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Abstract

Epidemic spreading is probably the most popular bio-
inspired principle, which has made its way into computer net-
working. This principle naturally applies to Opportunistic or
Delay Tolerant Networks (DTNs), where nodes probabilis-
tically meet their neighbors thanks to mobility. Epidemic-
based algorithms are often the only choice for DTN problems
such as broadcast and unicast routing, distributed estima-
tion etc. Existing analyses of epidemic spreading in various
contexts only consider specific graph geometries (complete,
random, regular etc) and/or homogeneous exponential node
meeting rates. In addition, in wired networks, synchronous
communication is usually assumed.

In this paper, we relax these assumptions and provide a de-
tailed analysis of epidemic spreading in DTNs with heteroge-
neous exponential node meeting rates. We observe the spe-
cial properties of a Markov model, describing the epidemic
process and use them to derive bounds for the delay (expec-
tation and distibution). We apply our analysis to epidemic-
based DTN algorithms for routing and distributed estimation
and validate the bounds against simulation results, using vari-
ous real and synthetic mobility scenarios. Finally, we empir-
ically show that, depending on graph properties (communi-
ties, scale-freeness), the delay scales very well with network
size.

1 Introduction

Opportunistic or Delay Tolerant Networks (DTNs) are envi-
sioned to support communication in case of failure or lack
of infrastructure (disaster, censorship, rural areas) and to en-
hance existing wireless networks (e.g., offload cellular traf-
fic), enabling novel applications. Nodes harness unused
bandwidth by exchanging data when they are in proximity
(in contact). The data is then stored by the nodes, carried
through their mobility and eventually forwarded to destina-
tions, thus achieving multihop communication, despite the
lack of end-to-end paths.

Due to the inherent uncertainty and randomness of this type
of network, the epidemic spreading principle is central to

many DTN algorithms [1, 2, 3]. Here, epidemic spreading
operates as follows: given a piece of information/message
m, every node carrying a copy of m must further replicate
the message to every node it encounters (provided the en-
countered node does not already have m). Thus, informa-
tion/messages will spread almost like an epidemic through
the network, with every node eventually receiving a copy of
m.

In DTNs, algorithms based on the epidemic spreading prin-
ciple have been extensively studied, at first through lengthy
and complex simulations and later through analytical mod-
els, mainly based on Markov chains [4] and fluid approxi-
mations [5, 6]. For the sake of tractability, state-of-the-art
epidemic spreading models mainly rely on simple mobility
assumptions (e.g. Random Walk, Random Waypoint), where
node mobility is stochastic and independent identically dis-
tributed (IID). Studies of real scenarios [7, 8] reveal more
complex structure, comprising considerable heterogeneity in
node mobility, questioning the usefulness of these models’
predictions.

A more realistic analysis of the basic principle of epidemic
spreading is very important for all the algorithms that it un-
derlies. These range from routing to distributed estimation
and including content dissemination. For example, DTN
broadcast routing or flooding is achieved via the epidemic
propagation of the broadcast message. Moreover, the first
algorithms proposed for DTN unicast routing were the well-
known epidemic routing [1] and its more efficient extensions
(probabilistic and time-limited forwarding). The epidemic
spreading principle is also employed in the distributed esti-
mation of global network parameters, both in DTNs [2] and
in traditional networks [9]. Network size [10], average buffer
occupancy [11] or overall network storage are just a few ex-
amples of global network parameters needed by DTN algo-
rithms to tune themselves and provide the best performance
they can.

In this paper, we analyze the delay of epidemic spreading un-
der a much larger class of node mobility patterns than in pre-
vious studies. Previous studies model every node pair’s meet-
ing times with identical Poisson processes of rate λ [5, 6, 4],
or use at most a few different rates corresponding to mobility
classes [3]. Here, we use a set of fully heterogeneous Pois-
son processes with rates λ i j, unique to each node pair (i , j).



While independent, identical and exponential node mobility
has been clearly recognized as an unrealistic model, the sole
introduction of fully heterogeneous pairwise meeting rates is
a big step forward towards realism, encompassing substan-
tially more mobility models. At the same time, using this
kind of heterogeneity in existing models is a significant chal-
lenge, as it makes the problem immediately untractable.

The rest of this paper is organized as follows. Section 2
presents a summary of related work and demonstrates the
difficulty of introducing heterogeneous mobility in existing
Markov models. Then, Section 3 formally defines the prob-
lem, and introduces our network model. In Section 4, we
show how to overcome the difficulties raised by the use of
heterogeneous pairwise meeting rates and we derive bounds
for the delay of epidemic spreading (expectation and distribu-
tion), in function of the number of nodes and the conductance
of the DTN contact graph. Next, in Section 5, we discuss ap-
plications of our analysis to some DTN algorithms and we
validate our bounds against simulation results on a variety of
synthetic and real world DTN traces. Moreover, we empiri-
cally show that, depending on certain properties of the DTN
graph (community structure, scale-freeness), the delay scales
very well with network size. Finally, we summarize our con-
clusions and discuss future work in Section 7.

2 Related Work and Challenges

In this section, we present a summary of related work, first
from the Opportunistic Networking context, and then from
the broader area of computer networking.

