
DISS. ETH NO. 16800

Understanding Ad hoc Networks

From Geometry to Mobility

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Sciences

presented by

REGINA O’DELL

Dipl. Inf.-Ing., ETH Zürich

born 26.04.1980

citizen of

Germany

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner

Prof. Dr. Rajmohan Rajaraman, co-examiner

Prof. Dr. Dorothea Wagner, co-examiner

2006

dl� Dovani

Abstract

With the increase in number and decrease in size of computing devices,
the bulk of networking research has shifted its focus away from station-
ary, heavy-duty computer networks such as the Internet toward wireless ad
hoc networks composed of small, cheap, and in many ways limited battery-
operated devices. This paradigm shift unveils both unexpected limitations as
well as unprecedented latitudes. The network designer has to deal with pos-
sibly severe size, energy, communication ability, and cost constraints while
at the same time he must account for uncertain mobility of the nodes.

This dissertation looks into two particular aspects of the consequences
of the aforementioned paradigm shift. A number of applications for wireless
networks require the nodes to know their position, a key example is given
by sensor networks where it is vital to associate a location to the reported
sensor data. Given their size and energy restrictions, often it is not possible to
equip the nodes with the necessary hardware to allow them to directly deduce
their positions. Consequently, it becomes important to develop algorithms
which compute the coordinates of the network nodes in software based on
what limited connectivity and range information is available to them. This
geometric aspect of wireless networks is the object of scrutiny in the first
part of this thesis, culminating in the first – to the best of our knowledge –
non-trivial approximation algorithm for the network embedding problem.

The second part of this dissertation investigates the newly-found freedom
enabled by battery-powered devices: mobility. One of the primary opera-
tions drastically affected by mobility is routing, or, more generally, the task
of disseminating information from one part of the network to another. As
such, this dissertation provides preliminary results for analytically studying
the effect of mobility on routing protocols in both highly and moderately
dynamic networks. In the former case, we present several flooding and rout-
ing algorithms which reliably deliver a message from the source to the rest
of the network or the destination, respectively, and which do not need infi-
nite energy resources to accomplish this. In the latter case, we provide some
specific bounds showing the tradeoffs between proactive and reactive routing
approaches.

Zusammenfassung

Sowohl die rapide Miniaturisierung von heutigen Rechnern als auch deren
allgegenwertige Präsenz haben zur Folge, dass sich die Wissenschaft vermehrt
weg von stationären, hochleistungsfähigen Netzwerken wie dem Internet und
hin zu drahtlosen Ad-hoc-Netzwerken bestehend aus kleinen, billigen und
in vieler Hinsicht eingeschränkten batteriebetriebenen Geräten wendet. Die-
ser Paradigmenwechsel deckt sowohl unerwartete Einschränkungen wie auch
beispiellose Freiheiten auf. Neuerdings muss sich der Netzwerkentwickler mit
teilweise schwerwiegenden Grössen-, Energie-, Kommunikations- und Kosten-
beschränkungen befassen, und gleichzeitig muss die ungewisse Mobilität der
Knoten in Betracht gezogen werden.

Diese Dissertations betrachtet zwei spezielle Aspekte der Folgen vom
obengenannten Paradigmenwechsel. Zum einen ist es für viele Anwendungen
von drahtlosen Netzwerken unerlässlich, dass die Knoten ihre Positionen ken-
nen. Ein Musterbeispiel bilden Sensornetzwerke, wo es wesentlich ist, Messda-
ten von den Sensoren mit deren Koordinaten zu verknüpfen. Allerdings ist es
oftmals durch die vorhandenen Grössen- und Energiebeschränkungen nicht
möglich, die Knoten mit der notwendigen Hardware, mittels welcher die Posi-
tion direkt bestimmt werden kann, auszustatten. Folglich ist es wichtig, dass
man, basierend auf Topologie- und Reichweiteinformation, die Knotenkoor-
dinaten auch in Software, also mit Hilfe von Algorithmen, bestimmen kann.
Es ist diese geometrische Sichtweise auf drahtlose Netzwerke welche den er-
sten Teil der Arbeit dominiert und in einem, unseres Wissens nach ersten,
nichttrivialen Approximationsalgorithmus für das Netzwerkeinbettungspro-
blem gipfelt.

Der zweite Teil dieser Dissertation befasst sich mit der neugewonnen Frei-
heit, welche erst durch batteriebetriebene Geräte ermöglicht wird: Mobiliät.
Deren drastische Auswirkung spürt man schon in einem der essentiellsten
Netzwerkoperationen, dem des Routing. Letzteres kann man auch allgemein
mit der Aufgabe beschreiben, Informationen von einem Teil des Netzwerks in
einen anderen weiterzugeben. Diese Arbeit untersucht in einem analytischen
Sinne die Auswirkung von Mobilität auf Routingprotokolle in sowohl mässig
als auch hochgradig dynamischen Netzwerken. In letzterem Fall werden meh-
rere Flooding- bzw. Routingalgorithmen vorgestellt. Ein wichtiges Merkmal
dieser Algorithmen ist, dass sie nicht unendliche Energieressourcen für den
Zweck, eine Nachricht zuverlässig von der Quelle zum Rest des Netzwerkes
bzw. zum angegebenen Ziel zu liefern, aufbrauchen. Im Falle von gemässigter
Mobilität werden konkrete Grenzen zwischen proaktiven und reaktiven Rou-
tingansätzen ausgelotet.

Contents

1 Introduction 9

I Geometry 11

2 The Geometry of Wireless Networks 13

2.1 Model . 15

2.2 Inherent Difficulties . 18

2.3 Graph Drawing and Embedding 21

2.4 Approaches to Localization 23

2.5 Roadmap . 30

3 Fast Positioning 33

3.1 Preliminaries . 33

3.2 The HOP Algorithm . 34

3.3 The HS Algorithm . 37

3.4 The GHoST Algorithm . 46

3.5 Discussion . 53

4 Real-World Problems 55

4.1 Hardware Platform . 56

4.2 Experiments and Results . 58

4.3 Discussion and Future Work 65

5 UDG Embedding 67

5.1 Preliminaries . 67

5.2 Algorithm Overview . 68

5.3 Algorithm Details . 72

5.4 Analysis . 75

5.5 Discussion . 81

6 Alternative Models 85
6.1 Network Models . 85
6.2 Approximation Quality . 91

II Mobility 95

7 Mobile Networks 97
7.1 Definitions of Mobility . 98
7.2 Ad hoc Routing Protocols . 102
7.3 Roadmap . 106

8 High Mobility 109
8.1 Model . 109
8.2 Knowledge of |V | . 112
8.3 The Power of Identifiers . 117
8.4 Impossibility . 122
8.5 Routing . 130
8.6 Discussion . 133

9 Moderate Mobility 135
9.1 Model of Mobility . 135
9.2 Measures of Efficiency . 138
9.3 Proactive versus Reactive . 139
9.4 Discussion and Future Work 144

10 Conclusion 149

Chapter 1

Introduction:

Wireless Ad hoc Networks

Who am I? Where am I; and where am I going? Three deep and ancient
philosophical questions of mankind. But perhaps it is a bit presumptuous
to think that only human minds seek answers to these mysteries. In the
very least, if we take them on face value and apply the term “think” rather
liberally, then these questions become relevant for a multitude of living and
even non-living beings. For instance, in order to survive, a tiger needs to be
acutely aware of its predator status, and it needs the ability to locate itself
in relation to its prey, at which point it must exert the necessary control to
move towards it. We can delve even lower in the complexity hierarchy of
organisms down to non-sentient physical entities such as human-built sensor
nodes. Such a node, too, needs to “know” of its role as an information
gathering, processing, and relaying unit; it needs to be “aware” of its position
so as to make the information useful; and it needs to “act” appropriately in
order to forward the information.

The primary source of inspiration for this dissertation is just such collec-
tions of artificially created wireless entities along with the types of questions
and problems they face. In the broadest sense, we call them wireless ad hoc
networks because they consist of nodes which are deployed in a potentially
arbitrary and likely unpredictable manner and whose communication ability
is restricted to a wireless broadcast medium. A common application and
subclass of these types of networks are sensor networks which gather data
about some aspect of their environment and report back the information to a
central sink attached to a database. The future of wireless networks (whether
sensor or not) is often envisioned as a large aggregation of small, if not to
say tiny, low-power devices. The challenges that come with this paradigm
are twofold. On the one hand, engineers are trying to build hardware that
conforms to such a “smart dust” ideal. On the other hand, researchers need

10 CHAPTER 1. INTRODUCTION

to construct models and algorithms that are suited to the very stringent re-
quirements that these devices impose: low energy consumption, low storage
and computational capabilities, and basic radio transmission hardware.

We will study the fundamentals of wireless ad hoc networks by examining
their geometry and seeing how the concept of mobility impacts performance.
Even though it may seem that the aforementioned issues are highly practical
in nature, we will look at wireless ad hoc networks through a theoretical
lens. One of the reasons for doing so is that, for the time being, actual
wireless ad hoc and sensor networks are based on what we consider to be
“transient technology” in that the used hardware is still in its infant stage.
In contrast to chip design and the domination of Moore’s Law at the closing
of the twentieth century, we believe that it is virtually impossible to reliably
predict wireless network hardware development, not to mention the time
scales involved for when breakthrough advancements in scale, energy, and
communication ability will be made. Instead, in this dissertation we adopt
the view of studying first principles because we believe that we should not
forgo a solid theoretical underpinning for short-term practical goals dictated
by evolving market values.

Coming back to our initial three questions, this dissertation does not
dare touch upon the first one; every one and every thing has to answer that
for him- or itself. For the second one, however, we provide a constructive
algorithm which, for the first time, gives non-trivial bounds on the error we
can make in the case of a wireless node amidst a network of other such nodes.
While we might not be able to fully handle the third question, we examine
to what extent anything is possible regardless of what the answer to that
question might be. Specifically in the case of wireless mobile ad hoc nodes,
we provide efficient and reliable algorithms in the face of almost arbitrary
mobility of all of the nodes. We further open up a path for analytically
dealing with mobile routing concepts in the pro- versus reactive debate.

Part I

Geometry

Chapter 2

The Geometry of

Wireless Networks

Roughly speaking, the geometry of a wireless network is the result of putting
together the topology and the metric1 information of the network. The ba-
sic problem comes in many guises in the literature where it is known under
terms such as localization, positioning, or virtual coordinates computation.
They handle different aspects of the problem or deal with different input
requirements, but basically all are concerned with the same question: How
does one assign representative coordinates to the nodes in the network? In
the virtual coordinates formulation, the task is to assign each node to a point
in the plane such that the wireless links are accurately represented. The co-
ordinates need to be only consistent relative to each other. The positioning
variant asks for points that are consistent with respect to an absolute coor-
dinate system, defined by several anchor points with known positions. The
term localization has been used in both contexts. Collectively, we describe
these aspects – the geometry of a network – in terms of an embedding: an
assignment of nodes to points in the two-dimensional Euclidean plane.

The reasons for studying the geometry of wireless networks, apart from
its intellectual appeal, stem from very practical concerns. The recent flurry of
activity in the field of sensor networks, basically a subclass of wireless ad hoc
networks, highlights a number of important research areas. One quintessen-
tial service of sensor networks is the availability of location information: In
most cases it is imperative to attach position information to the sensed data.
The network designer is faced with the decision of how to provide this in-
formation. In some cases, it might be possible to hardcode the position into
the sensor nodes at or before deployment time, such as in building monitor-
ing. When this is not feasible, the designer might have the option to equip

1that is, the link and non-link weights

14 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

some or all of the nodes with localization hardware, be it GPS or some other
specialized hardware for indoor positioning, for instance. In this case, the
network architect needs to weigh the benefits against the costs introduced
by the positioning hardware. The tradeoff here is between the accuracy of
the positions determined with aid of the hardware versus the burden placed
on the nodes due to increased size, energy drain, and costs. In extreme sit-
uations, it might not be possible for any nodes to obtain absolute position
information, in which case the problem is known as computing virtual coordi-
nates. A prominent application of virtual coordinates, also in general ad hoc
networks, is to enable what is known as geographic routing [88, 122, 145],
a successful, simple, and well-documented routing paradigm based on the
use of coordinate information. Lastly, another important usage of network
coordinates is for visualization purposes. Be it in the debugging or during
the deployment stage of wireless ad hoc networks, an accurate and timely
display of the nodes’ location and their interconnections can prove to be an
invaluable monitoring device.

There are two main ways for additional hardware to support localization
efforts of the network. Nodes that are equipped with a GPS receiver provide
a global and absolute orientation of the network. Another form of hardware
allows for inter-node distance or angle measurements, providing relative infor-
mation. As with most of the current wireless network technology, also these
hardware components are far from being perfected and it is not foreseeable
at which point all of the factors cost, size, and energy will be sufficiently
minimized. Some recent analytical considerations have shown that inaccu-
rate measurements can in fact hinder localization efforts. Simulations in [23]
show that starting at a range measurement error of about 30%, the resulting
localization is worse than by topology alone. Calculations and simulations in
[110] for a specific algorithm show how large the error in link distance and
angle measurements can be until the extra information becomes useless. It
turns out that a large part of the parameter space of when the localization
error is minimal is occupied by the algorithm using only hop information.
This is the primary reason why we look at localization in a “range free,”
also known as topological or connectivity-only, model. What this means is
that the knowledge of the nodes is restricted to the presence and absence
of links. These, in turn, are determined by the distances between the nodes
and possibly their surroundings in forms of various obstructions. Simply put,
instead of looking at the equation

topology + metric = geometry

we look at how much we can learn from

topology + (simplified metric)⇒ geometry

where the simplified metric stands for the distance constraints implied by
the existence (or lack thereof) of a wireless link between two nodes. Note

2.1. MODEL 15

that, because of this abstraction, the geometry information must now be
necessarily incomplete.

The status quo of network localization research, aside from hardware ad-
vances, is a collection of heuristics with various levels of refinements which
we will discuss in detail later on. What is missing from a theoretical point of
view are some insights into the general problem of network embedding. In
order to tackle the problem analytically, our first layer of abstraction is mod-
elling wireless networks as unit disk graphs (UDGs). Unfortunately, already
recognizing whether a given graph is a UDG is NP-hard [29]. Consequently,
we seek to find good approximation algorithms. If we only look at position-
ing, then the quality of a positioning algorithm could be the largest deviation
of a node’s computed location from its actual location. In the absence of ab-
solute reference points such as in the case of computing virtual coordinates,
this measure is meaningless. Thus an important step in the process of treat-
ing network localization analytically is formalizing how to assess the quality
of an embedding, be it absolute or relative. A closing question which begs
itself after so much abstraction is what is a good model for wireless networks?
We will turn to that at the end of this part in Chapter 6 to look at possible
alternatives and their utility.

