, powerful methods were developed to an-
alyze systems with event-triggered scheduling policies, such as RM or
EDF. In these systems, resources are used efficiently, but on the down-
side, the various event streams may heavily influence each other. Slight
changes in the timing behavior of a high-priority stream may increase the
total delay of a lower-priority stream considerably, possibly leading to a
missed deadline, or to buffer overflows somewhere in the system.

To overcome this problem, greedy shapers may be placed at the input
to such systems. Every incoming event stream Ri gets shaped with an
individual shaping curve σi that corresponds to its design-time timing
specification. The system can then be analyzed using the design-time
timing specifications, and at run-time, non-adherence of Ri to its timing
specification will have no influence to the delay of any other event streams,
but will at most increase the total delay of Ri itself. And moreover, no
buffers will overflow inside the system. Instead, only the buffers of
the greedy shapers themselves may overflow. But since these buffers
are clearly localized at the boundary of the system, individual handling
policies can easily be implemented.

Lets assume a real-time system as shown in Figure 24 (b). Here, a
single CPU processes three event streams with a fixed-priority scheduling
policy. The high-priority stream R1 is strictly periodic with p1 = 5ms, the
medium-priority stream R2 is strictly periodic with p2 = 10ms, and the
low-priority stream R3 is strictly periodic with p3 = 20ms. The CPU
processes 0.35 events per ms. To illustrate the influence of greedy shapers
at the input of such a system, we add a jitter of j1 = 0.1ms to stream
R1, and we then analyze the effect of this to the end-to-end delays of the
three event streams, both without (Fig 26 (a)) and with (Fig 26 (b)) greedy
shapers.

Without Shaping (a) With Shaping (b)
d1 d2 d3 d1 d2 d3

j1 = 0 2.86 8.57 20 2.86 8.57 20
j1 = 0.1 2.86 8.57 28.57 2.96 8.57 20
Δ% 0 0 +43% +3.5% 0 0

Tab. 2: End-to-end delays of the two system architecture scenarios depicted in Figure 26.

3.1. Greedy Shapers 57

α1 GS GP
α1’ α1’’

βCPUσ1

α2 GS GP
α2’ α2’’

σ2

α3 GS GP
α3’ α3’’

σ3

α1 GP
α1’’

βCPU

α2 GP
α2’’

α3 GP
α3’’

(a) (b)

Fig. 26: Performance models of the two system architecture scenarios without (a) and
with (b) external input shaping.

Looking at the results in Table 2, we clearly see the big influence of
the little non-adherence of R1 to the maximum delay of the completely
independent stream R3, if no input shaping is applied. On the other
hand, we observe that input shaping effectively isolates the influence of
the malicious input stream R1 to the other present event streams. Now,
only R1 is affected from its own malbehavior.

3.1.4.3 Input Shaping for NRT Event Streams in Real-Time Systems

Inspired from the application of greedy shapers for input shaping for
separation of concerns, one could also use greedy shapers to shape non-
real-time event streams as depicted in Figure 27. Here, the non-real-time
event streams are processed with the highest priority, guaranteeing a good
reactivity and typically short delays, and the greedy shaper guarantees
that the load created by the non-real-time events is limited such that the
real-time event-streams remain schedulable.

In such an application, the greedy shaper is an alternative to typical
server implementations such as the periodic [SLR86] or the deferrable
server [SLS95], and in a certain respect the greedy shaper also behaves
like a server. The advantage of the greedy shaper however is its flexibility
through the parameterizable shaping curve σNRT. With an appropriate
shaping curve, a shaper can for example guarantee a reactive periodic
service such as the deferrable server, but additionally it may also allow a
burst of service from time to time. Moreover, a greedy shaper is typically
easy to implement.

The main question that then arises in an application as depicted Fig-
ure 27 is how to dimension the greedy shaper. That is, how to choose

58 Chapter 3. Abstract Components

αNRT GS GP
αNRT’ αNRT’’

βCPUσNRT

αRT, dRT GP
αRT’’

(a) (b)

CPU1

TNRT
RNRT’’RNRT σ1

TRT
R2’’RRT, dRT

Fig. 27: System model (a) and performance model (b) with input shaping for NRT-traffic.

σNRT such as to provide the maximum possible service to the non-real-
time events without jeopardizing the schedulability of the real-time event
streams. In Chapter 5 we will introduce the theory of Real-Time Interfaces
that provides methods to find the maximum allowable shaping curve
σNRT. With Real-Time Interfaces, the maximum allowable non-real-time
input load to the system in Figure 27 can be computed as

αu
NRT,max = RT−α(αu

RT(Δ − dRT), βl
CPU) (3.8)

with

RT−α(β′, β)(Δ) = β(Δ + λ) − β′(Δ + λ)
for λ = sup

{
τ : β′(Δ + τ) = β′(Δ)

}
(3.9)

where αu
RT models the maximum real-time input load, dRT denotes the

relative deadline of the real-time events, and βl
CPU models the minimum

available service from the CPU. The greedy shaper must then only enforce
that the load on its output is limited by αu

NRT,max which is easily achieved
by setting the shaping curve equal to this upper bound. And without any
loss, the shaping curve can even be ensured to be sub-additive by setting
it equal to the sub-additive closure of this upper bound:

σNRT = α
u
NRT,max (3.10)

The methods presented in Chapter 5 also allow to compute σNRT for
systems with more than one real-time event stream, and even for more
complex systems with mixed and hierarchical scheduling.

As an example consider a system similar to the one depicted in Fig-
ure 27, but with three real-time event streams with decreasing priorities:
RRT,1 has a period of 100ms, a jitter of 40ms and an execution demand of
25ms, RRT,2 has a period of 200ms, a jitter of 150ms and also an execution
demand of 25ms and RRT,3 has a period of 500ms and an execution demand

3.2. Components with Multiple Inputs 59

of 100ms. The relative deadlines of all real-time event streams equal their
periods. To compute the shaping curve σNRT for the non-real-time event
streams in this system, we use the methods presented in Chapter 5 and
(3.10). From the result depicted in Figure 28, we learn that within this
system, any non-real-time event streams that are upper bounded by σNRT

will be served immediately with the highest priority, i. e. they will not be
delayed by the input shaper, while events that contravene to this upper
bound will be delayed by the input shaper to ensure schedulability of the
real-time streams.

0 500 1000 1500 2000
0

100

200

300

400

500

600

Δ [ms]

Ex
ec

u
ti

o
n

 T
im

e
[m

s]

Fig. 28: Input shaping curve σNRT for the NRT-traffic in the example system.

3.2 Components with Multiple Inputs
In realistic embedded systems, the flow of data between components is
typically not limited to one-to-one connections, but instead a component
activation often depends on events arriving from multiple other compo-
nents, and reciprocally a single component often sends its output events
to multiple connected components.

The case of a one-to-many connection is typically straight-forward to
model, as the event stream at the output of a component only has to be
copied to the inputs of all the connected components. Within the MPA

60 Chapter 3. Abstract Components

framework this is achieved directly by using the same output arrival
curve of a single abstract component as input to all connected abstract
components.

Many-to-one connections on the other hand are in general more com-
plex to implement. In particular, since the activation of a component with
a many-to-one input connection is in general determined as a boolean
function of the events on the various input event streams. Thus, analysis
of many-to-one connections is typically more involved, and in this sec-
tion we will extend the MPA framework to enable performance analysis
of embedded systems with many-to-one connections. We will however
restrict ourselves to boolean functions without negation, that is acceptable
boolean operators are OR and AND, as well as combinations of these.

In [JE03], Jersak et al. present first results to analyze tasks with OR-
and AND-activation within their compositional framework [RJE03]. The
results in [JE03] are however partially incorrect, and corrected results
are presented and discussed in detail in [Jer05]. Jersak et al. propose to
embed many-to-one connections within their compositional framework
by first determining the activation pattern that results from the boolean
function on the various input event streams of a component with multiple
inputs. This activation pattern is then used as the sole input to the compo-
nent. We will follow the same strategy to embed analysis of many-to-one
connections into the MPA framework. And while the results for OR-
activations presented in this section equal the results presented in [Jer05],
we will present a tighter analysis for AND-activations. Moreover, within
the compositional framework of Jersak et al. [RJE03], the input activation
pattern resulting from the boolean function must again be represented by
the limited set of classical arrival patterns. Therefore, analysis of many-
to-one connections within the MPA framework leads typically not only
to tighter results for AND-activations, but also for OR-activations.

3.2.1 Embedding Components with Multiple Inputs
To flexibly embed analysis of many-to-one connections into the MPA
framework, we will separate the analysis of components with multiple
inputs into two steps. In a first step, the combined event stream that
results from the boolean function on the various input event streams is
determined. In a second step, this event stream serves then as single
input to the component that is ordinarily analyzed. This modular strat-
egy allows to add multiple inputs to components with any processing
semantics for which analysis methods exist. To determine the combined
event stream that results from the boolean function on multiple input
event streams, we will introduce boolean connector components that can
be combined to any boolean function without negation.

3.2. Components with Multiple Inputs 61

In Figure 29(a) an OR-connector component is depicted that com-
bines two ingoing event streams R1(t) and R2(t) into a single combined
event stream ROR(t), using a boolean OR operator on the incoming events.
Within the MPA framework, we model such an OR-connector as a new
abstract component as depicted in Figure 29(b). Here, two abstract event
streams α1(Δ) and α2(Δ) enter the abstract OR-connector component, and
the combined output is again an abstract event stream αOR(Δ).

(a) (b)

OR
0

2

4

6

8

Δ
α1(Δ)

0

2

4

6

8

Δ
αOR(Δ)

0

2

4

6

8

t

ROR(t)

0

2

4

6

8

t

R1(t)

0

2

4

6

8

Δ
α2(Δ)

OR

0

2

4

6

8

t

R2(t)

Fig. 29: (a) A concrete OR-connector, combining two concrete event streams. (b) An
abstract OR-connector, combining two abstract event streams.

In Figure 30(a) on the other hand, an AND-connector component is
depicted that combines two ingoing event streams R1(t) and R2(t) into
a single combined event stream RAND(t), using a boolean AND operator
on the incoming events. Compared to the OR-connector depicted in
Figure 29(a), the implementation of an AND-connector requires internal
buffers, since events arriving on one input event stream must be buffered
until partner events arrive on the other input event stream. Partnering
events immediately pass the AND-connector, and consequently either
of the internal buffers is empty at any point of time. Within the MPA
framework we model such an AND-connector again as a new abstract
component as depicted in Figure 30(b). Here, two abstract event streams
α1(Δ) and α2(Δ) enter the abstract AND-connector component, and the
combined output is again an abstract event stream αAND(Δ).

According to (2.5) and analogously to (2.7) and (2.8) we again need
to find relations that relate the incoming arrival curves to the outgoing
arrival curves in order to specify abstract OR- and AND-connector com-
ponents:

αOR = fOR(α1, α2) (3.11)
αAND = fAND(α1, α2) (3.12)

Following, we will introduce the internal relations that define ab-

62 Chapter 3. Abstract Components

(a) (b)

AND
0

2

4

6

8

Δ
α1(Δ)

0

2

4

6

8

Δ
αAND(Δ)

0

2

4

6

8

t

RAND(t)

0

2

4

6

8

t

R1(t)

0

2

4

6

8

Δ
α2(Δ)

AND

b2

b1

0

2

4

6

8

t

R2(t)

Fig. 30: (a) A concrete AND-connector, combining two concrete event streams. (b) An
abstract AND-connector, combining two abstract event streams.

stract OR-connector components and abstract AND-connector compo-
nents within the MPA framework.

3.2.2 Abstract OR-Connector
Thm. 2: (Abstract OR-Activation) Assume a component that is triggered by OR-

activation of two event streams that are modeled as abstract event streams with
arrival curves [αu

1 , α
l
1] and [αu

2 , α
l
2]. Then, the component activation can be

modeled with the arrival curves

αu
OR = αu

1 + α
u
2 (3.13)

αl
OR = αl

1 + α
l
2 (3.14)

Proof. The differential flow after the OR-activation can be computed as

ROR[s, t) = R1[s, t) + R2[s, t) (3.15)

To obtain (3.13) and (3.14) we compute the upper bound and the lower
bound to (3.15), respectively, using (2.1).

�

3.2.3 Abstract AND-Connector
Lem. 1: The difference between two event streams that are described as cumulative flows

R1(τ) and R2(τ) with R1(0) = R2(0) can be bounded by the following inequality

ηl
12(t − s) ≤ R1(t) − R2(s) ≤ ηu

12(t − s),∀s < t (3.16)

with

ηu
12(Δ) = sup

λ≥0

{
αu

1(λ + Δ) − αl
2(λ)

}
= (αu

1
 αl
2)(Δ) (3.17)

ηl
12(Δ) = inf

λ≥0

{
αl

1(λ + Δ) − αu
2(λ)

}
= (αl

1
αu
2)(Δ) (3.18)

3.2. Components with Multiple Inputs 63

Proof. To prove (3.17), we use (2.1) and we compute

R1(t) − R2(s) = (R1(t) − R1(0)) − (R2(s) − R2(0))
≤ αu

1(λ + Δ) − αl
2(λ)

≤ sup
λ≥0

{
αu

1(λ + Δ) − αl
2(λ)

}

and we analogously prove (3.18), again using (2.1).

�

Note, that the constraint R1(0) = R2(0) can be demanded without loss
of generality. If R1(0) > R2(0), this difference can be expressed by an initial
buffer fill level B0

1 = R1(0) − R2(0) and we can then set R1(0) = R2(0).

Thm. 3: (Abstract AND-Activation) Assume a component that is triggered by AND-
activation of two event streams that are modeled as abstract event streams with
arrival curves [αu

1 , α
l
1] and [αu

2 , α
l
2]. Then, the component activation can be

modeled with the arrival curves

αu
AND = max

{
min

{
αu

1
 αl
2 + B0

1 − B0
2, α

u
2

}
,

min
{
αu

2
 αl
1 + B0

2 − B0
1, α

u
1

}}
(3.19)

αl
AND = max

{
min

{
αl

1
αu
2 + B0

1 − B0
2, α

l
2

}
,

min
{
αl

2
αu
1 + B0

2 − B0
1, α

l
1

}}
(3.20)

, where B0
1 and B0

2 denote the initial buffer fill levels of the two input ports,
with the constraint that min{B0

1,B
0
2} = 0, i. e. one of the buffers must initially be

empty.
Further, the maximum delays due to the AND-activation at the two input

buffers are bounded by

dmax,1 ≤ Del(αu
1 + B0

1, α
l
2 + B0

2) (3.21)

dmax,2 ≤ Del(αu
2 + B0

2, α
l
1 + B0

1) (3.22)

and the maximum backlogs due to the AND-activation at the two input buffers
are bounded by

bmax,1 ≤ max
{
Bu f (αu

1 + B0
1, α

l
2 + B0

2), 0
}

(3.23)

bmax,2 ≤ max
{
Bu f (αu

2 + B0
2, α

l
1 + B0

1), 0
}

(3.24)

using the functions Del and Bu f as defined by (2.11) and (2.12), respectively.

64 Chapter 3. Abstract Components

Proof. Let us first note that the events that are in either of the two input
buffers at time t experience a maximum delay that can be computed as

d1(t) = inf
{
τ ≥ 0 : R1(t) + B0

1 ≤ R2(t + τ) + B0
2

}
(3.25)

d2(t) = inf
{
τ ≥ 0 : R2(t) + B0

2 ≤ R1(t + τ) + B0
1

}
(3.26)

and that the buffer fill levels of the two input buffers at time t can be
computed as

b1(t) = max
{
R1(t) − R2(t) + B0

1 − B0
2, 0

}
(3.27)

b2(t) = max
{
R2(t) − R1(t) + B0

2 − B0
1, 0

}
(3.28)

To prove (3.19) and (3.20), we first compute the differential flow after
the AND-activation

RAND[s, t) = min {R1[s, t) + b1(s),R2[s, t) + b2(s)}
And since we know that min{b1(t), b2(t)} = 0,∀t we can also write

RAND[s, t) = max {min {R1[s, t) + b1(s),R2[s, t)} ,
min {R1[s, t),R2[s, t) + b2(s)}}

and using (3.27) and (3.28) we can rewrite this as

RAND[s, t) = max
{
min

{
R1(t) − R2(s) + B0

1 − B0
2,R2[s, t)

}
,

min
{
R1[s, t),R2(t) − R1(s) + B0

2 − B0
1

}}
(3.29)

To prove (3.19), we now compute the upper bound to (3.29) using
(3.16), (3.17) and (2.1). And analogously, to obtain (3.20) we compute the
lower bound to (3.29) using (3.16), (3.18) and (2.1).

To prove (3.21), we use (3.25) and we compute

d1(t) = inf
{
τ ≥ 0 : R1(t) + B0

1 ≤ R2(t + τ) + B0
2

}
= inf

{
τ ≥ 0 : 0 ≤ R2(t + τ) − R1(t) + B0

2 − B0
1

}
≤ inf

{
τ ≥ 0 : 0 ≤ ηl

21(τ) + B0
2 − B0

1

}
= inf

{
τ ≥ 0 : 0 ≤ inf

λ≥0

{
αl

2(τ + λ) − αu
1(λ)

}
+ B0

2 − B0
1

}

= inf
{
τ ≥ 0 : sup

λ≥0

{
αu

1(λ) − αl
2(τ + λ) + B0

1 − B0
2

}
≤ 0

}

= sup
Δ≥0

{
inf

{
τ ≥ 0 : αu

1(Δ) + B0
1 ≤ αl

2(τ + Δ) + B0
2

}}

3.2. Components with Multiple Inputs 65

and we analogously prove (3.22) using (3.26).
To prove (3.23), we use (3.27) and we compute

b1(t) = max
{
R1(t) − R2(t) + B0

1 − B0
2, 0

}
≤ max

{
ηu

12(0) + B0
1 − B0

2, 0
}

= max
{

sup
λ≥0

{αu
1(λ) − αl

2(λ)} + B0
1 − B0

2, 0
}

= max
{

sup
λ≥0

{αu
1(λ) + B0

1 − αl
2(λ) − B0

2}, 0
}

and we analogously prove (3.24) using (3.28).

�

3.2.4 Experimental Results
Following, we analyze two greedy processing components with multiple
inputs within the MPA framework, one with two OR-connected inputs
and the other with two AND-connected inputs. As a reference, we also
compute the exact results using a timed automata based approach [HV06]
and UPPAAL v3.5.9 [Upp], and we also declare the results that were ob-
tained using SymTA/S v0.8 beta EVAL [Sym] that implements the methods
presented by Jersak [Jer05].

3.2.4.1 Greedy Processing Component with OR-Activation

We consider a system architecture with a single OR-activated task T1 as
depicted in Figure 31(a). We assume that both input streams R1 and R2

are periodic streams with jitter, with p1 = 100ms and j1 = 20ms, and
with p2 = 150ms and j2 = 60ms, respectively. For this system we want
to analyze the total buffer requirement at the input of task T1, as well as
the total end-to-end delay experienced by any of the events of the two
input event streams when processed by task T1. In order to examine the
influence of the OR-activation in more depth, we compute the various
analysis results as a function of the execution time of T1, that we vary in
steps of 5ms from 5ms to 60ms.

To analyze the system architecture depicted in Figure 31(a) with MPA,
we first construct the corresponding performance model as depicted in
Figure 31(b). In this performance model we determine αOR using (3.13)
and (3.14), and we then compute the total buffer requirement and the total
end-to-end delay at task T1 using (2.12) and (2.11), respectively.

From the results that are depicted in Figures 32 and 33, we learn that
the MPA framework is able to determine the exact worst-case results for

66 Chapter 3. Abstract Components

CPU

T1

R1

(a)

OR GP

βCPU

α’
OR

CPU

R2

R’

α1

α2

(b)

Fig. 31: (a) A system architecture with an OR-activated task. (b) Performance model of
the same system architecture.

the total buffer requirement and the total end-to-end delay at the OR-
activated task T1 depicted in Figure 31(a).

5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

Execution Time of T1 [ms]

B
ac

kl
o

g
 [e

ve
n

ts
]

MPA
SymTA/S
Exact Result

Fig. 32: Total buffer requirements at the OR-activated task T1 in Figure 31(a) as a function
of the execution time of task T1.

3.2.4.2 Greedy Processing Component with AND-Activation

To experiment with AND-activation, we consider again a system archi-
tecture with a single task T1 with two inputs, but this time with AND-
activation, as depicted in Figure 34(a). We assume that input stream R1

is periodic with jitter, with p1 = 100ms and j1 = 10ms, while input stream

3.2. Components with Multiple Inputs 67

5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

100

120

140

Execution Time of T1 [ms]

D
el

ay
 [m

s]

MPA
SymTA/S
Exact Result

Fig. 33: Total end-to-end delay experienced by any event at the OR-activated task T1 in
Figure 31(a) as a function of the execution time of task T1.

R2 is periodic with bursts, with p2 = 100ms, j2 = 190ms and d2 = 20ms.
For this system we want again to analyze the total buffer requirement
at the input of task T1, as well as the total end-to-end delay experienced
by any of the events of the two input event streams when processed by
task T1. In order to examine the influence of the AND-activation in more
depth, we again compute the various analysis results as a function of the
execution time of T1, that we vary in steps of 5ms from 5ms to 60ms.

CPU

T1

R1

(a)

AND GP

βCPU

α’
AND

CPU

R2

R’

α1

α2

(b)

Fig. 34: (a) A system architecture with an AND-activated task. (b) Performance model
of the same system architecture.

To analyze the system architecture depicted in Figure 34(a) with MPA,

68 Chapter 3. Abstract Components

we again first construct the corresponding performance model as depicted
in Figure 34(b). In this performance model we determineαAND using (3.19)
and (3.20). To determine the buffer requirement at the input of T1, we
must consider that events may be buffered either at the AND-connection,
waiting for a partner event, or directly at T1, waiting to be processed. The
respective individual buffer requirements can be computed using (3.23),
(3.24) and (2.12). To determine the total buffer requirement at the input
of T1 however, we can exploit the fact that either of the two buffers at the
AND-connection is empty at every point of time, and further we must
consider that for every task activation of T1 waiting to be processed we
must hold two partnering events in the input queue to T1. The total buffer
requirement at the input of T1 can therefore be bounded by

bmax,T1 ≤ max
{
Bu f (αu

1 , α
l
2),Bu f (αu

2 , α
l
1)
}
+ 2Bu f (αu

AND, β
l
CPU) (3.30)

From the results that are depicted in Figure 35, we learn that the total
buffer requirement analysis within the MPA framework is considerably
improved compared to the analysis using SymTA/S. However, we also
learn that the MPA framework is not able to determine the exact total
buffer requirement at an AND-activated task in general.

5 10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

14

16

Execution Time of T1 [ms]

B
u

ff
er

 [e
ve

n
ts

]

MPA
SymTA/S
Exact Result

Fig. 35: Total buffer requirements at the AND-activated task T1 in Figure 34(a) as a
function of the execution time of task T1.

To determine the the maximum end-to-end delay experienced by any

3.3. Discussion 69

of the events of the two input event streams when processed by task
T1, we must again consider that events may experience a delay either at
the AND-connection, or directly at T1. The respective individual delays
can be computed using (3.21), (3.22) and (2.11), and the total end-to-end
delays for the two event streams can then be computed by adding the
corresponding individual delays. However, these results can be further
improved by exploiting the ”Pay Bursts Only Once” phenomenon de-
scribed in Section 2.6.1. This is, because from the point of view of the
abstract event stream α1, the AND-connector behaves similar to a greedy
processing component with a service curve αl

2, but in contrast to a greedy
processing component the AND-connector can ”buffer” its ”service”, and
therefore the maximum delay experienced by any event of the abstract
event stream α1 at an AND-connector is always smaller than the maxi-
mum delay experienced at a greedy processing component with service
curve αl

2. The total end-to-end delay experienced by a cascade of an
AND-connector and a greedy processing component can therefore also
be upper bounded by the end-to-end delay experienced by a cascade of
two greedy processing components where the first has a service of αl

2.
Using (2.13), the maximum total end-to-end delay experienced at T1 can
therefore be bounded by

dmax,R1 ≤ Del(αu
1 , α

l
2 ⊗ βl

CPU) (3.31)

dmax,R2 ≤ Del(αu
2 , α

l
1 ⊗ βl

CPU) (3.32)

From the results that are depicted in Figure 36, we learn that the
total end-to-end analysis within the MPA framework is again improved
compared to the analysis using SymTA/S. The MPA framework is however
in general again not able to determine the exact total end-to-end delays at
an AND-activated task. In particular it has to be noted that both analysis
frameworks, SymTA/S as well as MPA, compute the same total end-to-
end delay for both event streams in this example, even though events on
R2 experience in reality a considerably smaller delay than events on R1.

3.3 Discussion
The three new abstract components that we introduced in this chapter
extend the analysis capabilities of the MPA framework to the domain
of distributed embedded real-time systems that contain greedy shapers
and tasks with multiple inputs. All three components discussed in this
chapter are triggered by event streams on their inputs and generate event
streams on their outputs. The abstract components that model these
components thus contain arrival curve inputs and arrival curve outputs,

70 Chapter 3. Abstract Components

5 10 15 20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

400

450

500

550

Execution Time of T1 [ms]

D
el

ay
 [m

s]

MPA
SymTA/S
Exact Result R1
Exact Result R2

Fig. 36: Total end-to-end delay experienced by any event at the AND-activated task T1

in Figure 34(a) as a function of the execution time of task T1.

and by interconnecting the abstract components via these arrival curves,
they can seamlessly be embedded into a MPA performance model with
other abstract components.

Similarly as shown in this chapter, we could also develop abstract
components for various other components with different processing se-
mantics, thus constantly enlarging the application domain of the MPA
framework. The embedding of such new abstract components into MPA
performance models would thereby typically also be enabled via and
interconnection of arrival curves or service curves.

When we take the idea of embedding abstract components with var-
ious processing semantics into the MPA framework one step further, we
could even think of embedding abstract components that are not specified
by a set of mathematical relations, but that instead use other specification
and analysis methods. Such a component could for example internally be
specified and analyzed by a timed automata or by a SymTA/S model. To
interconnect such an abstract component, we would only need to develop
methods to convert arrival curves into the input event models that are
used by the respective methods, and to convert the output event models
back into arrival curves.

4
Workload Variability

and Correlations

In complex embedded systems the total execution demand of a sequence
of consecutive events is often smaller than the sum of the individual worst-
case execution demands. This phenomenon is most notably observed in
embedded systems for multimedia applications [HKA+01], but it is also
common in many other embedded systems with complex applications.

When we investigate systems that exhibit this phenomenon, we dis-
cover that events arriving on their input streams can often be classified
into different classes. Some streams thereby explicitly contain events of
different types, such as for example an MPEG-2 stream, while on others,
events can be classified for example based on their payload size. Events of
different classes then typically impose different workload to the system,
and in particular they usually have different worst-case and best-case
execution demands. And sometimes, even the execution demand of a
single event class is not fixed, but depends instead on the internal state of
a system, such as for example on its cache state.

Confronted with the problem of performance analysis of such com-
plex embedded systems, we are interested in finding performance bounds
based on the workload imposed by the whole event stream rather than by
individual worst-case events within the stream. However, many perfor-
mance analysis methods have no means to analyze the workload imposed
by a complex event stream on a possibly complex system. To obtain hard
analysis bounds, these methods assume every event to have the largest
possible execution demand any event could have on the system, see
e. g. [LL73]. Effectively, these methods analyze the worst-case situation

72 Chapter 4. Workload Variability and Correlations

where every event is an element of the event class with the largest exe-
cution demand and on the same time every event leads to a cache miss.
While this situation is theoretically possible in some systems, it can often
be excluded in other systems because of known event correlations and
dependencies on the input streams. For the latter systems, classical worst-
case performance analysis leads to overly pessimistic results, and thus to
expensive system designs with considerable performance reserves.

An additional phenomenon is often observed when complex embed-
ded systems are implemented on multiple processors, be it as a distributed
system or as a multi-processor system on chip. On these systems, events
of different classes typically create different workloads on most or all
components, and these workloads are often correlated. For example in
data processing systems, the size of an event’s payload data will typi-
cally determine its execution demand on most or all system components,
leading to highly correlated workloads. Exploiting the knowledge of
these workload correlations often allows to obtain again less pessimistic
performance analysis results.

This chapter introduces models and methods to capture the knowl-
edge of existing event correlations and workload correlations and to ex-
ploit this information for performance analysis with the MPA framework.
The next section provides an introduction and overview to the problem
of workload modeling within the MPA framework. In Section 4.2, a
flexible method to capture event type correlations on event streams is in-
troduced that allows to improve performance analysis results on systems
with event-based workload variability. In Section 4.3 on the other hand,
a powerful but more restricted method is introduced to capture both
event type correlation on event streams, as well as functional workload
dependencies within a component. This allows to improve performance
analysis results on systems with both, event-based as well as functional
workload variability. In Section 4.4, a method to capture and exploit
workload correlations is presented. And in Section 4.5, an efficient algo-
rithm to solve the maximum-weight path problem in a weighted graph is
presented, a problem whose solution plays a crucial role in most methods
presented in this chapter. The chapter concludes with an overview on
related work in Section 4.6, and a discussion in Section 4.7

4.1 Workload Transformations
In Section 2.2.3 we first asserted the need for workload transformations;
because as defined in Chapter 2, arrival curves denote the number of
events that arrive on an event stream in any given time interval, while
service curves denote the resource supply, typically expressed in resource

4.1. Workload Transformations 73

units such as number of processor cycles, that is available within a given
time interval. It is apparent that in order to apply any of the mathematical
relations within the MPA framework, such as for example (2.5) or (2.6),
both, arrival curves and service curves, must be expressed in the same
base unit.

4.1.1 Events and Workloads
To express both, arrival curves and service curves, in the same base unit,
we can either express both in units of events, or we can express both in
units of resources. We therefore distinguish between event-based arrival
and service curves and resource-based arrival and service curves:

Def. 3: (Event-Based Arrival Curves) An event-based arrival curve ᾱ(Δ) =
[ᾱu(Δ), ᾱl(Δ)] models an event stream, where ᾱu(Δ) and ᾱl(Δ) provide an upper
and a lower bound on the number of events that arrive in any time interval Δ,
respectively.

Def. 4: (Event-Based Service Curves) An event-based service curve β̄(Δ) =
[β̄u(Δ), β̄l(Δ)] models a resource, where β̄u(Δ) and β̄l(Δ) provide an upper and a
lower bound on the number of events that can be processed in any time interval
Δ, respectively.

Def. 5: (Resource-Based Arrival Curves) A resource-based arrival curve α(Δ) =
[αu(Δ), αl(Δ)] models an event stream, where αu(Δ) and αl(Δ) provide an upper
and a lower bound on the resource demand imposed by the event stream in any
time interval Δ, respectively.

Def. 6: (Resource-Based Service Curves) A resource-based service curve β(Δ) =
[βu(Δ), βl(Δ)] models a resource, where βu(Δ) and βl(Δ) provide an upper and a
lower bound on the available resource supply in any time intervalΔ, respectively.

Since performance analysis problem specifications typically do not ex-
press arrival curves and service curves in the same base units, we need
workload transformations that relate event-based curves to resource-
based curves and vice versa. In order to retain hard bounded performance
analysis results within the MPA framework, it is thereby important that
these workload transformations are conservative. In the most simple case,
where all events create a constant resource demand d on a component
(i. e. the worst-case demand equals the best-case demand), event-based
curves can simply be multiplied with the resource demand of a single
event, and resource-based curves can be divided by the same number. In

74 Chapter 4. Workload Variability and Correlations

the latter case floor and ceil operators can be applied additionally:

αu(Δ) = αu · d αl(Δ) = αl · d (4.1)

αu(Δ) =
αu/d� αl(Δ) = �αl/d� (4.2)

βu(Δ) = β
u · d βl(Δ) = β

l · d (4.3)

β
u
(Δ) =
βu/d� β

l
(Δ) = �βl/d� (4.4)

In a more general case where various events may create different resource
demands, the workload transformations are not as simple anymore and
we need more powerful methods to capture the relation between the
number of events and the created resource demand in a component.
Workload curves that were first introduced by Maxiaguine et al. [MKT04]
provide the required expressiveness and are presented in the following
section.

4.1.2 Workload Curves
Workload curves are a powerful model to characterize workload vari-
ability on a component, and they can be used to transform event-based
curves into resource-based curves.

Def. 7: (Workload Curves) Let W(u) denote the total resource demand created on a
component by u consecutive events of an incoming event stream. For every
event sequence on the incoming event stream, the lower workload curve γl and
the upper workload curve γu satisfy the relation:

γl(v − u) ≤ W(v) −W(u) ≤ γu(v − u) ,∀u < v (4.5)

To transform resource-based curves into event-based curves on the
other hand, we need to introduce the notion of pseudo-inverse workload
curves.