Early efforts to evaluate the performance of epidemic spread-
ing in Opportunistic Networks relied on lengthy and complex
simulations, using a limited number of simple mobility mod-
els (Random Waypoint, Random Direction). Later, analytical
studies emerged, using ordinary differential equation models
(ODEs) [5, 6], inspired from epidemiology, on the one hand
and Markovian models [4], on the other hand. In ODE mod-
els, the epidemic spreading process is treated as a fluid flow
and the number of copies is approximated as a continuous-
valued function of time and the node meeting rate. With
Markov models, the spread of a message is modeled with a
chain, whose states are the number of copies in the network.

As mentioned above, these studies rely on simple, identi-
cal node mobility assumptions, where nodes meet each other
at independent identically distributed (IID) time intervals.
There is a unique meeting rate λ, describing the contacts of
every node pair. As a result, all nodes are equal and can
be treated as a group, rather than individually. This is re-
flected, e.g., in epidemic spreading Markov models, where
only the number of message copies is modeled, without re-
gard for the specific nodes carrying those copies. This results
in relatively simple chains, with state spaces the size of the
network, which can easily be solved for delivery delays and
ratios.

To incorporate some of the non-trivial structure of node mo-
bility and meeting patterns observed in real world experi-
ments [7, 8], newer analyses [3] introduce a small set of
different mobility groups: node mobility is different across
groups, but inside the same group, nodes are still identical.
This results in a relatively complex partial differential equa-
tion (PDE) model, with only limited additional diversity in
the node mobility.

Here, we will use individual pairwise meeting rates λ i j for
each node pair (i , j) to model the mobility of nodes. In
this case, it is a priori not possible to group nodes (unless
we make additional, potentially restrictive assumptions about
the rates λ i j). Indeed, while in the previous simple Markov
chain, a state is simply the number of message copies in the
network, with our model the specific nodes carrying those
copies need also be modeled. As a result, for each state α
of the simple Markov chain, there will be (

N
α) states in the

new Markov chain (with α the current number of message
copies). That is a state space of size 2N − 1 and a virtually
impossible to handle chain.

One of the contributions of our work is simplifying this
model and connecting in a new way the delay of epidemic
spreading to a fundamental property of a well-defined ma-
trix, its conductance. The conductance captures macroscopic
mobility characteristics of the nodes and allows us once again
to group them in rough conceptual clusters or communities,
thus reducing the Markov chain without any additional re-
strictive assumptions1. Furthermore, we show that the delay
of epidemic spreading in DTNs has good scaling properties,
as the conductance of DTN graphs is relatively unaltered by
increasing network size.

The conductance property has already been related to the de-
lay of epidemic spreading, in the more broader context of
traditional computer networking. There, the push-pull algo-
rithm has recently received significant attention. This algo-
rithm proceeds in synchronous rounds. In each round, every
node in the network randomly chooses a neighbor to com-
municate with. Then, for every communicating node pair,
if one of the two nodes has the information, both will have
it at the end of the round. Several bounds on the spread-
ing delay of this algorithm have been proposed and gradually
improved [12, 13, 14, 15]. However, the majority of these
results are not easily transferable to the DTN context. This is
firstly, because the considered model operates in synchronous
rounds and secondly, because of the implicit connectivity as-
sumption, that nodes have a set of neighbors with whom they
can communicate at will.

Only in [12], do the authors consider the asynchronous case
and obtain a tail bound which is most relevant to our work.
There, epidemic information spreading is analyzed as an un-
derlying routine of a distributed estimation algorithm. An
upper bound is provided for the epidemic spreading delay,
in function of the conductance of the stochastic matrix that
governs communication between node pairs. Here, we de-
rive an upper bound for the entire delay distribution (instead

1This simplification does, however, come at the cost of accuracy, as we
derive bounds for the delay instead of exact expressions.



of merely the tail) and we empirically show that our bound is
much tighter.

3 Problem Statement and Model

Let V be our Opportunistic Network, with ∣V ∣ = N nodes.
V is a relatively sparse ad hoc network, where node density
is insufficient for establishing and maintaining (end-to-end)
multi-hop paths. Instead, data is stored and carried by nodes,
and forwarded through intermittent contacts established by
node mobility. A contact occurs between two nodes who are
in range to setup a bi-directional wireless link to each other.

3.1 The Information Spreading Problem

The information spreading task in its simplest form can be
defined as follows:

Definition 1 (Single-source spreading (SSS)). Given the net-
work V , start from an arbitrary node i ∈ V and disseminate
a message m i to all nodes in the network, via a (mobility-
driven) sequence of local communications between node
pairs.

More generally, one may define a multi-source spreading
(MSS) task, where each i of an arbitrary subset of nodes
A ⊆ V has a distinct message to distribute to all nodes V∖{i}.
This is the case in distributed estimation or consensus, in con-
tent dissemination etc.

In this paper, we analyze the delay of the SSS task in a DTN
environment. For the MSS task, similar delay bounds can
be obtained, e.g., by applying Boole’s inequality (the union
bound) to the results for the SSS task. We defer the thor-
ough analysis of the MSS task to future work. We note,
however, that our model and results obtained for this sim-
ple problem also naturally extend to epidemic unicast routing
and epidemic-based distributed estimation and we will elab-
orate on this in Section 5.