2.1 Model

The entire area of network localization, in one form or another, can be cap-
tured by the idea of graph embedding, formalized below.

Definition 2.1 (Embedding). An embedding of a graph G = (V, E) in
the Euclidean plane is a mapping f : V → R

2, i.e., each vertex v is identified
with a point (x, y) in the plane.

Denote by ‖·‖ the l2 norm, that is, the Euclidean length of a vector in the
plane. In a slight abuse of notation, by R

2 we implicitly mean the Euclidean
plane, that is, R

2 equipped with the l2 metric, since this is the main object
of interest. It will be stated explicitly when we discuss more general metric
spaces. Note that this is in contrast with the graph metric dG(·, ·) which
gives the length of the shortest path between two vertices in the graph G.
Since we look at network localization mainly from an analytical perspective,
the unit disk graph has proven itself a popular network abstraction.

Definition 2.2 (Unit Disk Graph). A graph G = (V, E) is called a unit
disk graph (UDG) if there exists an embedding f such that {u, v} ∈ E ⇔
‖f(u) − f(v)‖ ≤ 1 holds for any u, v ∈ V . Such an f is called a realization
of G.

A realization is also called a representation in the literature. Attaching
virtual coordinates to wireless ad hoc and sensor nodes corresponds to finding

16 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

a realization of a given unit disk graph. As mentioned above, however, finding
such a realization is NP-hard. Therefore, we resort to finding algorithms
which compute an approximate realization, i.e., an embedding which may
violate some unit disk constraints, but does not do so too much.

Problem 1 (Virtual Coordinates). An algorithm for the virtual coordi-
nates problem takes as input a unit disk graph G and outputs an embedding
f for G.

The question is how to quantify how “close” an embedding is to a real-
ization. The motivation for UDGs and thus the goal of an approximation
algorithm is to map adjacent nodes to close-by coordinates and non-adjacent
nodes to distant coordinates. This intuition naturally leads to a quality mea-
sure based on the ratio between the longest edge to the shortest non-edge in
the embedding. Therefore, we formally define the quality of an embedding as
follows.

Definition 2.3 (Quality). Let f be an embedding of UDG G = (V, E). Let
ρ(u, v) = ‖f(u)− f(v)‖ denote the (Euclidean) distance between nodes u and
v in f . We define the quality of the embedding f(G) as

Q(f(G)) :=
max{u,v}∈E ρ(u, v)

min{û,v̂}/∈E ρ(û, v̂)
. (2.1)

Let G denote the family of all unit disk graphs. We consider algorithms
which, given an input graph G ∈ G, compute an embedding fALG(G). We
say that a virtual coordinates algorithm achieves approximation ratio α if
Q(fALG(G)) ≤ α for all G ∈ G. Note that the approximation ratio, i.e., the
“quality”, is something we wish to minimize and any realization r of G is an
embedding where Q(r(G)) ≤ 1. In place of the general definition in Equation
(2.1) we could also have considered an alternative formulation. Consider
scaling the embedding such that non-edges are required to be greater than
one, then minimize the edge length. This is a more standard version of an
optimization problem and the quality refers to how well we can compress the
edges to the optimum unit value.

An easy upper bound on the approximation ratio is O(
√

n), n being the
number of nodes. To see that, place the nodes arbitrarily on the points of a
grid with

√
n per side, the space between two neighboring grid points being

(about) one unit. The possibly longest edge is the diagonal of the grid, or in
the order of

√
n.

Much of the early literature on network localization was interested in
determining the absolute positions for the case where several rigid nodes,
called anchors, were present. These anchors are part of the network and
know their exact positions, information which they distribute to the other
nodes. Below, we can think of p as a partially revealed embedding.

2.1. MODEL 17

Problem 2 (Positioning). An algorithm for the positioning problem col-
lects, in a distributed manner, information V ′ ⊆ V , E′ ⊆ E about a given
unit disk graph G = (V, E) where a subset A = {a1, . . . , ak} ⊂ V , called
anchors, have fixed positions p(a1), . . . , p(ak). The algorithm is given a set
P ⊂ V of nodes for which it outputs an embedding f : P → R

2.

Since sufficiently many anchors will help to “pin down” the rest of the
network, it is more straightforward to measure the quality of a positioning
algorithm. Note that, however, even if the entire topology is known but the
graph is sparse, the error of any positioning algorithm must necessarily be
large. For instance, if the network consists of a path with anchors at the
end points, then the error for the nodes in the middle is in the order of the
distance separating the anchors without further available information.

Definition 2.4 (Error). Let f be an embedding of P ⊂ V of a UDG G =
(V, E) with anchor set A = {a1, . . . , ak} ⊂ V and anchor positions p : A →
R

2. We define the error of the embedding f(P) as

E(f(P)) := max
r

max
v∈P

‖f(v) − r(v)‖ (2.2)

where the first maximization is over all realizations r : V → R
2 such that

r(ai) = p(ai) for all ai ∈ A.

An optimal positioning algorithm will wish to minimize this maximum
possible error. Observe the difference between our general quantification
of error and that used in most prior work. Since all algorithms discussed in
Section 2.4 are evaluated by simulations, the error of the simulated algorithm
is the absolute difference to the position generated by the simulated instance.
However, for a given set of anchors and a unit disk graph, there may be
several realizations and the crucial point is that they may be indistinguishable
to any algorithm. This should be taken into account when computing the
embedding.

A similar point has been raised very recently in [21]. The authors ad-
vocate the use of regions instead of points. The regions represent a subset
(strong deployment region) or superset (weak deployment region) of the to-
tal set of possible point locations consistent with the input data. The above
definition adheres to that idea by maximizing over all possible realizations;
reducing the error function to a single value merely gives a bound on the size
of the region, since this is what is ultimately of interest. If the embedding is
optimal, then the error is proportional to the greatest diameter of the strong
deployment region. In other words, while some works concern themselves
with determining when a graph is globally rigid, that is, there is a unique
solution (possibly up to translation and rotation), we look at the general case
where there might not be a unique embedding. In that case we are inter-
ested in how far apart the nodes in all such possible embeddings can be, or,
in other words, find a metric for how far apart two embeddings are.

18 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

2.2 Inherent Difficulties

As often encountered in mathematical theory, the motivation for the defi-
nition of unit disk graphs has a realization in mind, but the graph which
is distilled from that geometric picture is a combinatorial object in its own
right. While going from the geometric to the combinatorial view is easy, quite
the opposite is true for the other way. Given a graph G, it was first shown by
Breu and Kirkpatrick [29] that determining whether G is a unit disk graph
is NP-hard. Consequently, finding a realization of a unit disk graph is NP-
hard. A whole flood of recent hardness results has shown that a number of
variants and relaxations of the problem, including approximations, remain
difficult, see Table 2.1 for a quick overview. With the approximation ratio
defined as above, [97] showed that no polynomial-time approximation scheme
(PTAS) exists unless P = NP, and, independently, [84] strengthened this to
give a

√

3/2 lower bound on the approximation ratio. In some scenarios, it
might be possible not only to detect connectivity but also to measure the
edge lengths. Then the problem of embedding the graph G with given edge
lengths and non-edges at distance greater than 1 remains NP-hard. This was
shown by an easy reduction from the partition problem in [14] and, indepen-
dently, by a more elaborate reduction from boolean circuit satisfiability in
[7]. The latter result has two corollaries: The NP-hardness can be extended
to randomized algorithms and, again, there is no PTAS for this problem.
Recently, it was shown [21] that even if we add relative angle information2 to
the input, then it is still NP-hard. This was a follow-up paper to [31] which
showed that the UDG embedding problem without edge lengths but knowing
the absolute angles between any two edges is also NP-hard. If we had the
absolute angles between all pairs of nodes, then the embedding is determined
up to scaling. It is also straightforward that if both edge lengths and absolute
angles are given, an embedding can easily be reconstructed. If, however, the
input in both length and angle measurement is arbitrarily small but positive,
then the problem becomes NP-hard again [21]. All the hardness results using
angle information are a variation on the original recognition proof [29] using
a reduction from 3SAT.

One can attempt to assess where the conceptual difficulties arise in the
embedding problem. A key issue certainly stems from the fact that the graph
metric (of the nodes) greatly deviates from the target metric (of the points,
i.e., the embedded nodes). In other words, there exists an UDG such that
the shortest path in the graph connecting two nodes needs k hops while the
nodes need to be embedded such that their Euclidean distance is only slightly
greater than 1. In fact, k can be as large as Θ(

√
n), n being the number of

nodes.

In order to construct an example where this is the case, it is enough

2that is, the magnitude, but not the sign of the angle is known

2.2. INHERENT DIFFICULTIES 19

G and edge lengths edge angles in

[29] - - NP

[7, 14] X - NP
[31] - absolute NP

trivial X absolute P
[21] X relative NP
[21] ǫ δ-absolute NP

Table 2.1: Hardness of embedding a unit disk graph G with extra information.
Absence of information is indicated by a - and presence by a X. The ǫ and δ
refer to the error in the input information and can be arbitrarily close to 0.

k
k

2k + 3

Figure 2.1: Recursive construction of a full tree. The small inner triangle
trees have depth k, the outer one 2k + 3. The root of the trees is the corner
of the triangle.

20 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

to look at a tree which can be realized with all vertices placed on a grid.
Consider the recursive construction schematically shown in Figure 2.1. We
build a tree Tk of depth k out of four trees of depth (k − 3)/2. (The tree
could be mirrored to all four quadrants, but we show only one for simplicity.)
From a simple area observation, the total number of nodes in Tk is in O

(
k2
)
.

We are concerned with the number of leaves L(k) which are at the maximum
depth k in Tk. By construction, L(k) = 4L((k − 3)/2), which, up to some
tedious factors3 , solves to give L(k) = Θ

(
k2
)
. Thus both the total number

of nodes and the number of nodes which have graph distance k are in the
order of k2. Since the area in which to embed the nodes of a tree with
depth d is in O

(
d2
)
, there is necessarily a leaf node u from the root v with

dG(u, v) = k =
√

n such that ‖r(u)− r(v)‖ = O(1) in any realization r of Tk.
We can phrase this in general terms to have the following.

Lemma 2.1. There are unit disk graphs G = (V, E) with |V | = n such that
in any realization r of G, there exist u, v ∈ V such that

dG(u, v)

‖r(u)− r(v)‖ = Θ
(√

n
)
.

The question now is whether the discrepancy between the embedded and
the graph metric is the only hurdle. It seems not. A glance at the construc-
tion in the NP-hardness proofs shows that the graphs there are not dense
in the way that the above trees are. To further investigate this issue, we
can define a subtype of unit disk graphs which a priori eliminates the prob-
lem in Lemma 2.1. Consider unit disk trees with the following property.
Let V (v, k) = {u ∈ Tv | dG(u, v) = k} be the set of nodes at depth k in the
subtree rooted at v. Then the unit disk tree Tr = (V, E) is a sparse UDT if

∀ v ∈ V ∀ 1 ≤ k ≤ depth(Tr) : |V (v, k)| ≤ c · k

for some constant parameter c. The motivation for such a definition is that
there is enough room for all the nodes on the ring of radius k around a
node v. We have not been able to find an algorithm to embed even sparse
UDTs with constant quality, where the crux of the problem lies in proving
that any DFS arrangement of the nodes gives a constant-ratio embedding.
Thus, although it is not a concrete statement as Lemma 2.1, it seems that
the relative arrangement of the subtrees might also play a significant role in
finding a good embedding. In summary, it appears that there are two major
components in the hardness of finding a constant-approximation embedding
algorithm for unit disk graphs: deducing the correct Euclidean lengths based
on graph distance information and finding a consistent global arrangement.
To worsen the picture, we have reason to believe that the embedding of unit
disk trees is already NP-hard.

3since it is basically L(k) = 4L(k/2) = 4log k · L(1) = Θ
(
k2
)

2.3. GRAPH DRAWING AND EMBEDDING 21

2.3 Graph Drawing and Embedding

Mapping graphs into the Euclidean plane or other metric spaces has a rich
history before the recent attention the ad hoc networking community has
lavished on it. There has been the more practical approach of graph drawing
which concerns itself with finding algorithms which embed a graph in two or
three dimensional space4. In a public lecture about the MetaPost language,
Donald Knuth said he was thrilled when he learned that there is an entire
annual conference devoted to the sole purpose of drawing graphs (see http://
gd2006.org/ for the latest installment) and that it would be one of the more
pleasant jobs to get paid for the study of how to make aesthetic visualizations
of graphs. That is also why it is such a rich source for research: Defining the
quality of a drawing is not always straightforward and many different aspects
need to be considered. For instance, one could try to produce as little edge
crossings as possible, or expose as many symmetries as possible.

For the interested reader, the books [41] and [74] can serve as an introduc-
tion to the topic of graph drawing. The sub-field of straight-line drawings is
of particular interest for the embedding problem as it takes into account the
lengths of the embedded edges (and non-edges). See also [37] for an overview
of graph-drawing methods where the placement of nodes should reflect their
measured or graph distances. A method which has proven popular in the
recent form of network embedding is that of spring embedders, a heuristic
which simulates the network as a physical system. Originally, as introduced
by Eades in [45], the vertices are rings (generally: point masses) and the edges
are replaced by springs. The spring of two nodes which are placed too closely
will exert a repulsive force and an attractive force if two connected nodes are
too far apart. Two popular implementations are the Kamada-Kawai [73] and
Fruchterman-Reingold [53] layout algorithms. In [73] all node pairs are con-
nected by a spring with rest length (and thus supposed optimum distance)
proportional to the length of the shortest path connecting the two nodes.
In [53], the springs are replaced by a more general force-directed model. An
electrostatic force repulses all nodes from each other, balanced by an at-
tractive force along edges. Since the forces between nodes do not need to
be nature inspired, the energy of the system can be generalized to model a
property of the desired final layout, such as in [39]. All these methods have
in common that they find a solution iteratively by the numerical method of
choice, ideally converging to the global optimum, with the distinct possibility
of stranding in a local energy minimum.

