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Abstract—Energy harvesting has been steadily gaining interest
in the wireless sensor network community. Instead of minimizing
the energy consumption and maximizing a network’s operational
time, the main challenge in energy harvesting sensor networks is
to maximize the utility of the application subject to the harvested
energy. One major challenge is to maximize the data delivery
rates by exploiting the spatial variations of environmental energy.
While there exists a multiplicity of energy-aware routing proto-
cols for sensor networks without energy harvesting capabilities,
only a small number of routing protocols have been published
which explicitly account for energy harvesting. In this paper, we
analyze and compare three state-of-the-art routing algorithms.
While the original algorithms assume an idealized medium access
control (MAC), a lossless wireless channel and global knowledge,
we show that these assumptions lead to delusive results. We detail
these finding by showing the influenc of a low-power MAC
protocol, a realistic wireless channel and the protocol overhead.
Moreover, we show how to optimize the parameters of the MAC
protocol for a given network configuration By conducting various
evaluations, we identify that our modifie version of the R-MPRT
algorithm outperforms the evaluated algorithms in scenarios
where little energy is harvested from the environment.
Keywords: Routing Protocols, Energy Harvesting Systems,

Wireless Sensor Networks.

I. INTRODUCTION

Wireless sensor network (WSN) systems have been widely
adopted for monitoring physical or environmental properties
over a large area, e.g., temperature, pressure, notion, lumi-
nosity and vibration. Examples are WSNs for volcano moni-
toring [19], habitat monitoring [18] and permafrost monitor-
ing [3]. In general, a WSN consists of several wireless sensor
nodes that send the sensed data to a common base station for
further data processing. As most sensor networks are deployed
in stringent surroundings, the nodes and the system should
be self-powered, self-reconfigured and self-healing. Since the
sensor network is usually wide spread and the communication
of limited range, multi-hop routing is required.
To prolong the lifetime of wireless sensor networks, power

management under given performance requirements has be-
come one of the most important aspects in the system. No
matter how carefully one designs the system, nodes eventually
run out of energy, if the only source for energy is a battery
cell. The advance of energy harvesting circuits has enabled
the possibility to convert and store solar energy efficientl .
Recently, the emerging technology of energy harvesting has

provided a means for sustainable embedded systems, which
have a theoretically unlimited operation time. For example,
Heliomote [7] and Prometheus [8] are two of the firs prototype
sensor nodes with solar panels to harvest energy from the
sun. The harvested energy can be simply used to recharge
the primary energy source (e.g., a battery). Hence the system
provides two sources of energy: (1) the initial battery when the
system is deployed, and (2) the continuous but not necessarily
constant energy harvesting rate.
Energy management for WSN has been widely explored

in the literature to reduce the energy consumption for packet
routing, e.g., [1], [12], [13], [16], focusing on classical battery-
operated networks. Here, the objective is to maximize the
network lifetime under a given workload. This is accomplished
by distributing the workload as uniformly as possible over the
whole network. Recently several approaches were proposed
[9], [17] that give the nodes a theoretically unlimited lifetime
by using solar cells. Since the initial battery charge will be
depleted eventually, power management strategies have to be
revised in order to decide how to use the harvested energy
effectively on the long-run. As a result, routing protocols have
to consider the harvested energy to decide how to route packets
to the base station. This requires a paradigm shift in the design
of routing algorithms.
Concerning energy awareness for sensor nodes with envi-

ronmental energy supply, Zeng et al. [21] propose a routing
algorithm that takes into account distance information and
the link qualities. Their algorithm requires that all nodes
know about the position, which usually not available in sensor
network deployments. More general, Bogliolo et al. [4], Lin et
al. [14], [15], and Lattanzi et al. [11] have started to explore
how to maximize the workload under given environmental
constraints. That is, nodes with higher energy harvesting rates
(e.g., nodes that are exposed to more sunlight) are more
preferable for relaying packets to the base station than those
with lower rates. Specificall , the Randomized Max-Flow (R-
MF) [4] algorithm uses an extended version of the Ford-
Fulkerson algorithm to calculate the maximum fl w from
the source to the destination. The probability of sending a
packet over an edge is proportional to the calculated maximum
fl w through that edge. The Energy-opportunistic Weighted
Minimum Energy (E-WME) [14] algorithm annotates each
node with a cost. Thereupon the shortest path from the



source to the destination is calculated with respect to this
node cost. The Randomized Minimum Path Recovery Time
(R-MPRT) [11] algorithm assigns a cost to each edge and
calculates the shortest path with respect to this edge cost.
The afore mentioned routing algorithms for energy-