3.2 Network and Time Model

We describe the network V using a marked point process
(Mn)n∈Z = {Tn , σn}, where Tn denotes the starting time of
a contact and σn = (i , j, ∆n) denotes the two nodes in con-
tact i , j ∈ V and the duration of the contact ∆n [16, 17]. The
random variables Jn = Tn − Tn−1 are the times between the
initiations of two successive contacts.

We make the following assumptions:

1. (Tn)n∈Z are epochs of a stationary and ergodic renewal
process – the times Jn are IID with intensity2 λ, depen-
dent on network sparsity.

2Expected number of points or contact “arrivals” per time unit.

2. Tn < Tn+1 , ∀n ∈ Z – no two contacts start at the same
time, i.e., Jn > 0.

3. ∆n << Jn – the duration of a contact is negligible com-
pared to the time between two contacts, but sufficient
for all data transfers to take place. Thus, σn = (i , j).

4. (σn)n∈Z is a discrete IID process, with common distri-
bution P[σn = (i , j)] = pci j. This is the pairwise contact
probability, that the next contact in the sequence is be-
tween nodes i and j. Then, by item 1), the pairwise
contact rate is λ i j = pci jλ.

We distinguish between standard time (wall-clock time) and
event time (measured in number of contact events or “con-
tact ticks”). Because our contact process is stationary and er-
godic, it is easy to relate event time to wall time, using Wald’s
equation [18]. For simplicity, we use event time throughout
the paper.

Consequently, within the IID (σn)n∈Z process, at any mo-
ment, the remaining discrete inter-contact delay between
nodes i and j has a geometric distribution with parameter
pci j. Similarly, the remaining wall-clock inter-contact de-
lay between nodes i and j has an exponential distribution
with parameter λ i j. The geometric/exponential assumption
is key in our DTN model, as well as in all existing analyt-
ical studies for DTNs. While this assumption has spurred
some controversy [19], Karagiannis et al. established in [20]
that after a short “characteristic time” of about half a day,
the inter-contact time does exhibit exponential decay. Conse-
quently, approximating inter-contact times with exponential
variables is far from unreasonable, especially when focusing
on residual inter-contact times3, as is the case with analyses
of forwarding schemes. The exponential assumption enables
an otherwise unfeasible analysis and spares us from other
more restrictive assumptions (e.g., path length of at most two
hops [21]).

Under the above model, a given mobility scenario with het-
erogeneous node mobility can be described through its pair-
wise contact probabilities pci j forming the contact probability
matrix:

Pc
= {pci j}. (1)

Probabilities pci j can be either measured directly from a given
real or synthetic mobility trace (e.g. maximum likelihood
estimation of pci j for every pair); or they can be calculated
using the pair’s contact statistics (e.g. frequency), as in [22].
We apply the former approach to all traces we use (Table 1).

In the following, we use exclusively the weighted undirected
graph G = (V , E), with adjacency matrix Pc .

3.3 Information Spreading Delay

The quantity we are analysing is the delay for the SSS task in
Def. 1 to be completed.

3This is the time until the next contact for a node pair from an arbitrary
point in time. Intuitively, the residual time reflects how much time a device
must wait, before being able to forward a message to another specific device.



In discrete time, the SSS delay is an integer-valued random
variable DSSS, defined on the same probability space as our
contact process (Mn)n∈Z = {Tn , σn} from above. Assuming
node i starts the message dissemination at time T0 and de-
noting by S(Tn) the (sub)set of nodes “infected” with m i by
time Tn:

DSSS = inf{n > 0 ∶ S(Tn) = V}. (2)

In the following, we will analyze DSSS by stages. To this
end, we define the following two classes of random variables:
partial spreading delays DSSS(α) and transition delays Dα :

DSSS(α) = inf{n > 0 ∶ ∣S(Tn)∣ = α}, (3)
Dα = DSSS(α + 1) − DSSS(α). (4)

Thus, DSSS = DSSS(N) = ∑
N−1
α=1 Dα . We introduce below an

absorbing Markov model for the SSS task, which will enable
a detailed analysis of the transition delays and ultimately of
the total delay DSSS.

4 Theoretical Delay Analysis

We first describe our model for the SSS task, then we anal-
yse the expected spreading delay and finally we show how
the delay distribution can be bounded by a related and much
simpler distribution.

4.1 A Markovian Model for Information
Spreading

In the typical Markov chain model for epidemic spreading
(see e.g., [4] Fig. 2), states are the number of copies of m i
in the network (the number of nodes “infected” with m i). As
we point out in Section 2, with the introduction of hetero-
geneous contact probabilities pci j instead of the “one-fits-all”
probability p, nodes can no longer be treated in groups. As
a result, for each state α of that simple Markov chain, there
will be (

N
α) states in the new Markov chain for the SSS task

(with α the current number of copies of m i).

Denote by A(α) (with α = 1, . . . ,N), the set of all α-sized
node subsets of our network V (e.g., A(1) = V ). Then,
∣A(α)∣ = (

N
α) and

Ω =
N
⋃
α=1

A(α) (5)

is the state space of the SSS task. While the size of this state
space (∣Ω∣ = 2N − 1) is prohibitive for any quantitative results,
its qualitative analysis leads to very interesting findings.