Another approach which also inspired an ad hoc network embedding algo-
rithm is based on the statistical method known as multidimensional scaling
(MDS). This was first applied in [79] to graph drawing where vertices are
placed such that their Euclidean distances approximate their graph theoretic

4note that this does not have to be Euclidean, a hyperbolic map of the Internet [104]
has proven to be a nice visualization tool

22 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

distances, which falls exactly into the domain described below.
The more abstract approach is taken by the theory of (finite) metric

embedding out of which many algorithmic applications were distilled. The
object of study is general weighted graphs, or finite metrics, and the mea-
sure is the distortion between pairs of points, not our peculiar UDG quality
measure. Let (S, ρ) denote a finite metric space (see also Section 5.1.1 for a
detailed review of these definitions). An embedding f : (S, ρ)→ (S′, ρ′) has
distortion at most δ = δc · δe if

1

δc
· ρ(x, y) ≤ ρ′(f(x), f(y)) ≤ δe · ρ(x, y) (2.3)

holds for all pairs x, y ∈ S. Intuitively, such an embedding has contraction

δc = max
x,y∈S

ρ(x,y)
ρ′(f(x),f(y))

and expansion

δe = max
x,y∈S

ρ′(f(x),f(y))
ρ(x,y)

giving a total distortion δ = δcδe. Usually, one of the sides is fixed, i.e.,
δc = 1 covers non-contracting embeddings. Later on, in Chapter 5, we will
see how this definition extends to encompass not only pairs, but any subset
of points.

We will not even attempt to give an overview about this fascinating and
challenging research area and refer the reader to the book chapters [100] or
[67]. Instead, we will briefly summarize some main results and application
areas. Although much of the classical literature on metric embeddings is not
especially concerned with the dimension of the embedded space, a notewor-
thy and surprising result is the Johnson-Lindenstrauss Flattening Lemma
[72]. It states that any n-point Euclidean metric can be embedded into Eu-
clidean space of dimension O

(
ε−2 log n

)
with distortion (1 + ε) for a given

ε ∈ (0, 1]. If we do not place any restrictions on the dimension but are only
concerned with embeddability into Euclidean space, then another famous set
of results states that any n-point metric space can be embedded in l2 with
distortion O(log n) (Bourgain [28]) and a matching lower bound is given by
Linial, London and Rabinovich [96] a decade later. The latter also emphasizes
how metric embeddings can play an important role in algorithmic results, in
particular for graph theory.

When it comes to the virtual coordinates problem, we can view these
related areas as a source of inspiration, but the problem remains that the
measures of success are different. As the discussion of Section 2.2 showed,
the discrepancy between the graph metric and the target Euclidean metric
can be insurmountable while a realization of the unit disk graph with ideal
quality exists. Stated another way, if we embed the graph metric into two-
dimensional Euclidean space, then the best possible distortion by Equation

2.4. APPROACHES TO LOCALIZATION 23

2.3 can become very bad, while an embedding which gives perfect quality ac-
cording to Definition 2.3 does exist. Further, most of the traditional literature
is not concerned with two or other low-dimensional embeddings, emphasis
has been placed more on the properties of the target metric. Only recently
a trend of low-dimensional embeddings is emerging [15, 13].

2.4 Approaches to Localization

The problem of localizing an ad hoc network has not been overlooked by the
recent boom of general wireless networking research literature. Consequently,
a vast number of approaches tackling either the positioning or the virtual co-
ordinates problem or both have been suggested. The majority of these are
heuristic in nature, or give reasonable answers only for certain well-behaved
types of input graphs. We will attempt to give an introduction into the
current state of knowledge of the topic broadly described by the term local-
ization, albeit from an algorithmic perspective and disregarding some results
that fall more into the domain of routing rather than embedding. There are
two points of view to keep in mind when discussing the localization problem
in wireless networks. One direction is interested in finding a best possible
unit disk or other graph embedding, while another line of research tries to
find some coordinates which can be used in conjunction with routing and
where emphasis is placed on finding fast effective heuristics. Another dis-
tinction we will make is, when unit disk graph embedding is considered, how
much additional measurement information an algorithm assumes, such as
edge lengths or angles.

2.4.1 Convex Constraints

One class of algorithms is what we label the convex constraints or linear
programming approach. One of the earliest papers to propose solving the
position estimation problem by convex constraints is [42], and later work,
discussed below, produces more fine-grained relaxations. If we formulate the
UDG embedding problem, with or without anchors, as a set of constraints
which the variables (node positions) have to obey, then these constraints are
not convex, thus we need an appropriate relaxation. The relaxations of the
distance and angle constraints given in [42] yield a set of convex constraints,
but their method works well only with anchors nicely placed on the outer
perimeter of the network. This approach is explored further in [26] in regard
to the question of when a network has a unique realization. Assume that
there are m > 0 anchors and n sensor nodes. If at least 2n + n(n + 1)/2
distance pairs are known and all other reasonable constraints are feasible,
then there is a unique solution and a semi-definite programming approach
will find it. Note that the anchors are necessary as the above number is
greater than

(
n
2

)
. In a follow-up paper considering anchor-free realization

24 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

(i.e., virtual coordinates instead of positioning) but in three dimensions [25]
the authors observe that no similarly strong claim can be made in the case
of m = 0. Unique realizability, or global rigidity, is further explored in
[6, 137]. In [6], the authors study the conditions for when a network with
anchors has a unique realization. Based on rigidity theory, they formulate
when a point formation is generically globally rigid, which is equivalent to
the corresponding graph having a unique realization. This is extended by
[137] with a semidefinite programming approach.

The next set of linear programs for UDG embedding worked with ad-
ditional information. In addition to showing that it is NP-hard to embed a
UDG even if the absolute angles between edges is given (see Section 2.2), [31]
also gives a linear-programming-based heuristic embedding for that case. The
variables are the edge lengths and the constraints, in addition to bounding
the edge and (some) non-edge lengths from above and below, respectively, are
formulated for cycles and crossing edges. The embedding is then constructed
via the computed edge lengths and the given angle information. Simulations
in [31] show that this heuristic produces good results, yet an analysis giving
bounds on the error which this embedding produces is missing. One could
imagine that for tree networks where the cycle and crossing constraints are
not applicable the embedding will produce less satisfactory results.

More concrete results can be achieved if both angle and distance informa-
tion on the edges is given, albeit with noise. Although [14] considers general
graphs and embedding not only into two-dimensional l2, but also l1 and l∞,
their results are applicable to UDGs. The input they consider is all edge
lengths with multiplicative error ε and additive angle error γ; that is, two
nodes u and v are connected by edge e with duv ≤ ‖e‖ ≤ (1 + ε)duv and
the absolute angle to a reference line is between αuv − γ and αuv + γ. As-
suming that an embedding exists within these error bounds, the information
is enough to produce a set of constraints modelling the possible positions
for all nodes. Fixing a node u, the length and angle of the edge to node
v, along with the error values, defines a feasible region FRv(u) of v with
respect to u. See Figure 2.2. Then the set of possible locations for a node
v, its feasible region FRv, is FRv =

⋂

u∈N(v) FRv(u). This can be formu-
lated either as virtual coordinates, arbitrarily fixing one node, or with given
anchors. Without additional information, this is best possible. We can relax
the constraints for FRv(u) to give a convex region by adding the line from
a1 to b1. If we consider the computed embedding, then the error in the angle
remains αuv, the maximum distance between u and v remains (1 + ε) · duv,
and the minimum distance is duv · cos γ at point c in Figure 2.2. Altogether,
the relaxation to convex constraints results in an embedding with additive
angle error γ and multiplicative distance error ε′ with

ε′ ≤ (1 + ε) · duv

duv · cos γ
− 1 =

1 + ε

cos γ
− 1. (2.4)

2.4. APPROACHES TO LOCALIZATION 25

To further obtain a set of linear constraints for faster computation, the upper
arc needs to be replaced by a piece-wise linear function. Using a chain of
2k, k ≥ 1, equal-length segments, the farthest point is at the end of the first
tangent where the angle is γ/k, giving the longest distance to be (1 + ε) ·
duv/ cos(γ/k). This is depicted by point d in Figure 2.2 for k = 1. The
distance error is now

ε′′ ≤ 1 + ε

cos γ · cos(γ/k)
− 1 =

1 + ε

cos γ
− 1 + O

(
γ2

k2

)

. (2.5)

u

a1

a2

b1

b2

c

d

αuv

γ

duv εduv

Figure 2.2: Feasible region of v with respect to u (lightly shaded) and its
relaxation (additional darker shade).

Inspired by the above work, and as a follow-up to [31], the authors of
[21] consider the embedding problem not one of computing point locations
but entire regions of possible point locations for each node. The input is
again such that distance and angle information is given on the edges, with
possible noise. Since the feasible regions are not convex, they start out with
considering only linear, convex shapes encompassing the non-convex feasible
region. These can be trapezoids, or even axis-parallel rectangles. Then the
authors define two types of “deployment regions” for each node. The weak
deployment region Wi for node i is the maximal set of points Wi such that

∀p ∈Wi ∀j 6= i ∃q ∈Wj constraints for p and q are consistent. (2.6)

Now fix a convex shape. The strong deployment region (of fixed shape) Si

for node i is the maximum-sized shape such that

∀p ∈ Si ∀j 6= i ∀q ∈ Sj constraints for p and q are consistent. (2.7)

Strong deployment (recall that we have a fixed shape) can be reduced to weak
deployment by considering only the corners of that shape and taking the

26 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

intersection of the resulting feasibility regions. By construction, both cases
can be solved efficiently by linear programming. [21] provides a distributed
version instead of the mere formulation of the linear program and shows
that it converges to the global solution after a finite number of iterations.
The motivation for defining the weak and strong deployment regions is to
give an upper and lower bound, respectively, on the uncertainty or error of
the position. Unfortunately, no bounds on the size of the regions nor on
the number of iterations are given analytically, which would provide insight
beyond that of Eqs. (2.4) and (2.5), originally stated in [14]. The evaluation
by simulations, however, show that already an angle range of π/4 provides
considerable improvement over using only (noisy) distance information.

So far, to the best of our knowledge, the only algorithm to provide guar-
antees on the error bounds for unit disk graph embedding without any further
information is given by [83] (correcting the earlier version [102]). Chapter 5
is devoted to presenting its details. A linear program on the edge lengths is
only a small part of the solution, but nonetheless an essential step.

2.4.2 Global Structure

The physical models used in graph drawing have also found their way into
network embedding. This class of algorithms lets the nodes iteratively com-
pute their positions by responding to the forces exerted by a node’s neighbors.
In order for such an approach to work well and avoid local energy minima,
it helps if the nodes start in initial positions already reflecting an optimal
arrangement (see also [118] for a discussion of this phenomenon). Therefore,
the algorithms based on the idea of simulating physical systems necessarily
involve a two-phase process: first computing (parts of) a global structure of
the graph, and then using a force-directed model for an iterative refinement
of the nodes’ positions. Below we will describe how the two popular physical
models from graph drawing, the Kamada-Kawai and Fruchterman-Reingold
layout methods, have been applied5 to network embedding. The algorithmi-
cally interesting part is how they differ in the first, structural phase.

The work in [122] tries to pin down the global structure by deducing and
placing the perimeter nodes of the network. The remaining nodes are placed
loosely in the style of the spring embedder idea. The heuristic to detect
the perimeter nodes works by choosing a broadcast node b which floods the
network; if a node v has the greatest (or equal) hop distance to b within
its two-hop neighborhood, then it sets itself as a perimeter node. The graph
distances between all pairs of perimeter nodes are then used to approximately
place the nodes such that the graph and embedded distances match as closely
as possible. The perimeter node detection works well in dense graphs but
is not amenable to worst-case analysis. One such problematic case is a tree

5independently but almost simultaneously in publication date

2.4. APPROACHES TO LOCALIZATION 27

with a lot of little single-node branches along a path, such that the leaves of
the short branches will consider themselves perimeter nodes. If we extend
the search region to include the three-hop neighborhood, then we can also
extend the branches by one hop. Another degenerate case is the ring where
only a single node (opposite the beacon) claims to be a perimeter node.

Anchor-free localization (AFL) of [118] also tries to find the perimeter,
but only four corners of the network plus a center node. Its refinement step
is in analogy with the force-directed model of [53]. In contrast to the above
implementation, AFL relies on distance measurements between neighboring
nodes, it can thus also be used in a non-UDG context. The four periphery
nodes n1 through n4 are computed using hop distance relations. Ideally, the
goal is to have the lines n1-n2 and n3-n4 reflect two orthogonal diameters
of the network. As before, we have an arbitrary beacon node n0. Now n1

is chosen such that it has maximum hop distance to n0, breaking ties by
node ID. Then n2 is chosen farthest away from n1 by the same principle. To
find the other “diameter”, n3 is chosen to minimize |dG(n1, n3)−dG(n2, n3)|,
with tie breaking by maximizing dG(n1, n3)+dG(n2, n3) (and presumably ID
again). Now n4 is chosen so as to again minimize |dG(n1, n4)− dG(n2, n4)|,
but ties are broken to maximize dG(n3, n4). The center node is chosen to
minimize the difference between both pairs of opposing nodes. The result of
this computation is to approximate a coordinate system such that a node v’s
polar coordinates are given by

ρv = dG(v, n5) θv = tan−1

(
dG(v, n1)− dG(v, n2)

dG(v, n3)− dG(v, n4)

)

.

The scheme is broken if the network does not have a “nice shape” and, in
particular, the two main axes are missing. Consider constructing a graph
out of a long path with dense clusters towards the ends, but no other nodes
in the middle. Then n1 and n2 are chosen at the opposite ends of the path,
but the remaining three reference nodes will cluster in the middle. Thus
one direction of the network is correctly identified, but the other clusters
degenerate onto the path.