Def. 8: (Pseudo-Inverse of Workload Curves) The pseudo-inverse of an upper work-
load curve γu is defined by the function

γu−1
(r) = sup

{
e : γu(e) ≤ r

}
(4.6)

, and the pseudo-inverse of a lower workload curve γl is defined by the function

γl−1
(r) = inf

{
e : γl(e) ≥ r

}
(4.7)

4.1. Workload Transformations 75

From these definitions, it follows that any sequence of e consecutive
events, will create a total resource demand of at leastγl(e) and at most γu(e)
on a component. And analogously, any resource supply of r consecutive
units of resources allows to process at most γl−1 (r) and at least γr−1(r)
events on a component. Using workload curves and their pseudo-inverse,
arrival and service curves can therefore be transformed from event-based
to resource-based quantities and vice versa:

αu(Δ) = γu(αu(Δ)) αl(Δ) = γl(αl(Δ)) (4.8)

αu(Δ) = γl−1
(αu(Δ)) αl(Δ) = γu−1(αl(Δ)) (4.9)

βu(Δ) = γu(β
u
(Δ)) βl(Δ) = γl(β

l
(Δ)) (4.10)

β
u
(Δ) = γl−1

(βu(Δ)) β
l
(Δ) = γu−1(βl(Δ)) (4.11)

4.1.3 Embedding Workload Transformations
As already mentioned above, workload transformations must be conser-
vative in order to guarantee to retain hard bounded analysis results within
the MPA framework. Workload curves fulfill this requirement by defi-
nition, and therefore the following relations (and the analogue relations
for resource-based arrival curves and event- as well as resource-based
service curves) hold for all workload curves and their pseudo-inverse:

αu(Δ) ≤ γl−1
(γu(αu(Δ))) (4.12)

αl(Δ) ≥ γu−1(γl(αl(Δ))) (4.13)

From the definition of workload curves and their pseudo-inverse, it
becomes apparent that the farther apart γu(e) and γl(e) are, that is the more
workload variability there exists on a component, the larger will be the
difference between the left and the right sides of (4.12) and (4.13). And in
general, this difference may be substantial, as we will see in Section 4.4.5.
Hence, a double workload transformation (i. e. transforming event based
to resource-based curves and back again to event-based curves, or the
other way around) typically leads to valid but overly pessimistic bounds,
even if all input curves to the double transformation are tight. In contrast
to this, a single workload transformation (i. e. transforming event-based
to resource-based curves or the other way around) leads again to a tight
curve provided that the input curves are tight. Consequently, we should
omit the use of double workload transformations during performance
analysis, whenever possible. The optimal method to embed workload
transformations in the analysis of an abstract component, while com-
pletely omitting double workload transformations is depicted in Fig-
ure 37. Any other arrangement of transformations and computations

76 Chapter 4. Workload Variability and Correlations

within an abstract component would require a double workload transfor-
mation. For a more thorough discussion on this, see [Max05].

WLT

WLT

RTC

RTC

β

α'

α'

β'

β'

α

α

β

Fig. 37: Embedding of workload transformations in the analysis of an abstract compo-
nent, without double workload transformation. The bright data flows denote
resource-based curves, while the dark data flows denote event-based curves. In
the two blocks labeled WLT, the workload transformations are applied according
to (4.8)–(4.11), and in the two blocks labeled RTC, the abstract component rela-
tions are used to compute outgoing arrival and service curves in the respective
base unit, according to (2.5) and (2.6).

4.2 Event-Based Workload Variability

A large fraction of the workload variability within a system can often
directly be connected to the correlations of different event types on the
incoming event stream. If these event-correlations are known, they can
be used, together with the worst-case and best-case execution demand of
every event type, to determine the workload curves for a system. In this
section, we introduce type rate curves, a model to capture arbitrary event
type correlations on event streams, and we present a method to compute
workload curves, based on the information on event correlations that is
captured with type rate curves.

4.2. Event-Based Workload Variability 77

4.2.1 Type Rate Curves
Type rate curves are a powerful and compact model to characterize the
event-occurrence variability within an event stream.

Def. 9: (Type Rate Curve) Consider an event stream on which events of n different
types ti are present, and let Ei(u) denote the total number of events of type ti on
a sequence of u consecutive events. For every event sequence on the incoming
event stream, and for any event type ti, the lower type rate curve σl

i and the upper
type rate curve σu

i satisfy the relation:

σl
i(v − u) ≤ Ei(v) − Ei(u) ≤ σu

i (v − u) ∀0 ≤ u ≤ v

Using type rate curves, the event correlations on an event stream can
be characterized by the set of all type rate curves {σu

i , σ
l
i} of all event types

occurring in it.

Ex. 4: Consider an event stream with events of three different event types A, B and
C respectively, that always occur strictly following one of two patterns, either
ABCBCA, or AACB. The order in which the patterns themselves occur on the
stream is assumed to be completely random. In Figure 38, the complete set of
type rate curves for the stream is shown. From these type rate curves, we can
directly obtain information on possible type compositions in event sequences of
the stream. For example, we can conclude that in any event sequence of length
12, at least 4 and at most 7 events are of type A, and at least 2 and at most 5
events are of type B, whereas the number of events of type C is between 3 and 4.

Note, that in case of an event with completely uncorrelated,
i. e. statistically independent, occurrences, the corresponding type rate
curve has the form σu(e) = e and σl(e) = 0, respectively. The existence
of any event-occurrence correlations on the other hand becomes imme-
diately apparent, since the corresponding type rate curve has the form
σu(e) < e or σl(e) > 0 for some values of e.

Type rate curves can be derived from virtually any formal event spec-
ification method. For example, suppose a finite state machine representa-
tion of possible event-occurrence patterns; every edge in this finite state
machine is labeled with an event type, and any path within the finite
state machine corresponds to a valid event type sequence. To compute
the type rate curves of an event type ti from such an automaton, we first
annotate every edge that is labeled with ti with a weight 1, and we an-
notate all other edges with a weight 0. In the resulting weighted graph,
the weight of the maximum-weight path with length e equals the value of
the upper type rate curve σu

i (e), while the weight of the minimum-weight
path with length e equals the value of the lower type rate curve σl

i(e).

78 Chapter 4. Workload Variability and Correlations

0 2 4 6 8 10 12 14
0

2

4

6

8

sequence length

ev

en
ts

 o
f t

yp
e

A

0 2 4 6 8 10 12 14
0

2

4

6

8

sequence length

ev

en
ts

 o
f t

yp
e

B

0 2 4 6 8 10 12 14
0

2

4

6

8

sequence length

ev

en
ts

 o
f t

yp
e

C

σA
u

σA
l

σB
u

σB
l

σC
u

σC
l

Fig. 38: The type rate curves σA, σB, and σC, of the event stream of Example 4.

The maximum- and minimum-weight paths can be computed efficiently
using Algorithm 2 presented in Section 4.5.

In practice it may often also be useful to determine the type rate curves
corresponding to a set of finite length event stream traces, obtained for
example from observation or simulation. Even though the so obtained
curves must not be used for the analysis of hard real-time systems, they
can be very useful to analyze systems with soft real-time constraints.

4.2. Event-Based Workload Variability 79

4.2.2 Computing Workload Curves
To compute the workload curves that model the workload imposed by
an event stream on a system, we first need to determine the worst-case
(WCED) and best-case (BCED) execution demands of every event type
of the incoming event stream on the corresponding system. Together
with the respective type rate curves, we collect this data in a data set
datai = {σu

i , σ
l
i,WCEDi,BCEDi} for each of the n event types. To compute

the upper workload curve, the indices of these data sets must then be
reordered, such that data1 contains the data of the event type with the
largest WCED, while data2 represents the event type with the second
largest WCED, and so on. The upper workload curve γu(e) can then be
computed as:

γu(e) =
n∑

i=1

min

⎧⎪⎪⎨⎪⎪⎩max

⎧⎪⎪⎨⎪⎪⎩e −
⎛⎜⎜⎜⎜⎜⎝

i−1∑
k=1

σu
k (e) +

n∑
k=i+1

σl
k(e)

⎞⎟⎟⎟⎟⎟⎠ , σl
i(e)

⎫⎪⎪⎬⎪⎪⎭ , σu
i (e)

⎫⎪⎪⎬⎪⎪⎭ ·WCEDi

(4.14)
The above formula computes the worst-case workload, that an event

sequence of length e ∈ Z≥0 could possibly impose to the system. In this
worst-case event sequence, at least σl

i(e) events of every event type ti must
be present. After fulfilling all minimum requirements, the remainder of
the sequence is filled up using events with largest possible WCED, while
still considering the upper bound σu

i (e) on the possible occurrence for
every event type.

The lower workload curve γl(e) can be computed similarly. For this,
the indices of the data sets must first be reordered, such that data1 contains
the data of the event type with the smallest BCET, and then (4.14) can be
used, whereas we need to replace WCEDi with BCEDi:

γl(e) =
n∑

i=1

min

⎧⎪⎪⎨⎪⎪⎩max

⎧⎪⎪⎨⎪⎪⎩e −
⎛⎜⎜⎜⎜⎜⎝

i−1∑
k=1

σu
k (e) +

n∑
k=i+1

σl
k(e)

⎞⎟⎟⎟⎟⎟⎠ , σl
i(e)

⎫⎪⎪⎬⎪⎪⎭ , σu
i (e)

⎫⎪⎪⎬⎪⎪⎭ · BCEDi

(4.15)

Ex. 5: Suppose an abstract component that is triggered by the event stream described
in Example 4. The worst-case and best-case execution demands for the three
different event types of the event stream are given as BCEDA = 3, WCEDA = 5,
BCEDB = 2, WCEDB = 9, BCEDC = 1 and WCEDC = 2. With these execution
demand bounds, and with the type rate curves depicted Figure 38, we can then use
(4.14) and (4.15) to compute the workload curve γTRC, depicted in Figure 39. In
the same figure, the workload curves γWC are depicted, that are computed without
considering event correlations, thus assuming that the worst-case execution
demand of every event is WCEDB = 9, while its best-case execution demand is
BCEDC = 1.

80 Chapter 4. Workload Variability and Correlations

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

events

cy

cl
es

 [x
 1

03]

γWC
u

γTRC
u

γWC
l

γTRC
l

Fig. 39: The workload curves of the system described in Example 5, when considering
event correlations using type rate curves (γTRC), and without considering event
correlations (γWC).

4.3 Functional Workload Variability

In the previous section, we related every event type of an incoming event
stream to a fixed worst-case and best-case execution demand within a
system. In many complex systems however, the worst-case and best-
case execution demand of a single event type is not fixed, but depends
instead on the internal state of the system. In this section, we introduce
event automata and workload variability automata that allow to capture
complex state dependent workload variabilities within a system, and we
present methods to compute workload curves, based on the workload
variability information that is captured with these automata models.

4.3.1 Event Sequence Automata

Event sequence automata capture the functional information of an event
stream, that is the information on admissible event type sequences that
may arrive on the event stream. This information is modeled in a state-
transition graph whose transitions are labeled with symbols correspond-
ing to the different event types occurring on the event stream.

4.3. Functional Workload Variability 81

Def. 10: (Event Sequence Automaton) An event sequence automaton Fσ is a tuple
(S, S0,Σ,T), where S is a set of states, S0 ⊆ S is a set of initial states, Σ is a set
of event types, and T ⊆ S × Σ × S is a set of transitions. The system starts in
an initial state, and if s

σ−→ s′, then an event σ may occur on the event stream,
leading to a state change from s to s′.

When we combine the functional information of an event stream that is
captured in its event sequence automaton Fσ, with its timing information
that is captured in its arrival curve ᾱ = [ᾱu, ᾱl], we know that in any time
interval of length Δ, at least ᾱu(Δ) and at most ᾱl(Δ) number of events
arrive on the stream, and that the possible sequences of arriving events is
limited to valid runs of given length in the event automaton Fσ.

Ex. 6: Figure 40 shows an example of an event sequence automaton for an event stream
with three different types of events, A, B, and C. The event automaton restricts
the admissible event sequences on the event streams to valid runs within the
automaton.

A

B

B

BC

2

1

0
*

Fig. 40: An event sequence automaton that specifies the admissible event sequences on
an event stream with three different event types, A, B, and C. The initial state is
marked with an asterisk.

4.3.2 Workload Variability Automata
Workload variability automata capture the functional workload variabil-
ity information of an abstract component that is triggered by an event
stream with different event types, whose admissible event sequences are
specified by an event sequence automaton. A workload variability au-
tomaton thereby specifies the worst-base and best-case execution demand
of an incoming event, depending on its event type, as well as on the inter-
nal state of the abstract component. Besides this, a workload variability
automaton also captures the information required to generate an event
sequence automaton for a possibly existing outgoing event stream of the

82 Chapter 4. Workload Variability and Correlations

abstract component. All this information is modeled in a state-transition
graph.

Def. 11: (Workload Variability Automaton) A workload variability automaton Fγ is
a tuple (S, S0,ΣI,ΣO,D,T), where S is a set of states, S0 ⊆ S is a set of initial
states, ΣI is the non-empty set of accepted incoming event types and ΣO is
the set of generated outgoing event types. Further, D is a demand function
D : S × ΣI × ΣO × S → [Z+,Z+]. This function determines the upper and
lower bound of the resources required by an abstract component to process an
incoming event, generate an outgoing event and change its internal state. Finally,
T ⊆ S × ΣI ×Z+ ×Z+ × ΣO × S is a set of transitions.

A workload variability automaton starts in an initial state s ∈ S0, and

if s
σI/[dl,du]/σO−−−−−−−−→ s′, and if the system is triggered by an incoming event of

type σI, the abstract component has a resource demand of at least dl and
at most du resource units to emit an event of type σO and change its state
from s to s′.

Workload variability automata allow to flexibly choose the level of
detail for every system component, such that single, performance critical
system components may be modeled with more details than others. The
simplest workload variability automaton would thereby consist of only a
single state with a self-loop for every accepted event type.

Ex. 7: Figure 41 shows a workload variability automaton that models the functional
workload variability behavior of a simple component with a LRU cache that
accepts an event stream with the event sequence automaton depicted in Figure 40.
The LRU cache of the modeled component has one cache block that can hold the
program code to process an event of either type A, or B. Initially the cache is
empty, and whenever an event of type A or B arrives, and the correct program code
is not available within the cache, the code is loaded into the cache and the event
is processed. This generates a resource demand of 10E6 and 15E6 cycles for an
event of type A, or B, respectively. If the program code is already available within
the cache, events of both types, A and B, generate a resource demand of only
5E6 cycles. The program code to process events of type C cannot be loaded into
the cache, and an arriving event of type C always generates a state-independent
resource demand of at least 3E6 and at most 20E6 cycles. Additionally, the
output generated after processing an event of type C depends on the internal
state of the component; the component generates an event of type F if the LRU
cache is empty, and an event of type G otherwise.

4.3.3 Computing Workload Curves
To compute the workload curves for an abstract component with a work-
load variability automaton Fγ, that is triggered by an event stream with an

4.3. Functional Workload Variability 83

0

1

B/[15,15]/E

B/[15,15]/E

B/[5,5]/E

A/[10,10]/D

A/[10,10]/D

A/[5,5]/D

C/[3,20]/F

*

2

C/[3,20]/G C/[3,20]/G

Fig. 41: The workload variability automaton automaton specified in Example 7. The
worst-case and best-case resource demands are given in units of 106 cycles, and
the initial state is marked with an asterisk.

event sequence automaton Fσ, we first need to build the product automa-
ton FProd = Fσ×Fγ. The states of the product automaton are determined as
the product of the their individual states SProd = Sσ×Sγ, with S0

Prod = S0
σ×S0

γ

as initial states, and in the product automaton a transition between two
states exists, if either corresponding transitions with equal event types
σI existed in both, the event sequence automaton and the workload vari-
ability automaton (we say that these two automata synchronize on such
transitions):

TProd = {((u, v), σI, [dl, du], σO, (u′, v′))|
(u, σI, u′) ∈ Tσ ∧ (v, σI, [dl, du], σO, v′) ∈ Tγ}}

And finally, we remove all states and state trajectories within the product
automaton that are not reachable anymore from any initial state.

Ex. 8: Figure 42 shows the product automaton FProd of the event sequence automaton
Fσ from Example 6, and the workload variability automaton Fγ from Example 7.
Note, the product automaton consists of only 5 states, since 4 states of the initial
product are not reachable.

The upper workload curve γu(e) of an abstract component bounds the
maximum resource demand that any event stream sequence of length e
may create in the component. To compute this upper workload curve γu

from the product automaton, we interpret the upper resource demand du

on every transition as the weight of the transition. The weight wu(e) of the
maximum-weight path with length e in this weighted product automaton

84 Chapter 4. Workload Variability and Correlations

0:0

0:2

0:1

1:1

2:1

B/[15,15]/E

B/[15,15]/E

B/[5,5]/E

B/[5,5]/E

B/[5,5]/E

C/[3,20]/G

A/[10,10]/A

A/[10,10]/D

A/[5,5]/D

*

Fig. 42: The product automaton FProd of the event sequence automaton Fσ from Example
6 and the workload variability automaton Fγ from Example 7. The worst-case
and best-case resource demands are given in units of 106 cycles, and the initial
state is marked with an asterisk.

then equals the value of the upper workload curve γu(e). For the lower
workload curve γl, we follow the same procedure, but instead of the
upper resource demand du, we interpret the lower resource demand dl as
the weight of a transition. The weight wl(e) of the minimum-weight path
with length e in this weighted product automaton then equals the value
of the lower workload curve γl

I(e). Note that both, the maximum- and
minimum-weight paths of a weighted graph can be computed efficiently
using Algorithm 2 presented in Section 4.5.

4.3.4 Experimental Results
Following, we analyze a simple component with an LRU-cache within
the MPA framework, using the presented functional automata models.
As a reference, we analyze the same system first by employing traditional
worst-case analysis, and secondly with by using type rate curves to model
the event correlations on the input event stream.

4.3.4.1 Application Scenario

Consider the abstract component with LRU cache described in Example 7,
with the workload variability automaton shown in Figure 41. Suppose
this component runs on an unloaded processor with a fixed processing ca-
pacity of 20E6 cycles per second, and it must process an event stream with

4.3. Functional Workload Variability 85

period p = 1s and jitter j = 400ms, with three different event types that ar-
rive according to the event sequence automaton presented in Example 6,
and depicted in Figure 40.

4.3.4.2 The Resource Demand Imposed by the Event Stream

Before analyzing the application scenario with the MPA framework, we
must compute the workload curves γu and γl for the abstract component.

In traditional worst-case/best-case analysis, we have no means to ex-
ploit event correlations on the event stream and workload variability
information of the component, and we must assume each arriving event
to impose the maximum possible or minimum possible resource demand
any event could impose on the processing unit. In our application sce-
nario, event C has both the maximum and the minimum resource demand.
The resulting workload curves γu

WC and γl
WC are shown in Figure 43.

Type rate curves, presented in Section 4.2, model event correlations
on event streams by bounding the number of occurrences of every event
type in an event stream sequence of given length. This model allows to
capture correlations on an event stream to some extent, but with type rate
curves it is not possible exploit any information about state-dependent
workload variability within an abstract component. Instead every event
type is assumed to lead to a fixed worst-case and best-case execution
demand, and we can therefore not take into account the caching effects
of the component. The workload curves γu

TRC and γl
TRC computed using a

type rate curve model of the event stream are also shown in Figure 43.
In difference to the above analysis methods, the automata models

presented in this section allow to capture detailed information of both the
event stream as well as the abstract component. This allows to exploit
both, the event correlations on the incoming event stream, as well as the
caching effects on the abstract component. The resulting workload curves
γu

AM and γl
AM are depicted in Figure 43.

4.3.4.3 Performance Analysis Problems and Results

Prob. 4: The maximum delay experienced by an event when processed by the system must
not be longer than dmax = 1s. What is the minimum processor frequency fmin,
required to guarantee the processing of the event stream under this condition?
If we build the system with a processor with this minimum processor frequency,
share crem of the processing cycles are guaranteed to remain to process lower
priority tasks?

We first compute the resource-based arrival curveα of the event stream
that enters the system, by performing the workload transformation (4.8)
on the event-based arrival curve, using the workload curves depicted in

86 Chapter 4. Workload Variability and Correlations

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

events

cy

cl
es

 [x
 1

03]

γWC
u

γTRC
u

γAM
u

γWC
l

γTRC
lγAM =

l

Fig. 43: The workload curves of the abstract component of the application scenario. γu
WC

and γl
WC are computed using worst-case/best-case analysis, γu

TRC and γl
TRC are

computed using type rate curves, and γu
AM and γl

AM are computed using event
sequence automata and workload variability automata.

Figure 43. Using (2.11), we can then compute the minimum required
processor frequency as

fmin = inf
Δ≥0

{
α(Δ − dmax)

Δ

}
(4.16)

And with the resource-based remaining service curve βl′ that we get from
(2.10), we can compute the guaranteed remaining processing capacity as

crem =
limΔ→∞

(
βl′ (Δ)
Δ

)
− fmin

fmin
· 100% (4.17)

From the results in Table 3, we learn that the use of automata models
to model event correlations and workload variability information, allows
to obtain the tightest analysis results for both, the minimum required
processor frequency, as well as for the guaranteed remaining processing
capacity. The use of type rate curves on the other hand still allows to
obtain tighter results than we would get from traditional worst-case/best-
case analysis, but since the caching effects in the abstract component

4.3. Functional Workload Variability 87

cannot be considered, the results are inferior to the results we get by
using automata models.

crem

Analysis Method fmin

fmin = 219 MHz fmin = 250 MHz
Worst-Case/Best-Case 250 MHz — 20 %
Type Rate Curves 219 MHz 23.7 % 33.3 %
Automata Models 219 MHz 42.9 % 50.0 %

Tab. 3: Performance analysis results for Problem 4.

Prob. 5: What is the minimum processor frequency fmin, required to guarantee the pro-
cessing of the arriving event stream, if a finite size buffer is available, and if no
requirements on the maximum delay exist? What is then the upper bound dmax

to the maximum delay experienced by an event on the event stream?

According to (2.12), the backlog at an abstract component is bounded
if the long-term slope of αu is less or equal than the long-term slope of βl.
We can therefore compute the minimum required processor frequency as

fmin = lim
Δ→∞

(
αu(Δ)
Δ

)
(4.18)

The upper bound dmax to the maximum delay experienced by an event
can then be computed with (2.11).

From the analysis results shown in Table 4, we learn that if we allow
slightly longer delays, we can choose a processor with a considerably
lower processing speed that is still guaranteed to process the incoming
event stream with finite buffers and with a bounded maximum delay.

Analysis Method fmin dmax

Worst-Case/Best-Case 200 MHz 1.4 s
Type Rate Curves 167 MHz 1.6 s
Automata Models 125 MHz 2.2 s

Tab. 4: Performance analysis results for Problem 5.

88 Chapter 4. Workload Variability and Correlations

4.4 Workload Correlations
When complex embedded systems with workload variability are imple-
mented on multiple processors, we can often observe that different event
types create different workload on most or all components, and that theses
workloads are often correlated. In this section, we introduce workload
correlation curves, a model to capture information on workload correla-
tions between components, and we present a method to compute work-
load correlations curves, based on the event sequence automata and the
workload variability automata of a distributed system.

4.4.1 An Application Scenario
Let us first consider an application scenario of a multi-processor system
on chip (MPSoC) with workload correlations, that will serve as a running
example throughout this section, and that will help to visualize the effects
of the presented methods. In Section 4.4.5, the performance analysis
results of this application scenario are provided discussed. An overview
of the MPSoC under consideration is depicted in Figure 44. A two-
processor system on chip serves two event streams, both entering and
leaving independently through the I/O-interfaces of the chip, and both
event streams have hard real-time processing requirements.

T1

PI

WCED

20

5

A

B

T2

PII

WCED

15

5

A

B

...AAB... ...AAB... ...AAB...

MPSoC

I/O

T3

WCED

5C
...CCC... ...CCC...

I/O

high priority

low priority

R1

R2

Fig. 44: A multi-processor system on chip with correlated execution demands. The
execution demands are given in units of 103 cycles.

The event stream R1 is processed consecutively by the tasks T1 and
T2, that are running on the processors PI and PII, respectively. The events
on this stream arrive with a period pR1 = 4ms, a jitter jR1 = 15ms and
a minimum inter-arrival time of dR1 = 1ms. Further, the events may be

4.4. Workload Correlations 89

differentiated into two event types, with different execution demands.
Events of type A have an execution demand of 20E3 cycles in T1, and a
demand of 15E3 cycles in T2. Events of type B on the other hand are less
resource demanding and demand only 5E3 cycles, both in T1 as well as
in T2. Finally, no correlations are known on the arrival of the different
events. The event sequence automaton of R1, as well as the workload
variability automata of T1 and T2 are depicted in Figure 45.

0

A

B

(a)

0

A/[20,20]/A

B/[5,5]/B

(b)

0

A/[15,15]/A

B/[5,5]/B

(c)

Fig. 45: (a) The event sequence automaton of the event stream R1; (b) the workload
variability automaton of the task T1; and (c) the workload variability automaton
of the task T2.

The event stream R2 is processed by the task T3 that is running on
processor PII. Events on this stream arrive with a period pR2 = 6ms, and
a jitter of jR2 = 1ms. All events on this stream are of type C and have an
execution demand of 5E3 cycles in T3.

On processor PII, the tasks T2 and T3 are scheduled using a preemptive
fixed priority scheduler, where, according to the rate monotonic schedul-
ing scheme [LL73], T2, processing the stream with period pR1 = 4ms,
has the higher priority than T3 that is processing the stream with period
pR2 = 6ms). Since T3 has a lower priority than T2, the events of the stream
R2 may experience a processing delay due to the interference of T2.

In this MPSoC, we nicely see the correlations of the workloads that
the stream R1 is creating on the two processors: an event of type A, that
creates a high demand of 20E3 cycles on PI again creates a high demand
of 15E3 cycles on PII. On the other hand, an event of type B that creates a
demand of only 5E3 cycles on PI, creates also a low demand of 5E3 cycles
on PII.

4.4.2 Event-Based and Resource-Based Analysis
In the analysis schema shown in Figure 37, (2.7)–(2.10) are applied to the
resource-based curves α and β in the bright block labeled RTC, as well
as to their event-based counterparts α and β, in the dark block labeled

90 Chapter 4. Workload Variability and Correlations

RTC. Both sets of curves, α and β as well as α and β, model the same
properties of a system, but both use a different method of abstraction,
resource units vs. events, and both may therefore capture different aspects
of the same system properties, as we will see below. However, in the
analysis schema of an abstract component as shown in Figure 37, the
outgoing resource-based arrival curve α′ as well as the outgoing event-
based service curve β

′
are discarded after the analysis, together with

the different aspects of system properties modeled by them. It would
of course be possible to obtain an event-based outgoing arrival curve
α′ from a workload transformation (4.9) of the outgoing resource-based
arrival curve α′, and similarly we could obtain a resource based outgoing
service curve β′ from the event-based outgoing service curve β

′
, using

(4.10). But due to the double workload transformation step that would
be introduced by this, these curves will normally be overly pessimistic.

Figures 46 and 47 show the event-based, and the resource-based out-
going arrival and service curves of task T1 in the MPSoC in Figure 44,
respectively. The event-based arrival curve αT1 = αR1 and the resource-
based service curves βT1 = βPI serve as initial input for the computation.
With this input, all event-based and resource-based outgoing arrival and
service curves are computed according to the analysis schema depicted
in Figure 37. Additionally, the workload back-transformations of α′T1

and

β
′
T1

are computed by applying (4.9) and (4.10), respectively: β′∗T1
= γT1(β

′
T1

)

and α
′∗
T1
= γ−1

T1
(α′T1

).

Let us first discuss the event-based upper outgoing arrival curve αu′
T1

in Figure 46. Intuitively, we can say that the maximum possible event
stream output (restricted by αu′) will occur when the maximum possible
event stream input (restricted by αu) occurs together with the maximum
possible resource availability (restricted by βu). According to (2.7), the
minimum possible resource availability (restricted by βl) also plays a role,
it restricts the maximum initial buffer fill level, but we will not consider
it for the discussion here. From βu

T1
we know that in the best case there

are 6E3 cycles available per millisecond to process incoming events on
processor PI. And since the less resource demanding event B on stream
R1 only requires 5E3 cycles to be processed by task T1, we know that we
could in the best case process 1.2 events per millisecond. This is expressed
in β

u

T1
. Because of this high event-based processing capacity (based on the

case where all arriving events are of the less resource demanding type B),
the maximum possible event stream output (αu′

T1
) is only restricted by the

availability of triggering input events (αu
T1

), as we see in Figure 46.
Let us now concentrate on the resource-based upper outgoing arrival

curve αu′
T1

in Figure 47. The worst possible resource demand is created by

4.4. Workload Correlations 91

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

Δ [ms]

ev

en
ts

αT1
’u|

αT1
’l|

αT1
’*l|

αT1
’*u| βT1

’u|

βT1
’l|

Fig. 46: The event-based output of the abstract component that models task T1 in the
MPSoC in Figure 44.

the input event stream when all arriving events are of the more resource
demanding type A. In this case, a total execution demand of 6 ·20E3 cycles
= 120E3 cycles is created during a burst of only little more than 5ms. But in
the same time, a maximum of only 6·6E3 cycles= 36E3 cycles are available
for processing, and therefore most of the arriving events will be buffered
in the input buffer to task T1. In this phase, the output event stream rate
is restricted by the availability of resources. However, after a burst, the
events on the input event stream will again arrive periodically, creating
a maximum resource demand of 20E3 cycles every 4ms. And since in
the same period a maximum of 24E3 cycles are available for processing,
the input buffer of task T1 will eventually be emptied again after a burst,
leading into a phase where the maximum output event stream rate is
restricted only by the availability of triggering input events. From the
change of slopes of αu′

T1
(and βl′

T1
) at Δ ≈ 77ms in Figure 47, we know that

the length of the first phase, where the output event stream is restricted
by the availability of resources, is upper bounded by 77ms.

When we use (4.9) to transform αu′
T1

back to α
′∗
T1

, we must assume that
with every investment of 5E3 cycles we could in the best case generate an
event of type B on the output event stream. But by taking this assumption,
we neglect the fact that for the computation of αu′

T1
, we assumed that all

92 Chapter 4. Workload Variability and Correlations

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

Δ [ms]

cy

cl
es

 [x
 1

03]

αT1
’u

αT1
’l

βT1
’u

βT1
’l

βT1
’*

βT1
’*l

Fig. 47: The resource-based output of the abstract component that models task T1 in the
MPSoC in Figure 44.

events are of type A. This decoupling of worst-case and best-case events
leads to the very pessimistic upper bound α

′∗
T1

. Similar thoughts explain
the pessimism of all other back-transformed curves in Figures 46 and 47.

From the results shown and discussed above, we clearly see that the
resource-based outgoing arrival curve α′ of an abstract component may
carry valuable information, as for example the presence of a phase where
the maximum available resources restrict the output event stream rate,
that may not be present in the event based outgoing arrival curve α′, or in
the back-transformed curve α

′∗. But we also see that back-transforming
the resource-based outgoing arrival curve α′ into an event-based curve
α
′∗ is overly pessimistic, such that α

′∗ does not contain much or any infor-
mation of interest anymore. In the analysis of an abstract component, α′
is therefore typically discarded, as depicted in Figure 37. In the following
section, we present a new method, that allows to consider the information
contained in α′ in the analysis of succeeding performance components.

4.4.3 Workload Correlations Curves
We have seen in Section 2.5 that we can interconnect abstract components
to the performance model of a complete system. But we may only use

4.4. Workload Correlations 93

event-based arrival curves α and resource-based service curves β to in-
terconnect abstract components. The reason for this restriction is that
outgoing resource-based arrival curves of one component are not directly
related to ingoing resource-based arrival curves of another component,
since the same event causes in general a different resource demand in two
components, when it is processed by two different tasks. Similar thoughts
can be made for event-based service curves. As a direct consequence of
this restriction, follows that the information captured by the outgoing
resource based arrival curve α′ of one component cannot be incorporated
in the analysis of a succeeding component. To overcome this problem,
we introduce workload correlation curves (WCC), that allow to directly
transform the outgoing resource-based arrival curve α′ of one abstract
component into an ingoing resource-based arrival curve of another ab-
stract component, by exploiting the knowledge of workload correlations
existing between these components. No double workload transformation
is needed for this, and therefore much of the information captured in α′
will be preserved.