The delay of the epidemic spreading task DSSS defined in
Eq. (2) is the absorption time of the Markov chain (Xn)n∈N
defined on state space Ω by the transition matrix P in Fig. 1
(non-zero entries are shown in red) and by the initial prob-
ability vector π(0) (with ∑N

i=1 π(0)(i) = 1 and π(0)(i) = 0
for all i > N). The absorbing state is A(N) = {V}, i.e., the
one in which every node has m i . Transition probabilities are
combinatorial functions of pairwise contact probabilities pci j.

Figure 1: The (2N − 1) × (2N − 1) transition matrix P for
epidemic information spreading

Lemma 1. The matrix P has the following properties:

(i) P is an upper triangular matrix.

(ii) P is a sparse matrix, specifically a band(ed) matrix.

(iii) P is a block matrix.

Proof. (i) Upper triangular: Spreading can only be in-
creased: if the message m i has currently spread to α
nodes (the chain is in state U ∈ A(α)), it is impossible
to go back to state S ∈ A(α − β), with α > β.

(ii) Sparse, banded: When in state S ∈ A(α), the choice of
successor states in the Markov chain is limited to states
U ∈ A(α + 1). Any state U ∈ A(α + β), β ⩾ 2 is not
directly reachable (as no simultaneous contacts occur
in our model).

(iii) Block: For every [A(α),A(α+1)] pair, there is an (
N
α)×

(
N

α+1) block, Pα ,α+1, representing the spread of m i to a
further node, i.e., from α nodes to α + 1 nodes.

Since all blocks are essentially the same, analyzing Pα ,α+1
will provide significant insight into the properties of the en-
tire matrix and thus, of the SSS task. To analyze a sin-
gle block, we define a new (absorbing) Markov chain on
Ω′ = A(α)∪A(α + 1) with initial probability vector π(0)

α (de-
pending on π(0) and on previous blocks) and with transition
matrix:

A(α) A(α + 1)

P′(α) =
⎛

⎝

Qα Pα ,α+1
0 Iα+1

⎞

⎠

A(α)
A(α + 1)

(6)



where Iα+1 is the α + 1 identity matrix and Qα is a diagonal
matrix corresponding to A(α) in the original matrix P. Note
that, in the original matrix P, states A(α+1) are not absorbing
(there exists a Qα+1 ≠ Iα+1). However, since we are only
interested in the phase α → α + 1 of the spreading algorithm,
we can safely ignore that for now. As an example, the block
forming P′(3) is boxed in Fig. 1.

4.2 Expected Delay Analysis through Absorp-
tion

The transition delay Dα defined in Eq. (4) is the absorption
time of P′(α). Its expectation E[Dα] can be easily obtained
using the theory of absorbing Markov chains [23]. Based on
this theory, we state the following lemma:

Lemma 2. The expected transition delay E[Dα] is:

E[Dα] =

(Nα)
∑
x=1

π(0)
α (x)
∂(Sx)

, (7)

where Sx ∈ A(α) and ∂(Sx) = ∑i∈Sx ; j∉Sx p
c
i j is the edge

boundary of the vertex set Sx in the graph G defined by weight
matrix Pc . The initial probabilities π(0)

α (x) from vector π(0)
α

sum to 1.

Proof. The elements of the diagonal matrix Qα from Eq. (6)
can be written as:

qxx = 1 − ∑
i∈Sx ; j∉Sx

pci j , ∀Sx ∈ A(α); x = 1, . . . , (N
α
), (8)

with pci j, the contact probability between nodes i and j.

By the theory of absorbing Markov chains [23], the expected
delay E[Dα] for leaving the α → α + 1 phase can be obtained
from the fundamental matrix of the Markov chain P′(α):
Nα = (Iα − Qα)

−1. Since Qα is diagonal, so is Nα , and its
elements nxx (with x = 1, 2, . . . , (Nα)) are easily obtainable as:

nxx =
1

1 − qxx
=

1
∑

i∈Sx ; j∉Sx
pci j

=
1

∂(Sx)
, (9)

where ∂(Sx) is the edge boundary of the vertex set Sx in the
graph G defined by weight matrix Pc .

The fundamental matrix Nα is a (
N
α) × (

N
α) diagonal matrix,

where each nxx = ∂(Sx)−1 represents the expected time the
Markov chain P′(α) will spend in state Sx ∈ A(α) before
being absorbed, i.e., moving on to phase α + 1. Therefore,
the expected absorption time of the Markov chain P′(α) (or
expected transition delay E[Dα]) is a weighted sum of the
nxx ’s with the initial probabilities π(0)

α (x) as weights.

E[Dα] =

(Nα)
∑
x=1

π(0)
α (x) ⋅ nxx (10)

and this completes the proof.

Note that the edge boundary of a vertex set Sx is equal to
the edge boundary of the set’s complement Sx , i.e., ∂(Sx) =
∂(Sx). This means that the SSS task from Def. 1 exhibits
some symmetry: the expected sojourn times in states Sx ∈

A(α) and Sx ∈ A(N − α) are equal, i.e.,

Nα = NN−α . (11)

However, this does not mean that the respective expected ab-
sorption delays E[Dα] and E[DN−α] are also equal. This is
because the expected absorption time of a Markov chain de-
pends not only on its fundamental matrix, but also on its ini-
tial probability distribution. Since the initial probability dis-
tributions π(0)

α for each phase of the SSS task depend on the
previous phases, this vector is not easily obtainable and it is
very likely that π(0)

α ≠ π(0)
N−α .