2.4.3 Numerical Methods

The next set of algorithms for network localization uses numerical meth-
ods from other areas to find an embedding which tries to harmonize the
target Euclidean and given graph distances. Recall that already in 1980 a
graph drawing approach [79] tried to map graph to Euclidean distances using
multidimensional scaling (MDS). Its “modern” version, applied to wireless
network localization with or without anchors (and possibly including edge
length measurements), is given in [136], along with its distributed updated
version in [135]. The idea of the distributed approach is for each node to
compute a map only of its local r-hop neighborhood and then the maps are

28 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

“glued” together (in [135] this is done by a linear transformation of the com-
mon nodes, minimizing the squared errors of the remaining nodes), one by
one, until the entire network is mapped to the same coordinate system. The
authors suggest using r = 2 as the improvement of using r = 3 is outweighed
by the computational cost. The problem with this approach occurs again at
sparse, non-regular networks. Consider a graph which is primarily a big cycle
with some additional nodes. The iterative mapping procedure will produce a
straight line until the last two maps are connected, at which point the quality
of the embedding will become ruinous. The authors also propose an optional
and computationally expensive global refinement step which then produces
good results in simulation.

A method from the graph drawing community itself which falls in both
this and the above category is [57]. Similar to the AFL algorithm, it has a
two-phase process: First to try to find a fold-free layout, and then apply a
better iterative refinement stage. It uses edge-length measurements and is
specifically for unit disk graphs. The first part, however, is not based so much
on the combinatorial structure but more on numerical methods so that we
put the algorithm in this instead of the previous category. The idea to obtain
a good initial layout is to have an embedding with an ideally minimum stress
(energy) function, i.e., the difference between the embedded and measured
distances for an edge is as close to 0 as possible. Since the goal is a fully
distributed algorithm, using forces between non-neighbors is prohibitively
expensive. Thus the authors design an energy function which is minimized
by such a layout using a heuristically determined similarity measure wij only
between adjacent nodes i and j as a function of their measured edge length.
The global minimum of the energy function can be expressed in terms of the
eigenvalues of a related matrix, and these can be approximately calculated in
a distributed fashion. They also state that the number of iterations is in the
order of the diameter of the graph. Evaluation is again by simulations, which
show improvement over AFL as well as robustness to noise in the input data.

The main drawback of the above methods is that no analytical bounds on
the resulting errors can be given. In the majority of the thus far described
methods one or more parameters, such as wij above, exist which can be
chosen freely and it is not clear whether they have an optimum value and
if so, where that optimum lies and what its effect on the overall embedding
has. Moreover, most of these methods work well in reasonable and usually
(at least locally) dense graphs, as they are generated by a random process.
To overcome these drawbacks, it is necessary to design more comprehensive
simulation or real-world experiments or develop algorithms with a greater
combinatorial component more effectively capturing the network layout.

2.4. APPROACHES TO LOCALIZATION 29

2.4.4 Hop-Based Positioning

Moving on to purely positioning systems for wireless networks, there is a
class of algorithms which we can loosely term hop-based. The reason for this
is that the nodes determine their hop distance to the anchor nodes and base
their position calculation solely on that. We give two prominent examples.
The first is a set of algorithms collectively known as APS, or ad hoc position-
ing, first described in [107]. In its initial form, nodes know only connectivity
information, that is, graph distances. The basic connectivity-only approach
first finds the hop distance to all anchors (called landmarks). The anchors,
based on the knowledge of the other anchors’ positions, estimate the aver-
age length of a hop and propagate this to the nodes. Using these distance
estimates a node can perform trilateration (much like in GPS) to calculate
a position. Simulation results from [107] show that this scheme works well
only under high-density conditions. DV-Hop needs more than 20% of the
nodes to be anchors, only to stabilize at an average error of about a third
of the radio range (unit distance). No data is given for less than 5% anchor
nodes. These schemes have been extended to include information about edge
lengths [109] and angles [108]. Interestingly enough, the same authors give
calculations and simulations in [110] for APS in all combinations with angle
and range measurements to show how large the error can be until the extra
information becomes useless. For a specific set of network parameters, they
give exact conditions on the uncertainty (standard deviations) which the an-
gle and distance measurement hardware can have so that algorithms using
either one or both of those measurements perform better than the hop-based
approach alone. The majority of their parameter space, however, is occupied
by the connectivity-only variant, motivating our study of this version of the
unit disk graph embedding problem.

Another scheme is the Amorphous Computing system [105]. The idea
is basically similar to APS in that the nodes determine their hop distances
(called gradients) to the anchors (called seeds), but then use the Kleinrock-
Silvester [76] formula to calculate the average length of a hop. A key ingredi-
ent in this formula is the global average density, measured in terms of nodes
per unit disk. Simulation results here show satisfactory performance at node
densities of more than 15 nodes per unit disk, but it suffices to have only one
tenth of the nodes to be anchors.

The power of hop-based systems is the theme of Chapter 3, based on [24,
113], where we will explore how well knowing only the hop distances compares
to centralized algorithms knowing the entire connectivity topology. It turns
out that when the networks are not uniform and highly dense anymore,
using only hop information can lead to arbitrarily bad performance. In one
dimension, such as a model of a highway or other long road, it suffices to
know only a little more information to achieve optimal performance.

In fact, these type of hop-based systems can be used as an initial step,

30 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

computing a first rough layout, and later refining the nodes’ positions by an
iterative process, much like the two-phase approach of the physical systems of
Sections 2.4.2 and 2.4.3. These iterative steps are the subject of the following
section.

2.4.5 Iterative and Other Positioning

In parallel to the spring embedder ideas, several papers have proposed itera-
tive procedures of refining the coordinates based on updates in the neighbors’
positions. The concept of refinement was used in [129]. The main idea there
is to iterate the position estimation process. Once the nodes have an esti-
mate of their position along with a confidence or error interval (which starts
at 0 at the anchors), the information is exchanged among neighbors and the
positions are recomputed.

A sizeable list of papers on network localization that we do not discuss
remains. The majority of them is either along the same lines as what has
so far been described, or contain one or more ingredients of the methods
detailed above. A significant portion of the early location system literature
focuses on single-hop systems where each node can hear a minimum number
of powerful anchor nodes. Even the idea of a mobile robot serving as the
anchor has been proposed. We have also omitted any discussion of hardware
papers, the most famous of which are probably the Cricket location system
[117] and RADAR [16]. Furthermore, distance embedding has also become
popular for the Internet [106, 38] where inter-host latencies are mapped to
the two or higher-dimensional plane. This can be seen as an application or
extension of the metric embedding work for general graphs.

2.5 Roadmap

Concluding this introductory chapter, we provide an outline of what is to
come in the remainder of the first part of the thesis. First, we will examine
the problem of positioning in more detail with emphasis on what we call hop-
based algorithms. The main drawback of iterative systems which use any
type of refinement concept is the lack of an analysis bounding the number
of steps needed to achieve a certain maximum error. Therefore, we look at
algorithms which are essentially only given one shot: Obtain the necessary
connectivity information in time proportional to the graph distance from the
anchors and determine the position based solely on that. This is the theme
of Chapter 3 which is based on [24, 113], but containing a more detailed
analysis. We can also see this chapter more in line with the unit disk graph
embedding problem by observing that it is all about determining more about
the local structure of a UDG. A one-shot positioning algorithm is then merely
an application of that.

2.5. ROADMAP 31

We then make a quick excursion in Chapter 4 to take a glimpse outside the
ivory tower of theoretical analysis and return with two results of real-world
sensor networks. The positive one is that there does exist some correlation
between real data and theoretical models. The negative one states that this
correlation is not nearly enough to produce accurate embeddings. These
results were originally published in [111] based on hardware from 2004 and
thus one would expect current and future technology to show a significant
improvement.

Returning to the safe terrain of abstract mathematical models, we give,
to the best of our knowledge, the first and thus far only non-trivial poly-
logarithmic approximation algorithm for the UDG embedding problem in
Chapter 5, originally formulated in [102] but containing the major revisions
of [83].

Inspired and humbled by the measurement results, in Chapter 6 we look
at alternative wireless network models and discuss how the UDG can be
generalized and examine when our proposed algorithm still works with the
poly-logarithmic approximation ratio guarantee, giving some perspective on
our results.

32 CHAPTER 2. THE GEOMETRY OF WIRELESS NETWORKS

Chapter 3

Fast Positioning

In order to approach unit disk graph embedding, we first look at the sub-
problem of positioning where a part of the embedding is revealed in the form
of anchors with known absolute coordinates. The most popular position-
ing heuristics in the literature contain an iteration phase in which the error
is (potentially) successively minimized. The problem with this approach is
that no provable guarantees are provided, neither with respect to runtime
nor accuracy. Since one goal in wireless ad hoc network algorithm design is
to have fast, distributed algorithms, we look at positioning from a one-shot
perspective. The nodes are allowed to collect information from the anchors
in time proportional to their distance from the anchors and then base their
coordinate computation on that information alone. Thus, for a definite time
bound, we can give bounds on the resulting error. Of course, a subsequent
refinement phase can still be employed which might improve the accuracy in
average-case networks. From the analytical perspective, this view forces us to
identify which structural properties of unit disk graphs contain information
leading to better embeddings.

3.1 Preliminaries

Model In the positioning problem, the network is a unit disk graph and the
goal is to compute an embedding f respecting the absolute positions of given
anchor nodes a1, . . . , ak, see Problem 2 and Definition 2.4. We adopt the
customary concepts from distributed algorithms design. Since our primary
concern is wireless networks, we consider only the local broadcast model
in which a single message transmission is heard by all the neighbors of a
node. In the synchronous message passing model, communication proceeds
in rounds. One round consists of a node receiving and processing messages
from all of its neighbors, and then sending a message. The time complexity
is the number of rounds from start until completion of a given task. In the

34 CHAPTER 3. FAST POSITIONING

asynchronous message passing model, messages can be delayed arbitrarily
long and are received as events. In the analysis, we assume that the longest
message travels for one time unit. The time complexity is then the maximum
number of time units in a worst-case execution and scheduling scenario. For
the message complexity of an algorithm, we count the maximum number of
messages sent by any single node.

Notation Apart from the Euclidean distance between two points in R
d

given by the l2 norm ‖ · ‖, there is a distance in graphs independent of any
embedding. The term hop is synonymous with edge. A path P of length k is
a sequence of nodes P = v0v1 . . . vk where vi 6= vj for i 6= j and {vi, vi+1} ∈ E
for 0 ≤ i < k. Recall that the graph distance dG(u, v) between two nodes
u, v ∈ V is the length of a shortest path between u and v in the graph G.
We immediately get, for any realization r of G,

‖r(u)− r(v)‖ ≤ dG(u, v) (3.1)

as a direct consequence of the definition of unit disk graphs.
In our algorithm analysis, we will frequently make use of the set of nodes

which are a given graph distance away from another node.

Definition 3.1. The set of nodes at graph distance exactly h from node
a ∈ V is

Nh(a) := {v ∈ V | dG(a, v) = h} . (3.2)

Typically, a will be an anchor node and, when it is clear from context,
we will simply write Nh.

General Outline of Algorithms The positioning algorithms we consider
in this chapter consist of two parts: the gathering of connectivity information
and a local calculation which computes the position (the embedding f(v))
based on that. Roughly speaking, the graph information collected at v out-
lines an interval of possible positions for v and our algorithms take the center
of that interval for f(v) in order to minimize E(f(v)). The main difference
then lies in the information gathering phase.

3.2 The HOP Algorithm

3.2.1 The Algorithm

Since the forthcoming algorithms will build upon the basic structure of a
general hop algorithm which we term hop, we will present it in perhaps
greater detail than necessary. Algorithm 3.1 gives the pseudo-code of hop.
To start the algorithm, an anchor node a transmits the message [a : pos(a),1];
at every other node ha is initialized to ha ←∞.

3.2. THE HOP ALGORITHM 35

1: receive [a : pos(a),h]
2: if h < ha then
3: ha ← h
4: send [a : pos(a),ha + 1]
5: end if

Algorithm 3.1: A simple hop-counting algorithm hop at each node v, given
as a response to a message receipt event in an asynchronous model.

We first show the general properties of hop and later discuss the actual
computation of the embedding f(v) from ha for a particular node v.

Lemma 3.1. The hop algorithm finds the graph distance h from anchor
node a to node v in time h.

Proof. We will use induction on the graph distance h. Say that the longest
time it takes for any single message to travel from one node to another,
including processing time, is 1 time unit. All nodes in N1(a) will eventually
receive the transmission from a, thereby correctly setting ha to 1. This will
be at time t1 ≤ 1 from the point where a sends the first message. For the
induction step, assume that all nodes in Nh−1(a) have received their distance
at time t′ ≤ h− 1. Then, by the definition of dG(·, ·), v ∈ Nh(a) has at least
one neighbor u ∈ Nh−1(a) (and none in Nh−2(a)). Since all w ∈ Nh−1

transmit exactly [a : pos(a),h)], v will receive this message at least once
(from u) and set ha to h. The transmission from u to v will take at most 1
time step so that v determines its distance by time t ≤ t′ + 1 ≤ h.

The message complexity of hop depends on whether the execution model
is synchronous or asynchronous. The description in Algortihm 3.1 is given
for the asynchronous case. In a synchronous execution model, a node first
receives all of its messages, processes them, and then sends its messages. For
hop this means that node v ∈ Nh(a) will receive all the messages from its
neighbors in Nh−1(a) before sending a message itself.

Lemma 3.2. In the asynchronous model, the hop algorithm has message
complexity n − 1, where n is the number of nodes in the graph. In the syn-
chronous model, message complexity is 1.

Proof. For message complexity, recall that we look at the maximum number
of messages sent by any node. If there are n nodes in the graph (including
the anchor a), then the maximum h which a node v can receive initially in
an asynchronous model is n− 1. Thereafter, v will accept and transmit only
lower-count messages, in the worst case (where all non-anchors are in N1(a))
down until its own hop counter is at 1. Thus v sends a total of n−1 messages.

In the synchronous case, v first hears from nodes u ∈ Nh−1(a) ∩ N(v),
taking v to be in Nh(a). In the next round, v transmits a hop count of h + 1

36 CHAPTER 3. FAST POSITIONING

and never another messages in a later round since h reflects its true hop
distance to a.

Using hop, a node v collects the hop information hai
from all the anchors

ai to which it is connected. In one dimension, letting h = dG(u, v), we can
extend Eq. (3.1) to

h/2 < ‖r(u)− r(v)‖ ≤ h (3.3)

because we cannot compress two hops to length 1 or less on the Euclidean
line. This associates two intervals I+

ai
= pos(ai) + (hai

/2, hai
] and I−

ai
=

pos(ai) − (hai
/2, hai

] (for hai
> 1) with each ai. The final interval at v is

I(v) =
⋂

ai
(I+

ai
∪ I−

ai
) =: [lv , rv] and the position of v is given by

f(v) = (rv − lv)/2 (3.4)

in order to minimize the maximum error given that, based on the information
hai

at v, all positions in I(v) are possible.
We postpone the discussion of higher-dimensional mid-points to Sec-

tion 3.4.