harvesting systems are theoretically sound, but the comparison
metrics used are very diverse and none of them can be used to
compare the routing algorithms among each other. It is difficul
to see when an approach can benefi or how an approach
outperforms others. Moreover, these approaches all assume an
ideal medium access control (MAC) and perfect wireless links,
which might lead to an illusory performance. Furthermore,
these algorithms rely on global network information, such as
the complete topology or the up-to-date shortest path (with
respect to a define cost). The overhead for obtaining this
global information is not taken into account.
In this paper we make the following contributions in the

area of routing algorithms for energy-harvesting systems:
We provide the firs realistic comparison of routing al-

gorithms for energy harvesting systems. We contribute a
comparison framework that is based on the WSN simulator
Castalia. This framework allows to detail the different effects
when transitioning from a idealized environment to a real
one, that (1) uses a real low-power MAC protocol, (2) uses
a real wireless channel, and (3) generates protocol overhead
for disseminating cost information. We show that the MAC
protocol has the greatest influenc on the data delivery rate
and further detail that this delivery rate greatly depends on the
parameterization of the MAC protocol. For the performance
metric we show that the average and worst-case packet loss
are very well suited. Finally we propose a novel cost metric
for the R-MPRT routing protocol and show that this simple
protocol outperforms all other protocols considered.
The remainder of this paper is organized as follows. Section II
presents the models considering the network, the energy and
the workload. Section III discusses medium access control in
WSNs and introduces a class of WSN MAC protocols that
is especially suited for energy harvesting systems. Section IV
introduces the three routing algorithms evaluated in this paper
and presents our modificatio for the R-MPRT algorithm,
which all are evaluated in Section V. Finally, Section VI
concludes the paper.

II. SYSTEM MODELS

In the following, we introduce our system model of an
energy harvesting wireless sensor network. For this, we adopt
common modeling assumptions that have been used in related
literature, too. In particular, we present our models of the
network structure, the energy generation/consumption and the
workload within a sensor network.

A. Network Model
The network consists of one single base station and any

number of sensors and routers. Sensors are able to sense a

physical quantity, create data packets as well as receive and
transmit them. Routers cannot sense the environment and do
only forward data packets. All packets in the network are
routed in a multi-hop fashion to the base station. This means
that the path from the sensor to the base station consists of
one or multiple edges.
The WSN is represented as a directed graph G = (V,E).

The vertices v ∈ V represent the nodes (i.e., the sensors,
routers and the base station). An edge 〈u, v〉 ∈ E represents a
wireless link between the two nodes u, v ∈ V , which allows
them to exchange packets.

B. Energy Model

Several technologies have been discussed for harvesting
energy from a node’s physical environment, e.g., solar, ther-
mal, kinetic and vibration energy. Moreover, several proto-
types have been presented which demonstrate both feasibility
and usefulness of sensors nodes that are powered by solar
energy [9] or vibrational energy [2].
We assume that sensors and routers are equipped with

energy harvesting devices, e.g., solar panels. The available
environmental energy may vary temporally at a single node.
At the same time, there may be spatial variations of the
harvested energy for different nodes. In this paper, we focus
on spatial variations of environmental energy and assume that
each node u has an individual harvesting power rate pu > 0.
The harvested energy is stored in a storage device (e.g., a
battery) and we denote the stored energy EC,u. The maximum
battery capacity is define as EM,u. We assume the base
station has access to an unlimited power source pu = +∞.
The node u has available energy EC,u to sustain packet

processing. If the energy of the node drops below E disable ≥ 0
the node gets disabled. A disabled node can neither sense nor
forward data. If the node has harvested sufficien energy, i.e.,
EC,u > Eenable > Edisable, the disabled node is enabled again.
Since radio communication is the main energy consumer in

most sensor networks, we assume (without loss of generality)
that data sensing and packet creation consumes negligible
energy. Hence, each node only spends energy e r to receive
and energy et to transmit packets. We assume that these
energies are constants since most sensor nodes send with
constant transmission power. Note, however, that our frame-
work can be easily extended to other scenarios where, e.g.,
transmission power is a function of the transmission range.
We denote eu,v

routing the total energy that is needed to receive
a packet at node u and transmit it to a neighbor node v.
Packets are retransmitted up to R times in case of a

transmission failure, which increases the energy consumption
for sending a packet. Assuming a packet success rate ρs results
in an expected number or transmissions per packet of

(1 − ρs)R(R + 1) +
R−1∑

r=0

(r + 1)(1 − ρs)rρs. (1)

2



If we have an estimate of the packet success rate ρs, we
can account for the additional costs for sending retries, by
multiplying the transmission costs et with the expected number
of transmissions.