Figure 48 shows the performance model of the MPSoC of Figure 44,
where the outgoing resource-based arrival curve of task T1 is directly
connected to the ingoing resource-based arrival curve of task T2. The cen-
tral part of this interconnection path is the box labeled WCC, where the
resource-based arrival curves are transformed, using workload correla-
tion curves. Workload correlation curves allow to analytically character-
ize and capture existing workload correlations between two components:

Def. 12: (Workload Correlation Curves) Suppose rT1 resource units are invested in a
task T1 to process incoming events and generate outgoing events. Further, let
WT1→T2(rT1) denote the total execution demand that is created in a task T2 by the
arrival of the events that were generated on the output of the preceding task T1 by
the investment of rT1 resource units. Then, for any number of invested resources
rT1 in T1, the lower workload correlation curve δl

T1→T2
(r) and the upper workload

correlation curve δu
T1→T2

(r) satisfy the relation:

δl
T1→T2

(v − u) ≤ WT1→T2(v) −WT1→T2(u) ≤ δu
T1→T2

(v − u),∀u < v (4.19)

Therefore, whenever rT1 resources are invested in a task T1, the out-
going events that are generated by this resource investment will create
a total resource demand of at least δl

T1→T2
(rT1) and at most δu

T1→T2
(rT1) re-

source units in a succeeding task T2.
Using workload correlation curves, outgoing resource-based arrival

curves of a task T1 can be transformed directly into ingoing resource-based
arrival curves of a task T2:

94 Chapter 4. Workload Variability and Correlations

WLT

WLT

RTC

RTC

WLT

WLT

RTC

RTC

WCC

WLT

WLT

RTC

RTC

T1 T2

T3

αT2

αT1
’

αT1

αT1

βT1
’

βT1

αT2
’

αT2
’

βT3

αT1
’

αT2

βT2

αT3
’

αT3
’

βT3
’

αT3

αT3

βT2
’

α*

α**

=

=

αWLT, T2

αWCC,T2

α*

α** =

=

Fig. 48: The performance model of the MpSoC of Figure 44, with the new component
interconnection method highlighted.

αl
WCC,T2

(Δ) = δl
T1→T2

(αl
T1

′
(Δ)) (4.20)

αu
WCC,T2

(Δ) = δu
T1→T2

(αu
T1

′(Δ)) (4.21)

In parallel, as we see in Figure 48, we can still obtain the ingoing
resource-based arrival curves αWLT,T2 from a workload transformation of
the ingoing event-based arrival curves, by applying (4.8) to αT2 . And since
all ingoing resource-based arrival curves, αWLT,T2 as well as αWCC,T2 , are
hard bounds, we can combine the curves by taking the pairwise maximum
and minimum of the upper and lower arrival curves, respectively:

4.4. Workload Correlations 95

αl
T2

(Δ) = max(αl
WLT,T2

(Δ), αl
WCC,T2

(Δ)) (4.22)
αu

T2
(Δ) = min(αu

WLT,T2
(Δ), αu

WCC,T2
(Δ)) (4.23)

4.4.4 Computing Workload Correlation Curves
To compute the workload correlation curves for two consecutive abstract
components with workload variability automata Fγ,T1 and Fγ,T2 , respec-
tively, that are triggered by an event stream with an event sequence
automaton Fσ, we need to build a so-called workload correlation automa-
ton Fδ. But to reduce the size of the different intermediate automata that
are needed to compute the workload correlation curves, we first divide
all resource demands on the transitions of the two workload variability
automata, Fγ,T1 and Fγ,T2 , by their greatest common divisor (gcd). The
workload correlation automaton is then built from the product automa-
ton of these two workload variability automata, where transition between
two states exists if and only if two transitions existed in the initial work-
load variability automata, where the output event type on the transition
of first automaton Fγ,T1 equals the input event type on the transition of
the second automaton Fγ,T2 :

Sγ = ST1 × ST2

S0
γ = S0

T1
× S0

T2

Tγ = {((u, v), [dl,T1 , du,T1], [dl,T2, du,T2], (u
′, v′))|

(u, σI,T1 , [dl,T1, du,T1], σO,T1, u
′) ∈ TT1

∧(v, σI,T2, [dl,T2 , du,T2], σO,T2, v
′) ∈ TT2

∧σO,T1 = σI,T2}
Figure 49 depicts the two workload variability automata, Fγ,T1 and Fγ,T2 ,
of the two tasks T1 and T2 of the MPSoC of Figure 44, after dividing
the resource demands by their gcd, as well as the workload correlation
automaton Fδ, obtained from Fγ,T1 and Fγ,T2 .

From the workload correlation automaton Fδ , we can then compute the
upper workload correlation curve δu

T1→T2
following a four-step procedure:

Step 1: On the transitions of the workload correlation automaton Fδ, we
retain the lower resource demand dl,T1 from the first workload variabil-
ity automaton Fγ,T1 , and the upper resource demand du,T2 of the second
workload variability automaton Fγ,T2, and discard the other information:

s
[dl,T1 ,du,T1]/[dl,T2 ,du,T2]−−−−−−−−−−−−−−−→ s′ ⇒ s

dl,T1/du,T2−−−−−−→ s′

96 Chapter 4. Workload Variability and Correlations

0

A/[4,4]/A

B/[1,1]/B

(a)

0

A/[3,3]/A

B/[1,1]/B

(b)

0_0

[4,4]/[3,3]

[1,1]/[1,1]

(c)

Fig. 49: (a) The workload variability automaton Fγ,T1 of the task T1 of the MPSoC of
Figure 44, and (b) the workload variability automaton Fγ,T2 of the task T2 of
the same MPSoC. Compared to the workload variability automata depicted in
Figures 45(b) and 45(c), the resource demands on both automata are divided
by their greatest common divisor gcd(20E3, 15E3, 5E3) = 5E3. (c) The workload
correlation automaton Fδ, obtained from Fγ,T1 and Fγ,T2.

Step 2: We then transform the so obtained automaton into an automaton
where every transition corresponds to a created demand of one resource
unit on the first task T1 and where the weights on the transition correspond
to the created demand on the second task T2. For this, we first replace

every transition s
dl,T1/du,T2−−−−−−→ s′ with dl,T1 > 0, with a state trajectory according

the following rule:

s
dl,T1
/du,T2−−−−−−→ s′ ⇒ s

0−→ s(1)
0−→ . . . 0−→ s(dl,T1−1)

du,T2−−−→︸�����������������������������︷︷�����������������������������︸
dl,T1

transitions

s′

After this, we replace all transitions s′
dl,T1 /du,T2−−−−−−→ s′′ with dl,T1 = 0 as follows:

s
w−→ s′

0/du,T2−−−−→ s′′ ⇒ s
w+du,T2−−−−−→ s′′

Step 3: In this automaton, we interpret the execution demand d as the
weight of a transition. The weight wu(e) of the maximum-weight path
with length e then equals the value of the upper workload correlation
curve δu

T1→T2
(e).

Step 4: We finally define the workload correlation curve δu
T1→T2

(x) for all
values x ∈ R≥0 as:

δu
T1→T2

(x) = min
e≥x, e∈N+

{
δu

T1→T2
(e)

}
(4.24)

4.4. Workload Correlations 97

, and we multiply all values on both, the x- and the y-axis by the gcd of the
initial workload demands, by which we initially divided the demands of
the workload variability automata.

To compute the lower workload correlation curve δlT1→T2
(e), we must

follow the same four-step procedure as described above, but in Step 1
we need to retain the upper resource demand du,T1 of the first workload
variability automaton Fγ,T1 , and the lower resource demand dl,T2 of the
second workload variability automaton Fγ,T2 . In Step 3, the value of
the lower transfer curve δl

T1→T2
(e) then equals the weight wl(e) of the

minimum-weight path with length e in the automaton obtained in Step 2,
and in Step 4, the lower workload correlation curve δl

T1→T2
(x) is defined

for all values x ∈ R≥0 as:

δl
T1→T2

(x) = max
e≤x, e∈N+

{
δl

T1→T2
(e)

}
(4.25)

Figure 50 depicts the above-defined four-step procedure to compute
the workload correlation curves between the two tasks T1 and T2 of the
MPSoC in Figure 44. From the resulting curves, we see that with the
availability of a single cycle (the 20, 000th), task T1 can generate an event
of type A on its output event stream, leading to an execution demand of
15E3 cycles in task T2. But after this initial event of type A, the constant
processing of events of type B (assuming that the input buffer of task T1

never underflows) leads to the maximum workload on task T2. This is
because with events of type B, every cycle invested in T1 generates in
average a demand of 1 cycle in T2, while with events of type A, every
invested cycle in T1 only generates an average demand of 15E3/20E3 =
0.75 cycles in T2. On the other hand, the constant processing of events of
type A leads to the minimum workload on task T2.

4.4.5 Experimental Results
In this section, we analyze the MpSoC presented in Section 4.4.1. In
particular, we are interested in the upper bounds to the maximum delay
that events of stream R2 experience during processing on the MPSoC, as
a function of the processor frequency fPII of processor PII. The processor
frequency fPI of processor PI is thereby assumed to be fixed to 6MHz.
Note, that in the system analysis presented in this section, we neglect
the delay that events experience by the I/O-interfaces and by the on-chip
communication network.

For the system performance analysis, we use the performance model
of the MPSoC, depicted in Figure 48. To model the processing capacity of
the initially unloaded processors PI and PII, we use βT1 ≡ βPI = fPI ·Δ, and
βT2 ≡ βPII = fPII · Δ, respectively. Further, the event-based arrival curves

98 Chapter 4. Workload Variability and Correlations

[4,4]/[3,3]

[1,1]/[1,1]

4/3

1/1 1

30

0 0

8 9 100 1 2 3 4 5 6 7
0

2

4

6

8

10

12

resource units invested on T1

re

so
u

rc
e

u
n

it
s

d
em

an
d

ed
 o

n
 T

2

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

cycles invested on T1 (x 103)

cy
cl

es
 d

em
an

d
ed

 o
n

 T
2

 (x
 1

03)

Step 1 Step 2

Step 4

Step 3

Fig. 50: The four-step procedure to compute the workload correlation curves between
the two tasks T1 and T2 of the MPSoC in Figure 44, starting from the workload
correlation automaton in Figure 49(c).

αT1 ≡ αR1 , and αT3 ≡ αR2 , are computed from pR1 , jR1 , and dR1 , and from pR2

and jR2 , respectively, using (2.2) and (2.3).

4.4.5.1 Analytic Bound on the Maximum Delay

According to (2.11), we need αu
T3

and βl
T3

to compute an upper bound to
the maximum delay that an event experiences during processing by task
T3 on processor PII of the MPSoC.

We can directly compute αu
T3

by applying (4.8) to αu
T3

. Obtaining βl
T3

, on
the other hand, is more involved. We need in a first step to compute the
outgoing arrival curves αu′

T1
and αu′

T1
of task T1. We compute these curves

according to the analysis schema shown in Figure 37, using (2.7)–(2.10)
and (4.8)–(4.11). The resulting outgoing curves are shown in Figures 46
and 47, and are discussed in Section 4.4.2.

According to the performance model shown in Figure 48, the event-
based upper outgoing arrival curve of task T1 can directly be intercon-
nected to the event-based upper ingoing arrival curve of task T2 : αu

T2
= αu′

T1
.

To compute the resource-based upper ingoing arrival curve of task T2, on
the other hand, we first conventionally apply (4.8) toαu

T2
, leading toαu

WLT,T2
.

4.4. Workload Correlations 99

Applying (4.21) to αu′
T1

will in turn lead to αu
WCC,T2

, and computing the min-
imum of αu

WLT,T2
and αu

WCC,T2
will, according to (4.23), finally lead to αu

T2
.

Similarly, the resource-based lower ingoing arrival curve of task T2 can
according to (4.22) be computed as the maximum of αl

WLT,T2
and αl

WCC,T2
,

where αl
WLT,T2

and αl
WCC,T2

are obtained by applying (4.8) to αl
T2

and (4.20)
to αl′

T1
, respectively. All these variants of resource-based ingoing arrival

curves of task T2 are depicted in Figure 51.

0 10 20 30 40 50
0

50

100

150

200

250

300

Δ [ms]

cy

cl
es

 [x
 1

03]

αWLT, T2

u

αWLT, T2

l

αWCC, T2

u

αWCC, T2

l

αT2

u

αT2

l

Fig. 51: Variants of resource-based input arrival curves to the abstract component of task
T2 in the MPSoC in Figure 44. αu

WLT,T2
and αl

WLT,T2
are computed by applying a

workload transformation to αu′
T1

and αl′
T1

. αu
WCC,T2

and αl
WCC,T2

are computed by
applying a workload correlation transformation to αu′

T1
and αl′

T1
. αu

T2
and αl

T2
are

computed as the minimum and the maximum of the other curves, respectively.

Then, to compute the resource-based lower outgoing service curve
of task T2, we apply (2.10) to αu

T2
and βl

T2
, leading to βl′

T2
, that can be

interconnected to βl
T3

. This finally allows to use (2.11) to compute an
upper bound to the maximum delay that an event experiences during
processing by task T3 on processor PII:

dT3 ≤ Del(αu
T3
, βl

T3
)

To analyze the impact of incorporating the workload correlation in-
formation to the obtained analysis results, we do the same performance

100 Chapter 4. Workload Variability and Correlations

analysis using conventional analysis methods. There, we apply (2.10)
directly to αu

WLT,T2
and βl

T2
, leading to βl′

WLT,T2
≡ βl

WLT,T3
. We then use again

(2.11) to compute an upper bound to the maximum delay that an event
experiences during processing by task T3 on processor PII:

dWLT,T3 ≤ Del(αu
T3
, βl

WLT,T3
)

In Figure 52, the resource-based upper ingoing arrival curve αu
T3

is
shown, together with the resource-based lower ingoing arrival curve
βl

WLT,T3
that is obtained using conventional analysis methods, and the

resource-based lower ingoing arrival curve βl
T3

that is obtained using
workload correlation curves to incorporate existing workload correla-
tions into the performance analysis.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Δ [ms]

cy

cl
es

 [x
 1

03]

βWLT, T3

l

αT3

u

dT3

βT3

l

dWLT, T3

Fig. 52: The resource-based upper ingoing arrival curve αu
T3

to the abstract component of
task T3, together with two variants of the resource-based lower ingoing service
curve. βl

T3
results from a computation with WCC’s, while βl

T3
results from a

computation without WCC’s. The curves are computed for fPII = 8MHz.

4.4.5.2 Performance Analysis Results

We use the above described analysis to compute the upper bound to the
maximum delay that an event will experience during processing by task
T3 on processor PII, for processor frequencies fPII ranging from 6MHz to

4.4. Workload Correlations 101

25MHz, in steps of 1MHz. As a reference, we compute the exact worst-
case delays, using a timed automata based approach [HV06] and UPPAAL
v3.5.9 [Upp], and we also declare the results that are obtained using
SymTA/S v0.8 beta EVAL [Sym] that implements a different approach to
system-level performance analysis.

6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

Processor Frequency of PII [MHz]

D
el

ay
 [m

s]

MPA without WCC
MPA with WCC
SymTA/S
Exact Result

Fig. 53: The maximum delay experienced by an event during processing by task T3 in
the MPSoc in Figure 44 as a function of the frequency fPII of processor PII.

From the results shown in Figure 53, we learn that the use of workload
correlation curves leads to considerably tighter analytic bounds for the
investigated performance analysis problem. The obtained results clearly
point out the performance reserves that often exist in complex systems
due to workload correlations, and that are usually not considered by ex-
isting performance analysis methods. For example, while we need to run
processor PII at a processor speed of 14MHz to guarantee an upper bound
to the maximum delay of 8ms within the conventional MPA framework,
we can guarantee the same bound already at a processor speed of 8MHz
when using WCC’s. This corresponds to a processor speed reduction of
more than 42%. Similarly, when we look at the delay guarantee for a pro-
cessor speed of 8MHz, we see that we can guarantee a maximum delay of
17.05ms within the conventional MPA framework, while we can guaran-
tee a maximum delay of only 7.5ms when using WCC’s. This corresponds
to a delay guarantee improvement of 56%.

102 Chapter 4. Workload Variability and Correlations

Looking at the results in Figure 53, we may wonder why the analysis
with WCC’s does not lead to improved results for low processor speeds
(e. g. 6MHz). When we look at Figure 51, we see that without the use of
WCC’s, αu

WLT,T2
limits the input to task T2, consisting of a steep burst at

the beginning and a less steep long-term load afterwards. With WCC’s
however, αu

WCC,T2
reduces the burst load on task T2 within short time

intervals. In the long term however (Δ ≥ 30ms) the load on task T2 is
still limited by the long-term slope of αu

WLT,T2
. When we reduce the speed

of processor PII, it eventually gets so slow that the available cycles per
time interval are less than the arriving resource demand of the reduced
burst that is specified by αu

WCC,T2
, that is the processor gets too slow to

even process the reduced burst without buffering. In this case, remaining
resources to process task T3 only exist in time intervals that are longer
than the interval length where αu

WCC,T2
and αu

WLT,T2
cross for the last time in

Figure 51, i. e. for Δ ≥ 30ms. Then however the remaining resources only
depend on the long term slope of αu

WLT,T2
, and hence WCC’s do not have

any influence on the remaining resources anymore.

4.5 Solving the Maximum-Weight Path Problem
Algorithm 2 presents an efficient method to compute the weights wu(e)
and wl(e) of the maximum- and minimum-weight paths of a directed
weighted graph G(V,E,W) with vertices V, edges E and weights W. The
computational complexity of Algorithm 2 to compute the values of wu(e)
and wl(e) for all path lengths e ∈ [1, n] is O(n|V||E|), while the memory
requirement has a complexity of O(|V|).

The values wu(e) represent the maximum-weight paths of G for e ≤ n.
We define wu∗ (e) as the periodic continuation of wu(e):

wu
∗ (e) =

⌊ e
n

⌋
· wu(n) + wu(e −

⌊ e
n

⌋
n) (4.26)

Since for the weights of maximum weight paths in a weighted graph
the relation wu(e1 + e2) ≤ wu(e1) + wu(e2) holds true for ∀e1, e2 ∈ Z≥0 (sub-
additivity), it can be shown that the periodic continuation wu∗ (e) of wu(e)
provides a hard upper bound on the weight of the maximum-weight
path in G of any length e ∈ Z≥0. Similarly, it can be shown that the pe-
riodic continuation of wl(e) is a hard lower bound on the weight of the
minimum-weight path in G.

Using the presented method, tight (i. e. exact) values for weights of the
maximum and minimum weight paths in a graph G can be computed up
to an arbitrary path length n, while hard upper and lower bounds can be
obtained for any longer paths. For strongly connected graphs and when

4.6. Related Work 103

Algorithm 2 Computing the weights of the maximum-weight and minimum-
weight paths in a weighted graph G(V,E,W)

Given a function pred(v), which returns the set of all predecessor vertices
of vertex v.
Given a function weightu(u, v) and a function weightl(u, v), which return
the maximum weight and the minimum weight respectively, of all
edges starting at vertex u and ending at vertex v.

wu
v(0) = 0,∀v ∈ V

wl
v(0) = 0,∀v ∈ V

for i = 1 to n do
for ∀v ∈ V do

if |pred(v)| > 0 then
wu

v(i) = maxp∈pred(v){wu
p(i − 1) + weightu(p, v)}

wl
v(i) = minp∈pred(v){wl

p(i − 1) + weightl(p, v)}
else

wu
v(i) = −∞

wl
v(i) = +∞

end if
end for
wu(i) = maxv∈V{wu

v(i)}
wl(i) = minv∈V{wl

v(i)}
end for

spending some more effort, it is also possible to obtain the tight values
for wl(e) and wl(e) for all e ∈ Z≥0. The according techniques are described
in [CDQV85] and [Kar78].

4.6 Related Work
Many results in the area of classical real-time scheduling theory are based
on the task model introduced by Liu and Layland in [LL73]. In this
model, tasks are characterized by tuples (Ci,Ti), where Ci is the execution
time of a task τi, and Ti is the period with which τi is activated on the
system. To provide hard real-time guarantees, methods used in the area
of classical real-time scheduling theory typically set Ci to the worst-case
execution time (WCET) of the task, thus assuming that every task instance
requires WCET to complete. While this assumption is safe, it is too
pessimistic for a large class of applications, that are characterized by high
execution time variability. For these applications, the classical results
lead to poor processor utilization, and consequently to system designs

104 Chapter 4. Workload Variability and Correlations

with unreasonably high cost, or power consumption, or both. While this
problem is typically not prevalent in simulation-based methods, several
approaches have been proposed in literature to address it for stochastic,
as well as for analysis-based methods. For an overview, see for example
[SAÅ+04].

In the area of stochastic performance estimation, several proposals
have been made of periodic task models that specify execution demands
using probabilistic distributions, see for example [AB98, KM98, MEP04,
TDS+95]. Another method was presented by Lehoczky in [Leh96], and is
based on queueing theoretic methods for performance analysis. This real-
time queueing theory uses stochastic methods not only to model execution
demands, but also to model inter-arrival times, as well as deadlines. The
performance estimation bounds that are obtained from these and other
stochastic methods are however again of probabilistic nature, and hence
their application area is limited to soft real-time systems.

For the analysis of hard real-time systems, we must instead rely on
formal performance analysis. To address the problem of workload vari-
ability, several proposals have been made in this area, to develop more
expressive deterministic task models that aim at reducing the pessimism
of the classical real-time task models. Mok and Chen [MC97] proposes
the multiframe task model that extends the classical periodic task model
of Liu and Layland [LL73], by permitting periodic tasks whose WCETs
may vary from one instance to another. In the multiframe task model,
the WCETs of consecutive task instances are determined following a fixed
cyclic pattern. The model was further extended in [BCGM99], allowing
not only to determine the WCET of a task instance, but also the time
separation between two task instances following a cyclic pattern.

In [Bar98, Bar03], Baruah presents a further generalization of the multi-
frame models, the recurring real-time task model. Here, a task is modeled
by a set of subtasks arranged in a directed acyclic graph that represents the
conditional, non-deterministic behavior of the task. Each subtask is char-
acterized by a separate WCET, a relative deadline, and a minimum time
separation from its direct predecessor. The whole task graph is triggered
sporadically with a specified minimum time separation between the last
subtask in the graph and the next task instance. A similar task model
that also uses conditional directed acyclic graphs was proposed by Pop
et al. in [PEP00]. The recurring real-time task model provides much flex-
ibility in modeling workload variability and irregular event inter-arrival
times. However, accurately modeling complex workload variability and
bursty event arrival patterns often requires very large task graphs, and
since analysis time increases exponentially with the problem size [Bar03],
a designer must trade off the accuracy of the model for tolerable analysis
times. To partly overcome this problem, Chakraborty and Thiele [CT05]

4.7. Discussion 105

recently proposed a new task model that combines the concept of arrival
curves with the recurring real-time task model. In this model, the time
separation between two subtasks is decoupled from the task graph, and
is instead modeled using an arrival curve.

In [JHE04], Jersak et al. introduce the concept of intra-stream contexts,
to extend the compositional performance analysis framework presented
by Richter et al. in [RE02], [RZJE02] and [RJE03]. Intra-stream contexts
allow to specify a cyclic pattern of different events that arrive on an event
stream. The timing properties of the event stream are thereby decoupled
from the cyclic event pattern, and are specified using a set of classical
arrival patterns. On such an event stream with intra-stream context, the
WCET of every event, when triggering a computation resource, is then
determined from its event type.

In [MKT04], Maxiaguine et al. first introduce workload curves to
analyze workload variability within the MPA framework. However,
[MKT04] does not provide models and methods to deterministically
obtain workload curves from a system with workload variability. In
[MKT04], workload curves are obtained using an ad-hoc method that is
restricted to the problem under consideration, and in subsequent works,
see e. g. [MLCO04, LMCO04], workload curves are obtained from simu-
lation traces.

4.7 Discussion
Type rate curves, and event and workload variability automata, are two
models that allow to capture system information on workload variability
that is required to analytically derive the workload curves of an abstract
component. Type rate curves are a very general model to capture informa-
tion on event stream correlations and they can be derived from virtually
any formal event stream specification. And if no formal specification is
available, type rate curves of an event stream can also be derived from
simulation traces. This is of interest, since type rate curves allow to strictly
decouple the information on event correlations from the information on
imposed workload on a specific component. Thus, the workload curves
for any number of different components can be derived from the same set
of type rate curves that are obtained from a single simulation trace of the
triggering event stream.

The automata models on the other hand are more restrictive, and are
only applicable if detailed specifications are available on the event stream,
as well as on the component under consideration. The level of detail of
these specifications can however be chosen flexibly, such that a designer
can choose to only model the most performance critical components with

106 Chapter 4. Workload Variability and Correlations

detailed workload variability automata. When we compare the automata
models with the multiframe task model and with the recurring real-time
task model, we observe primarily two differences. Firstly, the two task
models, and the automata models rely on different task graphs. The
multiframe task model relies on fixed cyclic patterns, while the recurring
real-time task model relies on directed acyclic graphs to model possible
task sequences. The automata models on the other hand allow to cap-
ture possible sequences in directed graphs, which often allows a more
compact representation. Moreover, the differentiation between event au-
tomata and workload variability automata further simplifies modeling,
since it allows a designer to separate the information on event stream cor-
relations from the information on functional workload variability within
a component. The second main difference is that the multiframe and the
recurring real-time task model explicitly specify the timing between task
occurrences, while the timing information of event streams is completely
decoupled from the automata models. This decoupling drastically re-
duces the complexity of the model and allows to analyze systems that
would otherwise be prohibitive to analyze. However, the downside of
the decoupling is a loss of information that may lead to less accurate anal-
ysis results. The strictly decoupling of timing information from the task
sequence structure is also present in the concept of intra-stream contexts.
Compared to this concept, the automata models distinguish themselves
by a considerably higher expressiveness. Intra stream contexts allow
only to model the information that could be captured by a single event
automaton with a strictly cyclic structure. More complex event stream
sequences, as well as workload variability information of the component
can however not be captured with intra-stream contexts.

Workload correlation curves are to our best knowledge the first ap-
proach to characterize the workload correlations that are often present in
distributed embedded systems. It has to be noted, that workload correla-
tion curves do not require that event automata and workload variability
automata are used throughout a complete system. Instead, from the ex-
perimental results we have seen that workload correlation curves may
also lead to considerable analysis improvements when the input event
automaton is fully non-deterministic. Such a non-deterministic event
automaton can be created at any point within the system, and designer
has therefore the freedom to apply workload correlation curves isolated
on two succeeding components whenever these have considerably corre-
lated workloads.

Part II

Interface-Based Design

5
Interface-Based Design with

Real-Time Interfaces

In the first part of this thesis, we focused on system-level performance
analysis methods for real-time embedded systems. Common to all of
these performance analysis methods is that they are applied to analyze a
component-based real-time system design a posteriori. That is, while a
real-time system gets designed and dimensioned in a first step, it is only
after completion of this first step that performance analysis is applied on
the system design in a second step. The analysis result will then give
an answer to the binary question whether the system design that was
developed in the first step will meet all real-time requirements, or not. A
designer must then iterate on these two steps until an appropriate system
design is found.

In contrast to this two-step approach is the idea of interface-based
design [dAH01b, dAH05] that proposes a holistic one-step approach to
design and analysis of systems, sometimes also referred to as correct-
by-construction. In interface-based design, components are described
by component interfaces, and in contrast to an abstract component that
models what a component does, a component interface models how a
component can be used. Through input assumptions, a component in-
terface models the expectations that a component has about the other
components in a system, and through output guarantees, a component
interface tells other components in a system what they can expect from
this component. The major goal of a good component interface is then to
provide enough information to decide whether two or more components
can work together properly, where in the case of component interfaces

110 Chapter 5. Interface-Based Design with Real-Time Interfaces

for real-time system performance analysis, the term ’properly’ refers to
questions like: Does the composed system satisfy all requested real-time
properties such as delay and throughput constraints?

Consequently, introducing a component system with interfaces for
interface-based design of real-time systems advances the real-time sys-
tem design process towfold. First, a system designer then only needs
to understand a component’s interface and not the details of how the
functionality offered by the component is implemented. And secondly,
such a component system with interfaces enables correct-by-construction
design, since a set of components can only be integrated to a system, if
and only if their interfaces are compatible.

This chapter introduces Real-Time Interfaces (RTI). By connecting the
principles of Real-Time Calculus and interface-based design, Real-Time
Interfaces enable interface-based real-time system design within the MPA
framework. The next section first provides an introduction to interface-
based design, with a special focus on assume/guarantee interfaces. In
Section 5.2, we then define Real-Time Interfaces as an extension of as-
sume/guarantee interfaces, and in Section 5.3, we introduce a component
system with Real-Time Interfaces, for interface-based design within the
MPA framework. In Section 5.4, we then provide an overview to the wide
area of applications for Real-Time Interfaces. The chapter concludes with
an overview on related work in Section 5.5, and a discussion in Section 5.6.

5.1 Interface-Based Design and A/G Interfaces
The definition of Real-Time Interfaces follows the principles of interface-
based design, as described by de Alfaro and Henzinger in [dAH01b]
and [dAH05]. Whereas most previous results relate to stateful interface
languages, such as Interface Automata [dAH01a], Real-Time Interfaces
are based on stateless assume/guarantee (A/G) interfaces. Following, we
introduce the underlying principles of A/G interfaces and interface-based
design. Note, that interfaces and all interface-related terms in this section
are formally defined in [dAH01b] and [dAH05].

An A/G interface consists of two disjoint sets of input and output
variables denoted by XI, and XO, respectively. The interface makes certain
assumptions on XI, which are specified using a predicate φI, and provided
this predicate is satisfied, the interface guarantees that the output variables
satisfy a predicate φO. Hence, φO is the guarantee that the component
provides to its environment assuming the precondition φI, or in other
words, φI ⇒ φO is true. Clearly, the predicate φI needs not to be valid,
since there typically exist environments where a component can not be
used or can not provide the output guarantee. In what follows, we do not

5.1. Interface-Based Design and A/G Interfaces 111

distinguish between components and their interfaces. Hence, an interface
implicitly refers to the component it belongs to.

Two interfaces F and G are composed by connecting the output vari-
ables of one interface to the input variables of the other interface, and the
composed interface is typically denoted as F‖G. The input variables of
this composed interface are all the unconnected (or free) input variables
of F and G, and its output variables are the unconnected outputs of F and
G. We will use XI

F, XO
F , φI

F and φO
F to denote the variables and predicates

of F, and XI
G, XO

G , φI
G and φO

G to denote the variables and predicates of G.
Two interfaces are syntactically composable if their output variables

are disjoint, i. e. if XO
F ∩ XO

G = ∅, and provided syntactical composability,
they are semantically compatible, if whenever F provides inputs to G, then
the output guarantee of F implies the input assumption of G, i. e.φO

F ⇒ φI
G.

Similarly, whenever G provides inputs to F, then φO
G ⇒ φI

F must hold. If
F and G form a closed system, i. e. if all outputs of F are connected to the
inputs of G, and vice-versa, then F and G are compatible, if the following
closed formula is true:

(∀XO
F ∪XO

G) (φO
F ∧ φO

G ⇒ φI
F ∧ φI

G) (5.1)

If F‖G form an open system on the other hand, i. e. if some inputs of F and
G are left free, then F and G are compatible, if (5.1) is satisfiable. In other
words, there must exist some environment with which F‖G can be com-
patible. Formula (5.1) is then the input assumption φI

F‖G of the composite
interface F‖G, as it encodes the weakest condition on the environment of
F‖G to make F and G work together properly. An interface H that provides
inputs to F‖G is thus compatible with F‖G, if φO

H ⇒ φI
F‖G is satisfiable.

This way, a system can be designed by adding one component after the
other and by verifying if the newly added component is compatible with
the existing partially designed system. Component interfaces can then be
composed one-by-one into subsystems in any order, and if any of the sub-
systems cannot be composed successfully, this already forecloses that the
complete system cannot be composed successfully, and can therefore not
work properly. We say that interface-based design supports incremental
design of systems.

But the Real-Time Interfaces that we introduce in this chapter not only
expose enough information to decide on composability and compatibility
with other component interfaces, but in addition they also change their
assumptions and guarantees, following principles of constraint propa-
gation. Consequently, one can determine the combined assumptions of
a complete subsystem at every single input of the subsystem, thereby
enabling interactive design optimization. To enable this dynamic adapt-
ability, an interface must define internal interface relations, that bring the

112 Chapter 5. Interface-Based Design with Real-Time Interfaces

different input assumptions and output guarantees of all interconnected
interfaces into relation.

Ex. 9: To illustrate the above concepts on a simple example, imagine a component as
depicted in Figure 54(a). The component has two input variables a and b, and one
output variable c, and a component description, expressed by c = b−a. To put this
component in a context, lets suppose it is the abstraction of a concrete component,
and it is used to analyze real-time properties of the concrete component, very
similar to the abstract components introduced in Chapter 2. We could then
interpret this component as follows: input variable a describes the resource
demand of an arriving event stream, while b describes the resources available to
process the arriving event stream. Output variable c would then describe the
resources that remain unused after processing the resource demand a.