3.2.2 Competitive Analysis of HOP

a1 a2

1

1 + ǫ 1
2 + ǫ

xi

zi

yiv

Figure 3.1: Instance of a UDG G where the hop algorithm is significantly
outperformed by an optimal algorithm.

We want to compare the hop algorithm to an optimal one. To that end,
we first need to define optimality which we do in terms of the minimum
possible achievable error.

Definition 3.2. Let fopt be an embedding of G = (V, E) such that E(fopt(V))
is minimized. Let falg(P) be the positions computed by a positioning algo-
rithm alg for vertices P ⊂ V . Then the competitive ratio of alg is c
if

E(falg(P)) ≤ c · E(fopt(P)) + c′

for constants c, c′ for any input unit disk graph G. We say that alg is
c-competitive.

Let D be the Euclidean distance between anchors a1 and a2. We construct
an example where hop’s error is about D/6 for a node v and an optimal
algorithm can determine v’s position within one unit. In other words, we
have the following.

3.3. THE HS ALGORITHM 37

Lemma 3.3. The hop algorithm is not competitive.

Proof. Consider the unit disk graph G = (V, E) with a realization r, depicted
in Figure 3.1. Let h be the graph distance of a node v to both anchors a1 and
a2. G has n = 3h− 1 nodes. There are h nodes that form the only shortest
path from a1 to v (excluding v), we call them x0 = a1, x1, . . . , xh−1; there
are h nodes from a2 to v, y0 = a2, y1, . . . , yh−1; and there are h − 1 nodes
z1, . . . , zh−2, zh−1 = v for which N(zi) = {xi, xi+1} (for i = 1, . . . , h − 2),
N(v) = {xh−1, yh−1}, and zi ∈ Ni+1(a1). With r(a1) = 0, r(a2) = D, the
actual coordinates are

r(xi) = i r(yi) = D − (1
2

+ ǫ)i

r(zi) = (1 + ǫ)i r(v) = (1 + ǫ)(h− 1)

for some small ǫ with 1
h−1

> ǫ > 0. This means that D = (h − 1)(1 + ǫ) +

h(1
2

+ ǫ) = 3
2
h + ((h− 1)ǫ − 1).

The hop algorithm will receive the information r(a1) = 0 and r(a2) = D
as well as ha1 = ha2 = h. Let f be the (partial) embedding computed by
hop. By the symmetry of the hop information, any hop-based algorithm
minimizing the maximum possible error will put f(v) = D/2 = 3

4
h + 1

2
((h−

1)ǫ − 1). The error of hop is

E(f(v)) = ‖r(v)− f(v)‖ = h
4

+ 1
2
((h− 1)ǫ − 1) > h

4
− 1

2
(3.5)

or almost D/6.

An optimal algorithm will be able to deduce that ‖r(zi) − r(zi+1)‖ > 1
from the connectivity information that {zi, zi+1} is not an edge in G. Thus
also ‖r(z1) − r(zh−1)‖ = ‖r(z1) − r(v)‖ > h − 2. Since a1 /∈ N(z1), the
optimal algorithm can conclude that ‖r(a1) − r(v)‖ > h − 1. Using the full
connectivity information we can deduce that h − 1 < r(v) ≤ h. Placing v
anywhere within that interval will lead to E(fopt(v)) < 1. Therefore,

E(f(v)) >
h

4
− 1

2
> E(fopt(v)) +

h

4
− 3

2

which is unbounded as h→∞.

Note that although the counter example against hop is one-dimensional,
the fact that hop is not competitive holds for all dimensions.

3.3 The HS Algorithm

Based on the bad performance of hop, we can ask whether there exists a
better efficient algorithm at least for the one-dimensional case.

38 CHAPTER 3. FAST POSITIONING

3.3.1 Preliminaries

In order to improve the naive algorithm based on the above observations, we
will introduce the notion of a skip.

Definition 3.3 (Skip). For a graph G = (V, E), two nodes u, w ∈ V form
a skip if {u, w} /∈ E and ∃v such that {u, v}, {v, w} ∈ E.

Equivalently, dG(u, w) = 2. In other words, a skip is a little longer than
a hop.

Definition 3.4 (Skip Distance). A sequence of nodes SP = v0v1 . . . vk is
a skip path of length k if

(i) {vi, vi+1} is a skip for 0 ≤ i < k − 1,

(ii) dG(v0, vi) < dG(v0, vi+1) for 0 ≤ i < k, and

(iii) ∃ui, 0 < i ≤ k, such that either P = v0u1v1 . . . vk−1ukvk or P ′ =
v0u1v1 . . . vk−1vk is a path.

The length of the longest skip path between u, v ∈ V is the skip distance
dsG(u, v) between u and v in the graph G.

The motivation behind the idea of skip distance is to impose a better
lower bound on the distance between two nodes on the Euclidean line. Note
that this is why we take the longest path as opposed to the shortest path
as in the definition of graph distance. Further, while the use of skips only
makes sense in the one-dimensional UDG case (see also Section 3.4), we have
kept the definition general in terms of graphs. To warm up to the idea of
skip distance, we conclude this subsection with the following lemma.

Lemma 3.4. Let h = dG(u, v) and s = dsG(u, v). Then, in one dimension,

⌈h/2⌉ ≤ s ≤ h. (3.6)

Proof. If there is exactly one path from u to v, P = ux1 . . . xh−1v, and
assuming for simplicity that h is even, then SP = ux2x4 . . . xh−2v is a longest
skip path. (If h is odd, it goes up to xh−1). Any additional nodes can only
lengthen SP . For a maximum skip path, there is at most one node uj ∈ Nj

for 1 ≤ j ≤ h in the path for a total of h nodes from u1 to uh = v. The
lemma now follows because two successive nodes in SP must be greater than
one unit apart in one dimension (since, by the definition of a skip, they are
not connected).

3.3. THE HS ALGORITHM 39

1: receive [a : pos(a), h | u, s] from neighbor x
2: if h = ha + 1 then
3: if u = x then
4: send [a : pos(a), h | u, s]
5: else if u /∈ N(v) then
6: send [a : pos(a), h | v, s + 1]
7: end if
8: sa ← max{sa, s + 1}
9: else if h ≤ ha then

10: if u ∈ N(v) then
11: send [a : pos(a), h + 1 | u, s]
12: else
13: send [a : pos(a), h + 1 | v, s + 1]
14: end if
15: if h < ha then
16: sa ← s + 1
17: else
18: sa ← max{sa, s + 1}
19: end if
20: ha ← h
21: end if

Algorithm 3.2: The hs algorithm at each node v, given as a response to a
message receipt event in an asynchronous model.

3.3.2 The Algorithm

Algorithm 3.2 gives the pseudo-code of hs, a hop-skip algorithm. To start
the algorithm, an anchor node a transmits the message [a : pos(a), 1 | a, 0].
Every other node initializes ha ←∞ and sa ← −1.

Theorem 3.5. In one dimension, the hs algorithm finds the graph and skip
distances, h and s, respectively, from anchor node a to node v.

Proof. Observe that the basic structure of the hop algorithm is kept (Lines
1, 9, 11/13, 20) and merely augmented to include skip information.

To prove the correctness of the skip distance, we will use induction on
the number of hops h as well. We claim that a node v at distance h will
eventually know its correct hop and skip counts.

Going from h − 1 → h, we assume that all Nh−1 nodes will know their
correct hop and skip distances. By Lemma 3.1, we know that then the Nh

nodes will learn their hop distance as well. Based on that, we claim that the
Nh nodes will obtain their correct skip distance. There are two things we need
to show: (i) that s will not be erroneously too large and (ii) that it will be as
large as it is supposed to be. The crucial property of one-dimensional unit

40 CHAPTER 3. FAST POSITIONING

disk graphs is that increasing hop count corresponds to increasing Euclidean
distance, thus we always make progress (away from the anchor) with each
new hop.

First, observe that we can ignore all sa values before the time that a node
sets the correct ha value since at that point sa is reset (Line 16). Since we
know that the nodes in Nh−1 and Nh eventually obtain their correct hop
distances, we will consider only the messages sent after that point.

The problem with (i) is that we need to show that a valid skip counter
cannot travel away from a and then back towards it, falsely incrementing
itself in the process. Line 9 makes v consider only messages from nodes in
Nh−1. Line 2 allows messages from nodes in Nh. Observe that all nodes in
Nh (on the same side of a) are neighbors, otherwise they would be farther
or closer from a. We have to distinguish the two possibilities in the upper
if-statement. If v forwards the message in Line 4, then any receivers in
Nh will ignore the message (since v 6= u and u ∈ N(w) for receiving node
w ∈ Nh) and only the legitimate receivers in Nh+1 consider it. If, on the
other hand, v has changed the message (legally, since u is at distance < h)
in Line 6 and subsequently another node w ∈ Nh has picked it up, then we
are back on Line 4 and all the next nodes in Nh will drop it. Observe that
this also guarantees the termination of the algorithm, since eventually all
lesser-hop nodes will have sent off their messages and same-hop nodes will
ignore irrelevant information after two passes.

We turn to resolving issue (ii). We restate the induction claim to say
that, for any node u ∈ Nh and for any valid skip path u0u1 . . . uk−1u, then
u will send the correct message (depending on whether {uk−1, uk} is an
edge or not). For the base case, observe that as in Lemma 3.1 we know
that all N1 nodes will eventually hear the message from a, setting their skip
count to 1 and forwarding [a, 0] (ignoring the first part of the message).
Now consider a node v ∈ Nh which has skip distance s. Any skip path
SP = av1 . . . vs−1v will have either P = au1v1 . . . us−1vs−1usv if {vs−1v}
not an edge, or P ′ = au1v1 . . . us−1vs−1v as its associated path. In the case
of P , we know that vs−1 ∈ Nh′ for h′ < h. Thus, by the induction hypothesis,
vs−1 eventually sends a message with [vs−1, s−1] which is forwarded by node
us and v sets sa ← (s− 1) + 1 = s either in Line 8, 16, or 18 as these are the
only possible cases. Since vs−1 /∈ N(v), v then sends [v, s] in Line 6 or 13. In
the case of P ′, we know that {vs−2, v} is not an edge and thus vs−2 ∈ Nh′

for h′ < h. Again by the induction hypothesis, vs−2 sends a message with
[vs−2, s − 2], received by us−1 and forwarded as is (since vs−2 ∈ N(us−1)),
which is updated by vs−1 to [vs−1, s − 1] (since, by definition, {vs−2, vs−1}
is a skip). Therefore, v sets sa ← (s− 1) + 1 = s either in Line 8, 16, or 18.
Since vs−1 ∈ N(v), it will forward this information by Lines 4 or 11.

The following theorem states that the time complexity for the improved
hs algorithm is only twice as much as that of the simple hop algorithm.

3.3. THE HS ALGORITHM 41

Theorem 3.6. After time 2h, a node v at distance h has received a message
with the correct hop and skip count in the one-dimensional hs algorithm.

Proof. For the time complexity, we will again lean on our analysis of the
simple hop algorithm of Lemma 3.2. Let the maximal time unit be 1. We
know that a path of length k takes at most k time to reach the last node.
Thus it takes at most h time for node v to learn its hop distance h and
at most 2h time to learn the skip distance s because the associated path is
composed of at most 2h hops.

The interval for v is now bounded by

s− 1 < ‖a− v‖ ≤ h (3.7)

and the position is again computed as the mid-point of the intersection of all
such intervals.

3.3.3 Competitive Analysis of HS

We want to show that an optimal algorithm cannot perform substantially
better than an algorithm which only knows the graph and skip distances h
and s, respectively. Specifically, we will prove that our positioning algorithm
is optimal (1-competitive) up to a small additive constant. As a stepping
stone for the main proof we first study the case of one anchor node.

Lemma 3.7. Take a one-dimensional unit disk graph. Assume there is only
one anchor node a and all nodes know they are to the right of a, that is,
r(v) ≥ r(a) for all nodes v and realizations r. For the position fhs of a node
v as determined by the hs algorithm, we have

E(fhs(v)) ≤ E(fopt(v)) +
1

2
+ ǫ

for all v and any ǫ > 0.

In order to prove Lemma 3.7, we will need the following two lemmas.

Lemma 3.8. Let G = (V, E) be any one-dimensional UDG, A = {a} with
position p(a) = 0, and let dG(a, v) = h for a v ∈ V . Then, for any ǫ > 0,
there is a realization r of G such that h− ǫ ≤ r(v) ≤ h.

Proof. The idea of this lemma is to “stretch” the graph G to its maximum
possible position at v. Let Nh = {vh

0 , . . . , vh
nh
}. Let the ordering be such

that, in any realization, we have r(vh
nh

) ≤ · · · ≤ r(vh
1) ≤ r(vh

0), (i.e., vh
0 is

the rightmost node in Nh). We can identify (the positions of) vh
i with vh

j if
N(vh

i) = N(vh
j) since they are indistinguishable from the combinatorial point

of view. Renamed and relabeled, we have r(vh
nh

) < · · · < r(vh
1) < r(vh

0). As
noted before, all nodes in Nh are neighbors.

42 CHAPTER 3. FAST POSITIONING

We will use induction on the number of hops h from anchor node a at
r(a) = 0 to v. For h = 1 place the n1 (different) nodes at positions r(v1

i) =
1 − i · ǫ1 for some sufficiently small 1 ≫ ǫ1 > 0, that is, ǫi,1 = i · ǫ1 and
ǫi+1,1 − ǫi,1 = ǫ1. See also Figure 3.2 for reference.

a

0

v1
0

1

v1
i

ǫi,1

h − 1 h

vh−1
0

vh−1
ji

ǫji,h−1

vh
i

1

ǫi,h

Figure 3.2: Schematic realization r of G from the proof of Lemma 3.8 on the
top. The bottom line is a reference for the scale.