C. Workload Model
We are using uniform monitoring as workload model.

Sensors are periodically sensing a physical quantity and create
a data packet of the sampled data that is sent towards the
base station. All the sensors are sampling with the same
period ψ. Since there is no synchronization between the
sampling rates of the single sensors, the sampling times are
uniformly distributed among the sensors.
The packet size of the sampled data is fi ed. We assume

that no data compression or in-network data aggregation is
performed, i.e., all packets have to be forwarded to the base
station.

III. MEDIUM ACCESS CONTROL (MAC)
As already mentioned, the MAC layer has been idealized in

all previous work ( [4], [11], [14], [15]) on energy harvesting
WSNs. In this section, we discuss the basic design trade-offs
for different classes of low-power MAC protocols and decide
on the most suitable one for energy harvesting WSNs.
On common sensor networks platforms, the radio device

consumes the most energy, even though special low-power
radio transceiver (e.g., TI CC2420, Semtech XE1205) are
being used. These radios spend energy pon in the order of
tens of milliampere not only for sending and receiving data
but also for idle listening. Hence, having the radio on at
all time depletes a single AA battery within days, even if
no message is sent or received. The only way for saving
energy in the required order of magnitudes is by duty cycling
the radio, i.e., putting the radio to a sleep mode, results
in a greatly reduced energy consumption p off � pon. This
duty cycling basically trades off latency and bandwidth for
decreased energy consumption. There are various approaches
to achieve this, and dozens of WSN specifi MAC protocols
have emerged in recent years. The WSN MAC protocols can
be divided into ones that are based on a random access scheme
and to the ones that require a (global) schedule [10].
A global arbitration (e.g., TDMA) usually requires an

expensive initial arbitration and further regular synchronization
messages. Especially for energy harvesting systems, where
nodes might stop the communication temporarily due to the
lack of energy, this initial arbitration is performed multiple
times. The class of schedule-based WSN MAC protocols is
therefore not very well suited for harvesting systems.
For random access MAC protocols the so called low-power-

listening (LPL) scheme has been shown to be very energy
efficien for low data rates [10]. Using LPL the radio is
powered down most of the time and is switched on every wake-
up interval of Tw time units in order to check for ongoing
communication. Since the sender does not know when the

receiver is waking up, a long (and expensive) preamble has to
be sent for ensuring that the receiver is listening when the data
packet is being sent. The problem with sending long preambles
is that all neighboring nodes overhear the communication and
spend energy in the same order as the receiver-sender pair,
which of course greatly limits the possibility for energy-aware
routing. In order to reduce the overhearing, the preamble can
be replaced by a strobe preamble that consists of consecutive
(very short) packets containing the receiver’s address.
A packet-based LPL MAC protocol is well suited for

harvesting systems, since (1) it is mainly the sender-receiver
pair that spends the energy and (2) no initial arbitration
is required. For our evaluation we therefore choose to use
SpeckMAC [20], a member of the packet-based LPL MAC
protocols. An important observation with LPL protocols is,
that they can be optimized for the expected amount of traffic
In particular, the energy consumption for regular wake-ups is
inversely proportional to Tw, whereas the message exchanges
accounts directly proportional with the data load and Tw.
Hence there is an optimal wake-up interval Tw given the data
load. It should be noted that the chosen Tw limits the available
bandwidth to 1/Tw transceived packets per time unit.

IV. ROUTING ALGORITHMS

Three fundamental algorithms are analyzed and compared
in this paper: E-WME, R-MF, R-MPRT.

A. Randomized Max-Flow

Lattanzi et al. present in [11] an extended version of the
Ford-Fulkerson algorithm that calculates the maximum fl w
from the sensors to the base station. It is used to create the
Randomized Max-Flow (R-MF) algorithm. The algorithm uses
the pre-calculated maximum fl w over the edges to determine
the route of a packet. The probability to route a packet over an
edge is proportional to the maximum fl w through that edge.
The recovery time tu,v is define as the amount of time

required by node u to harvest the portion of energy e u,v
routing

which is needed to receive and transmit a packet along edge
〈u, v〉. This can be expressed by the division of the required
energy through the harvesting power rate pu at node u. The
channel capacity of edge 〈u, v〉 is given by the inverted
recovery time:

Cu,v =
1
tu,v

=
pu

eu,v
routing

(2)

Because all the edges which belong to the same node u
have to share the same power budget, the network has to be
considered as a node-constrained fl w network.
Thus it is not possible to simply use the Ford-Fulkerson

algorithm [6] so solve this maximum fl w problem. In [4]
an extended version of the Ford-Fulkerson algorithm is pre-
sented that is used to calculate the maximum fl w in a
node-constrained fl w network. Once the maximum fl w is
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determined, a static routing table is created representing the
fl w through the network.