While we cannot obtain a closed form expression for the ex-
pected transition delays E[Dα], we can use the fundamental
matrices Nα to bound them:

Theorem 3 (Expected delay.). The expected delay of the SSS
task is bounded as follows:

E[DSSS] <
2 ln(N − 1)

NΦ
, (12)

where Φ is the conductance of the DTN graph G, defined as
Φ = minS∈Ω ϕ(S). The conductance of a cut ϕ(S) is4

ϕ(S) = ∂(S)
∣S∣ ⋅ ∣S∣

=
∂(S)
∣S∣ ⋅ ∣S∣

= ϕ(S). (13)

Proof. Using Eq. (7) and the fact that π(0)
α (x) < 1 for all x,

we bound the expected transition delay as follows:

E[Dα] ⩽
1

min
x

∂(Sx)
=

1
α(N − α)min

x
ϕ(Sx)

. (14)

Let the α−conductance of our DTN graph G beΦα = ΦN−α =

min
x

ϕ(Sx), for x = 1, . . . , (Nα). Then, for all α = 1, . . . ,N − 1,

E[Dα] ⩽
1

α(N − α)Φα
. (15)

Since DSSS = ∑
N−1
α=1 Dα , using the linearity of expectation and

the two above inequalities, we obtain:

E[DSSS] ⩽
N−1
∑
α=1

1
α(N − α)Φα

. (16)

This is a relatively tight bound, however, it is not easily in-
terpretable. To this end, we observe that Φα ⩽ Φ for all
α = 1, . . . ,N − 1 and obtain:

E[DSSS] ⩽
N−1
∑
α=1

1
α(N − α)Φ

<
2 ln(N − 1)

NΦ
. (17)

and this completes the proof.
4This is one of several definitions of conductance to be found in the lit-

erature. We use it as it provides the best bound.



Naturally, the bound in Thm. 3 can also be calculated for the
partial spreading delays DSSS(α), defined in Eq. (3). This
can be done by simply stopping the sum in Eq. (17) at the
desired stage. This results in:

E[DSSS(α)] ⩽
α
∑
β=1

1
β(N − β)Φ

<
1

NΦ
(ln

α(N − 1)
N − α

) . (18)

Note that, to obtain these bounds, we have used the exact
average delay formula and essentially replaced all cut vol-
umes ∂(Sx) for partitions of a certain size α, by the mini-
mum cut volume for that size, α(N −α)Φα . This means that,
in scenarios where the contact graph exhibits very strong and
relatively large communities (i.e., very well connected vertex
subsets, with only weak links towards the outside), the bound
will be relatively loose. Conversely, if the contact graph does
not have any well-defined communities or if those communi-
ties are relatively small, the bound will be relatively close to
the actual delay value. In Section 5, we will in fact observe
this distinction on our various traces.

4.3 Bounding the Delay’s Distribution

In addition to the average information spreading delay, it is
also important to know the probability that the spreading is
completed within a certain timeframe. This is practically rel-
evant for most algorithms based on epidemic spreading. For
example, in routing, this translates to the delivery probabil-
ity/ratio. In this section, we show how to construct a new and
much simpler Markovian model, whose absorption time dis-
tribution upper bounds the absorption time distribution of P,
that is DSSS.

Theorem 4 (Bounding Markov Chain). The random vari-
able DSSS, the absorption time of P, is upper bounded (in the
usual stochastic order) by D̂SSS, the absorption time of the
discrete-time pure-birth Markov chain P̂ (Fig. 2) with initial
probability distribution π̂(0) = (1, 0, . . . , 0).

Figure 2: The bounding pure-birth Markov chain

Proof. The distribution of DSSS is a discrete-phase type dis-
tribution, i.e., a weighted sum of geometrically-distributed
random variables. We note that DSSS = ∑

N−1
α=1 Dα and we will

once more use the stages of the spreading process to ana-
lyze this distribution. The random variables Dα are, them-
selves, weighted sums of geometrically-distributed random
variables. More precisely, note that, for each state S ∈ Ω,
the time spent in this state is geometrically distributed with
success probability ∂(S) (success means leaving the state).
Therefore, for all α = 1, . . .N − 1 and all x = 1, . . . , (Nα) the
variable Dx(α) ∼ G(∂(Sx)) is the delay of leaving state Sx .

Further, we recall that we denoted by π(0)
α the initial proba-

bility vector for stage α. The probability that stage α starts in
state Sx is π(0)

α (x) and ∑x π(0)
α (x) = 1.