Assume now that we have placed all nodes up to Nh−1 such that r(vh−1
i) =

(h− 1) − ǫi,h−1, and, with the labeling from above, ǫi,h−1 < ǫi+1,h−1 for all
0 ≤ i < nh−1. In fact, let ǫh−1 > 0 be such that ǫi+1,h−1 − ǫi,h−1 ≥ ǫh−1 for
0 ≤ i < nh−1. For each of the vh

i we consider the maximal (leftmost) ji for
which vh−1

ji
∈ N(vh

i) and vh−1
ji+1 /∈ N(vh

i). We start by placing

r(vh
0) = r(vh−1

j0
) + 1 = h + ǫj0,h−1

and for increasing i > 0 we let

r(vh
i) = min

{

r(vh−1
ji

) + 1, r(vh
i−1)− ǫh

}

(3.8)

in other words, ǫi,h = max{ǫji,h−1, ǫi−1,h+ǫh}. The choice for ǫh is such that
0 < ǫh < ǫh−1/nh. By construction, we immediately have ǫi,h + ǫh ≤ ǫi+1,h

for 0 ≤ i ≤ nh. It remains to be shown that all the neighbors of node v = vh
i

in G are within distance 1 and only those.
Consider a u ∈ Nh(a) which implies u ∈ N(v). Then we can write u = vh

j ,
meaning r(u) = h− ǫj,h. Thus we get that

‖v − u‖ = |ǫi,h − ǫj,h| < 1

by choosing all the ǫ1, . . . , ǫh small enough.
For u ∈ Nh−1(a) we can write u = vh−1

j , r(u) = h− 1− ǫj,h−1, and get

‖v − u‖ = 1− (ǫi,h − ǫj,h−1) = 1− δ.

We distinguish two cases: (i) u ∈ N(v) or (ii) u /∈ N(v). The first case (i)
is equivalent to j ≤ ji by our choice of ji. Since ǫi,h ≥ ǫji,h−1 this implies
δ ≥ 0 by the induction hypothesis and ji ≥ j. Thus, ‖v − u‖ ≤ 1.

3.3. THE HS ALGORITHM 43

Case (ii) is equivalent to j > ji and we again consider two possibilities.
If ǫi,h = ǫji,h−1, then δ < 0 by the same line of reasoning as above and
‖v − u‖ > 1. On the other hand, if ǫi,h = ǫi−1,h + ǫh > ǫji,h−1, then we can
also write ǫi,h ≤ ǫji,h−1 + i · ǫh by our numbering of the nodes, ji ≥ ji−1.
Then

δ ≤ ǫji,h−1 + i · ǫh − ǫj,h−1

≤ i · ǫh − ǫh−1

≤ nh · ǫh − ǫh−1

< 0

where the second line follows from the induction hypothesis and j > ji, the
third line from i ≤ nh and the last from our choice of ǫh. Again from δ < 0
we have ‖v − u‖ > 1.

Lemma 3.9. Let G = (V, E) be any one-dimensional UDG, A = {a} with
position p(a) = 0, and let dsG(a, v) = s for a v ∈ V . Then, for any ǫ > 0,
there is a realization r of G such that s− 1 < r(v) ≤ s + ǫ.

Proof. Now we compress the graph as much as possible. We will again
proceed by induction, this time on the number of skips s. Let NSs =
{ws

0, w
s
1, . . . , w

s
ns
} be the distinguishable nodes at skip distance s from a

and the order is such that r(ws
0) > r(ws

1) > · · · > r(ws
ns

) in any realization,
analogously to the proof of Lemma 3.8. Observe that their hop counts differ
by at most one, and they are all neighbors, otherwise there would be a skip
from ws

ns
to ws

0.
For 1 ≤ s′ < s, there always exists a pair {u, v} /∈ E such that u ∈ NSs′−1

and v ∈ NSs′ by the definition of skip distance. Set

vs′ = max
i
{ws′

i | ∃u ∈ NSs′−1 : u /∈ N(ws′

i)},

the leftmost node in NSs′ which has a skip to a node in NSs′−1. Let ls′ be
the index of vs′ in NSs′ .

The positions for s = 1 are as follows. Set r(v1) = 1 + δ1 for a small
enough δ1 > 0. Then place

r(w1
i) = 1− (i− l1 − 1)ǫ1 = r(v1)− δ1 − (i− l1 − 1)ǫ1

for i > l1 and

r(w1
i) = 1 + δ1 + (l1 − i)ǫ1 = r(v1) + (l1 − i)ǫ1

for i < l1 and small enough 0 < ǫ1 ≤ δ1. Then r(w1
i)− r(w1

i+1) ≥ ǫ1.
We proceed by induction for 1 < s′ < s, assuming that s′ − 1− αs′−1 ≤

r(ws′−1
i) ≤ s′ − 1 + βs′−1 and r(ws′−1

i)− r(ws′−1
i+1) ≥ ǫs′−1. Find vs′ and let

44 CHAPTER 3. FAST POSITIONING

a

0

v1 w1
0

1

δ1 s′ − 1 s′

u vs′

1 + δs′

≤ 1

Figure 3.3: Schematic realization r of G from the proof of Lemma 3.9 on the
top. The bottom line is a reference for the scale.

u = mini{ws′−1
i ∈ NSs′−1 | ws′−1

i /∈ N(vs′)}, the rightmost non-neighbor of
vs′ to the left. Then

r(vs′) = r(u) + 1 + δs′ ≤ s′ − βs′−1 + δs′

and we know that ws′−1
ns′−1

∈ N(ws′

i) for all nodes with i > ls′ by the maxi-
mality of ls′ . Thus,

r(ws′

ls′+i) = r(ws′−1
ns′−1

) + 1− (i− 1)ǫs′

for 1 ≤ i ≤ ns′ − ls′ . To the right of vs′ , let ui be defined as above except
for node ws′

i , i ≥ ls′ , instead of vs′ . Then

r(ws′

i) = max
{

r(ui) + 1 + δs′ , r(w
s′

i−1) + ǫs′

}

for i from ls′ to ns′ . Set ǫs′ and δs′ small enough such that δs′ ≤ ǫs′−1 and
ǫs′ ≤ δs′/ns′ . Altogether, we get αs′ ≥ ǫs′ and βs′ < βs′−1 + δs′ + ns′ · ǫs′ .

As for the remaining connectivity relations, the nodes in NSs′ are all
neighbors by choosing the ǫi and δ small enough. The neighbors of nodes
ws′

i for ls′ ≤ i ≤ ns′ are guaranteed by construction. For i < ls′ , the non-
neighbors are far away, also by construction and we need to show that all
remaining neighbors are indeed within range. Here, the same reasoning as in
the proof of Lemma 3.8 applies by our choice of ǫs′ and δs′ sufficiently small.

At skip distance s, we are not guaranteed the existence of a vs with
a skip to NSs−1 anymore. In that case, we set r(v) ≤ r(ws−1

ns−1
) + 1 ≤

s − 1 + 1 + βs−1 = s + ǫ where ǫ = βs−1 can be made arbitrarily small by
choosing the δi and ǫi appropriately.

We are now ready for Lemma 3.7.

Proof of Lemma 3.7. Given a unit disk graph G = (V, E), we can construct
two realizations r1 and r2 of G such that r1(v) = h− ǫ1 at the maximum and
r2(v) = s+ ǫ2 at the minimum (ǫi > 0). From the definition of skip distance,
we know that r(v) ≥ s − 1 + ǫ̃ in any realization r. Therefore, an optimal

3.3. THE HS ALGORITHM 45

algorithm cannot distinguish between these extremes and is thus forced to
return h−s−1

2
< r(v) ≤ h−s

2
which is off by less than 1

2
from the position

returned by hs who knows only h and s.

Altogether, we end with the main result of this section.

Theorem 3.10. hs is optimal in one dimension up to an additive constant.

Proof. We have shown in Lemma 3.7 that Algorithm hs is optimal (up to
an additive constant) whenever there is one anchor on a specified side of the
nodes. It remains to be shown that this is the essential ingredient of the
optimality of hs and that opt cannot acquire too much more information in
a general scenario. We do this by considering what happens when we add
anchors to both sides of a node.

First, we argue that we can only lose a constant of at most 1 when-
ever there are anchors on both sides of v. In Lemma 3.7, we had consid-
ered the case of an anchor a to the left of v. If we place another anchor
b to v’s right, then we need to observe what happens when the two sub-
graphs “come together.” Let the actual order of nodes from left to right
be a, u1, . . . , ul, v, wr, . . . , w1, b, then the previous lemmas are applicable to
the subgraphs of Va = {a, u1, . . . , ul, v} and Vb = {v, wr, . . . , w1, b} indepen-
dently (since they have no nodes in common except for v). The only problem
which can occur is with nodes ui and wj which are within one hop of v. In
this case, it could be that some of the ui’s are connected (or not connected)
to the closer of the wj , so that there needs to be a minor adjustment in v’s
position as well. Since this independence of the subgraphs is only violated at
those nodes which are within one unit of the opposite subgraph, there will
be an adjustment of at most one unit for the optimal position.

Next, we claim that multiple anchors to one side can again only shrink
the interval by another additive constant of at most 1. To prove this, we will
consider anchors ai with given positions p(al) ≤ · · · ≤ p(a1) < r(v) to the
left of v, where again the coordinates increase to the right. Let hi = dG(ai, v)
and si = dsG(ai, v). Set

li = p(ai) + si − 1 and ri = p(ai) + hi

then the left and right boundaries of v’s interval are

l = max
i

li and r = min
i

ri

respectively. Note that we cannot have li > rj (i.e., the left boundary of
ai is to the right of the right boundary of aj) for any i, j since otherwise
the intervals of anchors ai and aj would not intersect, which is impossible
(contradicting the assumption of the existence of a realization).

We claim that l1 and r1 are already good approximations of l and r (up to
one unit). For the right boundary, consider the distances di = p(a1)− p(ai)

46 CHAPTER 3. FAST POSITIONING

and gi = dG(ai, a1). Then hi ≥ gi + h1 − 1 where the −1 is due to the
fact that all shortest paths from ai to v might not go through a1 and would
therefore be one hop less than if we take a detour through a1. Altogether,
using p(ai) = p(a1)− di, we get

ri ≥ p(ai) + gi + h1 − 1

= (p(a1) + h1) + gi − di
︸ ︷︷ ︸

≥0

−1

≥ r1 − 1

for all i > 1. The last inequality stems from the fact that the number of hops
between two nodes is always an upper bound on their Euclidean distance.

The case for the left boundary is similar. Here, let ti = dsG(ai, a1) and
si ≤ ti + s1 + 1. Then

li ≤ p(ai) + ti + s1 + 1− 1

= (p(a1) + s1 − 1) + ti − di
︸ ︷︷ ︸

≤0

+1

≤ l1 + 1

for all i > 1. Again, the skip distance is a lower bound on the actual distance
and there might be a longer path circumventing a1. Altogether, the interval
bounds on each side can be decreased by at most 1 on each side, thereby
increasing the maximum error of hs by at most 1.

Note that the same argument can be applied to anchors only to the right
of a node v.

What remains is to consider the general case when v is located between
several anchors to both sides. Altogether, we can consider the interval given
by the rightmost anchor a1 to the left of v and the leftmost anchor b1 to the
right of v, losing at most a constant of 1 unit. From the first claim, we know
that if we have an anchor on both sides of v, then merging the two subgraphs
results in the loss of at most another unit. We can conclude that the interval
of hs compared to that of an optimal algorithm is greater by at most 2 in
the general case, proving the theorem.

3.4 The GHoST Algorithm

We now move on to higher dimensions. From Section 3.2.2 we know that we
have to do more than the simple hop algorithm in order to approach optimal
position estimates. Moreover, hs does not apply directly, because in two or
more dimensions, the minimum Euclidean distance for two nodes u and v
separated by h hops is not h/2 anymore but merely 1, even for maximal
skip distance. See for example Figure 3.4. The bad news is that if there

3.4. THE GHOST ALGORITHM 47

is no further information, then v has no way of determining whether it is
slightly more than 1 or as much as h units away from u. The good news is
that neither can an optimal algorithm so that the competitive ratio is not
compromised in this case.

Figure 3.4: Minimum Euclidean distance between two nodes given their hop
distance h. The circles have radius 1, the dots are the nodes. On the left is
the one dimensional case where ‖ · ‖ > h/2 (not all circles are shown). On
the right, in two or more dimensions, only ‖ · ‖ > 1 can be assumed.

Another issue is the construction of the “mid-point” of the interval inter-
sections in two or more dimensions. Since we are studying the worst case,
we want to find the point such that the maximum error is minimized. Going
back to one dimension, one can consider the mid-point of a line segment as
the center of the circle with the segment as its diameter. Similarly, in two
dimensions, we can (locally) find the circle of minimal radius which encloses
all points in the intersection, as in Figure 3.5. The center of that circle is
then the point with least maximum distance to any other point in the area.
In d dimensions, we find the smallest enclosing (d− 1)-dimensional sphere.

The construction above and in the figure is actually not complete, since
we still need to “cut out” a circle of radius 1 around the anchors which are
more than one hop away. However, this has no influence on the argument
above, since this still results in some interval of which we find the smallest
enclosing ball (see, for instance, [52]).

3.4.1 Lessons Learned from One Dimension

The crucial insight of the 1-dimensional optimal hs algorithm was that there
exist certain local structures in the unit disk graph (e.g. a skip) with which
we can impose an upper or lower bound on the actual length of a hop. We will
now survey some of these local structures. They can be classified into stretch-
ers and trimmers. Stretchers and trimmers enforce a minimal and maximal
length, respectively, on hops. For example, the skip was a stretcher in one
dimension; enough to produce an optimal algorithm. In two dimensions, we
have identified several trimmers:

48 CHAPTER 3. FAST POSITIONING

Figure 3.5: Construction of the ”mid point” of a two-dimensional area. The
outer circles of radius hi (in green) represent the reach of each anchor (being
hi hops away). Their intersection is shaded in the center. The smallest circle
enclosing the entire intersection area is depicted in the center (in blue). The
center is the computed position.

• T0 – a trimmer that considers hop paths of length 2. Let Pv = uvw
and Px = uxw be shortest paths from u to w. If {v, x} /∈ E, then
‖r(u)− r(w)‖ ≤

√
3 in any realization r. See Figure 3.6.

• Tk – a generalization of T0: Suppose that there are two shortest paths
Pv = uv0 . . . vkw and Px = ux0 . . . xkw connecting u and v with {v0, x0}
and {vk, xk} /∈ E. For the remaining nodes, it is irrelevant whether
{vi, xi} is an edge for 0 < i < k, but {vi, xj} /∈ E for i 6= j. Then
‖r(u)− r(v)‖ ≤ k +

√
3 as opposed to k + 2 in any realization r.