B. Energy-opportunistic Weighted Minimum Energy
Lin et al. introduce in [14] the Energy-opportunistic

Weighted Minimum Energy (E-WME) algorithm. The algo-
rithm define for each node u the cost cu which depends
on the available energy EC,u, the battery capacity EM,u, the
harvesting power rate pu and the reception and transmission
energy. The algorithm calculates the shortest path from the
source to the destination with respect to this node cost. The
cost cu at node u is given as

cu =
EM,u

(pu + ε) · log(μ)
· (μλu − 1) · eu,v

routing, (3)

where eu,v
routing is the energy needed to receive a packet and

transmit it to the downstream neighbor node v. The two
constant ε and μ have to be chosen appropriately. The power
depletion index λu is define as

λu =
EM,u − EC,u

EM,u
, (4)

where EC,u is the available energy at node u right before
processing the packet and EM,u is the battery capacity.

C. Randomized Minimum Path Recovery Time
Lattanzi et al. present in [11] the RandomizedMinimum Path

Recovery Time (R-MPRT) algorithm. The algorithm assigns
to each edge 〈u, v〉 the cost cu,v. The sensor calculates the
shortest path to the base station, with respect to this edge cost,
through all its outgoing edges. The probability of sending a
packet on a path is inverse proportional to the path cost.
In the original version of the paper this cost is equal to the

recovery time tu,v introduced in Section IV-A:

cu,v = tu,v =
eu,v

routing

pu
(5)

Our simulations revealed that the algorithm performs much
better if we use the available energy EC,u instead of the har-
vesting power rate pu for calculating the cost. We implemented
and evaluated both the original and the modifie version of
the original R-MPRT algorithm in our simulation framework.
We refer to the original algorithm as R-MPRT-org and to the
modifie algorithm as R-MPRT-mod.

D. Global versus Local Knowledge
The E-WME and the R-MPRT algorithms both require

up-to-date cost information from every node, in order to
decide where to route the packet at every node. If global
knowledge is assumed, the shortest path is determined using
Dijkstra’s shortest path algorithm [5]. However for a real world
implementation the nodes have to learn the cost information.
This can be achieved in a distributed fashion if every node
calculates its cost using the neighbors cost information only

(with respect to the corresponding metric). This cost, which
changes over time, has to be to be announced regularly by
sending beacons with a certain interval ψB . If a node receives
a beacon, the cost metric has to be updated and a potential
change has to be announced.
The R-MF algorithm requires global knowledge to create

the routing tables at every node. It is not clear, how this can
be implemented in a distributed fashion without generating ex-
tensive overhead in terms of memory consumption, processing
and communication overhead.

V. SIMULATION RESULTS

We compare the four algorithms E-WME, R-MF, R-MPRT-
org and R-MPRT-mod described in Section IV. The compari-
son is executed on Castalia 2.2, a simulator for wireless sensor
networks that is based on the OMNeT++ platform. Castalia
allows to realistically model the sensor nodes and the wire-
less channel. The radio device is accurately modeled having
different radio states with individual energy consumptions and
transition times. The wireless channel uses an advanced path-
loss model that is based on experiments and calculates the
packet probability using a signal to interference-plus-noise
ratio (SINR) model.

A. Simulation Setup

We have conducted simulations on various network topolo-
gies of different sizes. In the following, we will limit ourselves
to evaluations on a 10x10 grid topology, which is illustrated
in Figure 6. There is one base station, 81 sensor nodes and 18
routers that only forward packets. The base station is placed
on the border of the grid, has unlimited energy available and
is always listening, i.e., the radio device is always on. We
evaluate the algorithms for a simulation time of 60,000 s and
use 3 different seeds for modeling different behavior of the
realistic channel model with its random packet loss.
As radio model the TI CC2420 transceiver is used. It is

designed for low-power and low-voltage wireless applications.
The energy consumption for receiving and idle listening is
62 mW, whereas the transmission costs 57 mW (0 dBm).
For duty cycling the radio is put into the power down mode,
decreasing the power consumption to 0.072 mW. The battery
capacity is 100 joules, however the initial energy is set to
1 joule. This enables the nodes to process the firs few packets,
yet requires the node to harvest the energy for processing
further packets.
Using this simulation setup, we evaluate step by step the

impact on the four routing algorithms going from an idealized
to a realistic scenario. First we simulate with a perfect MAC
protocol and an ideal channel characteristic. We then introduce
a state-of-the-art low-power MAC protocol and evaluate the
data delivery rate for different MAC protocol parameterization.
We then analyze the impact of having a realistic model of the
wireless channel and further account for protocol overhead.
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We finis the evaluation by examining different harvesting rate
distributions.