(c)

b

c

(b)(a)

a

bA

cG

aA

bAbG

c AcG

aA

aG

Fig. 54: (a) A simple component, (b) its interface with assumptions on the inputs and
guarantees on the output, and (c) its interface including the input guarantees
and output assumptions of connected interfaces.

Figure 54(b) depicts an A/G interface for the component in Figure 54(a).
Although not depicted explicitly, this interface also has the two input variables
a and b and the output variable c. Through its predicates, the interface puts
constraints on the environment by assuming that a ≤ aA and b ≥ bA. In return,
it guarantees that c ≥ cG. In other words, these predicates express that the
interface assumes that at least bA resources are available to process an arriving
resource demand of at most aA, and it guarantees that at least cG resources will
remain after processing the arriving event stream.

When this interface gets connected to other interfaces, these will provide
output guarantees on their output variables, e. g. a ≤ aG and b ≥ bG, and input
assumptions on their input variables, e. g. c ≥ cA, as depicted in Figure 54(c).
Considering the definition of compatibility, we then see that our component is
compatible with a component that provides an input to a, if the output guarantee
a ≤ aG of the connected interface complies with the input assumption a ≤ aA of
our interface, i. e. if aG ≤ aA. Analogously our interface can be composed with an

5.2. Real-Time Interfaces 113

interface that provides an input to b if bG ≥ bA, and the output c of our interface
can serve as input to another interface if cA ≤ cG. Or in other words, the arrival
input of our interface can be connected to the arrival output of an interface that
guarantees less resource demand arrival than our interface assumes, the service
input of our interface can be connected to the service output of an interface
that guarantees to provide more resources than assumed by our interface, and
the service output of our interface can be connected to the service input of an
interface that assumes less resources than guaranteed by our interface.

To support dynamic adaptability, we must then find the correct set of interface
relations, that bring the different input assumptions and output guarantees of all
interconnected interfaces into relation. For our interface, these interface relations
can be established as cG = bG − aG, aA = bG − cA, and bA = aG + cA.

5.2 Real-Time Interfaces
Real-time interfaces can be considered as a special instance of A/G inter-
faces, tailored towards assumptions and guarantees on the throughput
and delay of events, and the availability of resources. Based on Example 9
in the previous section, we identify three steps that eventually yield to a
component system for interface-based design of real-time systems:

1. First, we need to define an abstract component that describes the
real-time properties of a concrete HW/SW system component. This
entails defining proper abstractions for component inputs and out-
puts as well internal component relations that meaningfully relate
abstract inputs to abstract outputs.

2. To derive the interface of an abstract component we then need to
define interface variables as well as input and output predicates on
these interface variables.

3. Finally, to enable dynamic adaptability, we need to establish the
internal interface relations that relate incoming guarantees and as-
sumptions to outgoing guarantees and assumptions of the interface.

The following Section 5.2.1 is dedicated to Step 1, while Section 5.2.2 is
dedicated to Step 2. Establishing the internal interface relations for Step 3
is then the central part of Section 5.3.

5.2.1 Abstract Real-Time Components
In general, any abstract component of the MPA framework could serve
as basis to establish corresponding Real-Time Interfaces. However, in

114 Chapter 5. Interface-Based Design with Real-Time Interfaces

this chapter we will focus on a slightly reduced version of an abstract
greedy processing component as introduced in Section 2.4. Compared
to the abstract greedy processing component of Section 2.4, we will not
consider an arrival curve output. This leads to a component as depicted
in Figure 55(a). Moreover, we will model an event stream only with an
upper arrival curve, denoted as α, and an associated maximum allowable
delay d, and we will model a resource availability only with a lower
service curve, denoted as β.

(c)

β

β'

(b)(a)

α , d

βA

β'G

α A, dA

βAβG

β'Aβ'G

α A

αG

, dA

, dG

Fig. 55: (a) An abstract component, (b) its interface with assumptions on the inputs and
guarantees on the output, and (c) its interface including the input guarantees
and output assumptions of connected interfaces.

Following (2.10), we know that if an event stream with (upper) arrival
curve α is processed by such an abstract component on a resource with
(lower) availability β, then the remaining resources that are not consumed
by the abstract component can be bounded by the (lower) service curve

β′ = (β − α) ⊗ 0
de f
= RT(β, α) (5.2)

And following (2.11), we know that the maximum delay experienced by
an event at such an abstract component is bounded by

dmax ≤ Del(α, β) (5.3)

5.2.2 Interface Variables and Predicates
A real-time interface of an abstract component as introduced above has
input and output variables related to event streams (arrival variables α
and delay variables d), and resource availabilities (service variables β).

An arrival variable consists of an arrival curve α, and a delay variable
consists of a maximum allowable event delay d. The output guarantee on
an arrival variable contains the bound αG, and the output predicate φO

5.3. A Component System with Interfaces 115

guarantees α(Δ) ≤ αG(Δ). The output guarantee on a delay variable on the
other hand contains the bound dG, and the output predicateφO guarantees
d ≥ dG. Thus, the interface of an event stream, with the guarantees αG

and dG, expresses that the event stream has an arrival curve less or equal
αG, and a maximum allowable delay larger or equal than dG. The input
assumptions on an event stream then contain the bounds αA and dA,
and the input predicate φI reflects the assumptions α(Δ) ≤ αA(Δ) and
d ≥ dA. The value of a service variable consists of a service curve β, and
the output guarantee on a service variable contains the bound βG, and
the output predicate φO guarantees β(Δ) ≥ βG(Δ). The input assumption
contains the bound βA, and the input predicate φI reflects the assumption
β(Δ) ≥ βA(Δ). Figure 55(b) depicts the interface of the abstract component
of Figure 55(a).

In order to determine whether two abstract components are compat-
ible, we can check whether their interfaces are compatible. To this end,
we need to check the relation φO ⇒ φI for all connections, given the
quantities depicted in Figure 55(c). Event stream connections are thereby
compatible, if

(dA ≤ dG) ∧ (αA(Δ) ≥ αG(Δ)) ∀ Δ ≥ 0 (5.4)

while a service connection is compatible, if

βA(Δ) ≤ βG(Δ) ∀ Δ ≥ 0 (5.5)

We can then generalize that two interfaces are compatible if (5.4) and (5.5)
are true or satisfiable for all internal event stream and service connections,
respectively, and if the input predicates of all open input variables are still
satisfiable. The relations (5.4) and (5.5) are depicted in Figure 56(a) and
56(b), respectively.

5.3 A Component System with Interfaces
In Chapter 2, we introduced three types of models, models of the en-
vironment, models of resources, and models of tasks and components,
that serve together as basic building blocks of a performance model for
performance analysis within the MPA framework. To establish a compo-
nent system with Real-Time Interfaces for interface-based design within
the MPA framework, we accordingly distinguish between the same three
types of models. The environment is modeled by so-called event stream
components, resources are modeled by resource components, and appli-
cation tasks and HW/SW components are modeled by a range of different
processing components. Following, we define these components and
establish their internal interface relations.

116 Chapter 5. Interface-Based Design with Real-Time Interfaces

βGβA β

Assumption
Guarantee

Value

αG

α

αA

d GdA d

Ass
um

ptio
n

Guara
nte

e Value

(a) (b)

Fig. 56: Relation between interface assumptions, interface guarantees, and variable val-
ues. (a) At an event stream connection, and (b) at a service connection.

5.3.1 Event Stream Component
Def. 13: (Event Stream Component) An event stream component models an event

stream with a real-time delay constraint. The Real-Time Interface of an event
stream component has a single arrival output variable and a single delay output
variable, with the output guarantee

φO = (α ≤ αG) ∧ (d ≥ dG) (5.6)

Through the output guarantee of its Real-Time Interface, an event
stream component expresses that the load α(Δ) that is emitted through its
arrival output is always less or equal αG(Δ) for any time interval Δ, and
that the delay requirement d for this load is larger or equal dG. Figure 57(a)
depicts the interface of an event stream component.

5.3.2 Resource Component
Def. 14: (Resource Component) A resource component models a computing or com-

munication resource. The Real-Time Interface of a resource component has a
single service output variable with the output guarantee

φO = (β ≥ β̂G) (5.7)

Through the output guarantee of its Real-Time Interface, a resource
components expresses that the service β(Δ), that is provided by the com-
ponent on its service output, is always larger or equal βG(Δ) for any time
interval Δ. Figure 57(b) depicts the interface of a resource component.

5.3.3 Processing Component for FP Scheduling
Def. 15: (Processing Component for FP Scheduling) A processing component for

preemptive fixed priority scheduling models a task in a real-time system,

5.3. A Component System with Interfaces 117

βAβG

(b)(a)

α A

αG

, dA

, dG

βAβG

β'Aβ'G

FP

(c)

α A

αG

, dA

, dG

RM

(d)

βAβG

β'Aβ'G

(e)

EDF

βAβG

β'Aβ'G

α1
A

α1
G

, d1
A

, d1
G

α2
A

α2
G

, d2
A

, d2
G

(f)

FIFO

βAβG

β'Aβ'G

α1
A

α1
G

, d1
A

, d1
G

α2
A

α2
G

, d2
A

, d2
G

Fig. 57: (a) An event stream component, (b) a resource component, (c) a processing
component for FP scheduling, (d) a processing component for RM scheduling,
(e) a processing component for EDF scheduling, and (f) a processing component
for FIFO scheduling.

that shares system services with a fixed priority scheduling strategy, and that
uses the available system services to process real-time event streams. The Real-
Time Interface of a processing component for FP scheduling has an arrival input
variable, a delay input variable, a service input variable, and a service output
variable. The interface has the input assumption

φI = (α ≤ αA) ∧ (d ≥ dA) ∧ (β ≥ βA) (5.8)

and the output guarantee
φO = (β′ ≥ β′G) (5.9)

With the input assumptions and the output guarantees of its Real-Time
Interface, a processing component for fixed priority scheduling expresses
that whenever (a) the service β(Δ) that is provided to the component on
its service input is larger or equal βA(Δ) for any Δ, and (b) the load α(Δ)
that arrives at the component on its arrival input is less or equal αA(Δ) for
any Δ and has a maximum required delay that is larger or equal dA, then
(i) the arriving load can be processed in real-time, i. e. with a guaranteed
delay dmax ≤ dA ≤ dG, and (ii) the service β′(Δ) that is provided by the
component on its service output is always larger or equal β′G(Δ) for any
time interval Δ, and can be used by lower-priority tasks. Figure 57(c)
depicts the interface of a processing component for FP scheduling.

To enable dynamic adaptability of the interface of a processing com-
ponent, we must next establish the internal interface relations that relate

118 Chapter 5. Interface-Based Design with Real-Time Interfaces

the incoming guarantees and assumptions to outgoing guarantees and
assumptions of the component interface.

The internal interface relations to compute β
′G and dA can be directly

derived from (5.2) and (5.3), respectively. To compute the input service
assumption βA on the other hand, we must consider the delay constraint

βA(Δ) ≥ αG(Δ − dG) (5.10)

and the resource constraint

βA(Δ) ≥ inf
{
β : β

′A(Δ) = sup
0≥λ≥Δ

{β(λ) − α̂G(λ)}
}

(5.11)

The tightest βA is then the maximum of both expressions. And to compute
the input arrival assumption α̂A, we must consider the delay constraint

αA(Δ) ≤ βG(Δ + dG) (5.12)

and the resource constraint

αA(Δ) ≤ sup
{
α : β

′A(Δ) = sup
0≥λ≥Δ

{βG(λ) − α(λ)}
}

(5.13)

The tightest αA is then the minimum of both expressions.
To take into account the resource constraints (5.11) and (5.13), we

must construct the inverse of the resource transformation RT(β, α) that is
defined by (5.2). We can determine the inverse of (5.2) with respect to α
as the largest α(Δ) such that (5.2) holds, given β′ and β

α(Δ) = β(Δ + λ) − β′(Δ + λ) for λ = sup
{
τ : β′(Δ + τ) = β′(Δ)

}
de f
= RT−α(β′, β) (5.14)

and we can determine the inverse of (5.2) with respect to β as the smallest
β(Δ) such that (5.2) holds, given β′ and α

β(Δ) = β′(Δ − λ) + α(Δ − λ) for λ = sup
{
τ : β′(Δ − τ) = β′(Δ)

}
de f
= RT−β(β′, α) (5.15)

Using these inverses, we can establish the complete set of interface
relations in a processing component for FP scheduling:

β
′G = RT(βG, αG) (5.16)

βA = max
{
αG(Δ − dG),RT−β(β

′A, αG)
}

(5.17)

αA = min
{
βG(Δ + d̂G),RT−α(β

′A, βG)
}

(5.18)

dA = Del(βG, αG) (5.19)

5.3. A Component System with Interfaces 119

5.3.4 Processing Component for RM Scheduling
Def. 16: (Processing Component for RM Scheduling) A processing component

for rate monotonic scheduling models a set of n tasks in a real-time system,
that share system services with a rate monotonic scheduling strategy, and that
use the available system services to process n real-time event streams. The Real-
Time Interface of a processing component for RM scheduling has a service input
variable, and a service output variable. The interface has the input assumption

φI = (β ≥ βA) (5.20)

and the output guarantee
φO = (β′ ≥ β′G) (5.21)

With the input assumption and the output guarantee of its Real-
Time Interface, a processing component for rate monotonic scheduling
expresses that whenever (a) the service β(Δ) that is provided to the com-
ponent on its service input is larger or equal βA(Δ) for any Δ, then (i) the
n arriving loads can be processed in real-time, and (ii) the service β′(Δ)
that is provided by the component on its service output is always larger
or equal β

′G(Δ) for any time interval Δ, and can be used by lower-priority
tasks. Figure 57(d) depicts the interface of a processing component for
RM scheduling.

Rate monotonic scheduling [LL73] is a special instance of preemptive
fixed priority scheduling for a set W = {Ti} of n real-time event streams
that can all be described by the periodic task model T(pi, ei), where pi

is a period, and ei is an execution time requirement with ei ≤ pi, and
that all have a relative delay requirement of di = pi. Internally, such a
processing component for RM scheduling can be modeled by n event
stream components that are connected to n processing components for FP
scheduling. The n event stream components have the output guarantee
bounds αG(Δ) =
Δ/pi� · ei and dG = pi, and the n processing components
for FP scheduling are interconnected by their service connection, ordered
from top to down, according to the decreasing periods of their input event
streams.

5.3.5 Processing Component for EDF Scheduling
Def. 17: (Processing Component for EDF Scheduling) A processing component

for preemptive earliest deadline first scheduling models a set of n tasks
in a real-time system, that share system services with an earliest deadline first
scheduling strategy, and that use the available system services to process n real-
time event streams. The Real-Time Interface of a processing component for
EDF scheduling has n arrival input variables and n corresponding delay input

120 Chapter 5. Interface-Based Design with Real-Time Interfaces

variables, a service input variable, and a service output variable. The interface
has the input assumption

φI =
∧
∀i

(
(αi ≤ αA

i) ∧ (d ≥ dA
i)

)
∧ (β ≥ βA) (5.22)

and the output guarantee
φO = (β′ ≥ β′G) (5.23)

With the input assumptions and the output guarantees of its Real-Time
Interface, a processing component for earliest deadline first scheduling
expresses that whenever (a) the service β(Δ) that is provided to the com-
ponent on its service input is larger or equal βA(Δ) for anyΔ, and (b) for all
arrival inputs, the load αi(Δ) that arrives at the component on its ith arrival
input is less or equal αA

i (Δ) for any Δ, and has a maximum required delay
that is larger or equal dA

i , then (i) the arriving loads can be processed in
real-time, i. e. with a respective guaranteed delay dmax,i ≤ dA

i ≤ dG
i , and (ii)

the service β′(Δ) that is provided by the component on its service output
is always larger or equal β

′G(Δ) for any time interval Δ, and can be used
by lower-priority tasks. Figure 57(e) depicts the interface of a processing
component for EDF scheduling.

In an EDF component, the total resource demand that the n arriving
event streams generate can be bounded by the sum of their arrival curves.
We therefore get the resource transformation of an EDF component, if we
replace αwith

∑
∀i α in (5.2). From this, we can already derive the internal

interface relation to compute β′G for an EDF component.
To compute the input service assumption βA, we must consider the

delay constraints of all n arriving event streams

βA(Δ) ≥
∑
∀i

αG
i (Δ − dG

i) (5.24)

as well as the resource constraint

βA(Δ) ≥ inf

⎧⎪⎪⎨⎪⎪⎩β : β
′A(Δ) = sup

0≥λ≥Δ

⎧⎪⎪⎨⎪⎪⎩β(λ) −
∑
∀i

αG
i (λ)

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (5.25)

The tightest βA is the maximum of both expressions.
To compute the input arrival assumption for the jth arrival input αA

j
on the other hand, we first need to know, which share of the resource
guarantee βG is available to process the jth arriving event stream in an
EDF component. From (5.24) and (5.4) and (5.5), we know that∑

∀i

αA
i (Δ − dG

i) ≤ βG(Δ) (5.26)

5.3. A Component System with Interfaces 121

and if we look at αA
j of a single event stream, we get

αA
j (Δ − dG

j) ≤ inf
0≤λ

⎧⎪⎪⎨⎪⎪⎩βG(Δ + λ) −
∑
∀i� j

αA
i (Δ − dG

i + λ)

⎫⎪⎪⎬⎪⎪⎭
de f
= βG

EDF, j (5.27)

The right side of (5.27) equals the share of the resource βG that is available
to process the jth arriving event stream.

To compute αA
j , we then need to consider the delay constraint

αA
j (Δ) ≤ βG

EDF, j(Δ + dG) (5.28)

and the resource constraint

αA
j (Δ) ≤ sup

{
α : β

′A(Δ) = sup
0≥λ≥Δ

{
βG

EDF, j(λ) − α(λ)
}}

(5.29)

The tightest αA
j is the minimum of both expressions.

Using the inverses of (5.2) that are defined by (5.14) and (5.15), we
can then establish the complete set of interface relations in a processing
component for EDF scheduling:

β
′G = RT(βG,

∑
∀i

αG
i) (5.30)

βA = max

⎧⎪⎪⎨⎪⎪⎩
∑
∀i

αG
i (Δ − dG

i),RT−β
⎛⎜⎜⎜⎜⎜⎝β′A,

∑
∀i

αG
i

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (5.31)

αA
j = min

{
βG

EDF, j(Δ + dG
j),RT−α(β

′A, βG
EDF, j)

}
(5.32)

dA
j = Del(βG

EDF, j, α
G
j) (5.33)

5.3.6 Processing Component for FIFO Scheduling
Def. 18: (Processing Component for FIFO Scheduling) A processing component

for first in first out scheduling models a set of n tasks in a real-time system, that
share system services with a first in first out scheduling strategy, and that use
the available system services to process n real-time event streams. The Real-Time
Interface of a processing component for FIFO scheduling has n arrival input
variables and n corresponding delay input variables, a service input variable,
and a service output variable. The interface has the input assumption

φI =
∧
∀i

(
(αi ≤ αA

i) ∧ (d ≥ dA
i)

)
∧ (β ≥ βA) (5.34)

and the output guarantee
φO = (β′ ≥ β′G) (5.35)

122 Chapter 5. Interface-Based Design with Real-Time Interfaces

With the input assumptions and the output guarantees of its Real-
Time Interface, a processing component for first in first out scheduling
expresses that whenever (a) the service β(Δ) that is provided to the com-
ponent on its service input is larger or equal βA(Δ) for anyΔ, and (b) for all
arrival inputs, the load αi(Δ) that arrives at the component on its ith arrival
input is less or equal αA

i (Δ) for any Δ, and has a maximum required delay
that is larger or equal dA

i , then (i) the arriving loads can be processed in
real-time, i. e. with a respective guaranteed delay dmax,i ≤ dA

i ≤ dG
i , and (ii)

the service β′(Δ) that is provided by the component on its service output
is always larger or equal β′G(Δ) for any time interval Δ, and can be used
by lower-priority tasks. Figure 57(f) depicts the interface of a processing
component for FIFO scheduling.

First in first out scheduling can be implemented as a special instance
of earliest deadline first scheduling, where the same deadline is assigned
to all processed event streams. And to ensure the delay requirements
of all event streams, this deadline must equal the smallest deadline of
all processed event streams, that is DFIFO = min∀i{Di}. A processing
component for FIFO scheduling can thus be modeled by a processing
component for EDF scheduling, where the deadline for all n event streams
is set to D∗

i = DFIFO.

5.4 Applications and Experimental Results
Interface-based design with Real-Time Interfaces enables a number of ap-
plications that contribute to a simplified system design process, and some
applications even lead to interesting on-line applications. Following, we
introduce a number of applications of interface-based design within the
MPA framework.

5.4.1 Application Scenario
Consider the real-time system depicted in Figure 58(a), that processes
three real-time event streams R1, R2, and R3, on three fully preemptable
and independent tasks T1, T2, and T3, that run on a processor PI, that
implements a preemptive fixed priority scheduling policy to share its
available resources among the three tasks. The highest priority is thereby
assigned to task T1, while task T3 runs with the lowest priority. The events
on event stream R1 arrive with a period PR1 = 4s, and a jitter JR1 = 3s,
have an execution demand of eR1 = 3E8 cycles, and a relative deadline
dR1 = 1.5s. On event stream R2 on the other hand, the events arrive with
a period PR2 = 2s, a jitter JR2 = 10s, and a minimum inter-arrival distance
DR2 = 0.3s, have an execution demand of eR2 = 1.5E8 cycles, and a relative

5.4. Applications and Experimental Results 123

deadline dR2 = 10s. And event stream R3 is specified by PR3 = 7s, JR3 = 15s,
DR3 = 3s, eR3 = 5E8 cycles, and dR3 = 20s. The processor is fully available
to process the three tasks, and runs with a frequency fPI = 350MHz.

(b)

PI

T1
R1

T2
R2

T3
R3

(a)

T1

αR1

A

αR1

G

βT2

AβT1

G

βT1

AβPI

G

T2

αR2

A

αR2

G

βT3

AβT2

G

T3

αR3

A

αR3

G

β = 0AβT3

G

R1

R2

R3

PI

FP

FP

FP

, dR1

A

, dR1

G

, dR2

A

, dR2

G

, dR3

A

, dR3

G

Fig. 58: (a) A stream processing real-time system, and (b) its Real-Time Interface model.

For interface-based design, we first need to specify the various system
components and their interfaces. We model the processor with a resource
component with a service guarantee βG(Δ) = 3.5e8 cycles·Δ. We further
model the three event streams with three event stream components, with
a respective delay guarantee dG

Ri
= dRi , and a load guarantee αRi(Δ) that

we compute from PRi , JRi , DRi and eRi , using (2.2), and multiplying the
resulting curve with eRi . Finally, we model the three tasks using three
processing components for FP scheduling. We then compose the inter-
faces of all these components to the complete system interface model, as
depicted in Figure 58(b).

5.4.2 Interface-Based Schedulability Analysis
With interface-based design, schedulability analysis is done implicitly
during system composition. Thus, since we can successfully compose
all component interfaces of the application scenario, as depicted in Fig-
ure 58)(b), we are guaranteed that the system as specified is schedulable.

124 Chapter 5. Interface-Based Design with Real-Time Interfaces

Figure 59 depicts the A/G arrival bounds at the three event stream
connections within the system interface model. And as expected, we see
that the load guarantees αG

Ri
(Δ) at these connections are smaller than the

respective the load assumptionsαA
Ti

(Δ), which complies to the requirement
(5.4) for interface compatibility at event stream connections.

0 10 20 30 40 50
0

2

4

6

8

10

Δ [s]

cy

cl
es

 [x
 1

09]

0 10 20 30 40 50
0

2

4

6

8

10

Δ [s]

cy

cl
es

 [x
 1

09]

0 10 20 30 40 50
0

2

4

6

8

10

Δ [s]

cy

cl
es

 [x
 1

09]

αT2

A

αR2

G

αT1

A

αR1

G

αT3

A

αR3

G

Fig. 59: The output arrival guarantees αG
Ri

, and the input arrival assumptions αA
Ti

, at the
three event stream connections of the event streams R1, R2, and R3.

5.4. Applications and Experimental Results 125

5.4.3 Interface-Based System Design

Interface-based design of real-time systems benefits from all advantages
of interface-based design as described in [dAH05]. These enable a variety
of interesting design applications. The property of incremental design,
together with the property of dynamic adaptability, allows for example
to design a real-time system by first composing all event stream and
processing components. This leads to an interface model with only one
open service input with a service input assumption βA

tot. And according
to (5.5), it is guaranteed that the complete system is schedulable on any
resource with a service output guarantee βG

tot ≥ βA
tot. This means that once

we know βA
tot, we can directly decide whether a system is schedulable on a

resource with a given service guarantee βG
tot. In particular, we do not need

to do any schedulability analysis, other than checking the relation βGtot ≥
βA

tot, that is the complete system schedulability information is encoded in
βA

tot.

Figure 60 depicts the A/G service bounds at the service connections
within the system interface model. As expected, we see that the service
guarantee βG

PI
(Δ) at the connection between the resource component and

the processing component of task T1 is larger than the service assumption
βA

T1
(Δ), which complies to the requirement (5.5) for interface compatibility

at service connections. Suppose now that a designer wants to exchange
processor PI for a faster processor PII with a frequency fPII = 600MHz, that
applies a TDMA policy to share its resources with other applications, and
that allocates a slot of 1s within every cycle of length 2s to our application.
To guarantee that this processor exchange retains the system schedula-
bility, the designer only needs to check that the service guarantee βG

PII
(Δ)

of processor PII is larger than the total service assumption βA
T1

(Δ) of our
application, which is true, as we can see in the same figure.

Analogously, by looking at the service input assumption βAT1
of the

complete system, a system designer can directly find the tightest possible
service guarantee with βG

PI
≥ βA

T1
. By choosing the most economic proces-

sor, that still conforms to this tight service guarantee, he then obtains an
economic real-time system that guarantees system schedulability, with-
out being over-dimensioned. This design procedure stands in contrast
to traditional system design, where resource components are chosen a
priori, and performance analysis methods are used a posteriori to decide
whether the system is schedulable or not. In this traditional approach,
economic designs must be found by trial-and-error, i. e. by parameter
sweeps or binary search.

126 Chapter 5. Interface-Based Design with Real-Time Interfaces

0 10 20 30 40 50
0

2

4

6

8

10

12

Δ [s]

cy

cl
es

 [x
 1

09]
βPII

G

βT1
=βtot

AβPI

G

βT2

A

βT3

A

A

Fig. 60: The output service guarantees βG
PI

for a processor PI that is fully available, and
βG

PII
for a processor that provides a TDMA resources share, together with the

input service assumptions βA
T1

, βA
T2

, and βA
T3

, of the three processing components
of the tasks T1, T2, and T3. Note, of the three depicted input service assumptions,
only βA

T1
needs to be considered to check schedulability.

5.4.4 Interface-Based System Adaption

After composition of the complete system, the assumtion bounds on all
internal component connections specify the maximum arrival load, the
minimum deadline, and the minimum service, respectively, that is al-
lowable at the specific connection to keep the system schedulable. We
can exploit this information to adapt for example the load on our system
up to the maximum limit without trial-and-error, and therefore without
the danger of rendering the system to become unschedulable. Or anal-
ogously, we could also directly reduce the service to our system down
to the minimum, as we already mentioned above, or we could directly
reduce the delay requirement to the minimum allowable deadline.

Figure 61 depicts the service assumption βA
T1

of the complete system.
From this assumption, we learn that the processor PI could lower its
frequency from initially fPI = 350MHz down to f ∗PI

= 258MHz. Figure 62
on the other hand, depicts the arrival assumption αA

T2
of task T2. We see

that the arrival guarantee αG
R2

of event stream R2 does currently by far
not exploit this assumption. We can therefore for example increase the

5.4. Applications and Experimental Results 127

arrival rate of R2, by changing its period from PR2 = 2s to P∗R2
= 1s (to

retain the same burstiness, we decrease the jitter from JR2 = 10s down
to J∗R2

= 4s). Since the new arrival guarantee αG∗
R2

still complies with αA
T2

,
we are guaranteed that the system remains schedulable after this load
adaption. Further, when we compute the delay assumption dA

T2
= 3s

for the system after the load adaption, we learn that we could decrease
the delay guarantee of R2 from dG

R2
= 10s down to dG∗∗

R2
= 3s. This will

change the arrival assumption of T2, and since the arrival guarantee αG∗
R2

still complies with the new arrival assumption αA∗∗
R2

, we are guaranteed
that the system remains also schedulable after this delay requirement
adaption.

0 10 20 30 40 50
0

2

4

6

8

10

12

Δ [s]

cy

cl
es

 [x
 1

09]

Sevice Adaptio
n

βPI

G*
βPI

G
βT1

A

Fig. 61: The output service guarantee βG
PI

of processor PI with fPI = 350MHz, and the
output service guarantee βG∗

PI
after the service adaption to f ∗PI

= 258MHz, together
with the input service assumption βA

T1
of task T1, that encodes the input service

assumption of the complete system.

These interface-based system adaptions would also be interesting to
be conducted on-line on a real-time system. This would be particularly
interesting in the area of power-aware real-time systems or real-time sys-
tems for QoS-applications, where we would deploy the interface model
of the complete real-time system under consideration together with the
concrete system.

128 Chapter 5. Interface-Based Design with Real-Time Interfaces

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

Δ [s]

cy

cl
es

 [x
 1

09]

Load Adaption

Delay
 A

daptio
n

αR2

G*

αT2

A αT2

A**

αR2

G

Fig. 62: The output arrival guarantee αG
R2

of event stream R2, and the output arrival
guarantee αG∗

R2
of event stream R2 after increasing the arrival rate, together with

the input arrival assumption αA
T2

of task T2, and the input arrival assumption
αA∗∗

R2
of task T2 after decreasing the delay guarantee of R2.

5.4.5 Interface-Based Admission Tests

Another application of Real-Time Interfaces are interface-based admission
tests. For this, we add a dummy processing component with a connected
dummy event stream component with αG = 0 and dG = ∞ at every
existing service interface connection of the system interface model. These
additional process components, that add new event stream inputs to
the system interface, have no influence to the compatibility of the initial
system interface, since the load of added the event streams are zero.
But the assumptions αA

T4,i
and dA

T4,i
on the corresponding event stream

connections contain a detailed specification of the load that could be
processed by an additional task T4, when scheduled with the priority i.
When we then add a new task T4 to process a periodic event stream R4

with PR4 = 10s, eR4 = 6E8 cycles, and dR4 = 4s, we only need to check the
load guarantee αG

R4
, with the various load assumptions αA

T4,i
, to determine

whether this load can be admitted, and if yes with what priority T4 should
run. From the bounds depicted in Figure 63, we learn that the event stream
R4 can be admitted, but only with a task T4 that is scheduled at priority
pT4 = 2. Any other priority assignment of T4 would render the system

5.5. Related Work 129

unschedulable.

0 10 20 30 40 50
0

1

2

3

4

5

Δ [s]

cy

cl
es

 [x
 1

09] αR4

G

αT4,1
A

αT4,2
A

αT4,3
A

αT4,4
A

pT4
=1

pT4
=2

pT4
=3 pT4

=4

Fig. 63: Interface-based admission test.

5.5 Related Work
In [dAH01b] and [dAH05], de Alfaro and Henzinger first describe the
principles of interface-based design that build the foundation for Real-
Time Interfaces. Although de Alfaro and Henzinger mention A/G in-
terfaces in their work, their interface theory research is mainly centered
around the stateful interface language of interface automata [dAH01a],
including extensions towards the use of time [dAHS02], or resources
[CdAHS03]. With these interface languages, the temporal input/output
behavior of a component is modeled by an automaton, and the automa-
ton of a composite interface is constructed by pruning all violating states
from the product of the component interface automata.

In [WRM+05], Wang et al. propose a method for component-based
analysis and design of real-time system, that uses the notion and con-
cept of traditional software component standards such as CORBA. Wang
et al. propose extensions in the interface of such software components
to include static real-time assumptions and guarantees. These static as-
sumptions and guarantees are expressed using a restricted set of arrival
curves, together with a deadline, and allow to model assumptions and

130 Chapter 5. Interface-Based Design with Real-Time Interfaces

guarantees on the load that can be processed by a component. The pro-
posed interfaces have however no notion of resource utilization.

In [SL04], Shin et al. propose a compositional scheduling framework
to determine the schedulability of real-time systems with a set of applica-
tions that are scheduled hierarchically. In this framework, the resource de-
mand of a single task is represented as a demand bound function dbf(Δ),
and a scheduling component has as input the set of demand bound func-
tions of all tasks that are scheduled by this component. Depending on
the associated scheduling strategy, a scheduling component then deter-
mines the total demand to schedule all tasks and expresses this again
as a demand bound function on its output. Scheduling components can
then be composed hierarchically, and the complete system is schedulable
if the demand of the scheduling component at the top of the hierarchy
can be fulfilled by a dedicated resource that is represented with a sup-
ply bound function sbf(Δ). Although Shin et al. do not relate their work
to interface-based design, it implicitly features several concepts known
from this area. Demand bound functions express service assumptions
of a scheduling component, and supply bound functions express service
guarantees of a dedicated resource. A system is then schedulable, if the
service assumption of the complete system is smaller than the service
guarantee of the dedicated hardware.