• MTk1,k2 – a trimmer resulting from the merging of two paths from
two different anchors. As an exemplary case, consider MT1,1: two
paths from anchors a1 and a2 that merge after just one hop at node
u. Ignoring for the moment a constant adjustment (in the order of one
unit), if the graph distance from the ai to a node v is h, then ‖r(ai)−
r(v)‖ ≤

√

1 + (h− 1)2 =
√

h2 − 2(h− 1) < h for any realization r.
The constant adjustment accounts for the orientation of m and v with
respect to the ai. An analogous computation can be made if the paths
merge at u after k1 hops from a1 and k2 hops from a2.

3.4. THE GHOST ALGORITHM 49

wu

x

v

> 1

> 1

≤ 1

Figure 3.6: A trimmer for the path from u to w (and from x to v). The
dashed lines indicate that there is no connection. With a simple geometric
argument one can impose a maximum length on the distance of u to w.

3.4.2 The Algorithm

Based on the arguments of Section 3.4.1, we can formulate a General Hop
Stretcher-Trimmer Algorithm (ghost). The idea is that nodes examine their
local neighborhoods – the details depend on which structures are considered –
to extract the necessary information about existing trimmers and stretchers.
When a node v receives a message with a shortest hop path from an anchor
a, then it can incorporate its trimmer (stretcher) information and compute a
path with maximum (minimum) actual length that is shorter (longer) than
that of the received path. In some cases, other local structures might require
more information such as including paths other than the shortest. In practice,
one will have to make a trade-off between the efficacy of a configuration and
the expense of its computation.

The affects of ghost to time and message complexity are similar to those
of hs. Let node v be h hops from anchor a. Once the nodes in Nh−1 obtained
their correct paths of length h − 1, they send it on to nodes in Nh. In one
time unit, v receives all those transmissions from neighboring nodes u in Nh−1

and the tuples (u, Pu) will constitute (the necessary information about) all
shortest paths to v. For message complexity, in the worst case a node has
to receive all the information about shortest paths separately over the same
link.

Observe that ghost is actually more of a framework for positioning al-
gorithms. The concrete algorithm is determined by which stretchers and
trimmers are used. If structures are used which have provable bounds on
the path lengths, such as Tk or MTk1,k2 , then the algorithm inherits these
bounds and the maximum error is equal to or less than without them. On
the other hand, if we use heuristic structures, then the resulting algorithm
cannot provide worst-case guarantees anymore.

Another side effect of such a framework is that good distance bounds –
obtained from physical measurements – can easily be integrated into ghost:
Instead of (or in addition to) computing the local structures resulting in

50 CHAPTER 3. FAST POSITIONING

the lower and upper bounds hl and hu for a hop in the graph, the distance
estimate can give us these values directly.

With the remarks of this section we can conclude the following.

Theorem 3.11. In two dimensions, let fghost be the positions computed by
the ghost algorithm with trimmers Tk and fhop those of the hop algorithm.
Then

E(fghost(v)) ≤ E(fhop(v))

for all nodes v. Further, ghost has the same time complexity O(h) as hop,
where h is the graph distance from an anchor node to the node in question.

3.4.3 Simulation

The trimmers of Section 3.4.1 apply to any unit disk graph and therefore
cannot increase the maximum error in relation to hop. When no trimmers
are present, then ghost reduces to hop. We want to investigate under what
conditions the effect of local structures improve ghost’s accuracy.

In our simulations, we have implemented the simple hop algorithm as
described in Section 3.2.1 and the ghost algorithm with the trimmer T0

only. A screen-shot of the visual part of the application can be seen in
Figure 3.7 on page 51. Our testing environment consists of an area of 20 by
20 units. We test random graphs for node densities (measured in the number
of nodes per unit disk) ranging from 12 to 30 and anchor densities from 0.5
up to 10 percent of the nodes (creating up to almost 4000 nodes). For each
combination we collect 300 position estimates along with the error for both
hop and ghost.

Since we are interested the effect of the improvement of T0 over hop, we
calculate the average relative errors of ghost to hop in Figure 3.8 (on page
52). The absolute errors of ghost can be seen in Figure 3.9. The relative
error is taken for each estimate separately instead of over the total average er-
rors in order to gain a better understanding of how effective the trimmers are
in individual situations. We see that ghost improves the position estimate
even in very low density (node and anchor) as well as in very high density
situations. The most significant improvements can be seen for modest anchor
densities (around 2.5%) and fairly high node densities (around 27). The im-
provement for low anchor densities is because then any positioning algorithm
has very little information to work with and already a small amount of ex-
tra, useful information will lead to an improvement. The high node density
improvement can be explained by the increased presence of trimmers which
significantly reduce the upper distance bound.

3.4. THE GHOST ALGORITHM 51

Figure 3.7: The visualization of the ghost algorithm. The intersection of
circles in the center is the area of all possible positions as calculated by the
algorithm. The center of the circle (marked by the arrow) is chosen as the
computed position which minimizes the maximum error.

52 CHAPTER 3. FAST POSITIONING

0.5

2.5

4.5

6.5

8.5

10.5

12

18

24

30

0%

5%

10%

15%

20%

25%

R

el
at

iv
e

Im
pr

ov
em

en
t (

%
)

Anchor Densitity (%)

Node Density

(nodes per

unit disk)

Figure 3.8: The graph shows the improvement of ghost over hop in the
depicted anchor and node density ranges.

0.5

2.5

4.5

6.5

8.5

10.5

12

18

24

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 E
rr

or

Anchor Density (%)

Node Density

(nodes per

unit disk)

Figure 3.9: The graph shows the absolute errors of ghost (in units of the
radio range).

3.5. DISCUSSION 53

3.5 Discussion

Studying the UDG embedding problem from the one and two-dimensional
positioning perspective has led us to see that there exist certain local struc-
tures which can help to bound the relative error. What is missing from this
picture is a global view which can give bounds on the absolute error. We
will turn to this aspect in the form of the virtual coordinates problem in
Chapter 5.

54 CHAPTER 3. FAST POSITIONING

Chapter 4

Real-World Problems

In this chapter we focus on determining the potential of using minimal hard-
ware requirements for the task of positioning in a wireless sensor network.
The question is how well can a node localize itself if we only have small, low-
power, low-storage devices at our disposal. The answer will allow engineers
of such a network to determine whether to invest in more specialized and thus
bulkier and more expensive hardware, or if the position error is tolerable in
their applications.

There has been some work on investigating the physical characteristics of
real-world sensor networks [55, 139]. Our findings corroborate their conclu-
sions (as in [55]) in that the link characteristics are far from the theoretical
models in use, such as the unit disk graph or the quasi unit disk graph [89].
However, these works are either too general in nature in that they survey the
detailed link stability but not its effect on positioning ([55] looks at flood-
ing, [139] at routing). Or they only consider two nodes at a time, whereas
our findings in Section 4.2 indicate that there are considerable differences
between the experimental results if only two nodes are involved versus an
entire network of nodes.

There has been a significant amount of research done on the theoretical
side of positioning and virtual coordinates algorithms as previously discussed.
The underlying assumption in all of these, including this dissertation, is
that the network can be represented as a static graph, usually even a unit
disk graph. Physical wireless links, in contrast, are prone to instabilities.
Even if the nodes are not moving, the neighborhood of a node can change
completely and, more importantly, usually unpredictably, over a short period
of time. This can be due to the drastic effects of interference, scattering, or
dampening of signals. If sensor networks are to be deployed in uncontrolled
environments, then these effects simply cannot be ignored. We will further
discuss these phenomena in Section 4.2 on the basis of the measurements we
have taken.

56 CHAPTER 4. REAL-WORLD PROBLEMS

Numerous of the other works also have particular hardware requirements
which assume fairly accurate measurements on the part of the nodes. Exam-
ples include measuring the time of flight (or time difference of arrival (TDoA)
as in [65, 117]), the angle of arrival (AoA) [107], the received signal strength
(RSS) [16]. Measuring the time of flight in reasonably-sized ad hoc networks
presupposes very accurate hardware which can detect differences in the nano
second range: If we assume approximately the speed of light, the time it
takes for a signal to cross the distance of a few meters amounts to some
tens of nano seconds. In this paper, we have also opted to use the signal
strength measured in terms of packet loss at different powers as a first indi-
cation of the distance between two nodes. However, instead of requiring a
particular hardware component dedicated to the precise power measurement
of incoming signals, we have even less stringent hardware requirements. This
is described in more detail in Section 4.1.

Another line of research has been the development of hardware suited
to the specific purpose of sensor localization. Papers in this area include
Cricket [117], RADAR [16], or also [124]. Some of these work only indoors
(Cricket, RADAR), some only outdoors (GPS). Cricket has a separate ultra-
sonic component and RADAR was tested on a larger scale with more available
computing power (laptops). With current or foreseeable technology, a node
cannot support fairly sophisticated positioning hardware in addition to the
sensor and actuators that carry out the intended purpose, all at the smallest
scale. Thus, we want to investigate the potential of very limited hardware for
positioning in sensor networks. We also do not impose any indoor/outdoor
restrictions.

Our contributions are on one hand results on the stability, symmetry, and
distance relationship of the wireless radio links, and on the other hand we
have observed that the gap in the measurements between two nodes in a lab
and the nodes in a network is significant enough to render any localization
attempts useless at this point. Put in another way, the distance-to-power
correlation is strongly and unpredictably environment dependent.

4.1 Hardware Platform

The hardware we have used for our experiments is the ESB/2 platform from
the scatterweb project, now its own company [130]. The nodes are built
from standard components, consisting of a chip with a 32kHz CPU, 2kB of
RAM, and a low power consumption radio transceiver, along with numerous
sensors and actuators such as infrared, temperature, vibration, microphone,
beep, and LED.

In the summer 2004 version available to us, the nodes can adjust their
transmission power x from the application (for 1 ≤ x ≤ 100 percent), but the
transceiver is not able to directly measure the received power, only whether

4.1. HARDWARE PLATFORM 57

the signal is above a threshold. The way that the power is adjusted at the
sender is via a potentiometer which controls the current to the transceiver.
It has been brought to our attention that it is now possible to read out the
received signal strength on the ESBs directly and this modification is part of
future work in this area.

What we do instead is a “software version” of RSS by measuring the
packet loss while varying the transmission power at the sender. In order
to determine an approximation to the received signal strength, an anchor
node writes its sending signal level into a packet, and the receiving node
reads out this value, takes the minimum over all received packets, and can
thus determine the lowest signal level at which it can still “hear” the anchor.
While this way of measuring the transmission power is certainly not the most
precise way, it fulfills the natural assumption that greater perceived received
signal strength means that the sender needed to use more power to reach
the receiving node, thus the receiver is farther away. The exact correlation
needs to be determined, but the important point we want to verify is that the
same input level on the sender should reach the same distance given similar
conditions.

A critical issue with these nodes is the susceptibility of the radio signal
strength to various outside influences. Two nodes might be as close as a
couple of centimeters, but placed near a wall or close to some underground
cable, or as far as a few meters, and both times the best received signal
strength will be the same. Here, we build on the preliminary measurements
of the transmission range as a function of the signal strength in various
settings from the project website [130].

Figure 4.1: An embedded sensor board (ESB/2) from [130].

58 CHAPTER 4. REAL-WORLD PROBLEMS

4.2 Experiments and Results

We will now discuss our measurements, their results, and the motivations
that led from one experiment to another. In the following we use the terms
sensor node and node interchangeably.

4.2.1 In the Lab

The goal is to implement popular positioning heuristics on real sensor nodes.
Towards this end we first need to obtain some data on the correlation between
the power level received and the distance of the nodes without obstacles.

Our experimental setup is the following: In the corridor of our lab, an
anchor node transmits 100 packets at each power level and a receiving node
placed at a specified distance measures the number of packets it receives.
This experiment is repeated for inter-node distances ranging from 1cm to
120cm, as in a first step we want to explore the accuracy of the distance-to-
power relation on a small scale. The minimum power level at which a packet
is received at a given distance is plotted in Figure 4.2. While the data points
do not lie on the theoretically assumed parabola, they are almost monotone
with slight deviations of at most three levels and the curve exhibits a certain
regularity.

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91 101 111 121

Distance (in cm)

M
in

im
u

m
 P

o
w

er
 R

ec
ei

ve
d

Figure 4.2: The minimum power level which was received at the given dis-
tance.

Most applications for wireless networks will, however, not be satisfied with
a single packet arriving with some low probability. Therefore we furthermore

4.2. EXPERIMENTS AND RESULTS 59

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91 101 111 121

Distance (in cm)

p
o

w
er

 a
t

90
%

 o
f

p
ac

ke
ts

 r
ec

ei
ve

d

Figure 4.3: The lowest power level at which at least 90% of the packets were
received.

test the link quality if we require that at least x percent of the packets arrive
at the listening node. The results for x = 90 are shown in Figure 4.3. The
graph looks similar for all other values of x (down to 50).

The deviation of the data set to the best-fit curve in both experiments is
not negligible (about 10 units in the latter case), as can be seen in Figure 4.2
and 4.3. However, the data set is still well-behaved in the sense that a curve
is discernible and this curve is almost monotone.

The conclusion that can be drawn from these experiments is that in a
controlled environment with a clear line of sight, the distance-to-power func-
tion with a specified stability can be approximated to a certain extend by
a monotonely increasing function, supporting theoretical assumptions. In
such a setting, a possible localization scheme could measure the packet loss
for different power levels from anchor nodes (which know their position) and
then use the inverse of the distance-to-level point map in Figure 4.3 to obtain
a distance estimate.

4.2.2 In a Room

Any localization algorithm in the plane needs (approximate) distance mea-
surements from at least three non-collinear anchors. Therefore, the next step
in our experiments is to expose a single node to several anchors and test the
obtained measurements for their usability.

The experimental setup is similar to the one before. We place four anchor
nodes on the corner of a rectangle in a room. A test node is then placed within
that rectangle. An anchor sends out a packet at each power level from 1 up

60 CHAPTER 4. REAL-WORLD PROBLEMS

Anchor 1

0

100

200

300

400

500

600

700

800

900

1 11 21 31 41 51 61 71 81 91

Received Power

F
re

q
u

en
cy

Figure 4.4: The number of times a given power level was received. Anchor 1
was 3.02 meters from the test node.

to 100, then the next anchor does the same, and so on, in a round robin
fashion. Each time, the test node reports which packets it receives. Figure
4.4 shows how often a given power level is received by the test node from
Anchor 1 over the course of the experiment. The results for the other anchors
are similar and thus omitted.