B. Evaluation Metrics
We defin new metrics to compare the presented routing

algorithms within our simulation framework. For the metrics,
we opted for the average as well as for the worst-case packet
loss. They are define as follows:

• Average Packet Loss denotes the total number of lost
packets divided by the total number of generated packets
by all sensors.

• Worst-Case Packet Loss is the highest number of lost
packets originating from a single sensor (which got lost
on their way to the base station) divided by total number
of packets generated by the sensor.

Having a high worst-case packet loss ratio means that there are
single sensors in the network whose data rarely arrive at the
base station. In other words, the worst-case packet loss reflect
how ”balanced” the data delivery works and may indicate
blind spots which are unobserved by the sensor network.
The existence of blind spots contradicts the idea of uniform
sampling in the sensor network.
A packet is lost if (a) a packet cannot be created because

the node is disabled (b) a packet cannot be forwarded by a
sensor/router since there is not enough energy to receive or
transmit the packet (c) there are collisions on the MAC layer
(d) there is a transmission error due to a poor link quality. Note
that packets are retransmitted R = 3 times, which is enough
to handle packet losses due to collision and poor links, but
is not enough if the receiving node is lacking environmental
energy on the long run.

C. Idealized Environment
We start the evaluation having an idealized environment

as assumed in [4], [11], [14]. In particular, we assume an
idealized channel model without packet loss. Furthermore,
we assume a perfect low-power MAC protocol that only
spends energy for sending and receiving data, and uses global
knowledge available from the simulation for synchronizing the
sender-receiver pair. It should be noted that such a perfect
synchronization cannot be realized, yet is often assumed when
designing routing protocols.
Figure 1 illustrates the packet losses for a uniform energy

harvesting scenario, i.e., all nodes have the harvesting power
rate pu = 0.95 mW. In general, the packet losses increase for
shorter packet injection periods. The average packet loss of the
E-WME and both R-MPRT-mod algorithms are very similar,
R-MF performs slightly worse. However, already in this plot
we see a bad worst-case performance of original R-MPRT-org
algorithm: The sustainable packet injection rate where almost
no packet losses occur is reduced by 33 % compared to the
other algorithms. As already discussed, the worst-case packet
loss can be very important for the decision which routing
protocol to choose.
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Fig. 1. Average (solid lines) and worst-case (dashed lines) packet loss of
the four routing algorithms in an idealized environment with a perfect MAC
protocol and an ideal wireless channel.

D. Low-Power MAC Protocol

As a firs step towards a more realistic network model, a
realistic MAC protocol is used, which has to coordinate packet
transmission and reception between senders and receivers.
Nodes are put in a power-saving sleep mode most of the
time and only wake up for short communication intervals.
The base station on the other hand has its radio always on,
due to its unlimited power supply. This enables the base
station’s immediate neighbors to send messages without the
long preamble and therefore to save large amount of energy
when sending messages. In the firs part of this section, we
will illuminate the inherent difficultie for optimizing the MAC
protocol. The second part is dedicated to a comparison of the
four routing protocols taking into account the MAC layer. We
assume a wireless channel with the possibility for packet loss
due to collisions, but assume a perfect link quality ρs = 1.
1) MAC Parameter Optimization: For LPL-based MAC

protocols, the energy spent at a node highly depends on the
wake-up interval Tw. A short Tw results in spending a lot of
energy for idle listening, yet makes the message transmission
inexpensive. For a long Tw little energy is spent idle listening
but a message exchange is getting expensive. Hence there is a
traffi dependent Tw that minimizes the energy consumption.
We will now investigate this trade-off for SpeckMAC, a typical
LPL protocol for wireless sensor networks.
Figure 2 displays the average packet loss in dependency of

the wake-up interval Tw and the packet injection period ψ. The
simulation is performed for the E-WME routing algorithm;
the qualitative results for the other algorithms are similar. It
becomes obvious that an energetically sustainable workload
(i.e., no packet loss) is only achieved for periods ψ ≥ 1000 s.
For periods ψ < 1000 s, the packet loss is not neglectable.
At the same time, for each injection period ψ, there exists (at
least) one wake-up interval Tw ∈ [0.1, 04] s, which minimizes
the packet loss. We also observe that a very short wake-up
interval of Tw < 0.1 s results in too much energy being spent
for idle listening and leads to nodes running out of energy
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Fig. 2. Packet loss as a function of the wake-up interval Tw of the SpeckMAC
protocol for different packet injection periods ψ.