Let D̂α ∼ G(α(N − α)Φα) be the delay of stage α in the
Markov chain P̂. Note that this delay is equal to Dx⋆(α),
where x⋆ is the index of the cut achieving Φα , the minimum
α−conductance. Then, the delay of the α → α + 1 stage in the
original Markov chain P is

Dα =

(Nα)
∑
x=1

π(0)
α (x) ⋅ Dx(α) ⪯

(Nα)
∑
x=1

π(0)
α (x) ⋅ D̂α (19)

= D̂α

(Nα)
∑
x=1

π(0)
α (x) = D̂α , (20)

where “⪯” denotes the usual stochastic order (inequality in
complementary cumulative distribution function (CCDF)).
Consequently,

DSSS =
N−1
∑
α=1

Dα ⪯
N−1
∑
α=1

D̂α = D̂SSS (21)

and this completes the proof.

The bounding delay D̂SSS is a simple (non-weighted) convo-
lution of geometric distributions. Denoting the success prob-
abilities pα = α(N − α)Φα , the probability mass function of
this variable is given by [25]:

P[D̂SSS = 2k] =
⌊N/2⌋
∑
α=1

wα pα(1 − pα)
k−1 , (22)

where the weights wα are defined as:

wα =
⌊N/2⌋
∏

β=1; β≠α

pβ

pβ − pα
(23)

and ∑⌊N/2⌋
α=1 wα = 1. This holds for all k ⩾ ⌊N/2⌋, provided

that pα ≠ pβ for all α ≠ β.

Thm. 4 also holds if we replace all Φα with Φ in Fig. 2. In
this case, the weights wα simplify to:

wα =

⎧⎪⎪
⎨
⎪⎪⎩

(−1)α−1(Nα), if N is even,
(−1)α−1 (1 − 2α

N ) (
N
α), if N is odd.

(24)

The probability mass function of the partial spreading delay
DSSS(α) can be calculated in the same way for α < ⌊N/2⌋,
by simply stopping the summation in Eq. (22) at the desired
stage α. A formula can also be derived for ⌊N/2⌋ ⩽ α < N−1,
but it is more involved.

Similarly to the expected delay bound from the previous sec-
tion, the above bound on the distribution is looser or tighter
depending on the presence of strong and large node commu-
nities in the graph under consideration.



MIT INFO HCMM SLAW

Scale and context 92 campus students & staff 41 conference attendees 100 nodes 100 nodes
Structure
(from [24])

6 communities no strong communities 10 communities Hurst param. h =

0.75
Period 9 months 3 days 2.5 months 4 months
Scanning Interval 300s (Bluetooth) 120s (Bluetooth) N/A N/A
# Contacts total 81 961 22 459 1 129 242 192 245

Table 1: Mobility traces characteristics.

5 Empirical Analysis

In this section, we validate the results of the analysis against
simulation results for the SSS task, using well known real
world traces as well as synthetic mobility models. Then, we
show that the delay of the SSS task has good scaling prop-
erties, as the conductance of considered DTN graphs is rela-
tively unaltered by increasing network size.

5.1 The Accuracy of the Bounds

To cover a broad range, we use two real-world connec-
tivity traces and two synthetic mobility traces for valida-
tion: (i) the Reality Mining trace (MIT) [7], (ii) the Info-
com 2005 trace (INFO) [26], (iii) a synthetic scenario created
with the HCMM mobility model (HCMM) [27] and (iv) a
synthetic scenario created with the SLAW mobility model
(SLAW) [28]. Their characteristics are summarized in Ta-
ble 1.

For all these traces, we obtained the contact probability ma-
trix Pc , using a maximum likelihood estimator for the meet-
ing probability of each node pair. We then calculated ap-
proximations for the α−conductances of the weighted graph
defined by the matrix Pc , using the graph partitioning pack-
age Metis [29]. Metis uses a very fast partitioning algorithm
(running in linear time) and, as shown in [30], it produces
very high quality clusters, with conductance values close to
theoretical lower bounds. In fact, the clusters produced by
Metis may even sometimes be disconnected, resulting in con-
servative conductance values and thus relatively conservative
bounds in our analysis.

For each graph and each cluster size, we take the mini-
mum α−conductance over 10 000 runs. We plot the result-
ing α−conductances for all traces in Fig. 3(a)5. This is also
known as the Network Community Plot (NCP) [31] and it of-
fers significant insight into the graph’s community structures
at various scales. Increasing NCP curves, as in the case of the
Infocom and SLAW graphs, suggest an absence of commu-
nity structure, also recognized in [24]. This means that the
delay bounds will be quite close to the empirical values for
these traces. This is also true for the HCMM trace, where the

5For better visualization, the α−conductances are normalized by the du-
ration of the traces. This avoids overlaps, while keeping the trends

NCP curve is almost constant, due to the very small built-in
communities (10 nodes each). On the other hand, the MIT
trace exhibits relatively sudden dips in conductance values
as the partition size increases. This attests the existence of
strong and relatively large communities in this trace, as re-
ported also in [24]. Consequently, the delay bound will be
somewhat looser for this trace than for the previous three.

Using the α−conductances or alternatively the graph conduc-
tance Φ, we can now calculate the upper bounds for both the
expected delay of epidemic spreading (Eq. (12)) as well as
its complementary cumulative distribution function (CCDF),
easily obtained from Eq. (22). We compare these analytically
predicted quantities with results obtained from simulating
epidemic spreading on our traces. For each trace, we mea-
sure the time it takes until all nodes in the network receive
a message started at a uniformly chosen node. The message
generation process produces a sample of at least 1 000 obser-
vations per source node for shorter traces and up to 50 000
observations per source node for longer ones. For all mea-
sured expected delays, we compute the 95th percentile using
the normal distribution.