In the area of real-time scheduling theory, several other methods were
proposed that also use the concept of demand bound functions dbf(Δ) and
supply bound functions sbf(Δ) for compositional schedulability analysis,
see for example [Bar03], [SL03], or [AP04]. In general, with these func-
tions, a component is considered to be schedulable, if dbf(Δ) ≤ sbf(Δ) ∀Δ.
The same concept also exists in the theory of Real-Time Interfaces, where
the bound βA(Δ) of the input assumption on a service connection can be
interpreted as a demand bound function dbf(Δ), and the bound βG(Δ)
of the output guarantee on a service connection can be interpreted as
a supply bound function sbf(Δ). Then, the compatibility requirement
(5.5) on a service connection equals the above schedulability requirement
dbf(Δ) ≤ sbf(Δ).

Common to all of this previous work in the area of real-time schedul-
ing theory is the use of very restricted models to propagate constraints
(resource demands) between different hierarchy layers. All methods use
either a periodic or a bounded delay resource model, to model the resource
demand at any given level of hierarchy. The actual resource demand at
a given level of hierarchy is however typically more complex, and con-
sequently a considerable abstraction overhead is introduced with every
level of hierarchy. Moreover, the methods presented in [SL03, SL04, BL03]
only consider systems that are triggered by strictly periodic event streams,
while [AP04] considers only periodic event streams with jitter, and they

5.6. Discussion 131

all do not explicitly express assumptions on the processed event streams.
In [HM06], Henzinger et al. propose an approach to interface-based

design of real-time systems that relies on stateless A/G interfaces. In this
approach, a single task sequence is represented by an interface that spec-
ifies assumptions on the input event stream and the available resources,
and that gives guarantees about the output event stream. The input and
output event streams are both modeled using a restricted class of arrival
curves, and the former are further augmented with an associated delay.
Assumptions on the resource availabilities on the other hand are modeled
using so-called capacity functions [SL04], each representing a whole class
of bounded delay resource models. The use of these capacity functions
largely restricts the applicability of the method proposed by Henzinger
et al. , because for interface compatibility as defined in [HM06], the ser-
vice assumption of a tasks sequence component, represented as a capacity
function, must me smaller than the service guarantee of a resource com-
ponent, also represented as a capacity function. This implicates that the
whole class of bounded delay resource assumptions modeled by the ca-
pacity function of the tasks sequence component must be smaller than
the whole class of bounded delay resource guarantees modeled by the
capacity function of the resource component. In practice however, it is
sufficient, if one single bounded delay assumption of the task sequence
component is smaller than the corresponding bounded delay guarantee of
the resource component. Moreover, the method presented by Henzinger
et al. does not support independent implementability.

5.6 Discussion
Real-Time Interfaces connect the principles of interface-based design and
Real-Time Calculus, and can therefore fall back to a wide range of already
established results for both of these theories. It is also because of this,
that the theory of Real-Time Interfaces is not confined to the interface
models and component system presented in this chapter, but can instead
be generalized into various directions.

In this chapter, the interfaces of components expose the assumptions
and guarantees on the arriving loads, the associated minimum dead-
lines, and the service supplies. However, a component could also expose
additional information on its interface. An abstract component could for
example express an assumption bA on the available buffer space to process
the incoming event stream, and in return, a resource component could
provide a guarantee bG on the minimum available buffer space. The com-
patibility predicate (5.5) on a service connection would then be extended
by a predicate bA ≤ bG, and in the internal interface relations of the pro-

132 Chapter 5. Interface-Based Design with Real-Time Interfaces

cessing components, an additional buffer space constraint would have to
be considered, that would for example add an additional constraint to
(5.17) and (5.18).

Another extension of Real-Time Interfaces would make them applica-
ble for the design and analysis of distributed embedded systems. For this,
we would need to extend the abstract components of Section 5.3, with an
output that models an outgoing event stream, equal to the abstract com-
ponents introduced in Chapter 2. A processing component would then
have an additional output event stream connection, with a corresponding
output guarantee, and an input assumption from the connected succeed-
ing processing component. This additional assumption would add yet
another constraint to the internal interface relations of a processing com-
ponent. It must be noted that with such an extended component system
it is possible to construct interface models with cyclic dependencies be-
tween the guarantees and the assumptions on an interface variable. In
general, interface compatibility checking requires then a fixed point cal-
culation. However for many practical system designs this may not be
required.

Finally, the component system introduced in Section 5.3 could in prin-
ciple also be extended with any other abstract components of the MPA
framework, such as for example greedy shaper components or compo-
nents with multiple inputs, as introduced in Chapter 3.

6
Design & Analysis of Systems
with Hierarchical Scheduling

The advances in the field of computer architecture lead to increasingly
powerful microprocessors, and triggered a trend towards higher integra-
tion of functionality in embedded systems design. Previously, embedded
system architectures mostly employed low-cost microprocessors as the
basis for separate Electronic Control Units (ECUs), each supporting a
single hard real-time application. Modern embedded system architec-
tures on the other hand are often comprised of a smaller number of more
powerful microprocessors, with each supporting multiple hard real-time
applications. This trend is mostly motivated by cost reductions, but also
the reuse of legacy applications, as well the opportunity of functionality
enhancements are driving factors.

The main question that arises when integrating a number of real-time
applications onto a single microprocessor, is how to schedule these appli-
cations such that their individual timing requirements are not violated.
The simplest method to compose several real-time applications onto a
single resource would be to use a unique scheduling policy for all ap-
plications. Schedulability analysis of the integrated system could then
be done using traditional analysis methods. However, this approach is
typically not applicable, since the applications are often implemented by
different vendors, and moreover because time and money constraints of-
ten force the re-use of already implemented applications. Moreover, this
approach is alos not practical and scalable, since it does not allow in-
dependent implementation of independent applications. Consequently,

134 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

the problem then becomes how to integrate real-time applications with
different individual scheduling policies onto a single resource, such that
the individual timing requirements are not violated. While this problem
is often addressed by introducing hierarchical schedulers, the difficulty
then consists of the schedulability and performance analysis of the hier-
archically scheduled applications, and of the parameter selection for the
hierarchical schedulers.

This chapter introduces new components that enable interface-based
design and analysis of systems with hierarchical scheduling within the
MPA framework. In the following Section 6.1, a component is introduced
that models a computation or communication resource with a TDMA
sharing policy, and methods are presented for optimal parameter selection
for such a component. In Section 6.2 on the other hand, components are
introduced that model polling servers within the MPA framework, both
for static as well as for dynamic scheduling policies, and methods are
presented to simplify parameter selection for such servers in a real-time
setting. The chapter concludes with a discussion in Section 6.3.

6.1 Time Division Multiple Access
In large distributed embedded systems, time division multiple access
(TDMA) scheduling policies play an increasingly important role, and are
often employed on backbone communication resources that interconnect
a large number of embedded control units (ECU’s). This trend can best
be observed in the area of safety-critical automotive and avionic sys-
tems, where TDMA-based communication protocols such as TTP [KG93],
or more recently the mixed TDMA/FTDMA-based FlexRay [BES+01, Fle]
replace the formerly omnipresent CAN protocol. But also for communica-
tion on MpSoC’s [HE05], as well as to provide QoS guarantees in network
on chips [GDvM+03], TDMA gets increasingly important. And besides
these communication centric applications, TDMA is also an interesting
candidate to coordinate global resource sharing on a single processor, to
enable composable and hierarchical scheduling.

The major advantages of TDMA-scheduled resources is the support of
temporal composability, by clearly separating resources access of different
subsystems. TDMA thus eliminates any sort of interference of unrelated
subsystems with each other. Moreover, TDMA-scheduled resources have
a very deterministic timing behavior, can be made fault tolerant, and
support error detection, as well as error contention, i. e. a faulty subsystem
does not affect the correct behavior of other subsystems. A major difficulty
that arises however during the design process of systems with TDMA-
scheduled resources is parameter selection. Customizable parameters are

6.1. Time Division Multiple Access 135

typically the total bandwidth B of the resource, the cycle length c of the
TDMA round, as well as the individual slot lengths si for the different
service consumers of the TDMA-scheduled resource.

6.1.1 Performance Analysis
Consider a real-time system consisting of n applications that are exe-
cuted on a resource with bandwidth B that controls resource access of
the n applications using a TDMA policy. Analogously, we could con-
sider a distributed real-time system with n communicating nodes, that
communicate via a shared bus with bandwidth B, with a bus arbitrator
that implements a TDMA policy. For both scenarios, the TDMA cycle
length is denoted as c̄ and can only take on values that are multiples of
the cycle length quantum qc. In every TDMA cycle, one single resource
slot of length si is assigned to every application. In a realistic system,
the slot lengths si can only take on values that are multiples of a slot
length quantum qs. We denote a quantized slot length as s̄i =
si/qs� · qs.
Further, every slot typically involves a slot overhead os, while the cycle
itself involves a cycle overhead oc. On communication resources, these
overheads account for example for required network idle times between
consecutive slots and cycles, CRC codes for channel fault detection, time
synchronization data, or any other protocol related overhead. On com-
putation resources, these overheads are typically smaller, and account for
example for context switches. Depending on the different timing speci-
fications, some bandwidth may remain unused in every communication
cycle. Figure 64 depicts the timing specifications of this TDMA protocol.

s1 s2

s1 s2

qs

c

os os oc

Application 1 Application 2 Application 1

Fig. 64: TDMA protocol timing specifications.

Within the MPA framework, an abstract computation or communica-
tion resource that implements such a TDMA protocol can be modeled by a
component as depicted in Figure 65(a), with the corresponding real-time
interface depicted in Figure 65(b). The component has a parameter B,
that determines the total bandwidth of the underlying resource, and the
cycle length of the TDMA protocol is specified by the parameter c̄. Fur-

136 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

ther, the component has n service outputs, that provide service with the
output guarantees βi(Δ) ≥ βG

i (Δ) to the n applications with input assump-
tions βA

i (Δ). Internally, the service output guarantee βG
i (Δ) is determined

from the slot length guarantee sG
i that is assigned to the ith application.

Analogously, the service input assumption βA
i (Δ) of an application can be

transformed into a minimum slot length assumption sA
i , as we will show

in this section. The fulfillment of the service demand of an application
can then be guaranteed directly by guaranteeing sG

i ≥ sA
i .

(b)(a)

β1
Aβ1

G βi
Aβi

G βn
Aβn

G

s1
As1

G si
Asi

G sn
Asn

G

TDMA (B, c)

β1 βi βn

s1 si sn

TDMA (B, c)

Fig. 65: (a) An abstract resource component with TDMA scheduling, and (b) its Real-
Time Interface.

To determine the service guarantee βG
i (Δ) to an application, we must

consider that the ith application may not have access to the resource during
a time interval that is limited by Δ = c̄ − sG

i . After this interval however,
the application is granted exclusive access to the resource during a time
interval of length sG

i . A resource can therefore not guarantee any service
to a connected applicatoin during any time interval 0 ≤ Δ < c̄ − sG

i , but it
can guarantee a service of B(Δ− (c̄−sG

i)) in any time interval c̄−sG
i ≤ Δ < c̄.

This service guarantee can be expressed as

βG
i (Δ) = B max

{⌊
Δ

c̄

⌋
sG

i ,Δ −
⌈
Δ

c̄

⌉
(c̄ − sG

i)
}

(6.1)

or more compactly

βG
i (Δ) = B sup

0≤λ≤Δ

{
λ −

⌈
λ

c̄

⌉
(c̄ − sG

i)
}

(6.2)

According to (5.5), we then define that a system with n real-time
applications that share a resource with a TDMA scheduling policy is
schedulable, if this service guarantee to all applications is larger or equal
than the respective service assumptions

βG
i (Δ) ≥ βA

i (Δ) ∀i,∀Δ ≥ 0 (6.3)

6.1. Time Division Multiple Access 137

or equivalently, if sG
i ≥ sA

i ∀i.
We further define that a real-time system with a TDMA scheduling

policy is feasible, if the sum of the required slot lengths and the scheduling
overhead is less or equal the cycle length, i. e. if

c̄ ≥
∑
∀i

sA
i + oc + nos (6.4)

Following this definition of feasibility, the slot length guarantee sG
i to

the ith application can then be computed as

sG
i = c̄ −

⎛⎜⎜⎜⎜⎜⎜⎝
∑
∀ j�i

sA
j + oc + nos

⎞⎟⎟⎟⎟⎟⎟⎠ (6.5)

Finally, we define the utilization σA
i as the quotient of the slot length

sA
i divided by the cycle length c̄. Analogously to (6.4), a system with

n real-time applications that share a resource with a TDMA scheduling
policy is then feasible if the total utilization is less or equal one∑

∀i

σA
i +

oc + nos

c̄
de f
= σtot(c̄) ≤ 1 (6.6)

For performance analysis within the MPA framework, a resource with
a TDMA scheduling policy that serves n applications can be treated as n
separate resources, each with a specific service guarantee βG

i (Δ). Delay
and backlog analysis of the respective real-time applications can then be
conducted using (2.11) and (2.12).

6.1.2 Parameter Selection
Based on the powerful abstractions of service guarantees and service as-
sumptions, and the explicit schedulability requirement (6.3), it is possible
to determine optimal parameters for a TDMA scheduled resource.

6.1.2.1 Minimum Slot Time Allocation

Let us first determine the exact minimum time slot sA
i that must be as-

signed to an application with service assumption βA
i (Δ) to be schedulable

on a TDMA-scheduled resource with bandwidth B and cycle length c̄.
For this, we need to construct the inverse of (6.1) with respect to sG

i as the
smallest sG

i that leads to a service supply that fulfills the schedulability
requirement (6.3)

sA
i = sup

Δ≥0

⎧⎪⎪⎨⎪⎪⎩min

⎧⎪⎪⎨⎪⎪⎩
βA

i

B
⌊
Δ
c̄

⌋ , βA
i − BΔ + B

⌈
Δ
c̄

⌉
c̄

B
⌈
Δ
c̄

⌉
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (6.7)

138 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

This minimum time slot sA
i is the smallest possible time slot allocation

that guarantees a service supply βG
i (Δ) ≥ βA

i (Δ) on a TDMA resource with
bandwidth B and slot length c̄.

Ex. 10: Consider an application A1 consisting of a single task with period p = 198ms,
jitter j = 387ms, and minimum inter-arrival distance d = 48ms. Further the
task has an execution time of e = 12ms and a relative deadline D = 110ms.
Figure 66 shows the minimum slot length sA

A1
(c̄) assumed by this application, as

a function of the TDMA cycle length c̄.

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

cycle length c [ms]

m
in

 s
lo

t
le

n
g

th
 s

A
 [m

s]

sA1

A

c

c - (DA1
- eA1

)

Fig. 66: Minimum required slot lengths sA
A1

for application A1, together with the cycle
length ĉ, and the lower bound c̄ − (DA1 − eA1) to the slot length sA

A1
.

We see that the minimum required slot length increases with increasing cycle
length, and it is lower bounded by sA

A1
(c̄) ≥ c̄− (DA1 − eA1), since the gap between

two consecutive slots must never be larger than DA1 − eA1 . Figure 67 shows the
minimum service guarantees βG

A1
(Δ) for three different cycle lengths, computed

by setting sG
A1

(c̄) = sA
A1

(c̄).

Using (6.7), we can now compute the minimum slot lengths for all
applications in a real-time system with a TDMA-scheduled resource with
bandwidth B and TDMA cycle length c̄. If a slot allocation with these
minimum slot lengths leads to a feasible system according to (6.4), i. e. if
the sum of the minimum slot lengths plus the protocol overhead is smaller

6.1. Time Division Multiple Access 139

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

Δ [ms]

ex
ec

u
ti

o
n

 t
im

e
[m

s]

βA1

A

βA1 (c = 10ms)G

βA1 (c = 150ms)G

βA1 (c = 57ms)G

Fig. 67: The service assumption βA
A1

(Δ) of application A1, together with the minimum
service guarantees βG

A1
(Δ) for three different cycle lengths.

than the cycle length, then we can use c̄ and si = sA
i (c̄) as TDMA settings.

Otherwise, we are guaranteed that no feasible slot allocation exists for the
cycle length c̄.

6.1.2.2 Optimal Cycle Length

In a typical TDMA system, not only the slot lengths si, but also the cycle
length c̄ is a customizable parameter. To find an optimal cycle length
for a TDMA scheduler, we first need to define an optimality criterion.
One possible optimality criterion that we will use in the following, is the
average remaining bandwidth σr = 1 − σtot. This remaining bandwidth
could be distributed additionally to the existing applications, or it could
be used to admit additional future load in a dynamic system.

To compute this remaining bandwidth, we need to consider that in or-
der to account for up to m dynamically added applications in a dynamic
system, we already need to include the slot overheads for these dynami-
cally added applications. And further, for systems with a slot quantum,
we also need to consider that only multiples of full slot quanti can be

140 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

assigned to existing or future applications

σ̄r(c̄) =

⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝1 −

∑
∀i

σ̄i(c̄) − (n +m)os + oc

c̄

⎞⎟⎟⎟⎟⎟⎠ c̄
qs

⎥⎥⎥⎥⎥⎥⎥⎥⎦ qs

c̄
(6.8)

In Section 6.1.3, we will see that the total utilization σtot(c̄) as a function
of the TDMA cycle length has a very complex and nonlinear behavior. To
find the optimal cycle length with the maximum remaining bandwidth σr,
we therefore have no choice but to compute σr for all possible values of c̄.
However, from Example 10 and Figure 66, we know that the required slot
lengths are lower bounded by sA

i (c̄) ≥ c̄ − (Di − ei). It is therefore possible
to find an upper bound to feasible cycle lengths

c̄max = sup
c̄≥0

⎧⎪⎪⎨⎪⎪⎩c̄ : c̄ ≥
∑
∀i

max(0, c̄ − (Di − ei))

⎫⎪⎪⎬⎪⎪⎭ (6.9)

Therefore, σr only needs to be computed for c̄max/qc different values.

6.1.2.3 Minimum Total Service Bandwidth

At design time, the service bandwidth B of a resource is often also a
customizable parameter. The minimum total service bandwidth Bmin is
the smallest possible service bandwidth B of a TDMA system with service
assumptions βA

i , for which feasible slot allocations si exists

Bmin = inf
B≥0
{B : σtot,min(B) ≤ 1} (6.10)

with
σtot,min(B) = inf

c̄≤c̄max
{σtot(c̄,B)} (6.11)

From (6.7), it can be seen that the minimum slot length sA
i is monotonically

decreasing with increasing service bandwidth B, i. e. sA
i (B + dB) ≤ sA

i (B).
Because of this property, the total utilization σtot is also monotoni-
cally decreasing, and consequently also the minimum total utilization
σtot,min is monotonically decreasing with increasing service bandwidth B,
i. e.σtot,min(B + dB) ≤ σtot,min(B). We can therefore find the minimum total
service bandwidth Bmin by binary search.

6.1.3 Experimental Results
Following, we analyze two real-time embedded systems with a number
of independent applications that share a common resource with a TDMA
scheduling policy.

6.1. Time Division Multiple Access 141

6.1.3.1 TDMA-Based Communication

Consider a distributed real-time system, where 10 applications commu-
nicate via a shared bus, with a line speed of 1Mbps, that implements a
TDMA protocol for bus arbitration. Every applications Ai sends a real-
time message stream Mi, that is specified with a period pi, a jitter ji, a
minimum inter-arrival distance di, a total message size ei, as well as a
relative message delivery deadline Di. The real-time message streams
of the 10 applications are specified in Table 5. This system specification
equals the specification of System 3 in the work of Hamann et al. [HE05],
and is, according to Hamann et al. , the most difficult system considered
in their work.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

p [ms] 198 102 283 354 239 194 148 114 313 119
j [ms] 387 70 269 387 222 260 91 13 302 187
d [ms] 48 45 58 17 65 32 78 - 86 89
e [kb] 12 7 7 11 8 5 13 14 5 6
D [ms] 110 140 115 145 180 140 200 120 140 100

Tab. 5: Specification of the 10 message streams in the distributed embedded system.

To analyze this system, we compute σtot(c̄) for c̄ ∈ [0.1ms . . . 600ms]
with a cycle quantum qc = 100μs. However, note that to find feasible
TDMA parameters for this system, it would be sufficient to compute
σtot(c̄) for c̄ ∈ [0.1ms . . .134.7ms], as can be computed from (6.9). Hamann
et al. did not consider any protocol overhead or slot length quantization,
and the corresponding results σtot(c̄) are depicted in Figure 68. For a more
realistic analysis, we also compute σ̄tot(c̄), where we consider a slot length
quantum qs = 10μs, as well as protocol overheads of os = 10μs in every
slot, and oc = 20μs in every cycle. The resulting utilizations σ̄tot(c̄) are also
shown in Figure 68.

The grey shaded areas in Figure 68 visualize the ranges of cycle lengths
c̄, for which feasible TDMA parameters exist, i. e. for which σ̄tot(c̄) ≤ 1.
When we compare this range to the results of σtot(c̄), where we do not
consider quantization effects and protocol overheads, we learn that con-
sidering these effects and overheads reduces the range of feasible cycle
lengths c̄ considerably. In general, if we do not consider quantization ef-
fects and protocol overhead, then the smallest possible c̄ will always lead
to feasible TDMA parameters, if the total bandwidth B is large enough. As
soon as we consider quantization effects and protocol overhead however,
arbitrary small values for c̄ are not feasible anymore. But also arbitrary
large values for c̄ will not lead to feasible TDMA parameters, because the

142 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

0 50 100 150 200 250 300 350
0.95

1

1.05

1.1

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

0 500 1000 1500
0.8

1

1.2

1.4

1.6

1.8

2

cycle length c [ms]

u
ti

liz
at

io
n

 σ
to

t
u

ti
liz

at
io

n
 σ

to
t

u
ti

liz
at

io
n

 σ
to

t

σtot

σtot

σtot

σtot

Fig. 68: Total utilization as a function of the TDMA cycle length. σtot(c̄) is the total
utilization without considering quantization effects or protocol overheads, while
σ̄tot(c̄) is the total utilization including these effects and overheads. The vertical
line at c̄ = 134.7ms marks the theoretical upper bound to feasible cycle lengths.

slot lengths are lower bounded by sA
i (c̄) ≥ c̄ − (Di − ei). σtot(c̄) will there-

fore strive towards the number of applications in the system for large c̄,
i. e. towards 10 in our case. Feasible TDMA parameters thus only exist
for cycle lengths c̄ that are neither too small nor too large. As we can
see in Figure 68, the total utilization σ̄tot(c̄) as a function of the TDMA
cycle length has a very complex and nonlinear behavior. Often, intervals
of feasible cycle lengths are even non-contiguous. It is because of this
behavior, that we need to compute σ̄tot(c̄) for all possible values of c̄, as
we already mentioned in Section 6.1.2.2.

6.1. Time Division Multiple Access 143

6.1.3.2 TDMA-Based Hierarchical Scheduling

Let us next consider a real-time embedded system with 7 applications
that run on a single processor that implements a TDMA policy to share its
service among the applications, as depicted in Figure 69. Application A1

consists of the four tasks T1–T4 that are locally scheduled using an EDF
scheduling policy, application A2 also uses a local EDF scheduling policy
to schedule the three tasks T5–T7. In application A3 on the other hand, the
three tasks T8–T10 are locally scheduled using a FIFO scheduling policy,
and in application A4, the three tasks T11–T13 are scheduled using a fixed
priority policy, where T11 is assigned the highest priority, while T13 is
assigned the lowest priority. Finally, the applications A5–A7 consist only
of a single task each, namely T14, T15, and T16, respectively. The 16 tasks
are specified in Table 6, with their period p, jitter j, minimum inter-arrival
time d, relative deadline D, and their execution demand e. The TDMA
scheduler has a cycle quantum qc = 1ms, a slot quantum qs = 0.5ms, a slot
overhead os = 0.1ms, and a cycle overhead oc = 0.1ms.

CPU

T2

T1

EDF

T3

T4

A1

T6

T5

EDF

T7

A2

T9

T8

FIFO

T10

A3

T12

T11

FP

T13

A4

T14

A5

T15

A6

T16

A7

TDMA

Fig. 69: Real-time system with 7 applications that are hierarchically scheduled using a
TDMA-scheduler.

Using binary search, we first compute the minimum required pro-
cessor speed, as described in Section 6.1.2.3. From this we learn, that
a minimum processor speed of fCPU = 476.2MHz is required. With this
processor speed, feasible TDMA settings exist for the two cycle lengths
c̄ = 49ms and c̄ = 50ms, and lead to a total utilization of σ̄tot = 0.9959, and
σ̄tot = 0.996, respectively.

Next, suppose we use a processor with a frequency fCPU = 600MHz,
and we want to optimize slot and cycle lengths according to Section 6.1.2.2,
such that 5 additional applications could be added at a later point of time.

144 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

T1 T2 T3 T4 T5 T6 T7 T8

p [ms] 196 245 105 147 231 308 275 234
j [ms] 387 70 269 387 222 260 91 387
d [ms] 48 - 58 17 65 - - 48
e [Mc] 7 4 6 1 8 2 3 5
D [ms] 176 237 115 488 206 311 275 207

T9 T10 T11 T12 T13 T14 T15 T16

p [ms] 273 182 153 357 476 302 258 424
j [ms] 70 269 80 70 177 967 719 257
d [ms] - 58 - - - 27 89 -
e [Mc] 5 3 2 2 3 2 2 4
D [ms] 178 198 153 423 556 511 371 315

Tab. 6: Specification of the 16 tasks in the hierarchically scheduled system. Note, Mc=
1E6 cycles.

For this we compute (6.8) up to c̄max = 208ms. The results are shown in
Figure 70 and suggest to use a cycle length of c̄ = 70ms. This leads to a
maximum remaining average bandwidth of σ̄r = 0.1786.

0 20 40 60 80 100 120 140 160 180
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

cycle length c [ms]

re
m

ai
n

in
g

 b
an

d
w

id
th

 σ
r

σr, max

Fig. 70: Remaining average bandwidth in the hierarchically scheduled system.

6.1. Time Division Multiple Access 145

6.1.4 Related Work

The problem of assigning optimal parameters to a TDMA scheduler was
already studied extensively in the past, see e. g. [Inu79]. However, most
research on this area concentrates on strictly periodic loads, and on TDMA
protocols employed on communication resources. The problem of as-
signing optimal parameters for TDMA schedulers that are employed in
hierarchically scheduled systems on the other hand, is not considered in
most previous work.

In purely time-triggered systems, an optimal communication sched-
ule that defines slot and cycle lengths can be constructed at design-time
[Kop97], but in reality heuristics are often used to find a valid communica-
tion schedule due to the computational complexity of finding the optimal
schedule.

Many large distributed embedded systems are however not anymore
designed as purely time-triggered systems, but contain instead mixed
time- and event-triggered components. Be it because of the coexistence of
time- and event-triggered subsystems (clusters) that are connected with
each other by bridges, as considered by Pop et al. in [PEP+04], or be it
because of the existence of some event-triggered ECU’s, as considered for
example by Obermaisser in [Obe02].

When we get to such mixed time- and event-triggered systems, pa-
rameter selection for TDMA resources gets even more challenging. In
[Obe05], Obermaisser proposes to choose slot lengths as a fraction of a
fixed cycle length, such that every service consumer with event-triggered
load receives an individual total bandwidth from the TDMA resource.
While this method can be used for systems with non-real-time event-
triggered loads, it is only applicable by trial-and-error for systems with
real-time event-triggered loads, i. e. loads with deadline constraints. For
such systems, Eles et al. [EDPP00] present a heuristic to assign slot lengths
of a TDMA resource.

A method for slot as well as cycle length optimization based on evolu-
tionary search techniques was presented by Hamann et al. in [HE05]. This
method can be used to parameterize slot and cycle lengths of TDMA re-
sources with fixed bandwidth, and it can handle real-time event-triggered
loads with jitter and bursts. Since the method is based on evolutionary al-
gorithms, it is however computationally expensive, and cannot guarantee
a global optimal solution for a predetermined optimality criterion.

146 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

6.2 Polling Servers

Server-based scheduling is widely used in the area of real-time system
design. Traditionally, it is mostly employed on systems with mixed hard
real-time, as well as soft or non real-time applications, to schedule the soft
or non real-time applications. Server based scheduling thereby typically
improves the reactivity of these applications. However, server based
scheduling can also be employed to enable hierarchical scheduling of
hard real-time applications. Same as TDMA, server-based scheduling
also supports temporal composability. However, in contrast to TDMA,
server-based scheduling is typically more flexible, and often allows to
exploit the available resources more efficiently, since a server only claims
resources if there is workload ready to be processed.

In the area of classical real-time scheduling theory, a large range
of different server algorithms were proposed, that typically trade off
performance, computational complexity, memory requirement and im-
plementation complexity. Some of the more prominent fixed prior-
ity servers include the polling server [LSS+87, SSL89], the deferrable
server [LSS+87, SLS95], and the sporadic server [SSL89], but there
exist also many others, such as for example various slack stealing
servers [LRT92, RTL93, DTB93, TLS96], or the total bandwidth server
[SB94, SB96], which is an example of a dynamic priority server. In [But97],
Buttazzo presents an extensive overview of these and other server algo-
rithms.

In this section, we concentrate on polling servers. A polling server can
be thought of as a periodic task T(p, e). When the task T is selected to run
by the scheduler, it checks whether workload is waiting to be processed
by the server. If yes, the server will provide e resources to process the
waiting workload. But if no work is available for the server, the task
will immediately finish, i. e. the server will not check for arriving work
anymore until the next period starts.

6.2.1 Performance Analysis

From an applications point of view, polling servers can be considered
as resources that deliver a service with a service guarantee βG

PS. Per-
formance metrics of the application, such as delay guarantees or buffer
requirements, can thus be analyzed seamlessly within the MPA frame-
work, using for example (2.11) or (2.12). Following, we will introduce
abstract components for dynamic, as well as static polling servers.

6.2. Polling Servers 147

6.2.1.1 Dynamic Polling Servers for EDF Scheduling

A polling server for dynamic scheduling (DPS) can be implemented by a
periodic task T(p, e) with an associated deadline d = p. Within the MPA
framework, an abstract dynamic polling server for can be modeled by a
component as depicted in Figure 71(a), with the corresponding real-time
interface depicted in Figure 71(b). For an EDF component, a polling server

βDPS

(b)(a)

α , d

βDPS
AβDPS

G

DPS α A

αG

, dA

, dG

DPS

Fig. 71: (a) An abstract dynamic polling server component, and (b) its Real-Time Inter-
face.

behaves like an arriving event stream with arrival curve α(Δ) =
Δ/p� · e
and a relative deadline d = p, and to components connected to the service
output, the server is a resource that provides a resource supply of e during
every interval of length p. We have however to consider two specialties.
Firstly, a server might not provide any resources during one full period.
This is the case if workload arrives just after the server task was selected
to run by the scheduler, and was finished because there was no workload
waiting to be processed. And secondly, under EDF scheduling it is hard
to determine when exactly the server task receives the e resources within
a period, and the DPS can therefore only guarantee to supply e resources
at the end of every period p. We therefore establish the set of interface
relations in a DPS as

αG =

⌈
Δ

p

⌉
e (6.12)

dG = p (6.13)

βG
DPS = max

{
0,

⌊
Δ − p

p

⌋
e
}

(6.14)

6.2.1.2 Static Polling Servers for FP Scheduling

A polling server for static scheduling (SPS) can also be implemented
by a periodic task T(p, e) with an associated maximum allowable delay
d = p. Within the MPA framework, an abstract static polling server can
then be modeled by a component as depicted in Figure 72(a), with the

148 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

βAβG

β'Aβ'G

α A

αG

, dA

, dG

βSPS
AβSPS

G

FPDPS*

βSPS

βG

β'G

(b)(a)

SPS

Fig. 72: (a) An abstract static polling server component, and (b) its Real-Time Interface.

corresponding real-time interface depicted in Figure 72(b). Internally, the
abstract static polling server is built up using a processing component for
FP scheduling, and a slightly modified version of an abstract dynamic
polling server. In difference to a dynamic polling server, it is simpler
to determine when the server task receives the e resources at the latest
within a period. For an SPS we can therefore establish the improved
service guarantee βG

PS

βG
SPS = max

{
0,

⌊
Δ − p

p

⌋
e +min

{
e, β̂G

(
Δ −

⌊
Δ

p

⌋
p
)}}

(6.15)

The interface relations for β′G, βA, αA, dA, αG, and dG on the other hand
remain unchanged and are defined by (5.16), (5.17), (5.18), (5.19), (6.12),
and (6.13), respectively.