frequently. On the other hand, for long wake-up intervals Tw >
0.4 s, too much energy is spent for transceiving messages.
In summary, using the methods presented in this section,

one can determine the maximum sustainable packet injection
period ψ and a suitable wake-up interval Tw for a given
network configuration For the remaining analysis we use a
wakeup interval of Tw = 0.2 s that shows to be a well balanced
value for our application scenario according to Figure 2.
2) Comparison of Routing Algorithms: The top plot in

Figure 3 illustrates the packet loss of the considered routing
protocols. Compared to Figure 1, the general performance
degradation due to MAC overhead becomes visible: Through
the use of a real MAC protocol the sustainable packet injection
periods are increased by a factor of 30 to 40. This fact and the
more detailed results show the importance of the simulation
of the MAC protocol.
Furthermore, we see huge differences between R-MPRT-

mod and the other algorithms, which are not existent in the ide-
alized environment discussed in the previous section. Having
a real low-power MAC protocol, R-MPRT-mod outperforms
the other algorithms with respect to the worst-case and the
average packet loss. For packet injection periods 600s < ψ <
800s the worst-case packet loss of R-MPRT-mod is even lower
than the average packet loss of all other algorithms. In practice,
the lowest injection periods ψ which result in a neglectable
packet loss are important. The performance of R-MPRT-org
is not acceptable in all our experiments and we decide to not
further discuss this algorithm.
In the lower plot of Figure 3, some interesting results on

the energy consumption per successfully transmitted packet
are displayed. We have the minimal energy consumption for a
packet injection period of 600 seconds. This is just about the
energetically sustainable rate of the protocols (where almost
no packet losses occur) and allows to utilize the available
energy the best. Injecting more packets increases the energy
consumption for the successfully transmitted packets. This can
be attributed to the fact that energy is spent for messages that
eventually do not reach the base station. For very short packet

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

P
ac

ke
t l

os
s 

[fr
ac

tio
n]

Packet injection period ψ [s]

 

 

E−WME
R−MPRT−mod
R−MF
R−MPRT−org

0 200 400 600 800 1000
4

5

6

7

8

9

10

11x 10−3

E
ne

rg
y 

co
ns

um
pt

io
n 

pe
r p

ac
ke

t [
J]

Packet injection period ψ [s]

 

 

E−WME
R−MPRT−mod
R−MF
R−MPRT−org

Fig. 3. Top plot: Average (solid lines) and worst-case (dashed lines) packet
loss; Bottom plot: Energy consumption per successfully transmitted packet;
both using SpeckMAC with wake-up interval Tw = 0.2 s.

injection periods (ψ < 100 s), the energy consumption per
successfully transmitted packet decreases again. The reason
for this surprising effect is that most of the transmitted packets
stem from one-hop neighbors of the base station that can send
the packets without a long preamble.

E. Realistic Wireless Channel
Wireless sensor networks have to deal with packet loss due

to the wireless channel. Instead of assuming perfect links, we
used Castalia’s realistic channel model with its random packet
loss. That is, the simulator calculates for every link a packet
success rate ρs, which represents the probability that a packet
is successfully transmitted. With these random link qualities,
there are however also links in the network that provide a
very low packet success rates (close to zero), which makes
such link not usable. We therefore choose to use only links
having a ρs > 0.8, assuming that we have a link estimation
algorithm that provides us with updated link qualities.
We run the simulation with the same configuration with

the additional constraint of realistic wireless channels. The
results show a rather equal amount of performance degradation
along all three algorithms, which we do not show in detail. In
particular, the sustainable packet injection period is increased
by about 100 s, e.g., from ψ ∼ 600 s to ψ ∼ 700 s for R-
MPRT-mod.
For the remaining analysis of the distributed algorithms and
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Fig. 4. Packet loss of the distributed R-MPRT-mod algorithm for different
beacon intervals and the centralized one (without beacons) that assumes global
knowledge.

the non-uniform harvesting rates we assume a realistic MAC
and wireless channel.