Fig. 3(b) shows the expected delays obtained from the simu-
lations (“meas.”) in comparison with the bounds, calculated
using the α−conductance values from Metis (“a-bound”) and
respectively the graph conductance Φ (“bound”). (Note
that the y−axis is in logarithmic scale.) The expected epi-
demic spreading delays obtained through simulation are in-
deed smaller than the predicted upper bounds. Only for the
HCMM model is the prediction slightly off, presumably on
account of a non-optimal approximation of the conductance
by Metis.

Figs. 3(c)–3(f) show the empirical CCDFs for the spread-
ing delays in comparison with our theoretical CCDFs, ob-
tained from Eq. (22) by using the α−conductance val-
ues (“a-bound”) and respectively the graph conductance Φ
(“bound”). We also show the tail bound obtained by Shah
in [12] (Theorem 3.1.). Once again, the empirical results are
well within all the predicted bounds. Note that the tail bound
is at least one order of magnitude larger than the bounds we
obtained here.

As expected, a relatively loose bound, as in the case of MIT
attests the presence of at least two strong communities con-
nected through a relatively small set of edges (i.e., small con-
ductance), as observed in [24]. On the other hand, for the



(a) α−conductances Φα vs. α (b) E[DSSS] from Eq. (12)

(c) DSSS CCDF for HCMM (d) DSSS CCDF for Infocom

(e) DSSS CCDF for MIT (f) DSSS CCDF for SLAW

Figure 3: Prediction accuracy for content placement

community-free traces Infocom and SLAW [24], as well as
for the HCMM trace (which has built-in very small commu-
nities of 10 nodes each) the bounds are, as expected, (much)
closer to the empirical results.

5.2 The Scaling Behavior of the Conductance

As we have seen previously, the derived bounds are highly
dependent on the conductance profile (or NCP) of the graph
under consideration, as well as on the number of nodes in
the network. This dependence is crucial for two reasons, as
follows.

First, let us examine the expected spreading delay in Eq. 12
more closely. In particular, consider transposing this equa-
tion in continuous time (by Wald’s equation, as mentioned in
Section 3):

E[TSSS] <
2 ln(N − 1)

λNΦ
, (25)

with TSSS, the continuous-time counterpart of DSSS. As the
network size N increases, so does the intensity of the contact
process λ and therefore, the term λN will roughly tend to 1 as
N →∞. Consequently, the scaling behavior of the spreading

delay with increasing network size is almost entirely deter-
mined by the conductance (since the term ln(N − 1) increases
very slowly as the network grows).

The second reason why understanding the evolution of the
conductance as the network size increases is crucial is that,
as we have seen above, the tightness of the bound is also
conductance-dependent.

The evolution of conductance has already been studied for a
special category of graphs, i.e., graphs built using the pref-
erential attachment model. Mihail et al. analytically showed
in [32] that the conductance of these graphs remains constant
as the network size increases. The main feature of the prefer-
ential attachment model is that it generates scale-free graphs
(i.e., graph with power-law degree distributions). Since our
graph model is rather generic, it is hardly possible to ana-
lytically investigate the behavior of its conductance. How-
ever, the scale-free property has been consistently observed
on many DTN contact graphs, obtained both from real-world
traces and from mobility models. It is therefore reasonable to
hypothesize that these graphs do as well conserve their con-
ductance value as their size increases. In the following, we
will empirically verify the validity of this hypothesis.

We use the same traces and models as previously and em-
ploy to different methods to obtain networks of various sizes.
In the first method, we start from a large network and ran-
domly remove entire communities (if they exist). In the sec-
ond method, we start from a large network and randomly re-
move single nodes. We then calculate the conductances Φ
of the newly obtained smaller networks using Metis as previ-
ously.

For SLAW and HCMM, we start with networks of maximum
size 500 nodes and the same parameters as previously (de-
fault 0.75 Hurst parameter for SLAW, and 10 communities
for HCMM). For MIT, the maximum network size is obvi-
ously fixed to the 92 nodes participating in the experiment.
We do not use the Infocom trace for this part, as it is already
quite small at 41 nodes.

Fig. 4 shows the evolution of the graph conductances Φ in
function of the network size.

(a) HCMM (max. 500 nodes) (b) SLAW (500 nodes), MIT (92 nodes)

Figure 4: Evolution of the graph conductance Φ with net-
work size

It is apparent from Fig. 4 that the conductance of typical DTN
scenarios is relatively constant with increasing network size.
This is also consistent with observations from [31]. There,



the authors empirically analyze a series of large real-world
networks (online social networks, peer-to-peer networks, ci-
tation networks etc) and find that, when communities exist,
their sizes are limited to about 100 nodes, regardless of the
size of the network. When partitions larger than 100 nodes
are sought for, the resulting α−conductances are consistently
increasing with partition size.

In other words, the minimum conductance is already reached
for relatively small network sizes. This is very important
from a practical point of view, as pointed out in the begin-
ning of this section. In particular, it means that the increase
in spreading delay is very slow (logarithmic) as the network
size increases. Incidentally, it also means that the derived
bounds can easily be calculated even for larger networks.