6.2.1.3 Releasing Unused Server Capacity

Relation (6.12) validly upper bounds the workload αG that polling servers
generate on a system. But this bound is typically overly pessimistic,
because polling servers will not claim resources if no workload is present
to be processed by them. Hence, the workload α(Δ) that a PS generates
on a system is not only upper bounded by (6.12), but also by the sum the
of the workloads αi(Δ + p) of all process components that are processed
by the server and that are not hierarchically decoupled by another server

α(Δ) ≤ min

⎧⎪⎪⎨⎪⎪⎩
⌈
Δ

p

⌉
e,

∑
i∈PS

αi(Δ + p)

⎫⎪⎪⎬⎪⎪⎭ = min
{⌈
Δ

p

⌉
e,Σ(Δ + p)

}
(6.16)

To consider this new bound in the analysis of polling servers, we extend
the service connections of all component interfaces with a new curve
Σ(Δ), that represents the sum of all workloads αi(Δ) that are processed
with the service β(Δ) that is available to a component, and that are not
hierarchically decoupled by a server. The output guarantee and input

6.2. Polling Servers 149

assumption on a connection then contain the additional bounds ΣG(Δ)
andΣA(Δ), respectively, with the relation ΣA(Δ) ≤ ΣG(Δ) ≤ Σ(Δ) that must
be true for a compatible service connection of two interfaces.

To obtain the internal interface relation for this new bound ΣG, we
need to satisfy the resource constraint

ΣG ≤ sup
{
Σ : α̂G(Δ) = min

{⌈
Δ

p

⌉
e,Σ(Δ + p)

}}
(6.17)

We can therefore establish the interface relations

αG = min
{⌈
Δ

p

⌉
e,ΣA

}
⊗ min

{⌈
Δ

p

⌉
e,ΣA

}
(6.18)

ΣG(Δ + p) = min−1

{
αA,

⌈
Δ − p

p

⌉
e
}

(6.19)

with

min−1(α1, α2) = α1(Δ + λ) for λ = inf {τ : α1(Δ + τ) ≤ α2(Δ + τ)} (6.20)

And while (6.18) replaces (6.12) in the already established interface re-
lations for polling servers, (6.19) complements the established interface
relations.

Note, that since we extend the service connection of the abstract com-
ponent interfaces with the new curve Σ(Δ), we need to establish interface
relations for Σ′G and ΣA for all processing components of our component
system. Further, we must also adapt the interface relations for αA in the
processing component interfaces. For the FP processing component inter-
face, we get Σ′G = ΣG−αG and ΣA = Σ

′A+αG. And to get αA we must now
compute the minimum of (5.18) and the additional new bound (Σ̂G− Σ̂′A).
For the other process components, the extensions can be derived similarly.

6.2.2 Parameter Selection
Based on the explicit service and load guarantees and assumptions, and
the explicit interface compatibility requirements (5.5) and (5.4) that guar-
antee schedulability, it is possible to determine valid pairs of server peri-
ods and corresponding server resource budgets for polling servers.

6.2.2.1 Minimum Resource Budget

The minimum resource budget for a given server period must be chosen,
such that the service assumption of the application that is served by
the polling server is satisfied. Following (5.5) we thus get the condition
βG

PS ≥ βA
PS. For a dynamic polling server with server period p and server

150 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

resource budget e, the server service guarantee is determined by (6.14),
and when we construct the inverse of this condition with respect to e, we
can compute the minimum required server resource budget

eA
min = sup

Δ≥2p

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βA

PS⌊
Δ−p

p

⌋
⎫⎪⎪⎪⎬⎪⎪⎪⎭ if βA

PS = 0 ∀Δ < 2p (6.21)

The server is not feasible if the condition βA
PS = 0 ∀Δ < 2p is not met.

For a static polling server, the server service guarantee is determined
by (6.15). In principle it is again possible to construct the inverse of this
more complex service guarantee with respect to e, to compute the mini-
mum required server resource budget for a static polling server. However,
(6.21) is often simpler to compute, and also leads to a sufficient, although
not necessary bound for static polling servers.

6.2.2.2 Maximum Resource Budget

The maximum resource budget for a given server period must be chosen,
such that the load assumption of the resource on which the polling server
is running is satisfied. Following (5.4) we get the condition αG

PS ≤ αA
PS.

From (6.18), and knowing that f ⊗ f ≤ f , we can establish the sufficient,
although not necessary condition⌈

Δ

p

⌉
e ≤ αA

PS ∀Δ : αA
PS(Δ) < ΣA(Δ) (6.22)

Constructing the inverse of this condition with respect to e leads to the
lower bound to the maximum allowable server resource budget

eA
max = inf

∀Δ : αA
PS(Δ)<ΣA(Δ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αA

PS⌈
Δ
p

⌉
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.23)

6.2.3 Experimental Results
Consider a real-time system with a complex mix of hierarchically arranged
static and dynamic scheduling. The system consists of a set of 10 real-time
tasks T1–T10 that are running on a single processor under the scheduling
hierarchy policies depicted in Figure 73. The scheduling hierarchy uses
a mix of FP, RM, and EDF scheduling, as well as a polling server for
static scheduling (pSPS = 4, eSPS = 1) and a polling server for dynamic
scheduling, for which we want to find valid parameters. The processor is
fully available to process the 10 tasks, and all tasks are fully preemptable
and independent from each other. The tasks are specified in Table 7 with a

6.2. Polling Servers 151

period p, a jitter j, a minimum inter-arrival distance d, a relative deadline
d, and a worst-case execution time e. The task set results in a total average
processor utilization of 98.5%.

T1 T4

T6T5

EDF

T8 T9T7 T10

RM

T3T2

EDF

DPSSPS

FP P=3

P=4P=1 P=2

CPU

Fig. 73: Hierarchical scheduling scheme of a real-time system with a complex mix of
hierarchically arranged static and dynamic scheduling policies.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

p [ms] 5 10 25 100 25 20 12 16 20 30
j [ms] 0 5 0 2 80 0 0 0 0 0
d [ms] - - - - 5 - - - - -
e [ms] 0.2 1 1.5 40 2 2 0.5 0.75 1 2
D [ms] 2 10 15 150 50 30 12 16 20 30

Tab. 7: Specification of the 10 tasks in the hierarchically scheduled system.

To determine a valid pair of server parameters (pDPS, eDPS) for the dy-
namic polling server in this system, we first build the interface model
of the system, as depicted in Figure 74. We then use (6.21) to compute
the minimum required server resource budget eA

DPS,min(pDPS) for all server
periods pDPS ∈ [0.1ms . . .7ms] in steps of 0.1ms. The result is depicted in
Figure 75, and any parameter pair (pDPS, eDPS) in the area above the curve
eA

DPS,min results in a dynamic polling server that satisfies the service require-
ment (5.5). Further, we use (6.23) to compute the maximum allowed server
resource budget eA

DPS,max(pDPS) for all server periods pDPS ∈ [0.1ms . . .7ms]
in steps of 0.1ms. The result is again depicted in Figure 75, and any pa-
rameter pair (pDPS, eDPS) in the area below the curve eA

DPS,max results in a
dynamic polling server that satisfies the load requirement (5.4). Conse-
quently, any parameter pair (pDPS, eDPS) that lies both, above eA

DPS,min, and

152 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

EDF

T5

T6

SPS

EDF

T2

T3

FP

T4

FP

T1

CPU

DPS

RM

T7-T10

βRM
AβDPS

G

αEDF
A , dEDF

A

αDPS
G , dDPS

G

Fig. 74: Real-Time Interface model of the system with the scheduling hierarchy depicted
in Figure 73.

below eA
DPS,max, results in a dynamic polling server that satisfies both, the

service requirement (5.5), as well as the load requirement (5.4).
From the area of valid server parameter pairs, let us choose pDPS = 3ms,

and eDPS = 1ms, the corresponding point is indicated in Figure 75. For
this server parameter pair, Figure 76 depicts the service assumption βA

RM
of the four tasks T7–T10, together with the service guarantee βG

DPS of the
dynamic polling server, and Figure 77 depicts the load assumption αA

EDF
of the EDF scheduled component, together with the load guarantee αG

DPS
of the dynamic polling server.

In recent work on hierarchical scheduling, hierarchy is typically
achieved by servers that are implemented as simple periodic tasks with
period pPS and execution time ePS, see e. g. [SL03] or [SL04]. Such an im-
plementation would generate a load with a load guarantee as defined
by (6.12). In Figure 77, αG

DPS, f ull depicts this arrival guarantee, and as we
see, this guarantee does not comply with the arrival assumption αA

EDF of
the EDF scheduled component. Therefore, such a server implementation
would render the system to be not schedulable. However, when we con-
sider unused server capacity that a real polling server would release, the

6.2. Polling Servers 153

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

server period pDPS [ms]

se
rv

er
 re

so
u

rc
e

b
u

d
g

et
 e

D
PS

 [m
s]

eDPS, min
A

eDPS, max
A

design space

(pDPS, eDPS)

Fig. 75: The minimum required server resource budget eA
DPS,min(pDPS), and the maximum

allowed server resource budget eA
DPS,max(pDPS). The grey area depicts the resulting

design space of valid server parameter pairs.

system is in fact schedulable, as we can see since αG
DPS ≤ αA

EDF in Figure 77.

6.2.4 Related Work
In the area of performance analysis of systems with server-based schedul-
ing, Kuo and Li [KL99] first introduced analysis of hierarchical fixed pri-
ority scheduling, building upon the work of Deng and Liu [DL97]. Kuo
and Li consider the use of sporadic servers to execute applications, and
use the techniques of Liu and Layland [LL73] to provide a simple utili-
sation based schedulability test. This test is however only applicable if
each server period in the system is the greatest common divisor (gcd) or
a divisor of the gcd of all the tasks in an application.

This limitation is overcome by Seawong et al. [SRLK02] that introduce
a response time analysis for hierarchical systems using deferrable servers
or sporadic servers to schedule a set of hard real-time applications. The
analysis of Seawong et al. assumes that the capacity of a server is always
made available at the end of its period. This leads to a sufficient but not
necessary schedulability analysis.

Davis and Burns [DB05] address this problem and claim to introduce

154 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Δ [ms]

ex
ec

u
ti

o
n

 t
im

e
[m

s]

βDPS
G

βRM, DPS
A

Fig. 76: The service assumption βA
RM of the four tasks T7–T10, together with the service

guarantee βG
DPS of the dynamic polling server with pDPS = 3ms, and eDPS = 1ms.

an exact schedulability test for hierarchical systems with polling servers,
deferrable servers, or sporadic servers. In their work, Davis and Burns
come to the conclusion that the simple polling server outperforms both
the sporadic and the deferrable server when the metric is application
task schedulability. However, the response time analysis of Davis and
Burns is only exact under the constraint that an idle task or a set of non
real-time background tasks exist in every application, to consume the
server capacity if no hard real-time tasks are present to be processed. But
if every application contains an idle task that executes at a background
priority level when all other tasks are inactive, then the choice of server
algorithms has no influence, since both, the deferrable and sporadic server
will behave exactly as the periodic server. That is, since there is always an
idle task to be processed, the capacity of the deferrable server will never
be deferred, and the sporadic server will always use its full capacity for
the idle task if no other tasks are waiting.

Lipari and Bini [BL03] present a response time analysis that is more
similar to the work presented in this thesis. They represent the service
provided by a server as a so-called characteristic function, which is equiv-
alent to a service curve. Based on this characteristic function, Lipari and
Bini investigate a server that provides the service of a periodic resource

6.2. Polling Servers 155

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Δ [ms]

ex
ec

u
ti

o
n

 t
im

e
[m

s]

αDPS
G

αEDF, DPS
A

αDPS, full
G

Fig. 77: The load assumption αA
EDF of the EDF component, together with the load guar-

antee αG
DPS of the dynamic polling server with pDPS = 3ms, and eDPS = 1ms.

αG
DPS, f ull denotes the arrival guarantee if the release of unused server capacity is

not considered.

model. This model also assumes that the capacity of a server is always
made available at the end of its period. Lipari and Bini also investigate
the problem of server parameter selection. For this they approximate the
service provided by their periodic server with a bounded delay resource
model, and the delay and the speed factor are then used to determine
the delay and capacity of their periodic server. The presented method is
however overly pessimistic. First, because it cannot consider that differ-
ent tasks in an application may have different deadlines, and secondly
because it relies on a very pessimistic delay analysis. Instead of using a
bound similar to (2.11), Lipari and Bini compute the maximum delay in
their server schedulability analysis as dmax ≤ inf{τ ≥ 0 : αu(τ) ≤ βl(τ)}.

Almeida et al. [Alm03, AP04] builds on the work of Lipari and Bini,
and introduces a response time analysis for a server with jitter, thus
allowing a limited generalization of the server model of Lipari and Bini.
Almeida et al. also investigate the problem of server parameter selection,
and propose binary search to determine the capacity of a periodic server.
However, the method presented by Almeida et al. suffers from the same
pessimism as the method of Lipari and Bini.

156 Chapter 6. Design & Analysis of Systems with Hierarchical Scheduling

The methods proposed by Shin and Lee [SL03, SL04] finally overcome
this pessimism of the previous two methods, primarily by introducing the
concept of demand bound functions to represent the workload demand
of the tasks in an application, but also by using the correct delay bound
(2.11) in their server schedulability analysis. The work of Shin and Lee
is however also confined to servers with a periodic or a bounded delay
resource model.

6.3 Discussion
Service assumption curves βA(Δ) prove to be a very powerful model
within the analysis of real-time systems with hierarchical scheduling, as
they allow to precisely capture the scheduling information of a complete
application. And together with the explicit service guarantees βG(Δ) of
the various servers, and with the exact schedulability condition βA(Δ) ≤
βG(Δ) ∀Δ, they also build the basis for the server parameter selection
methods presented in this section.

Compared to the related performance analysis methods for hierarchi-
cal systems that were discussed in the previous section, the performance
analysis method introduced in this thesis is the first to consider the release
of unused server capacity for the schedulability analysis of systems with
polling servers. This allows to correctly classify systems as schedulable
that would otherwise be classified incorrectly as not schedulable. A de-
signer must however consider that incorporating unused server capacity
within the schedulability analysis threatens the temporal composability
of hierarchically decoupled applications, since resource access of the dif-
ferent applications is not clearly separated anymore. But once a designer
is aware of this fact, he is free to choose whether or not to incorporate the
release of unused server capacity in the schedulability analysis. But not
only service assumption curves βA(Δ) prove to be useful , but also load
assumption curves αA(Δ). These allow to compute a maximum capacity
bound for polling servers with a given period, incorporating the schedu-
lability constraints of the complete system. None of the discussed related
methods have means to compute this maximum capacity bound, instead
they all only compute the minimum capacity bound.

In this section, we introduced performance analysis and parameter
selection methods for systems with hierarchical scheduling with TDMA,
and with dynamic as well as static polling servers. The underlying prin-
ciples to these methods are however not confined to these specific server
instances. Instead it is in principle possible to extend the presented meth-
ods to other server types by defining appropriate abstract components,
their interfaces, and the corresponding internal relations.

Part III

Tool Support

7
Efficient Computation of

Real-Time Calculus

Most methods presented in this thesis employ real-time calculus to per-
form computations on arrival curves, service curves, or other similar
curves, often collectively referenced to as so-called variability characteri-
zation curves (VCCs). While real-time calculus provides compact math-
ematical representations for all the different curve operations, their prac-
tical computation is typically more involved. The major problem arises
from the fact, that the various VCCs are defined for the infinite range of
positive real numbers Δ ∈ R≥0. However, for practical computation we
require that the VCCs have a finite representation, and that applying any
of the curve operations leads to a result in a finite time. Moreover, we
require that the resulting VCC is again defined for the infinite range of
positive real numbers Δ ∈ R≥0, but that it nevertheless has again a finite
representation. To overcome this problem, VCCs are often described by
a finite set of piecewise linear curve segments. However, many arrival
and service curves that represent practical event stream models or re-
source models require an infinite set of piecewise linear curve segments
to be represented. Examples are the arrival curves to represent a periodic
event stream as depicted in Figure 5(a), or the service curves to repre-
sent a periodic resource model as depicted in Figure 6(d). And although
all these curves can be safely approximated by a finite set of piecewise
linear curve segments, as for example depicted in Figure 78, this is in
general not desired, as this approximation leads to overly pessimistic
performance analysis results, as can also be seen in Figure 78.

This chapter introduces a compact representation for special classes of

160 Chapter 7. Efficient Computation of Real-Time Calculus

variability characterization curves that are either defined by a finite or an
infinite set of piecewise linear curve segments, and it presents methods to
compute various curve operations on these compact curve descriptions.
In the following Section 7.1, a classification for VCCs is introduced, and
the classes of VCCs that can be represented by the introduced curve de-
scription are identified. Further, it is shown that these classes of VCCs
cover a large part of the VCCs that are or practical relevance in the area of
modular performance analysis and interface-based design for embedded
real-time systems. In Section 7.2, the compact representation for VCCs
is then introduced, and Section 7.3 presents methods to compute vari-
ous curve operations on these compact curve descriptions. The chapter
concludes with a discussion in Section 7.4.

0 5 10 15 20
0

1

2

3

4

5

6

αu

dmax

βl

dmax

αu

βl~

~

~

Δ [ms]

ex
ec

u
ti

o
n

 t
im

e
[m

s]

Fig. 78: The upper arrival curve αu of a periodic event stream with jitter, and the lower
service curve βl of a periodic service. Following (2.11), the maximum horizontal
distance dmax denotes the maximum delay experienced by an event on the event
stream, when processed by a greedy processing component on a resource with
the periodic service βl. α̃u and β̃l depict the finite piecewise linear approximation
of αu and βl, and d̃max depicts the maximum horizontal distance between these
approximated curves. In this example, d̃max overestimates dmax by 40.8%.

7.1. Classification of VCCs 161

7.1 Classification of VCCs
The general concept of variability characterization curves was first intro-
duced by Maxiaguine et al. in [MZCW04], to collectively define a special
class of functions, of which also arrival curves, service curves, or work-
load curves, are instances.

7.1.1 Variability Characterization Curves
Variability characterization curves allow to precisely quantify best-case
and worst-case variability on wide-sense increasing functions.

Def. 19: (Variability Characterization Curve) For a given wide-sense increasing func-
tion r, and let r[s, t) denote the increase of r in the interval from s to t, including
s, and excluding t, for all s, t ∈ R with s ≤ t. Upper and lower variability
characterization curves (VCCs) of r are defined as curves ρu(Δ) and ρl(Δ), where
r[s, t), ρu(Δ), and ρl(Δ) are related to each other by the following inequality

ρl(t − s) ≤ r[s, t) ≤ ρu(t − s) ∀s, t ∈ R, s ≤ t (7.1)

with ρu(0) = ρl(0) = 0.

Note that this definition is more general than the original definition
of variability characterization curves by Maxiaguine et al. in [MZCW04].
In the original definition, the interval length (t− s) is restricted to natural
numbers (t − s) ∈ Z≥0, while the above definition allows (t − s) ∈ R≥0.
From this also follows directly that VCCs following the above definition
are defined on the full range of positive real numbers Δ ∈ R≥0.

To realize the relation of VCCs to arrival and service curves, suppose
that r[s, t) denotes the number of events that arrive on an event stream
in the time interval from s to t. The corresponding variability charac-
terization curves ρu(Δ) and ρl(Δ) are then arrival curves of this event
stream. Likewise, if r[s, t) denotes the amount of available service on a
resource in the time interval from s to t, then the corresponding variability
characterization curves ρu(Δ) and ρl(Δ) are service curves of this resource.

7.1.2 Classification Scheme
To clearly define the set of VCCs that can be handled with the models and
methods presented in this chapter, we propose a hierarchical classification
scheme for VCCs as depicted in Figure 79.

At the top level of this classification scheme, we distinguish between
piecewise linear VCCs and not piecewise linear VCCs. For the remainder of
this chapter, we only focus on piecewise linear VCCs. The class of piece-
wise linear VCCs can further be divided into finite VCCs that consist of a

162 Chapter 7. Efficient Computation of Real-Time Calculus

finite set of linear pieces, and into infinite VCCs that consist of an infinite
set of linear pieces. We further divide this last class into three subclasses.
Periodic piecewise linear VCCs consist of a finite set of linear pieces that is
repeated periodically with a constant offset between consecutive repeti-
tions. Regular piecewise linear VCCs on the other hand consist of a finite set
of linear pieces that is eventually followed by a second finite set of linear
pieces that is repeated periodically, again with a constant offset between
consecutive repetitions. And finally, irregular piecewise linear VCCs consist
of an infinite set of linear pieces without any regular periodicity.

Not Piecewise LinearPiecewise Linear

Finite Infinite

RegularPeriodic Irregular

VCC

Fig. 79: Classification scheme for VCCs. The dark grey classes can be handled by the
models and method presented in this chapter.

The models and methods presented in this chapter allow to handle the
classes of finite piecewise linear VCCs, periodic piecewise linear VCCs,
and regular piecewise linear VCCs. Examples of VCCs of these three
classes are depicted in Figure 80(a), Figure 80(b), and Figure 80(c), respec-
tively.

7.1.3 Practically Relevant Classes of VCCs
For the following discussion, we focus on VCCs that represent arrival
curves or service curves, as these are the most relevant VCCs within the
MPA framework.

Let us first investigate, whether practically relevant arrival and ser-
vice curves are piecewise linear or not. In the case of arrival curves, r[s, t)

7.1. Classification of VCCs 163

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Δ [ms]

ev

en
tss

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

cy

cl
es

 [x
 1

03]

Δ [ms]

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

cy

cl
es

 [x
 1

03]

Δ [ms]

(b)

(a)

(c)

Fig. 80: (a) A finite piecewise linear VCC. (b) A periodic piecewise linear VCC. (c) A
regular piecewise linear VCC. The curves are specified in Example 11.

denotes the number of events that arrive on an event stream. And since
events are atomic units, it follows that r[s, t) ∈ Z≥0. Consequently, the re-
sulting arrival curves are piecewise constant, and hence piecewise linear.
In principle, the same line of thoughts can be made for service curves, as
the basic unit of resource availability is typically also atomic, be it for ex-
ample a clock cycle on a CPU, or a transmittable bit on a communication

164 Chapter 7. Efficient Computation of Real-Time Calculus

line. However, since these atomic units are often too fine-grained for a
practical analysis, fluid models are often used to describe resource avail-
ability. To then obtain piecewise linear service curves, we must require
that the fluid resource availability is piecewise constant over time. Com-
putation or communication resources typically fulfill this requirement.
Now that we derived that practically relevant arrival and service curves
are piecewise linear it has also to be noted that any not piecewise linear
VCC could be safely approximated by a piecewise linear VCC.

Next let us investigate arrival curves. To analyze the timing properties
of a hard real-time system, a deterministic timing specification of the ar-
riving event streams for which the timing requirements must be satisfied
is mandatory. Most results in the area of real-time scheduling are derived
for event streams that are either periodic or sporadic, possibly containing
some jitter. These timing specifications can all be captured by the common
set of standard event arrival patterns described in Example 1 in Chapter 2,
that specifies an event stream with a parameter triple (p, j, d). To obtain
corresponding upper arrival curves (2.3) can be used, while lower arrival
curves are either zero for sporadic events streams, or can otherwise be
obtained from (2.2). From inspection of (2.2) and (2.3) follows that the
arrival curves of a periodic event stream are periodic piecewise linear
VCCs, while the arrival curves of a periodic event stream with jitter or
burst are regular piecewise linear VCCs. Moreover, to our best knowl-
edge there exists no practically relevant deterministic timing specification
that can not be captured by arrival curves that are either finite, periodic,
or regular piecewise linear VCCs.

To analyze a hard real-time system, not only requires a deterministic
timing specification of the arriving event streams, but also of the resource
availability over time. Most results in the area of real-time scheduling
assume that a resource is fully available to the task set that must be sched-
uled. But to enable schedulability analysis of hierarchically scheduled
systems, also other resource availability models were proposed, most
notably the bounded delay resource model [MFC01], and the periodic
resource model [SL03]. The corresponding service curves are depicted
in Figure 6, and as we see there, the service curves for a fully available
resource as well as for a bounded delay resource are finite piecewise lin-
ear VCCs, while the service curves for a periodic resource are regular
piecewise linear VCCs. Again, there exists to our best knowledge no
practically relevant deterministic resource availability specification that
can not be captured by service curves that are either finite, periodic, or
regular piecewise linear VCCs.

Finally, let us investigate arrival and service curves that are used to
analyze the timing properties of soft real-time systems. For these sys-
tems, it is often convenient to specify the timing of event streams and

7.2. A Compact Representation for VCCs 165

the resource availability by simulation or measurement traces. Using a
sliding window approach, arrival and service curves can then be gener-
ated from these traces. However, since any simulation or measurement
trace is of finite length, arrival and service curves could only be deter-
mined for intervals up to the trace length. To overcome this problem, the
traces are artificially extended to infinite length, by periodic repetition.
Consequently, the corresponding arrival or service curves are periodic
piecewise linear VCCs.

After ensuring that the VCCs at the input of a performance model
within the MPA framework are finite, periodic, or regular piecewise lin-
ear VCCs, we must also ensure that the VCCs within the performance
model are finite, periodic, or regular piecewise linear VCCs. That is,
we must ensure that any curve operation with finite, periodic or regular
piecewise linear VCCs as operands yields again to a finite, periodic or
regular piecewise linear VCC as result. In Section 7.3 we will see that
this is the case. The resulting curve will thereby typically either be finite,
or it will have a periodic behavior with a period equalling either of the
operands periods, or equalling the hyperperiod of the operands periods.

7.2 A Compact Representation for VCCs
To compactly describe finite, periodic, and regular piecewise linear VCCs,
we first introduce the concept of curve segment sequences. VCCs are then
represented by either one or two curve segment sequences, accompanied
by a set of additional parameters.

7.2.1 Curve Segment Sequences
A single linear segment of a piecewise linear curve can conveniently be
described by a parameter triple.

Def. 20: (Curve Segment) A curve segment is a triple σ = 〈x, y, s〉 with x ∈ R≥0 and
y, s ∈ R, that specifies a straight line in the cartesian coordinate system that
passes through the point (x, y) and has a slope s.

A sequence of piecewise linear segments of a piecewise linear curve can
then be described by a sequence of curve segments.

Def. 21: (Curve Segment Sequence) A curve segment sequence Σ is an ordered list of
curve segments

Σ =
〈〈x1, y1, s1〉, 〈x2, y2, s2〉, . . . , 〈xm, ym, sm〉〉 (7.2)

A curve segment sequence is called proper, if xi < xi+1 holds for all 1 ≤ i < m.

166 Chapter 7. Efficient Computation of Real-Time Calculus

And from a curve segment sequence, we can then derive upper as
well as lower piecewise linear VCCs. An upper piecewise linear VCC
corresponding to a curve segment sequence Σ can thereby be determined
by the operator Fu

Σ(Δ) defined as

Fu
Σ(Δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 0 ≤ Δ ≤ x1

yi + ((x − xi) ∗ si) if xi < Δ ≤ xi+1

ym + ((x − xm) ∗ sm) if xm < Δ
(7.3)

A lower piecewise linear VCC corresponding to a curve segment sequence
Σ on the other hand can be determined by the operator Fl

Σ(Δ) defined as

Fl
Σ(Δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 0 ≤ Δ < x1

yi + ((x − xi) ∗ si) if xi ≤ Δ < xi+1

ym + ((x − xm) ∗ sm) if xm ≤ Δ
(7.4)

Next, let us define the concatenation operator� for two curve segment
sequences ΣA and ΣB as

ΣA � ΣB =
〈
〈x1,A, y1,A, s1,A〉, . . . , 〈xj,A, yj,A, sj,A〉,
〈x1,B, y1,B, s1,B〉, . . . , 〈xmB,B, ymB,B, smB,B〉

〉
(7.5)

with
j = max

1≤ j≤mA

{
j : xj,A < x1,B

}
That is, ΣA � ΣB consists of all curve segments of ΣB, preceded by the
curve segments of ΣA that start at an x-coordinate xA, j < xB,1.

Finally, let us define the shift operator ⊕ for a curve segment sequence
Σ and a shift vector (dx, dy) with dx, dy ∈ R as

Σ ⊕ (dx, dy) =
〈
〈x1 + dx, y1 + dy, s1〉, . . . , 〈xm + dx, ym + dy, sm〉

〉
(7.6)

7.2.2 Compact VCCs
Using the concept of curve segments and curve segment sequences, we
can now define compact VCCs.

Def. 22: (Compact Variability Characterization Curve) A compact VCC ν is a tuple

ν =
{
ΣA,ΣP, px, py, xp0, yp0

}
(7.7)

where ΣA is a curve segment sequence describing a possibly existing irregular
start sequence of a VCC, and ΣP is a curve segment sequence describing a
possibly existing regularly repeated sequence of a VCC. If ΣP is not an empty
curve segment sequence, then the regular part of the VCC is defined by the period
px and the vertical offset py between two consecutive repetitions of ΣP, and the
first occurrence of the regular sequence ΣP starts at (xp0, yp0).

7.3. Operations on Compact VCCs 167

In this compact VCC, we call ΣA the aperiodic curve part of the VCC,
and we call ΣP the periodic curve part of the VCC. To derive the upper
or lower VCC corresponding to a compact VCC ν, we first build a curve
segment sequence Σν defined as

Σν = ΣA �
⎧⎪⎪⎨⎪⎪⎩

⊔
i∈Z≥0

ΣP ⊕ (xp0 + ipx, yp0 + ipy)

⎫⎪⎪⎬⎪⎪⎭ (7.8)

and we then apply (7.3) and (7.4) to this possibly infinite curve segment
sequence. When we apply (7.3) or (7.4) to a curve segment sequenceΣν of
a compact VCC ν, we abbreviated write Fu

ν(Δ) and Fl
ν(Δ) in the following.

We can describe a finite piecewise linear VCC by a compact VCC νwith
ΣP = ∅ and xA,1 = 0. A periodic piecewise linear VCC can be described
by a compact VCC ν with ΣA = ∅, xP,1 = 0, and xp0 = 0. And a regular
piecewise linear VCC can be described by a compact VCC νwith xA,1 = 0,
xP,1 = 0, and xp0 > 0.

Ex. 11: The lower service curve of a bounded delay resource with delay d = 4ms and
bandwidth B = 1.5MHz, depicted in Figure 80(a) can be described by the finite
compact VCC νA defined as

νA =
{〈
〈0, 0, 0〉, 〈4, 0, 1.5〉

〉
,∅, 0, 0, 0, 0

}
The lower service curve of a TDMA resource with bandwidth B = 3MHz, cycle
length c = 2ms, and slot length s = 0.5ms, depicted in Figure 80(b) on the other
hand can be described by the periodic compact VCC νB defined as

νB =
{
∅,

〈
〈0, 0, 0〉, 〈1.5, 0, 3〉

〉
, 2, 1.5, 0, 0

}
And the upper arrival curve of a periodic event stream with period p = 3ms,
jitter j = 10ms and minimum inter-arrival distance d = 0.2ms, depicted in
Figure 80(c) can be described by the regular compact VCC νC defined as

νC =
{〈
〈0, 1, 0〉, 〈0.2, 2, 0〉, 〈0.4, 3, 0〉, 〈0.6, 4, 0〉

〉
,
〈
〈0, 0, 0〉

〉
, 3, 1, 2, 5

}

7.3 Operations on Compact VCCs
To employ compact VCCs within the MPA framework, we must be able
to compute various curve operations on these compact VCCs. We first
introduce a general method to compute curve operations on compact
VCCs, and we then show how to apply this method to compute a set of
unary and binary operations on compact VCCs.

168 Chapter 7. Efficient Computation of Real-Time Calculus

7.3.1 Method
When we closely investigate the various curve operators, we observe that
the result of all operators, when applied to finite, periodic, or regular
piecewise linear VCCs, is again a finite, periodic, or regular piecewise
linear VCC. Hence it suffices to compute the result of the various operators
up to an upper bound, after which we know that the result is either one
linear piece, or a periodic repetition of a part we already computed. The
following four step approach presents a general method to compute curve
operators on compact VCCs.

1. Determine whether the resulting VCC is finite or not. If the resulting
VCC is not finite, determine the period px,C, and the offset py,C of the
resulting periodic or regular VCC.

2. Determine an upper bound xun f old up to which the resulting curve
must be computed.

3. Compute the resulting curve up to xun f old.

4. If the resulting VCC is finite, the aperiodic curve part of the resulting
compact VCC is determined from the result in the range 0 ≤ x ≤
xun f old. If the resulting VCC is periodic or regular on the other
hand, then the aperiodic curve part of the resulting compact VCC
is determined from the result in the range 0 ≤ x < xun f old − px,C, and
the periodic curve part is determined from the result in the range
xun f old − px,C ≤ x < xun f old.