F. Protocol Overhead
Until now, the routing algorithms were provided with all the

required information for free. For a real-world implementation,
the algorithms have to learn about their neighbors and their
cost metric. This requires a distributed solution that can de-
termine the route with information from immediate neighbors
only. This can be implemented for the R-MPRT and E-WME
algorithms. The R-MF algorithm on the other hand requires the
information from all nodes. Since it is not clear how this global
knowledge can be retrieved (especially for larger networks),
the R-MF algorithm is not considered.
Retrieving information from neighboring nodes is achieved

by sending beacons. In order to minimize the delay, the
beacons are initiated at the base station with a certain beacon
interval ψB . The information is then propagated in the network
until all the nodes have an updated view of the current
topology. The beacons create additional costs and therefore
influenc the sustainability of the network. This is illustrated
in Figure 4 for R-MPRT-mod only, since E-WME yields sim-
ilar results. As illustrated, the distributed algorithm achieves
almost the same sustainability rate than the implementation
that requires global knowledge (lowest line) if an optimized
beacon interval ψB = 500 s is chosen. If we choose a longer
interval, we can save energy by sending fewer beacons, which
however comes at the price of an outdated topology resulting
in an increased packet loss. Choosing on the other hand a
shorter period is not necessary, since the beacon interval of
ψB = 500 s already provides sufficientl updated information
and hence only wastes energy.
These results clearly show that the retrieval of the rout-

ing information cannot be ignored. For R-MF where global
knowledge is required, the retrieval is not easily possible. For
R-MPRT and E-WME a simple distributed version can be
implemented. It is however crucial for the implementation to
carefully choose an appropriate beacon interval.

G. Different Harvesting-Rate Scenarios
All simulations so far have been performed under the as-

sumption that all nodes are exposed to the same environmental
source, and thus have the same harvesting power rate pu. To
investigate the influenc of an unbalanced spatial distribution
of environmental energy, we studied several scenarios and
present two of them in the following:

• Harvesting Scenario 1: The harvesting power rates pu

are normally distributed. The mean value is equal to the
constant harvesting rate pu = 0.95 mW.

• Harvesting Scenario 2: As indicated in Figure 6, half of
the nodes have a significantl lower harvesting power
than the rest. Again, to make the scenarios comparable,
the sum of harvesting power rates pu is the same as in
the previous scenarios.

Figure 5 shows the packet losses for the two harvesting
scenarios. Although the authors of [11] claim that R-MF
should approximate the maximum, optimal fl w through the
network, algorithm R-MF performs very poor in this exper-
iment, in particular for Harvesting Scenario 2. Overall, we
could not validate the superior performance of algorithm R-
MF in [11] in our experiments. A possible explanation for
this behaviour could be the appearance of packets which are
looping in the network. These packets consume a significan
amount of energy. Since packets are forwarded to neighboring
nodes according to probabilities, looping packets cannot be
avoided by the R-MF algorithm. This effect is much stronger
in non-uniform energy harvesting scenarios.
Figure 6 visualizes the packet fl ws for both the R-MF and

the R-MPRT-mod algorithm for Harvesting Scenario 2. The
packet fl w on an edge is indicated by the thickness of the
respective line. Comparing the two plots, it becomes clear why
R-MPRT-mod achieves a more balanced behavior, resulting in
lower packet loss rates.

VI. CONCLUSION

In this paper, three recently published routing protocols
for energy harvesting wireless sensor networks are analyzed
and compared. Contrary to the original works, we compare
the protocols under realistic scenarios, including a real MAC
protocol, a lossy wireless channel and the protocol overhead.
Specificall , we show how parameters of the MAC protocol
can be optimized for a given harvesting scenario and network
topology. Moreover, we investigate distributed versions of the
algorithms that could be indeed implemented on sensor nodes.
As a further contribution, we propose a modifie version of R-
MPRT algorithm that outperforms its competitors significantl
in terms of sustainable packet injection rates. Finally, we
propose novel evaluation metrics that allow a comparison of
the different algorithms.
Surprisingly, for all simulation scenarios, we found that our

modifie algorithm R-MPRT-mod which uses solely the stored
energy in its cost function outperforms the other algorithms.
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Fig. 5. Average (solid lines) and worst-case (dashed lines) packet loss for
Harvesting Scenario 1 (top plot) and Harvesting Scenario 2 (bottom plot).

Fig. 6. Visualization of the packet fl ws on a 10x10 network topology for
Harvesting Scenario 2; One base station (BS), 81 sensors (red rectangles) and
18 routers (no symbols); routing algorithm R-MF (left) versus R-MPRT-mod
(right).