6 Applications

In this section, we discuss the possible practical usage of our
derived bounds in practice. Epidemic spreading in DTNs is
more than just a broadcast primitive. It is used directly as a
form of “brute-force” routing, as well as in a more controlled
fashion in probabilistic forwarding or time-limited epidemic
routing. Epidemic spreading is also a routine underlying
distributed estimation algorithms, such as the one proposed
in [9].

Epidemic routing and its variants. Epidemic routing (ER)
was the first DTN routing protocol [1] and it is essentially
a brute-force aproach to routing, as it is trying all possible
space-time paths. For a given message m, any node carry-
ing the message transfers it to any other node it encounters.
Then, with a randomly chosen source node and a randomly
chosen destination node, the delivery delay of m using epi-
demic routing is also characterized by Eqs. (12) and (22).

Obviously, epidemic routing is highly inefficient. To reduce
the overhead, randomized forwarding (RF) was introduced.
In this case, for a given message m, any node carrying the
message transfers it to any other node it encounters with a
fixed probability p. Then, the delivery delay of m can be
analyzed similarly to the previous section, as shown below.

Theorem 5 (Delay of Randomized Forwarding.). The ex-
pected delay of Randomized Forwarding is, similarly to
Eq. (12), given by:

E[DRF] <
2 ln(N − 1)

NpΦ
. (26)

A similar equivalent can be obtained for Eq. (22), simply by
replacing Φ with pΦ in the equation.

Proof. With simple epidemic spreading, the meeting proba-
bility pci j is also the infection probability (i.e., the probability
that i infects j, given that i is infected and j is not). By con-
trast, with randomized forwarding, both the meeting and the
forwarding probabilities must be considered, resulting in new
infection probabilities: p ⋅ pci j. Thus, the contact process of

our DTN is effectively thinned. It is known that thinning by ε
transforms a geometric distribution with success probability
psucc into a geometric distribution with probability ε ⋅ psucc.
Therefore, randomized forwarding can be analyzed, by ana-
lyzing a new DTN contact graph, defined by the contact prob-
ability matrix Pc

RF = p ⋅ Pc .

By constructing the corresponding Markov chain as in Sec-
tion 4 and applying the subsequent analysis, one can obtain
an equivalent for Eq. (12) as shown in this theorem. The
same goes for Eq. (22), simply by replacing Φ with pΦ in
the equation.

For simple epidemic routing, as well as for time-limited epi-
demic routing, the bounds derived in the previous section can
be used to determine an appropriate Time-To-Live (TTL) and
respectively, the time-threshold parameter. For probabilis-
tic forwarding, in addition to the TTL, the fixed forwarding
probability p can be derived, so as to achieve a certain deliv-
ery probability.

Distributed estimation. Epidemic spreading also underlies
a number of distributed estimation algorithms. While the
proposed analysis may not directly and easily apply to all of
them, we give here an example where it does obviously ap-
ply. In [9], the authors propose a simple epidemic-based al-
gorithm for estimating separable functions of individual val-
ues present at nodes. The algorithm relies on a well-known
property of the extrema (minimum and/or maximum) of n
random variables of certain probability distributions. For ex-
ample, if X1 and X2 are two exponentially distributed random
variable with rates, respectively, λ1 and λ2, their minimum is
exponentially distributed with rate λ1 + λ2. Therefore, to es-
timate a global network parameter expressible as a sum (e.g.,
network size), it suffices that each node generates a vector of
K values drawn from an exponential distribution with a rate
equal to the node’s local value. Then, on each encounter, the
two participating nodes calculate the pointwise minimum of
their two samples. After sufficient encounters, the global pa-
rameter can be estimated by maximum-likelihood from the
local vector of minimum values.

It is proven that the estimation delay of the above algorithm
is a simple function of the delay of the underlying epidemic
spreading algorithm. As a consequence, our analysis also ap-
plies to this distributed estimation algorithm. Most-Aoyama
et al. also provide an upper bound for their algorithm, equiv-
alent to the one in [12], which we have shown to be much
looser than the one we propose.

In the case of distributed estimation, the proposed results can
be used to, e.g., easily obtain an approximation of the time
until termination, i.e., the time when the estimate at each
node has reached a certain precision. Detecting termination
is a common concern with distributed estimation, which may
be alleviated through the use of these bounds.



7 Conclusion and Future Work

In this paper, we have used a much more realistic DTN mo-
bility model than previously to derive upper bounds for the
delay of epidemic spreading in Opportunistic Networks. We
have also shown that, depending on graph properties (com-
munities, scale-freeness), the delay scales very well with net-
work size. This delay is very important, as epidemic spread-
ing underlies a series of DTN algorithms, e.g., for rout-
ing, and for distributed estimation. Unlike earlier analyti-
cal research work, our model captures the full heterogeneity
of node mobility, which has been observed in real scenar-
ios [7, 8]. Moreover, we have shown that our bounds are
tighter than previously derived ones [12].

In the future, we plan to further relax the assumptions of our
model, as well as to extend our analysis to more sophisticated
epidemic-based routing algorithms and to further distributed
estimation algorithms.
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