After applying this four step approach, it is often possible to optimize
the resulting compact VCC, because the parts of the aperiodic curve part
could also be captured already by the periodic curve part.

The remainder of this section concentrates on determining the pa-
rameters px,C, py,C, and xun f old for the various curve operators. Knowing
these parameters, the above four step approach can directly be applied to
compute the various curve operators.

7.3.2 Unary Operators
Within the MPA framework, we identify three unary operators that are
important for performance analysis.

7.3.2.1 Floor and Ceil

The floor �ν� and the ceil
ν� of a VCC are important to compute the arrival
curves of a discrete event stream. The following parameters are valid for
both operators.

7.3. Operations on Compact VCCs 169

If the compact VCC ν is finite, then px,C, py,C, and xun f old are

px,C = 1/sm (7.9)
py,C = 1 (7.10)

xun f old = xm + px,C (7.11)

If the compact VCC ν is periodic or regular, then we must first deter-
mine the numerator fn ∈ Z>0 and the denominator fd ∈ Z>0 of the fraction
fn
fd
= py. Then px,C, py,C, and xun f old can be determined as

px,C = fd · px (7.12)
py,C = fd · py (7.13)

xun f old = xp0 + px,C (7.14)

7.3.2.2 Scaling

Scaling a VCC ν with a factor f is important to transform event-based
to resource-based curves and vice-versa. Then parameters px,C, py,C, and
xun f old to compute f ∗ ν can be determined as

px,C = px (7.15)
py,C = f · px (7.16)

xun f old = xp0 + px,C (7.17)

7.3.3 Binary Operators
Within the MPA framework, we further identify eight binary operators
that are important for performance analysis. These eight binary operators
can be grouped into four pairs of two closely related operators.

To compute xun f old for a binary operation with the two VCCs νA and
νB as argument, it is often important to compute the largest xcross,max at
which these two argument VCCs cross. It is however also sufficient, and
typically computationally less expensive, to compute an upper bound
xcross to this point. For this we define an upper and a lower linear bound
to a compact VCC as follows.

For a finite VCC, its upper and lower bound equal its last curve seg-
ment

ηu = ηl = 〈xm, ym, sm〉 = 〈xη, yη, sη〉 (7.18)

For a periodic or regular VCC, its upper linear bound is computed as

ηu = 〈xp0, yp0 + yσu , py/px〉 = 〈xη, yu
η, sη〉 (7.19)

with

yηu = sup
0≤Δ≤px

{
Fu
ΣP

(Δ) − Δ · py

px

}
(7.20)

170 Chapter 7. Efficient Computation of Real-Time Calculus

And its lower linear bound is computed as

ηl = 〈xp0, yp0 + yηl , py/px〉 = 〈xη, yl
η, sη〉 (7.21)

with

yηl = inf
0≤Δ≤px

{
Fl
ΣP

(Δ) − Δ · py

px

}
(7.22)

If the slopes of the linear bounds of the two argument VCCs νA and νB

are equal, that is if sηA = sηB , then we call νA and νB parallel VCCs. Further,
if there exists a crossing point of νA and νB after max{xηA , xηB}, that is if
∃x > max{xηA , xηB} : νA(x) = νB(x), then we call νA and νB interleaving VCCs.

Using the above definitions, the upper bound to a possible cross point
of two VCCs with sηA < sηB can be computed as

xcross = max

⎧⎪⎪⎨⎪⎪⎩
yl
ηA
− yu

ηB
− (sηA ∗ xηA) + (sηB ∗ xηB)

sηB − sηA

, xηA , xηB

⎫⎪⎪⎬⎪⎪⎭ (7.23)

For two parallel and non-interleaving VCCs on the other hand, we define
xcross as

xcross = max
{
xηA , xηB

}
(7.24)

and for two interleaving VCCs, xcross is not defined.
Next we define an operator hp(px,A, px,B) that computes the hyperperiod

of two periods px,A > 0 and px,B > 0 as their least common multiple. If
either of the two periods is zero, then hp(px,A, px,B) returns the non-zero
period, and if both periods are zero, then hp(px,A, px,B) returns also zero.

Finally, in the following discussion of all commutative operators, we
assume without loss of generality that the argument VCCs are arranged
such that sηA < sηB if νA and νB are not parallel, or such that νA(x) <
νB(x) ∀x > max{xη,A, xη,B} if νA and νB are not interleaving.

7.3.3.1 Addition and Substraction

The parameters px,C, py,C, and xun f old to compute the addition of two VCCs
νA + νB can be determined as

px,C = hp(px,A, px,B) (7.25)
xun f old = max{xη,A, xη,B} + px,C (7.26)

The substraction of two VCCs can be computed as νA−νB = νA+ (−νB),
using the unary scaling operator.

7.3. Operations on Compact VCCs 171

7.3.3.2 Minimum and Maximum

The parameters px,C, py,C, and xun f old to compute the minimum of two
non-interleaving VCCs νA and νB can be determined as

px,C = px,A (7.27)
xun f old = xcross + px,C (7.28)

and if νA and νB are interleaving VCCs, min{νA, νB} can be computed with

px,C = hp(px,A, px,B) (7.29)
xun f old = max{xη,A, xη,B} + px,C (7.30)

The maximum of two VCCs can then be computed as max{νA, νB} =
−min{−νA,−νB}.

7.3.3.3 Convolution

The parameters px,C, py,C, and xun f old to compute the max-plus convolution
⊗ of two non-parallel VCCs νA and νB can be determined as

px,C = px,B (7.31)
xun f old = max{xη,A + xη,B + hp(px,A, px,B), xcross + px,C} (7.32)

and if νA and νB are parallel VCCs, then νA ⊗ νB can be computed with

px,C = hp(px,A, px,B) (7.33)
xun f old = xη,A + xη,B + hp(px,A, px,B) (7.34)

The min-plus convolution of two VCCs can then be computed as
νA ⊗ νB = −(−νA⊗ − νB).

7.3.3.4 Deconvolution

The parameters px,C, py,C, and xun f old to compute the noncommutative
min-plus deconvolution
 of two non-parallel VCCs νA and νB can be
determined as

px,C = px,A (7.35)
xun f old = xη,A + xη,B + hp(px,A, px,B) (7.36)

Finally, the max-plus deconvolution of two VCCs can then be com-
puted as νA
 νB = −(−νA
 −νB).

172 Chapter 7. Efficient Computation of Real-Time Calculus

7.4 Discussion
The compact VCCs introduced in this chapter allow to efficiently and
precisely compute various curve operators on VCCs that are defined by
an infinite number of piecewise linear curve segments. Before the intro-
duction of compact VCCs, the results of such curve operations could only
be computed by either using finite piecewise linear approximations of the
argument VCCs, or by sampling the argument VCCs up to a finite length.
Neither of these methods was however very practical to apply within
the MPA framework. Using approximations within the MPA framework
leads to overly pessimistic performance analysis results, and using sam-
pled VCCs within the MPA framework requires much care, because the
number of valid samples in a sampled result curve is sometimes smaller
than the number of samples in the original argument curves. This effect
is especially observed when computing any of the convolution or decon-
volution operators, and requires that the initial sampled input curves to
a performance model consist of a large number of samples, consequently
leading to long computation times.

In contrast to these formerly used methods, employing compact VCCs
within the MPA framework allows efficient and precise performance anal-
ysis. However, the required computing power to compute the various
curve operators on compact VCCs depends largely on the number of curve
segments in the aperiodic and periodic parts of the argument VCCs, as
well as on the periods of periodic or regular argument VCCs. Computing
power demand particularly increases if the periods of two periodic or
regular argument VCCs are relative prime to each other, or if they differ
by several magnitudes. That said, it is then always possible to trade off
precision for required computing power, by selectively using linearly or
periodically approximated compact VCCs.

8
The RTC Toolbox

The Real-Time Calculus (RTC) Toolbox [WT] is a toolbox for MATLAB
[Mat] that enables MPA framework-based performance analysis and
interface-based design of embedded real-time systems within MATLAB.
At its core, the RTC Toolbox provides a MATLAB type for variability
characterization curves (VCCs), and an implementation of a large set
of real-time calculus curve operations. Built around this core, the RTC
Toolbox provides libraries to perform modular performance analysis and
interface-based design, and to visualize VCCs and related data.

This chapter provides an introduction to the RTC Toolbox. The fol-
lowing Section 8.1 first presents an overview to the software architecture
of the RTC Toolbox. This is followed by an application example of the
RTC Toolbox for performance analysis of an embedded real-time system
in Section 8.2. The chapter concludes with a discussion in Section 8.3.

8.1 Software Architecture

In the high-level software architecture of the RTC Toolbox that is depicted
in Figure 81, we can identify that the RTC Toolbox internally consists of
two major software components: a kernel that is implemented in Java,
and a set of MATLAB libraries that connect the Java kernel to the MATLAB
command line interface.

The first principal component of the Java kernel is a class that imple-
ments an object representing a compact VCC, as defined in Section 7.2.
Internally, an object of this compact VCC class consists of two objects that

174 Chapter 8. The RTC Toolbox

VCC MPA IBD RTC

MATLAB Java Interface

MATLAB Command Line Interface

RTC API Util APIVCC API

Curve Segment
Sequence

Aperiodic
Curve Part

Periodic
Curve Part

Curve Segment

Compact
VCC

Real-Time
Calculus

Utilitiesuses

0..1

1

0..1

1

0..1

1

0..1

1

0..*

1

Fig. 81: Software architecture of the RTC Toolbox.

represent the compact VCC’s aperiodic and periodic curve part, respec-
tively, and that both internally consist again of an object that represents
a curve segment sequence as an ordered list of curve segment objects.
This second principal component of the Java kernel is then a class that
implements the real-time calculus curve operators for compact VCCs that
are represented as objects of the compact VCC class. These two principal
classes are supplemented by a set of classes that provide various utilities.
The Java kernel then provides a well-defined API that provide methods to
create compact VCCs, to compute real-time calculus operations on these
compact VCCs, and to access parts of the utilities.

From within MATLAB, the Java kernel is accessed via the MATLAB
Java Interface. This access is however completely hidden from the user,
that accesses the Java kernel instead via MATLAB functions that are pro-
vided by the VCC library and the RTC library. The VCC library mainly
provides functions to create VCCs that are a self-contained MATLAB data
types, internally represented as a Java object. Further, the VCC library
provides functions to plot VCCs. The RTC library on the other hand
provides wrapper functions for all the real-time calculus curve operators

8.2. Case Study 175

that are implemented by the Java kernel. And through the use of operator
overloading, the functions of the RTC library allow to perform operations
on VCCs similar as on any other data type within MATLAB.

The RTC Toolbox further provides two libraries that are built on top
of the VCC and the RTC library and that provide a set of functions that
facilitate the use of the RTC Toolbox for modular performance analysis
and interface-based design. The MPA library provides functions to create
commonly used arrival curves and service curves, as well as functions
to conveniently compute and analyze the various abstract components
within the MPA framework. The IBD library on the other hand pro-
vides functions to compute the various input assumptions and output
guarantees of the abstract components within the MPA framework, thus
facilitating interface-based design.

8.2 Case Study
In this section we illustrate how the RTC Toolbox can be used to analyze
an MPA performance model. For this we consider the small embed-
ded system depicted in Figure 82(a), that processes two real-time event
streams R1 (pR1 = 50ms, jR1 = 200ms, and dR1 = 1ms) and R2 (pR2 = 70ms,
and jR2 = 10ms) on two fully preemptable and independent tasks T1 and
T2 that run as an application on a CPU with a clock frequency of 1GHz.
The CPU also hosts various other applications that are not depicted in
the system model. At the top level, the CPU implements a TDMA sched-
uler to control the resource distribution to the various applications, and
within the TDMA cycle length of 40ms, a slot of length 10ms is allocated to
process the application that consists of T1 and T2. Within the application,
T1 and T2 share the available service using a preemptive fixed priority
scheduling policy, where the higher priority is assigned to T1. The ex-
ecution of T1 requires 4E6 cycles, and the execution of T2 requires 5E6
cycles.

The MPA performance model of the above specified system is depicted
in Figure 82(b), and the code listing in Figure 82 depicts the M-code to
analyze the performance model with MATLAB and the RTC Toolbox. On
line 2 and 3, the function pjd is used to create the arrival curves for the
two events streams, and on line 6, the function tdma creates the TDMA
service curves. Note that the bandwidth is set to 1E6, because the time
basis is 1ms. On lines 13 and 14, the function gpc computes the output of
the greedy processing components, and on lines 17 and 18, the delays of
the two event streams are computed with the function del. Finally, the
command on line 21 plots the remaining service curves at the output of
the performance model.

176 Chapter 8. The RTC Toolbox

αR1 GP

βTMDA

αR2 GP

(a)
 1 % Arrival curves
 2 a0_R1 = pjd(50,200,1);
 3 a0_R2 = pjd(70,10,0);
 4
 5 % Service curves
 6 b0_TDMA = tdma(10,40,1e6);
 7
 8 % Execution demands
 9 e_T1 = 4e6;
10 e_T2 = 5e6;
11
12 % Compute output curves
13 [a1_R1 b1_TDMA] = gpc(a0_R1, b0_TDMA, e_T1);
14 [a1_R2 b2_TDMA] = gpc(a0_R2, b1_TDMA, e_T2);
15
16 % Compute delays
17 delay_S1 = del(a0_R1, b0_TDMA, e_T1);
18 delay_S2 = del(a0_R2, b1_TDMA, e_T2);
19
20 % Plot the remaining service curves
21 plot(b2_TDMA,600);

(b)

T1

T2

R1

R2

CPU
(TDMA)

Fig. 82: System model (a) and performance model (b) of the case study system, together
with the MATLAB M-code to analyze the performance model with the RTC
Toolbox.

8.3 Discussion
The RTC Toolbox and the underlying compact VCCs prove to be power-
ful enough to analyze and design embedded real-time systems with the
MPA framework. All results in this thesis were computed with the RTC
Toolbox, and all plots of VCCs were created with it as well. Moreover,
the RTC Toolbox was also successfully applied already to compute the
results in [WT05b, WTVL05, WT05a, WT06b, WMT06, WT06a, CLS+06].

The execution time to analyze a performance model with the RTC
Toolbox varies with the complexity of the model and the VCCs. In general,
it is however in the magnitude of milliseconds or seconds.

For the future, it is planned to integrate the functionality of the RTC
Toolbox into Simulink. This would allows to graphically compose perfor-
mance models, what would largely increase the user friendliness of the
RTC Toolbox. A proof-of-concept-implementation was already success-
fully accomplished.

Conclusions

The aim of this thesis was to show that it is possible to formally analyze
complex distributed embedded real-time systems with a modular and
extensible framework for system level performance analysis that enables
the efficient computation of correct and accurate performance analysis
results, and that can seamlessly be embedded into an embedded sys-
tems’ design process. Moreover, we wanted to show that it is possible to
extend the same framework to actively support system design through
interface-based design methodologies. To achieve this goal, we extended
the Modular Performance Analysis framework into various directions. In
particular, we would like to point out the following main contributions
of this work.

• We presented an extensive case study of a distributed in-car naviga-
tion system, where the MPA framework was used to answer design
questions that typically arise in the early design phase of such a sys-
tem. This case study demonstrated how performance analysis with
the MPA framework can be seamlessly embedded into a UML-based
design process, and it presented the first application of sensitivity
analysis within the MPA framework.

• We introduced three new abstract components for the MPA frame-
work that model greedy shapers, and tasks with multiple inputs,
respectively, and we addressed the challenge to modeling and ana-
lyzing different processing semantics within a complex embedded
system.

• We introduced Type Rate Curves, Event Sequence Automata, Work-
load Variability Automata, and Workload Correlation Curves, to-
gether with corresponding methods to address the challenges of
complex inputs, variable execution demands, and workload corre-
lations in complex embedded systems.

• We introduced the theory of Real-Time Interfaces that connects the
principles of Real-Time Calculus and interface-based design, and
we developed a component system with Real-Time Interfaces, that

178 Conclusions

enables interface-based embedded real-time system design within
the MPA framework.

• We introduced two new abstract components for the MPA frame-
work that model a TDMA scheduler, and a polling server, respec-
tively, and that address the challenge of modeling, analyzing, and
designing hierarchical scheduling policies in a complex embedded
system. Moreover, we developed methods for optimal parameter
selection of TDMA schedulers, and to support parameter selection
for polling servers.

• We introduced a compact representation for a special class of vari-
ability characterization curves, together with methods to efficiently
compute various Real-Time Calculus curve operations on these com-
pact variability characterization curves, in order to efficiently con-
duct system level performance analysis and interface-based design
within the MPA framework.

• We introduced the Real-Time Calculus (RTC) Toolbox for MATLAB
to support system level performance analysis and interface-based
design of embedded real-time systems with the MPA framework.

Although we could show that it is possible to formally analyze complex
distributed embedded real-time systems, the question remains how rele-
vant these methods and the results obtained with them are in the design
process of realistic systems in an industrial environment. When we reflect
on this question, we identify that the relevance depends on three factors:
the quality of the analysis method, the quality of the available input data,
and the hardness of the design requirements.

There are many factors that determine the quality of an analysis
method. Some of which are correctness, accuracy, embeddability, mod-
ularity, and efficiency, as specified in Section 1.1.4. In this thesis, we
further developed and extended the MPA framework, aiming at increas-
ing its quality regarding these factors. And although we could improve
the framework towards various directions, one of the major challenges
that still needs to be solved is the incorporation of timing correlations in
the analysis of distributed systems. Consequently, the analysis results of
systems with a large amount of timing correlated event streams may be
overly pessimistic, and are thus of decreased relevance.

But even if a formal analysis method is able to consider all details
of a system, its analysis results are only as good as the available input
data. The question here is always how good the various models that are
used in the system analysis correlate with their concrete counterparts.

Conclusions 179

How detailed is the behavior of a communication protocol modeled, or
how good is the model of a scheduling policy that is implemented in a
particular concrete real-time operating system? And the major problem
typically is to model the environment. Is a periodic event-stream really
strictly periodic in reality, or how large may the jitter of an event-stream
be in the worst-case? Often it is hard or even impossible to formally
determine the specification of an environment. However a designer of a
hard real-time system must always consider that the adherence to design
specifications can only be guaranteed for a specified input. And if this
input specification does not cover the worst-case environment behavior,
the guarantee is invalid.

Finally, an important factor that threatens the relevance of formal per-
formance analysis methods is the significance of worst-case and best-case
bounds in modern computing systems. These systems are often designed
to optimize average performance instead of worst-case performance. And
the applied technologies to improve average performance, such as caches,
branch predictors, and others, not only improve the average performance,
but they often drastically downgrade the worst-case performance, such
that the worst-case performance in these systems is often by magnitudes
worse than the average performance. Moreover these technologies often
also threaten the predictability of a system’s performance in general. And
even if such a system remain predictable, the worst-case and best-case
bounds obtained on their performance are often irrelevant to a designer,
even if they are correct and accurate. Consequently, it would be very
interesting to augment the MPA framework with statistical methods, to
tackle also design questions regarding the average performance of an
embedded system.

Outlook

The Modular Performance Analysis framework proves to be a powerful
and extensible framework for formal system level performance analysis
of complex distributed embedded real-time systems. And although we
considerably extended and further developed the MPA framework in
this thesis, there exists still much potential for further extensions and
developments. Based on the work presented in this thesis, and on the
extensive experience we gained on the MPA framework, we identify three
main areas of future research and development.

In the area of further developing the theoretical foundations and capa-
bilities of the MPA framework we would like to highlight three challenges.
First, it would be interesting to develop models and methods to address
the challenge of timing correlations in complex embedded systems. Next,
the problem of cyclic dependencies and fixed-point calculation within
performance models needs to be investigated thoroughly. And finally, it
would be interesting to conduct research on how to model and analyze
dynamic systems with feedback and state-dependant behavior.

In the area of extending the modeling and analysis capabilities of
the MPA framework, there exists a large potential to develop various
additional abstract components. To name only a few, it would for example
be interesting to develop abstract components for round robin scheduling,
for deferrable servers, for smoothers, for schedulers with timeout, for
external memory, or for components with blocking mutually exclusive
access.

Finally, there exists a large potential in extending the theory of Real-
Time Interfaces, and in extending the corresponding component system
for interface-based design of embedded real-time systems. In particu-
lar, it would be interesting to extend the framework to be applicable for
distributed systems, by introducing components with outgoing arrival
curves. Moreover, the component system could be extended to conse-
quently work with both, the upper, and the lower arrival and service
curves at all connections.

Bibliography

[AB98] A. Atlas and A. Bestavros. Statistical rate monotonic schedul-
ing. In Proceedings of the 19th IEEE Real-Time Systems Sym-
posium (RTSS), page 123, Washington, DC, USA, 1998. IEEE
Computer Society.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AFM+02] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi. Times – A Tool for Modelling and Implementation
of Embedded Systems. In TACAS ’02: Proceedings of the 8th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 460–464, London,
UK, 2002. Springer-Verlag.

[Aga92] A. Agarwal. Performance Tradeoffs in Multithreaded Pro-
cessors. IEEE Transactions on Parallel and Distributed Systems,
3(5):525–539, September 1992.

[Alm03] L. Almeida. Response-Time Analysis and Server Design
for Hierarchical Scheduling. In Proceedings of the Work-in-
Progress session of RTSS, 2003.

[AP04] L. Almeida and P. Pedreira. Scheduling within temporal
partitions: response-time analsysis and server design. In
Proceedings of the Fourth ACM International Converence on Em-
bedded Software, 2004.

[Bar98] S. K. Baruah. A general model for recurring real-time
tasks. In Proceedings of the IEEE Real-Time Systems Sympo-
sium (RTSS), pages 114–122, 1998.

[Bar03] S. K. Baruah. Dynamic- and static-priority scheduling of
recurring real-time tasks. Real-Time Systems, 24(1):93–128,
2003.

184 Bibliography

[BBB+03] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and
M. Poncino. SystemC cosimulation and emulation of multi-
processor SoC designs. IEEE Computer, 36(4):53–59, 2003.

[BCGM99] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. General-
ized multiframe tasks. Real-Time Systems, 17(1):5–22, 1999.

[BCOQ92] F. Bacelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchro-
nization and Linearity: An Algebra for Discrete Event Systems.
Wiley Series in Probability and Mathematical Statistics. John
Wiley & Sons Ltd, August 1992.

[BDL] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Up-
pAal. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM-RT 2004, number 3185 in
LNCS, pages 200–236, September.

[BES+01] J. Berwanger, C. Ebner, A. Schedl, R. Belschner, S. Fluhrer,
P. Lohrmann, E. Fuchs, D. Millinger, M. Sprachmann, F. Bo-
genberger, et al. FlexRay: The communication system for
advanced automotive control systems. SAE transactions,
110(7):303–314, 2001.

[BL03] E. Bini and G. Lipari. Resource partitioning among real-time
applications. In Proc. of EUROMICRO Conference on Real-Time
Systems (ECRTS), 2003.

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms
and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Real-Time Systems,
2(4):301–324, 1990.

[But97] G.C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic
Publishers, Boston, 1997.

[CdAHS03] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and
M. Stoelinga. Resource interfaces. In EMSOFT 03: Embed-
ded Software, Lecture Notes in Computer Science 2855, pages
117–133. Springer-Verlag, 2003.

[CDQV85] G. Cohen, D. Dubois, J. P. Quadrat, and M. Voit. A linear-
system-theoretic view of discrete-event processes and its use
for performance avaluation in manufacturing. IEEE Transac-
tions on Automatic Control, AC-30(3):210–220, March 1985.

Bibliography 185

[CKT03] S. Chakraborty, S. Künzli, and L. Thiele. A general frame-
work for analysing system properties in platform-based em-
bedded system designs. In Proc. 6th Design, Automation and
Test in Europe (DATE), pages 190–195, Munich, Germany,
March 2003.

[CLS+06] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wan-
deler. Interface-Based Rate Analysis of Embedded Systems.
In 27th IEEE Real-Time Systems Symposium (RTSS), December
2006. Under Review.

[Cru91] R. L. Cruz. A calculus for network delay. IEEE Transactions
on Information Theory, 37(1):114–141, 1991.

[CT05] S. Chakraborty and L. Thiele. A new task model for stream-
ing applications and its schedulability analysis. In Design,
Automation and Test in Europe (DATE), pages 486–491, 2005.

[dAH01a] L. de Alfaro and T. A. Henzinger. Interface Automata.
In Proc. Foundations of Software Engineering, pages 109–120.
ACM Press, 2001.

[dAH01b] L. de Alfaro and T. A. Henzinger. Interface Theories for
Component-Based Design. In EMSOFT 01: Embedded Soft-
ware, Lecture Notes in Computer Science 2211, pages 148–
165. Springer-Verlag, 2001.

[dAH05] L. de Alfaro and T. A. Henzinger. Interface-based Design. In
To appear in the Proceedings of the 2004 Marktoberdorf Summer
School. Kluwer, 2005.

[dAHS02] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed
Interfaces. In EMSOFT 02: Embedded Software, Lecture Notes
in Computer Science 2491, pages 108–122. Springer-Verlag,
2002.

[DB05] R. I. Davis and A. Burns. Hierarchical Fixed Priority Pre-
Emptive Scheduling. In Proceedings of the 26th IEEE Real-Time
Systems Symposium (RTSS)., pages 389–398, 2005.

[DL97] Z. Deng and J.W.S. Liu. Scheduling real-time applications in
an open environment. In Proceedings of the 18th IEEE Real-
Time Systems Symposium (RTSS), pages 308–319, 1997.

[DTB93] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack
time in fixed priority pre-emptive systems. In Proceedings of
the Real-Time Systems Symposium, pages 222–231, 1993.

186 Bibliography

[EDPP00] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus
access optimization for distributed embeddedsystems. IEEE
Transactions on VLSI Systems, 8(5):472–491, 2000.

[EWY99] C. Ericsson, A. Wall, and W. Yi. Timed Automata as Task
Models for Event-Driven Systems. In RTCSA ’99: Proceedings
of the Sixth International Conference on Real-Time Computing
Systems and Applications, page 182, Washington, DC, USA,
1999.

[Fle] FlexRay.
http://www.flexray.com.

[FM03] P. Fortier and H. Michel. Computer Systems Performance Eval-
uation and Prediction. Digital Press, August 2003.

[FW03] M.A. Franklin and T. Wolf. A network processor perfor-
mance and design model with benchmark parameteriza-
tion. In P. Crowley, M.A. Franklin, H. Hadimioglu, and P.Z.
Onufryk, editors, Network Processor Design: Issues and Prac-
tices, Volume 1, chapter 6, pages 117–140. Morgan Kaufmann
Publishers, 2003.

[GDvM+03] K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko,
A. Rădulescu, E. Rijpkema, E. Waterlander, and P. Wielage.
Guaranteeing the quality of services in networks on chip. In
Networks on chip, pages 61–82. Kluwer Academic Publishers,
Hingham, MA, USA, 2003.

[GGPD01] M. González Harbour, J.J. Gutiérrez García, J.C. Palencia
Gutiérrez, and J.M. Drake Moyano. MAST: Modeling and
Analysis Suite for Real Time Applications. In Proceedings of
13th Euromicro Conference on Real-Time Systems, pages 125–
134, Delft, The Netherlands, 2001. IEEE Computer Society
Press.

[GH03] J. C. Palencia Gutiérrez and M. González Harbour. Offset-
based response time analysis of distributed systems sched-
uled under EDF. In Proceedings of the 15th Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 3–12, 2003.

[GLMS02] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, Boston, MA,
USA, May 2002.

Bibliography 187

[Gri04] M. Gries. Methods for evaluating and covering the de-
sign space during early design development. VLSI Journal,
38(2):131–183, 2004.

[GSE+98] S. Gringeri, K. Shuaib, R. Egorov, A. Lewis, B. Khasnabish,
and B. Basch. Traffic shaping, bandwidth allocation, and
quality assessment for MPEG video distribution over broad-
band networks. IEEE Networks, 12(6):94–107, 1998.

[GVNG94] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification
and Design of Embedded Systems. Prentice Hall, Englewood
Cliffs, N.J., 1994.

[HE05] A. Hamann and R. Ernst. TDMA Time Slot and Turn Op-
timization with Evolutionary Search Techniques. In Design,
Automation and Test in Europe (DATE 2005), 2005.

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis – the symta/s
approach. IEE Proceedings – Computers and Digital Techniques,
152(2):148–166, 2005.

[HKA+01] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srini-
vasan. Variability in the execution of multimedia applica-
tions and implications for architecture. In Proceedings of the
28th Annual International Symposium on Computer Architec-
ture, pages 254–265. ACM Press, 2001.

[HM06] T. A. Henzinger and S. Matic. An interface algebra for real-
time components. In Proceedings of the 12th Annual Real-Time
and Embedded Technology and Applications Symposium (RTAS).
IEEE Computer Society Pres, 2006.

[HV06] M. Hendriks and M. Verhoef. Timed automata based analysis
of embedded system architectures. In Workshop on Parallel
and Distributed Real-Time Systems – WPDRTS 2006, 2006.

[IEE98] IEEE/EIA. ISO/IEC 12207:1995 Standard for Information Tech-
nology – Software life cycle processes. The Institute of Electrical
and Electronics Engineers, Inc., March 1998.

[Inu79] T. Inukai. An Efficient SS/TDMA Time Slot Assignment Al-
gorithm. IEEE Transactions on Communications, 27(10):1449–
1455, 1979.

188 Bibliography

[JE03] M. Jersak and R. Ernst. Enabling Scheduling Analysis of
Heterogeneous Systems with Multi-Rate Data Dependencies
and Rate Intervals. In Proceedings 40th Design Automation
Conference (DAC), June 2003.

[Jer05] M. Jersak. Compositional Performance Analysis for Complex
Embedded Applications. PhD thesis, Technical University of
Braunschweig, 2005.

[JHE04] M. Jersak, R. Henia, and R. Ernst. Context-aware perfor-
mance analysis for efficient embedded systems design. In
Proc. 7th Design, Automation and Test in Europe (DATE), 2004.

[JRE04] M. Jersak, K. Richter, and R. Ernst. Performance analysis
for complex embedded applications. International Journal of
Embedded Systems, Special Issue on Codesign for SoC, 2004.

[Kar78] R. M. Karp. A characterization of the minimum cycle mean
in a digraph. Discrete Mathematics, (23):309–311, 1978.

[KDVW97] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf.
An approach for quantitative analysis of application-specific
dataflow architectures. In ASAP ’97: Proc. of the IEEE Interna-
tional Conference on Application-Specific Systems, Architectures
and Processors, page 338, Washington, DC, USA, 1997. IEEE
Computer Society.

[KG93] H. Kopetz and G. Grunsteidl. TTP - A time-triggered proto-
col for fault-tolerant real-timesystems. pages 524–533, 1993.

[KL99] T.W. Kuo and C.H. Li. A Fixed-Priority-Driven Open En-
vironment for Real-Time Applications. In Proceedings of the
20th IEEE Real-Time Systems Symposium, 1999.

[KM98] A. Kalavade and P. Moghé. A tool for performance estima-
tion of networked embedded end-systems. In Proceedings of
the 35th Conference on Design Automation Conference (DAC),
pages 257–262. ACM/IEEE, June 1998.

[Kop97] H. Kopetz. Real-Time Systems - Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, 1997.

[KPBT06] S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combin-
ing simulation and formal methods for system-level per-
formance analysis. In Proc. Design, Automation and Test in
Europe (DATE), March 2006.

Bibliography 189

[Leh96] J. P. Lehoczky. Real-time queueing theory. In Proceedings of
the 17th IEEE Real-Time Systems Symposium (RTSS), page 186,
Washington, DC, USA, 1996. IEEE Computer Society.

[Lin98] C. Lindemann. Performance Modelling with Deterministic and
Stochastic Petri Nets. John Wiley and Sons, 1998.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the ACM, 20(1):46–61, 1973.

[LMCO04] Y. Liu, A. Maxiaguine, S. Chakraborty, and W. T. Ooi. Pro-
cessor frequency selection for SoC platforms for multime-
dia applications. In Proceedings of the 25th IEEE International
Real-Time Systems Symposium (RTSS), pages 336–345, Lisbon,
Portugal, December 2004. IEEE Computer Society.

[LRD01] K. Lahiri, A. Raghunathan, and S. Dey. System level per-
formance analysis for designing on-chip communication ar-
chitectures. IEEE Transactions on Computer Aided-Design of
Integrated Circuits and Systems, 20(6):768–783, 2001.

[LRT92] J.P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm
for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Pre-
emptive Systems. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 110–123, 1992.

[LSS+87] J.P. Lehoczky, L. Sha, J.K. Strosnider, et al. Enhanced Ape-
riodic Responsiveness in Hard Real-Time Environments. In
Proceedings of the IEEE Real-Time Systems Symposium, pages
261–270, 1987.