This comparatively simple algorithm is only indirectly aware
of the harvested energy. This result is in contrast to finding
in related work where a paradigm shift from ”energy-aware”
to ”energy-harvesting aware” protocols is claimed.
Our experiments highlight that simplistic assumptions on

the lower protocol layers lead to wrong results when analyzing
routing protocols. In particular, it is of great importance to
carefully choose the MAC protocol and parameterize it ap-
propriately. Furthermore it must be kept in mind that wireless
links are not ideal and that the knowledge of the cost metrics
of neighboring nodes cannot be obtained for free.

ACKNOWLEDGEMENTS

This work is supported by the National Competence Cen-
ter in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322.
This research is also supported by the European Network of
Excellence on Embedded System Design ARTISTDesign.

REFERENCES

[1] K. Akkaya and M. Younis. A survey of routing protocols in wireless
sensor networks. Elsevier Ad Hoc Network Journal, 3(3), 2005.

[2] Y. Ammar, A. Buhrig, M. Marzencki, B. Charlot, S. Basrour, K. Matou,
and M. Renaudin. Wireless sensor network node with asynchronous
architecture and vibration harvesting micro power generator. In sOc-
EUSAI’05, New York, USA, 2005.

[3] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi,
L. Thiele, C. Tschudin, M. Woehrle, and M. Yuecel. PermaDAQ:
A scientifi instrument for precision sensing and data recovery in
environmental extremes. In IPSN’09, San Francisco, CA, USA, 2009.

[4] A. Bogliolo, E. Lattanzi, and A. Acquaviva. Energetic sustainability of
environmentally powered wireless sensor networks. In PE-WASUN’06,
New York, NY, USA, 2006.

[5] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1), 1959.

[6] L. R. Ford and D. R. Fulkerson. Flows in networks. Princton University
Press, 1962.

[7] J. Hsu, A. Kansal, J. Friedman, V. Raghunathan, and M. Srivastava.
Energy harvesting support for sensor networks. In IPSN’05, 2005.

[8] X. Jiang, J. Polastre, and D. E. Culler. Perpetual environmentally
powered sensor networks. In IPSN’05, UCLA, Los Angeles, California,
USA, 2005.

[9] X. Jiang, J. Polastre, and D. E. Culler. Perpetual environmentally
powered sensor networks. In Fourth International Symposium on
Information Processing in Sensor Networks, 2005.

[10] K. Langendoen. Medium access control in wireless sensor networks. In
H. Wu and Y. Pan, editors, Medium Access Control in Wireless Networks.
Nova Science Publishers, Inc., 2008.

[11] E. Lattanzi, E. Regini, A. Acquaviva, and A. Bogliolo. Energetic
sustainability of routing algorithms for energy-harvesting wireless sensor
networks. Comput. Commun., 30(14-15), 2007.

[12] L. Li and J. Y. Halpern. Minimum-energy mobile wireless networks
revisited. In ICC’01, 2001.

[13] Q. Li, J. Aslam, and D. Rus. Online power-aware routing in wireless
ad-hoc networks. In MobiCom’01, 2001.

[14] L. Lin, N. B. Shroff, and R. Srikant. Asymptotically optimal energy-
aware routing for multihop wireless networks with renewable energy
sources. IEEE/ACM Trans. Netw., 15(5), 2007.

[15] L. Lin, N. B. Shroff, and R. Srikant. Energy-aware routing in sensor
networks: A large system approach. Ad Hoc Netw., 5(6), 2007.

[16] V. Mhatre and C. Rosenberg. Energy and cost optimizations in
wireless sensor networks: A survey. Proc. of Annual Allerton Conf.
on Communication, Control and Computing, 1999.

[17] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava.
Design considerations for solar energy harvesting wireless embedded
systems. In IPSN’05, 2005.

[18] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from
a sensor network expedition. In EWSN’04, 2004.

[19] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and yield in a volcano monitoring sensor network. In OSDI’06, Berkeley,
CA, USA, 2006. USENIX Association.

[20] K.-J. Wong and D. K. Arvind. Speckmac: low-power decentralised mac
protocols for low data rate transmissions in specknets. In REALMAN’06,
New York, NY, USA, 2006.

[21] K. Zeng, K. Ren, W. Lou, and P. J. Moran. Energy-aware geographic
routing in lossy wireless sensor networks with environmental energy
supply. In QShine’06, New York, USA, 2006.

8