[LT01] J. Y. Le Boudec and P. Thiran. Network Calculus - A Theory of
Deterministic Queuing Systems for the Internet. Number 2050 in
Lecture Notes in Computer Science (LNCS). Springer Verlag,
2001.

[LW82] J. Leung and J. W. Withehead. On the complexity of fixed
priority scheduling of periodic real-time tasks. Performance
Evaluation, 2(4), 1982.

[Mat] Matlab.
http://www.mathworks.com.

[Max] SoC Designer with MaxSim Technology (ARM).
http://www.arm.com/products/DevTools/MaxSim.html.

190 Bibliography

[Max05] A. Maxiaguine. Modeling Multimedia Workloads for Embedded
System Design. PhD thesis, ETH Zurich, October 2005.

[MC97] A. K. Mok and D. Chen. A multiframe model for real-time
tasks. IEEE Transactions on Software Engineering, 23(10):635–
645, 1997.

[MEP04] S. Manolache, P. Eles, and Z. Peng. Schedulability analysis
of applications with stochastic task execution times. Trans-
actions on Embedded Computing Systems, 3(4):706–735, 2004.

[MFC01] A. K. Mok, A. X. Feng, and D. Chen. Resource partition
for real-time systems. In Proceedings of the Real-Time Systems
Symposium (RTSS), pages 75– 84. IEEE Computer Society,
2001.

[MKT04] A. Maxiaguine, S. Künzli, and L. Thiele. Workload charac-
terization model for tasks with variable execution demand.
In Design, Automation and Test in Europe (DATE), pages 1040–
1045, Paris, France, February 2004. IEEE Computer Society.

[MLCO04] A. Maxiaguine, Y. Liu, S. Chakraborty, and W. T. Ooi. Iden-
tifying r̈epresentativeẅorkloads in designing mpsoc plat-
forms for media processing. In 2nd Workshop on Embedded
Systems for Real-Time Multimedia (ESTIMedia), pages 41– 46,
Stockholm, Sweden, September 2004. IEEE Press.

[MZCW04] A. Maxiaguine, Yongxin Zhu, S. Chakraborty, and Weng-Fai
Wong. Tuning SoC platforms for multimedia processing:
identifying limits and tradeoffs. In Proceedings of the 2nd
IEEE/ACM/IFIP International Conference on Hardware/software
Codesign and System Synthesis (CODES+ISSS), pages 128–133.
ACM Press, 2004.

[Obe02] R. Obermaisser. CAN Emulation in a Time-Triggered Envi-
ronment. In Proceedings of the 2002 IEEE International Sympo-
sium on Industrial Electronics (ISIE). IEEE, 2002.

[Obe05] R. Obermaisser. Event-Triggered and Time-Triggered Control
Paradigms, volume 22 of Real-Time Systems Series. Springer,
2005.

[PEP00] P. Pop, P. Eles, and Z. Peng. Performance estimation for em-
bedded systems with data and control dependencies. In Pro-
ceedings of the 8th International Workshop on Hardware/Software
Co-Design (CODES), pages 62–66, 2000.

Bibliography 191

[PEP02] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis
of mixed time/event-triggered distributed embedded sys-
tems. In Proceedings of the 10th International Symposium on
Hardware/Software Codesign (CODES), pages 187–192, 2002.

[PEP03] P. Pop, P. Eles, and Z. Peng. Schedulability analysis and
optimization for the synthesis of multi-cluster distributed
embedded systems. In Design, Automation and Test in Europe
(DATE), pages 10184–10189, 2003.

[PEP+04] Paul Pop, Petru Eles, Zebo Peng, Viacheslav Izosimov, Mag-
nus Hellring, and Olof Bridal. Design Optimization of Multi-
Cluster Embedded Systems for Real-Time Applications. In
Design, Automation and Test in Europe (DATE 2004), pages
1028–1033, 2004.

[PG93] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services net-
works: The single-node case. IEEE/ACM Transactions on Net-
working, 1(3):344–357, June 1993.

[PG94] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services net-
works: The multiple node case. IEEE/ACM Transactions on
Networking, 2:137–150, April 1994.

[RBGW97] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. Scalable
architectures for integrated traffic shaping and link schedul-
ing in high-speed ATM switches. IEEE Journal on Selected
Areas in Communications, 15(5):938–950, 1997.

[RE02] K. Richter and R. Ernst. Event model interfaces for hetero-
geneous system analysis. In Proc. 5th Design, Automation
and Test in Europe (DATE), page 506. IEEE Computer Society,
March 2002.

[Ric05] K. Richter. Compositional Performance Analysis. PhD thesis,
Technical University of Braunschweig, 2005.

[RJE03] K. Richter, M. Jersak, and R. Ernst. A formal approach
to MpSoC performance verification. IEEE Computer, 36(4),
2003.

[RJE05] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity anal-
ysis in real-time distributed systems. In 11th IEEE Real-Time
Technology and Applications Symposium (RTAS), San Francisco,
USA, 2005.

192 Bibliography

[RTL93] S. Ramos-Thuel and JP Lehoczky. On-line scheduling of
hard deadline aperiodic tasks infixed-priority systems. In
Proceeding of the Real-Time Systems Symposium., pages 160–
171, 1993.

[RZJE02] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model
composition for scheduling analysis in platform design. In
Proceedings 39th Design Automation Conference (DAC), June
2002.

[SAÅ+04] L. Sha, T. F. Abdelzaher, K.-E. Årzén, A. Cervin, T. P. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K.
Mok. Real time scheduling theory: A historical perspective.
Real-Time Systems, 28(2-3):101–155, 2004.

[SB94] M. Spuri and GC Buttazzo. Efficient aperiodic service under
earliest deadline scheduling. In Proceedings of the Real-Time
Systems Symposium (RTSS), pages 2–11, 1994.

[SB96] M.S. Spuri and G.S. Buttazzo. Scheduling aperiodic tasks in
dynamic priority systems. Real-Time Systems, 10(2):179–210,
1996.

[Sea] Seamless Hardware/Software Co-Verification, Mentor
Graphics.
http://www.mentor.com/seamless/.

[Sim] SimpleScalar Tool Set.
http://www.simplescalar.com/.

[SJNL05] H. Schiøler, J. Jessen, J. Dalsgaard Nielsen, and K. G. Larsen.
CyNC - towards a general tool for performance analysis of
complex distributed real-time systems. In Proceedings of the
WiP Session of the 17th EUROMICRO Conference on Real-Time
Systems (ECRTS 05), pages 61–64. IEEE, 2005.

[SL03] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In Proceedings of the Real-Time Systems
Symposium (RTSS), pages 2–13. IEEE Press, 2003.

[SL04] I. Shin and I. Lee. Compositional Real-Time Scheduling
Framework. In Proceedings of the Real-Time Systems Sympo-
sium (RTSS), pages 57–67. IEEE Press, 2004.

[SLR86] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some
practical problems in prioritised preemptive scheduling. In

Bibliography 193

Proceedings of the IEEE Real-Time Systems Symposium (RTSS),
pages 181–191, 1986.

[SLS95] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in
hard real-time environments. IEEE Transactions on Cumput-
ers, 44(1):73–91, 1995.

[SRLK02] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein.
Analysis of hierar hical fixed-priority scheduling. In Pro-
ceedings of the 14th Euromicro Conference on Real-Time Systems,
pages 152–160, 2002.

[SSL89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling
for Hard-Real-Time systems. Real-Time Systems, 1(1):27–60,
1989.

[Sym] SymTA/S Tool Suite. http://www.symtavision.com/.

[Sysa] The Open SystemC Initiative (OSCI).
http://www.systemc.org.

[Sysb] System Studio (Synopsis).
http://www.synopsis.com/products/cocentric_studio/.

[TBW95] K. Tindell, A. Burns, and A.J. Wellings. Calculating con-
troller area networks (can) message response times. Control
Engineering Practice, 3(8):1163–1169, 1995.

[TC94] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing & Micro-
programming, 40(2-3):117–134, 1994.

[TCN00] L. Thiele, S. Chakraborty, and M. Naedele. Real-time cal-
culus for scheduling hard real-time systems. In Proc. IEEE
International Symposium on Circuits and Systems (ISCAS), vol-
ume 4, pages 101–104, 2000.

[TDS+95] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu,
and J. W.-S. Liu. Probabilistic performance guarantee for
real-time tasks with varying computation times. In Proceed-
ings of the IEEE Real-Time Technology and Applications Sympo-
sium (RTAS), pages 164 – 173. IEEE Computer Society, 1995.

[Tim] TimesTool. http://www.timestool.com/.

194 Bibliography

[TKZ04] L. Thiele, S. Künzli, and E. Zitzler. A Modular Design Space
Exploration Framework for Embedded Systems. IEE Pro-
ceedings Computers & Digital Techniques, 2004. Special Issue
on Embedded Microelectronic Systems.

[TLS96] T.S.N. Tia, J.W.S.N. Liu, and M.N. Shankar. Algorithms and
optimality of scheduling soft aperiodic requests in fixed-
priority preemptive systems. Real-Time Systems, 10(1):23–43,
1996.

[TW05] L. Thiele and E. Wandeler. Performance Analysis of Embed-
ded Systems. In The Embedded Systems Handbook. CRC Press,
2005.

[Upp] UppAal. http://www.uppaal.com/.

[VCC] The Cadence Virtual Component Co-design (VCC).
http://www.cadence.com/products/vcc.html.

[WMT06] E. Wandeler, A. Maxiaguine, and L. Thiele. Performance
Analysis of Greedy Shapers in Real-Time Systems. In Design,
Automation and Test in Europe (DATE), pages 444–449, March
2006.

[WRM+05] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao. Real-
time component-based systems. In Proceedings of the 11th
Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pages 428–437. IEEE Press, 2005.

[WT] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Tool-
box.
http://www.mpa.ethz.ch/Rtctoolbox.

[WT05a] E. Wandeler and L. Thiele. Real-Time Interfaces for Interface-
Based Design of Real-Time Systems with Fixed Priority
Scheduling. In 5th ACM Conference on Embedded Software
(EMSOFT), pages 80–89, September 2005.

[WT05b] E. Wandeler and L. Thiele. Workload Correlations in Multi
Processor Hard Real-Time Systems. Journal of Computer ans
System Sciences, Special Issue on Real-Time and Embedded Sys-
tems, 2005. In press.

[WT06a] E. Wandeler and L. Thiele. Interface-Based Design of Real-
Time Systems with Hierarchical Scheduling. In 12th IEEE
Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pages 243–252, April 2006.

Bibliography 195

[WT06b] E. Wandeler and L. Thiele. Optimal TDMA Time Slot and
Cycle Length Allocation for Hard Real-Time Systems. In 11th
Asia South Pacific Design Automation Conference (ASP-DAC),
pages 479–484, January 2006.

[WTVL05] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System
Architecture Evaluation Using Modular Performance Anal-
ysis - A Case Study. Software Tools for Technology Transfer,
2005. In press.

[YW95] T.-Y. Yen and W. Wolf. Performance estimation for real-time
distributed embedded systems. In ICCD ’95: Proceedings of
the 1995 International Conference on Computer Design, pages
64–71, Wahsington, DC, USA, 1995. IEEE Computer Society.

A
Real-Time Calculus

Real-Time Calculus is relies on min-plus calculus and max-plus calculus
that both define a special algebra (the min-plus dioid and max-plus dioid,
respectively). Traditionally, we are used to work with the algebraic struc-
ture (R,+,×), i. e. with the set of reals endowed with the operations of
addition and multiplication, that possess a number of properties such as
associativity, commutativity, or distributivity.

In difference to this, min-plus calculus works with an algebraic struc-
ture (R∪∞,∨,+). Here, the operation of addition becomes the computa-
tion of the infimum (or the minimum), and the operation of multiplication
becomes the addition. Most axioms known from conventional algebra still
apply to this algebraic structure. And in max-plus calculus, the infimum
and minimum are simply replaced by supremum and maximum.

For more information on min-plus and max-plus calculus see also
[LT01] and [BCOQ92].

A.1 Convolutions and Deconvolutions
In the MPA framework, we often need to compute convolutions and
deconvolutions defined in min-plus and max-plus calculus.

The min-plus convolution ⊗ and the min-plus deconvolution
 of two
functions f and g are defined as [LT01]:

(f ⊗ g)(Δ) = inf
0≤λ≤Δ

{ f (Δ − λ) + g(λ)} (A.1)

(f
 g)(Δ) = sup
λ≥0

{ f (Δ + λ) − g(λ)} (A.2)

198 Appendix A. Real-Time Calculus

The max-plus convolution ⊗ and the max-plus deconvolution
 of two
functions f and g on the other hand are defined as [LT01]:

(f ⊗ g)(Δ) = sup
0≤λ≤Δ

{ f (Δ − λ) + g(λ)} (A.3)

(f
 g)(Δ) = inf
λ≥0
{ f (Δ + λ) − g(λ)} (A.4)

A.2 Sub-Additivity and Sub-Additive Closure
A curve f is sub-additive, if

f (a) + f (b) ≥ f (a + b) ∀a, b ≥ 0 (A.5)

The sub-additive closure f of a curve f is the largest sub-additive curve
with f ≤ f and is computed as

f = min{ f , (f ⊗ f), (f ⊗ f ⊗ f), . . .} (A.6)

If f is interpreted as an arrival curve, then any trace R that is upper
bounded by f is also upper bounded by the sub-additive closure f .

A.3 Selected Properties
Lem. 2: Given non-negative monotonic increasing functions f , g, h, j : R !→ R with

f (t) = g(t) = h(t) = j(t) = 0 for all t ≤ 0. Then

(f ⊗ g)
(h ⊗ j) ≥ (f
h) ⊗ (g
 j)

Proof. We have by definition of the operators:

(f ⊗ g)
(h ⊗ j) = inf
λ≥0

sup
0≤b≤λ

inf
0≤a≤Δ+λ

[f (a) − h(b) + g(Δ + λ − a) − j(λ − b)]

We will consider three cases depending on the value of a:

• b ≤ a ≤ b + Δ:

inf
λ≥0

sup
0≤b≤λ

inf
b≤a≤b+Δ

[f (a) − h(b) + g(Δ + λ − a) − j(λ − b)]

= inf
λ≥0

sup
0≤b≤λ

inf
0≤a′≤Δ

[f (a′ + b) − h(b) + g(Δ + λ − a′ − b) − j(λ − b)]

≥ inf
λ≥0

inf
0≤b≤λ

inf
0≤a′≤Δ

[f (a′ + b) − h(b) + g(Δ + λ − a′) − j(λ)]

≥ inf
λ≥0

inf
0≤b

inf
0≤a′≤Δ[f (a′ + b) − h(b) + g(Δ + λ − a′) − j(λ)]

= inf
0≤a′≤Δ[inf

0≤b
(f (a′ + b) − h(b)) + inf

λ≥0
(g(Δ + λ − a′) − j(λ))]

=(f
h) ⊗ (g
 j)

A.4. Greedy Processing Component 199

Note that we used variable substitutions and the relation

sup
a
{u(a) + v(a) } ≥ u(a0) + inf

a
{v(a)}

• b + Δ ≤ a ≤ Δ + λ:

inf
λ≥0

sup
0≤b≤λ

inf
b+Δ≤a≤Δ+λ

[f (a) − h(b) + g(Δ + λ − a) − j(λ − b)]

= inf
λ≥0

sup
0≤b≤λ

inf
0≤a′≤λ−b

[f (a′ + b + Δ) − h(b) + g(λ − b − a′) − j(λ − b)]

= inf
λ≥0

sup
0≤b′≤λ

inf
0≤a′≤b′

[f (a′ + Δ + λ − b′) − h(λ − b′) + g(b′ − a′) − j(b′)]

≥ inf
λ≥0

inf
0≤b′≤λ

inf
0≤a′≤b′

[f (a′ + Δ + λ − b′) − h(λ − b′)]

≥ inf
0≤b

inf
0≤a′

[f (a′ + Δ + b) − h(b)]

= inf
0≤b

[f (Δ + b) − h(b)]

= f
h

• 0 ≤ a ≤ b:

inf
λ≥0

sup
0≤b≤λ

inf
0≤a≤b

[f (a) − h(b) + g(Δ + λ − a) − j(λ − b)]

= inf
λ≥0

sup
0≤b≤λ

inf
0≤a′≤b

[f (b − a′) − h(b) + g(Δ + a′ + λ − b) − j(λ − b)]

≥ inf
λ≥0

inf
0≤b′≤λ

inf
0≤a′≤b

[g(Δ + a′ + λ − b) − j(λ − b)]

≥ inf
0≤λ

inf
0≤a′

[g(Δ + a′ + λ) − j(λ)]

= inf
0≤λ

[g(Δ + λ) − j(λ)]

=g
 j

Now we have

(f ⊗ g)
(h ⊗ j) ≥min{(f
h) ⊗ (g
 j), f
h, g
 j}
=(f
h) ⊗ (g
 j)

�

A.4 Greedy Processing Component
This section contains the proofs for the real-time calculus relations of a
greedy processing component as used in the MPA framework, and as

200 Appendix A. Real-Time Calculus

introduced in Example 3 in Chapter 2. The following proofs require
arrival and service curves as defined in this thesis, that are based on
differential arrival and service functions R[s, t) and C[s, t) that extend to
the whole time domain. With the arrival and service curves defined
by Cruz [Cru91] and by Le Boudec and Thiran [LT01], that are based
on cumulative arrival and service functions R(τ) and C(τ) that are only
defined for the positive time domain, the following proofs are not valid.

A.4.1 Basic Function Processing
The time domain is defined by τ ∈ R. The sum of events in the time
interval s ≤ τ < t orτ ∈ [s, t) is described by the differential arrival function
R[s, t), as defined in Chapter 2 For a zero-length interval, i. e. s = t, we set
R[s, t) = 0. In a similar way, the resource availability is characterized by
the service function C[s, t) which here denotes the number of events that
could be processed in τ ∈ [s, t), again with C[s, s) = 0.

Let us first rephrase the basic function processing by a greedy process-
ing component.

Def. 23: (Event Processing) Given a resource node with backlog B(s) at some time s and
with a service function described by C[s, t). An event stream described by R[s, t)
is processed by this node. Then the remaining resources described by C

′
[s, t) and

processed event stream described by R
′[s, t), satisfy the following relations for all

s, t with s ≤ t:
R
′
[s, t) = C[s, t) − C

′
[s, t) (A.7)

C
′
[s, t) = sup

s≤u≤t
{C[s, u) − R[s, u) − B(s), 0} (A.8)

The first equation states the conservation of events, i. e. the incom-
ing resource stream is partitioned into the outgoing event and resource
streams. The second equation is derived from the fact that the outgo-
ing resource stream (i) is nonnegative and (ii) is the minimal value that
satisfies C

′[s, t) ≥ C[s, u) − (R[s, u) + B(s)) for all u with s ≤ u ≤ t. Here,
R[s, u)+B(s) denotes the events available for processing within the interval
[s, u).

Using the abbreviation {x}+ = sup{x, 0}, we can also write

C
′
[s, t) = sup

s≤u≤t
{C[s, u) − R[s, u) − B(s)}+ (A.9)

In addition, we can define the backlog B(s) at time s. We have for all s ≤ t

B(t) − B(s) = R[s, t) − R
′
[s, t) (A.10)

The proofs of the basic real-time relations for the greedy processing
component need an assumption on the backlog. In particular, we require

A.4. Greedy Processing Component 201

without loss of generality that for any time τ, there exists an earlier time
p ≤ τ such that B(p) = 0, i. e. the buffer for events was empty at some time
p < t.

The arrival and service curves are defined as in Chapter 2. In particu-
lar, we have

αl(t − s) ≤ R[s, t) ≤ αu(t − s) ∀s ≤ t (A.11)

βl(t − s) ≤ C[s, t) ≤ βu(t − s) ∀s ≤ t (A.12)

In addition, we will sometimes suppose that the upper and lower curves
are sub-additive and super-additive, respectively:

αu(t) + αu(s) ≥ αu(t + s) (sub-additive) (A.13)

αl(t) + αl(s) ≤ αl(t + s) (super-additive) (A.14)

The same relations also hold for the service curves β.

A.4.2 Remaining Service
Cor. 1: (Upper and Lower Remaining Service) Given an event stream described by

the arrival curves αu, αl and a resource described by the service curves βu, βl.
Then the remaining service is bounded by the curves

βl′(Δ) = sup
0≤λ≤Δ

{
βl(λ) − αu(λ)

}
∀0 ≤ Δ (A.15)

βu′(Δ) = inf
Δ≤λ

{
βu(λ) − αl(λ)

}+ ∀0 ≤ Δ (A.16)

Proof. Note that we suppose the existence of an arbitrarily small time
p ∈ R such that the backlog satisfies B(p) = 0.

To prove (A.15), we require s ≥ p and t ≥ p in the following. Then, we
can write for all p ≤ s ≤ t:

C
′
[s, t) = C

′
[p, t) − C

′
[p, s)

= sup
p≤a≤t

{
C[p, a) − R[p, a)

}+ − sup
p≤b≤s

{
C[p, b) − R[p, b)

}+

Since C[p, p) − R[p, p) = 0, the suprema are nonnegative and we can omit
the maximization with zero:

= sup
p≤a≤t

{
C[p, a) − R[p, a)

} − sup
p≤b≤s

{
C∗[p, b) − R[p, b)

}

= inf
p≤b≤s

⎧⎪⎪⎨⎪⎪⎩sup
p≤a≤t

{
(C[p, a) − C[p, b)) − (R[p, a) − R[p, b))

}⎫⎪⎪⎬⎪⎪⎭

202 Appendix A. Real-Time Calculus

We know that a ≥ b because of t ≥ s and we can write:

= inf
p≤b≤s

{
sup

0≤a−b≤t−b
{C[b, a) − R[b, a)}

}

Using λ = a − b, the definitions of arrival and service curves and some
arguing about the infimum and supremum operators finally yields:

≥ inf
p≤b≤s

{
sup

0≤λ≤t−b

{
βl(λ) − αu(λ)

}}

≥ sup
0≤λ≤t−s

{
βl(λ) − αu(λ)

}

To prove (A.16), we again suppose p ≤ s ≤ t and B(p) = 0 for an
arbitrarily small time p.

C
′
[s, t) = C

′
[p, t) − C

′
[p, s)

= sup
p≤a≤t

{
inf

p≤b≤s
{C[b, a) − R[b, a)}

}

Using a − b ≥ 0 and the fact that C
′[s, t) = 0 if a ≤ s we can write:

= sup
s≤a≤t

{
inf

a−s≤a−b≤a−p
{C[b, a) − R[b, a)}

}+

Taking into account the substitution λ = a − b and the definitions of the
arrival and service curves we obtain:

≤ sup
s≤a≤t

{
inf

a−s≤λ≤a−p

{
βu(λ) − αl(λ)

}}+

We can argue on the bounds of the operators and obtain:

≤ sup
s≤a≤t

{
inf

t−s≤λ≤−p

{
βu(λ) − αl(λ)

}}+

= inf
t−s≤λ≤−p

{
βu(λ) − αl(λ)

}+
Finally, using the fact that p can be arbitrarily small, we find:

= inf
t−s≤λ

{
βu(λ) − αl(λ)

}+
�

In a similar way, we can derive bounds on the processed events.

A.4. Greedy Processing Component 203

A.4.3 Processed Events
Let us first derive an upper bound on the processed-event stream.

Cor. 2: (Upper Bound on Processed Events) Given an event stream which is de-
scribed by the arrival curves αu, αl and a resource described by the service curves
βu, βl. Then the processed-event stream is bounded from above by the curve

αu′(Δ) = min
{

sup
0≤λ

{
inf

0≤μ≤λ+Δ
{
αu(μ) + βu(λ + Δ − μ)

} − βl(λ)
}
, βu(Δ)

}
(A.17)

Proof. Again, we suppose B(p) = 0 for an arbitrarily small time p. Then,
we can write for all p ≤ s ≤ t:

R
′
[s, t) = R

′
[p, t) − R

′
[p, s)

= sup
p≤b≤s

{
C[p, b) − R[p, b)

}+ − sup
p≤a≤t

{
C[p, a) − R[p, a)

}+
+ C[p, t) − C[p, s)

Since C[p, p) − R[p, p) = 0, the suprema are nonnegative and we can omit
the maximization with zero:

= sup
p≤b≤s

{
C[p, b) − R[p, b)

} − sup
p≤a≤t

{
C[p, a) − R[p, a)

}
+ C[p, t) − C[p, s)

= sup
p≤b≤s

{
inf

p≤a≤t
{R[b, a) + C[a, t) − C[b, s)}

}

We now introduce the variable substitutions λ = s− b and μ = a+λ− s. In
addition, we know that a ≥ b. Therefore, we also know that μ ≥ 0. Using
these substitutions and the definition of upper and lower curves yields:

= sup
0≤λ≤s−p

{
inf

0≤μ≤λ+(t−s)

{
R[s − λ, μ − λ + s) + C[μ − λ + s, t) − C[s − λ, s)

}}

≤ sup
0≤λ≤s−p

{
inf

0≤μ≤λ+(t−s)

{
αu(μ) + βu(λ + (t − s) − μ)

} − βl(λ)
}

As p can be arbitrarily small, we obtain:

≤ sup
0≤λ

{
inf

0≤μ≤λ+(t−s)

{
αu(μ) + βu(λ + (t − s) − μ)

} − βl(λ)
}

�

204 Appendix A. Real-Time Calculus

Now we derive a lower bound for the processed-event stream.

Cor. 3: (Lower Bound on Processed Events) Given an event stream which is de-
scribed by the arrival curves αu, αl and a resource described by the service curves
βu, βl. Then the processed-event stream is bounded from below by the curve

αl′(Δ) = min
{

inf
0≤μ≤Δ

{
sup
0≤λ

{
αl(μ + λ) − βu(λ)

}
+ βl(Δ − μ)

}
, βl(Δ)

}
(A.18)

Proof. Using the same assumptions and arguments as in the proof of the
upper processed-event curve αu′ , we can write for all p < s < t:

R
′
[s, t) = R

′
[p, t) − R

′
[p, s)

= sup
p≤b≤s

{
C[p, b) − R[p, b)

} − sup
p≤a≤t

{
C[p, a) − R[p, a)

}
+ C[p, t) − C[p, s)

= inf
p≤a≤t

⎧⎪⎪⎨⎪⎪⎩sup
p≤b≤s

{R[b, a) − C[b, s) + C[a, t)}
⎫⎪⎪⎬⎪⎪⎭

We now introduce the variable substitutions λ = s − b and μ = a − s. In
addition, we know that a ≥ b. Therefore, we also know that μ + λ ≥ 0.
In addition, if a < s (or μ > 0) then a = b and therefore, R

′
[s, t) = C[s, t).

Using these substitutions and the definition of upper and lower curves
yields:

= inf
p−s≤μ≤t−s

⎧⎪⎪⎨⎪⎪⎩ sup
0≤λ≤s−p

{
R[s − λ, μ + s) − C[s − λ, s) + C[μ + s, t)

}⎫⎪⎪⎬⎪⎪⎭
= min

⎧⎪⎪⎨⎪⎪⎩ inf
0≤μ≤t−s

⎧⎪⎪⎨⎪⎪⎩ sup
0≤λ≤s−p

{
R[s − λ, μ + s) − C[s − λ, s) + C[μ + s, t)

}⎫⎪⎪⎬⎪⎪⎭ ,
C[s, t)

}

Using the definitions of the arrival and service curves and noting that p
can be arbitrarily small, we obtain:

≥ min
{

inf
0≤μ≤t−s

{
sup
0≤λ

{
αl(μ + λ) − βu(λ)

}
+ βl((t − s) − μ)

}
, βl(t − s)

}

�

List of Publications

The following list summarizes the publications which are based on this
thesis. The pertinent chapters of this thesis, which are the source of the
publications, are given in brackets.

E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System Architecture
Evaluation Using Modular Performance Analysis - A Case Study. In
1st International Symposium on Leveraging Applications of Formal Methods
(ISoLA), October 2004.
(Chapter 2)

E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System Architecture
Evaluation Using Modular Performance Analysis - A Case Study. Soft-
ware Tools for Technology Transfer, 2005. In press.
(Chapter 2)

L. Thiele, E. Wandeler, and S. Chakraborty. A Stream-Oriented Com-
ponent Model for Performance Analysis of Multiprocessor DSPs. IEEE
Signal Processing Magazine, Special Issue on Hardware/Software Co-design for
DSP, 22(3):38–46, May 2005.
(Chapter 2)

E. Wandeler, A. Maxiaguine, and L. Thiele. Performance Analysis of
Greedy Shapers in Real-Time Systems. In Design, Automation and Test in
Europe (DATE), pages 444–449, March 2006.
(Chapter 3)

E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative Characteriza-
tion of Event Streams in Analysis of Hard Real-Time Applications. In
10th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 450–459, May 2004.
(Chapter 4)

E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative Characterization
of Event Streams in Analysis of Hard Real-Time Applications. Real-Time
Systems, 29(2):205–225, March 2005.
(Chapter 4)

206 List of Publications

E. Wandeler and L. Thiele. Abstracting Functionality for Modular Per-
formance Analysis of Hard Real-Time Systems. In 10th Asia South Pacific
Design Automation Conference (ASP-DAC), pages 697–702, January 2005.
(Chapter 4)

E. Wandeler and L. Thiele. Characterizing Workload Correlations in Multi
Processor Hard Real-Time Systems. In 11th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 46–55, March 2005.
(Chapter 4)

E. Wandeler and L. Thiele. Workload Correlations in Multi Processor
Hard Real-Time Systems. Journal of Computer ans System Sciences, Special
Issue on Real-Time and Embedded Systems, 2005. In press.
(Chapter 4)

E. Wandeler and L. Thiele. Real-Time Interfaces for Interface-Based
Design of Real-Time Systems with Fixed Priority Scheduling. In 5th ACM
Conference on Embedded Software (EMSOFT), pages 80–89, September 2005.
(Chapter 5)

E. Wandeler and L. Thiele. Interface-Based Design of Real-Time Systems
with Hierarchical Scheduling. In 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 243–252, April 2006.
(Chapters 5 and 6)

E. Wandeler and L. Thiele. Optimal TDMA Time Slot and Cycle Length
Allocation for Hard Real-Time Systems. In 11th Asia South Pacific Design
Automation Conference (ASP-DAC), pages 479–484, January 2006.
(Chapter 6)

E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox.
(Chapters 7 and 8)

It follows a list of publications that are not covered in this thesis.

L. Thiele and E. Wandeler. Performance Analysis of Embedded Systems.
In The Embedded Systems Handbook. CRC Press, 2005.

L. Thiele, E. Wandeler, and N. Stoimenov. Real-Time Interfaces for Com-
posing Real-Time Systems. In 6th ACM Conference on Embedded Software
(EMSOFT), October 2006. To appear.

207

S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler.
Interface-Based Rate Analysis of Embedded Systems. In 27th IEEE Real-
Time Systems Symposium (RTSS), December 2006. Under Review.

E. Wandeler, J. Janneck, E. A. Lee, and L. Thiele. Counting Interface Au-
tomata and Their Application in Static Analysis of Actor Models. Journal
on Software and Systems Modeling, 2006. Under review.

E. Wandeler, J. Janneck, E. A. Lee, and L. Thiele. Counting Interface
Automata and Their Application in Static Analysis of Actor Models. In
3rd International Conference on Software Engineering and Formal Methods
(SEFM), pages 106–115, September 2006.

Curriculum Vitae

Name Ernesto Wandeler

Date of Birth 1 December 1978

Citizen of Gansingen (AG)

Nationality Swiss

Education:

2003–2006 ETH Zurich, Computer Engineering and Networks Laboratory
Doctor Thesis under the Supervision of Prof. Dr. L. Thiele

2001–2003 UNITECH International
Graduation with UNITECH International Certificate

1997–2003 ETH Zurich, Department of Electrical Engineering and Informa-
tion Technology
Studies in Electrical Engineering and Information Technology
6 Months Visiting Scholar at UC Berkeley, USA
9 Months UNITECH Scholar at Imperial College, UK
Graduation as Dipl. El.-Ing. ETH with Distinction
Awarded the ”Willi Studer Preis” 2003 by ETH Zurich
Awarded the ETH Medal for the Diploma Thesis by ETH Zurich

1989–1997 Mathematics and Science Gymnasium Basel
Graduation with Matura Type C
Awarded the ”Basler Maturandenpreis” by Novartis Ltd.

Professional Experience:

2003–2006 Research & Teaching Assistant at ETH Zurich

2001–2002 Software Engineer at SchlumbergerSema, Beijing, P.R. China

2000 Software Engineer at Power-One, Boston, USA

2000–2001 Substitute Teacher at Kirschgarten Gymnasium, Basel

1998–2000 Graduate Lecturer at ETH Zurich

1998 Engineering Trainee at Novartis, Basel