This already goes to show that the link between the test node and the
anchors is reasonably stable over time. As we already see from the earlier
experiments in the lab, the minimum power level received, perhaps averaged
over time, gives a good indication for the distance to the sending node. This
is advantageous since it saves memory compared to storing all received power
levels. To further strengthen this hypothesis, we also examine the size of the
“holes” in the received power levels for each iteration. In other words, how
big is the gap between one received power level and the next and how often
does it occur. For example, if the first heard packet has level 15 and the next
one heard level 18, then this results in a hole of size 3. Figure 4.5 shows that
there are only small holes in most cases. Meaning that the minimum power
level is a good estimate if the requirements are not too stringent.

Table 4.1 summarizes the results, comparing the average minimum re-
ceived power level with the actual distance. The most notable effect is that
with increasing distance, the minimum power does not steadily increase but
instead fluctuates.

In a next step, we add obstacles to our room by placing various everyday

4.2. EXPERIMENTS AND RESULTS 61

Anchor 1

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hole Size

F
re

q
u

en
cy

Figure 4.5: The size of the “holes” in the received power level progression
and how often they occurred for Anchor 1.

anchor distance avg. min power

A2 1.39 11
A0 2.78 15
A1 3.02 16
A3 3.65 14

Table 4.1: Average minimum received power level from the different anchors
and their true distances in meters.

62 CHAPTER 4. REAL-WORLD PROBLEMS

objects in the area of the rectangle. The result is that the general behavior
of the link quality does not appear to be affected, seen in Figure 4.6. The
curve has the same “shape” as before (less data points being the reason for
the height difference). Astonishingly, the peak from the experiment with
obstacles is shifted to the left compared to the non-obstacles experiment.
This result only hardens the conclusion of the unpredictability of real-world
sensor node behavior.

Anchor 1

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36

Minimum Power Received with/without Obstacles

F
re

q
u

en
cy

Figure 4.6: Number of times that a given power level was the minimum fre-
quency received. The higher peak (blue) is from the setup without obstacles,
the other one (red) with obstacles. The reason for the lower peak is that the
experiment was run for less time due to external constraints.

On the positive side, we can say that in an environment with several
stable anchors, each sending out packets one at a time to avoid collisions,
the links appear to be stable over time and exhibit a sharp peak.

4.2.3 Network

The results of the previous sections suggest that distance measurements based
on radio power levels can be used if the accuracy constraints are not too
tight. This lead us to set up a positioning experiment with four anchors at
the corners of a rectangle (a table) and several nodes on the inside of the
rectangle. We use a spring-based algorithm in which each node iteratively
computes its new position as a function of its neighbors’ positions. This
approach stems from the graph drawing context and was first adapted to

4.2. EXPERIMENTS AND RESULTS 63

positioning in works such as [122] (see also Sections 2.3 and 2.4.2). Since
the heuristics proposed in [122] are far too power and resource consuming,
we implement a simplified version to suit our purposes. For the power-to-
distance conversion, the data gathered in the experiments above is used.
Surprisingly, between most of the computed positions and the corresponding
actual positions there is seemingly no correlation. The errors are in the
order of the magnitude of the sensor field. A closer examination reveals that
already the powers received do not correlate with the distances at all in the
sense that a node close by needed significantly more power to communicate
than some nodes far apart, even without any obstacles in the room. This
finding is closer examined in the next experimental setup.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600

Distance (in cm)

A
ve

ra
g

e
M

in
im

u
m

 P
o

w
er

 R
ec

ei
ve

d

Figure 4.7: Measured power levels at various distances. The x-axis is dis-
tance (in cm), the y-axis is average minimum power level. A point is the
measurement of a node to some other node.

We perform the following experiment, the result of which can be seen in
Figure 4.7. We take nine nodes placed arbitrarily in a large room. Iteratively
each node sends out a series of packets, starting from level 1 to 100. In each
iteration all non-sending nodes record the minimum power level received
from the sending node in that iteration. As can be seen, the graph looks
very different from the one in the first phase of the experiment, Figure 4.2.
Whereas in the first phase of the experiments a curve connecting the data
points is discernible, the data points measured in the current experimental
setup are much more scattered. Observe also that the scale of the y-axis in
both figures is different and that the deviation of the data set to the best-fit
parabola in this experiments is about 30 units.

64 CHAPTER 4. REAL-WORLD PROBLEMS

The conclusion to be drawn here is that in a two-node setting with a con-
stant environment, the power expectedly increases approximately quadrat-
ically with distance. In a network, however, there are several nodes, un-
predictable environmental conditions such as people walking around, and
different positions of walls, cables, other computers and the like. So even
without the effect of node transmission interference, which we excluded in
this setup, the power-to-distance correlation becomes utterly useless. The
data points are scattered across the graph. While two nodes in the network
can have a quadratically increasing (theoretical) distance-to-power function,
this function between different pairs of nodes is not necessarily related in a
predictable manner.

On the positive side, this experiment allows us to conclude on the symme-
try of the links between two nodes. To that end, we compare the minimum
power levels between two nodes in the network. In Figure 4.8 the number of
occurrences a power level was the lowest one received for an arbitrary pair
of nodes is plotted. The peaks are sharp and coincide.

Symmetry

0

100

200

300

400

500

600

700

800

900

1 6 11 16 21 26 31 36

Minimum Power Received

F
re

q
u

en
cy

Figure 4.8: Number of times that a given power level was the minimum
frequency received. The blue curve is from node 75 to node 65 and the red
curve the other way around.

We furthermore compute the average minimum power level received for
each node to all other nodes and take the difference between the node pairs.
This value is rounded to the nearest integer and Figure 4.9 shows the number
of times a difference occurs among the

(
9
2

)
= 36 node pairs.

4.3. DISCUSSION AND FUTURE WORK 65

Symmetry

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

Rounded Diffence in Average Minimum Received Power

F
re

q
u

en
cy

Figure 4.9: Rounded differences between average minimum received power.

4.3 Discussion and Future Work

In order to gauge the applicability of theoretical research in practical settings,
we conducted an experimental study of the link quality and how it correlates
with distance measurements in real-world sensor networks. If one expects
the sensor network to be in place for an extended period, then we do not
necessarily require an unvarying connection between two nodes, but that the
link characteristics should be steady over time. The minimum power at which
a node receives a packet from a sender node was shown to be stable, sharp
and symmetric over time in all experimental setups. Whereas this power
level is a good indication for the distance between nodes if there are only
two nodes in a static experimental setup, this correlation does not apply
to all node pairs in a larger arbitrary network. Our experiments illustrate
that in larger networks the power levels measured in lab conditions are not
correlated with distances in the real world, even if the real world is the lab
next door. Thus drastically new models are required for sensor networks if
theoretical constructs are ever to be applied with a realistic chance.

Despite the pessimistic results, the findings of this chapter open up a
number of interesting directions meriting further investigation. First of all,
these tests should be performed on hardware from different vendors to see
whether this is a general problem. Second, with the new version of the ESBs,
we can perform actual received signal strength measurements which would
refine the results observed in this paper. Third, it would be interesting to
investigate whether there is a qualitative difference between short and long

66 CHAPTER 4. REAL-WORLD PROBLEMS

range measurements.
The aim of this chapter was to highlight the chasm between theoretical

models and current reality of sensor networks. While the gap, as we have
presented it, is glaring, we believe that the truth lies somewhere in the middle.
Wireless node hardware will evolve and better models and algorithms might
capture their behavior more closely. From the theoretical side, we should
pursue two directions simultaneously: completing the algorithmic picture
based on current knowledge while at the same time striving for more accurate
models. The ultimate goal is for theory and practice to complement, not
contradict each other.

Chapter 5

UDG Embedding

From the practical side, we saw that much work remains to be done in or-
der to achieve light-weight, fine-grained wireless ad hoc network localization.
From the theoretical side, we know of the O(

√
n) trivial approximation al-

gorithm for the virtual coordinates problem when all n nodes are arranged
arbitrarily on a grid. After some precursory investigations of the local prop-
erties of unit disk graphs in Chapter 3, we finally turn to the full-fledged
embedding problem in this chapter. To the best of our knowledge, we pro-
vide the first algorithm with an approximation guarantee improving over the√

n bound. Two key ideas are necessary to achieve this. The first is that we
work primarily with a maximal independent set of nodes instead of the entire
graph at once. The second is to look at distances as the initial quantity of
interest instead of going straight for a point-wise embedding.

5.1 Preliminaries

We will briefly gather the necessary notation and concepts before proceeding
to the description of the algorithm.

5.1.1 Definitions

An independent set of a graph G = (V, E) is a subset S ⊆ V such that for
all vi, vj ∈ S, {vi, vj} /∈ E. An independent set is maximal if no additional
vertex can be added to S such that the resulting set is still an independent
set.

A metric space (or simply a metric) is a pair (S, ρ), where S is a set of
points and ρ : S×S → [0,∞) is a distance function satisfying the properties

1. identity of indiscernibles: ρ(p, q) = 0⇔ p = q

2. symmetry: ρ(p, q) = ρ(q, p)

68 CHAPTER 5. UDG EMBEDDING

3. triangle inequality: ρ(p, r) + ρ(r, q) ≥ ρ(p, q)

for all p, q, r ∈ S. A finite metric space can be represented as a weighted
complete graph on |S| vertices where the edge lengths between pairs of ver-
tices are equal to the distance between the respective points in the metric
space.

An embedding of a finite metric space (S, ρ) into an L-dimensional Eu-
clidean space (RL, σ) is a mapping f : S → R

L. In this paper we only consider
contracting mappings, that is, for all x, y ∈ S, σ(f(x), f(y)) ≤ ρ(x, y). We
say that the volume Evol(S) of a set S of k vertices in R

L is the volume of
the (k−1)-dimensional simplex spanned by S. Then the volume V ol(S) of a
finite metric space with k points is defined to be the maximum Evol(f(S))
over all contracting mappings f from S to R

L, L ≥ k. The distortion of an
embedding f for the set S is the ratio

V ol(S)

Evol(f(S))
.

In other words, we are not considering the pair-wise distortion of points
anymore, but the distortion of an arbitrary set of points. This leads us to the
central definition of this chapter. The idea of volume-respecting embeddings
was first introduced by Feige [49] to solve the bandwidth problem which
concerns itself with embedding a graph onto the integer line.

Definition 5.1 (Volume Respecting). An embedding f of a metric V is
(k, D)-volume respecting if

(
V ol(S)

Evol(f(S))

)1/(k−1)

≤ D (5.1)

for every subset S ⊆ V of at most k vertices.

5.1.2 Terminology

In analogy to the term edge, we call a pair of vertices {vi, vj} a non-edge if
{vi, vj} /∈ E. When referring to high probability we mean with probability at
least 1−O(1/n).

5.2 Algorithm Overview

Our virtual coordinates algorithm vice (Virtual Coordinates Embedder) is
inspired by Vempala’s work on VLSI layout [143] where he first proposed
the combination of spreading constraints and volume-respecting embeddings
in order to find a good grid layout. Before presenting our algorithm in full
detail, we want to describe it on a higher level as well as give some intuitive
ideas. Working directly on the coordinates when embedding a unit disk graph

5.2. ALGORITHM OVERVIEW 69

has proven ineffective in all previous attempts at the problem. Therefore,
we work on distances, that is, a metric of the graph first. Producing a
Euclidean metric outright is difficult, and a large body of research on general
metric embeddings bears witness to the fact that embedding metrics in low
dimensions is also hard. One option is to embed into a higher space and then
project down. In order to obtain a good quality of the final embedding, low
edge distortion in the higher space embedding is not enough when projecting
back down to two-dimensional space. This is the reason we use Feige’s [49]
generalized embedding where sets (as opposed to pairs) of points have low
distortion.

vice consists of four main conceptual states. In the subsequent sections
we explain the ideas behind each of the main stages separately. The impor-
tant concepts are roughly the following: The main part of the computation
operates on a maximal independent set M of the input UDG G. In the first
stage we solve a set of linear constraints which gives indications on the dis-
tances between any two vertices in M . Those distances are used thereafter to
embed the vertices in an L-dimensional space in such a way that sets of ver-
tices have large volume. Given this high-dimensional embedding we project
the points to a randomly chosen 2-dimensional plane. Finally, the points in
M are placed on grid points, while the others are placed around them.

5.2.1 Linear Constraints

The main goal of the first stage of our algorithm is to compute a metric on
the input graph satisfying certain additional constraints. The key difficulty is
that the problem of describing the UDG conditions is inherently non-convex,
in particular the constraints on the non-edges. As such, we need to replace
these problematic constraints with something more manageable. We will
make use of spreading constraints (as in Even et al. [48]), which state that

∑

v∈S

ρ(u, v) ≥ c · |S|3/2 ∀S ⊂ V,∀u ∈ V (5.2)

for some constant c. In our case, we cannot apply this concept to all the
nodes of G, but only to an independent set of nodes.

The motivation for using spreading constraints is to model the property
that in any region of diameter R there are at most O

(
R2
)

points. That is,
the points are forced to spread out, instead of clustering in a single spot.
Now, in relation to unit disk graphs, we obviously do not want all points
to be spread out, but rather want to model the fact that non-edges are
“far apart” while edges are allowed to be “close.” This becomes intuitively
clear when we think of a clique of size n. Surely, a clique is a unit disk
graph, but one that cannot fulfill the spreading constraints. So instead of
formulating the spreading constraints on all sets of the original vertices, we
observe that we want the sets of non-edges, i.e., independent sets, to be

70 CHAPTER 5. UDG EMBEDDING

sufficiently far apart. Serendipitously, any independent set IS of a unit disk
graph G satisfies Eq. (5.2). To see this, observe that for any given realization
of G, the number of independent nodes in a region of radius R is at most
κR2 (κ being a constant) since all pair-wise distances are greater than 1.

We first construct a new graph GM = (VM , EM) out of G = (V, E) by
taking the nodes of a maximal independent set (MIS) of G to be the nodes of
GM and connecting two nodes in GM if they are connected by a path of length
at most 3 in G. If one is only interested in an approximate embedding, then
the MIS placement encodes all the essential properties of a unit disk graph
G with n nodes. Now we are ready to formulate a set of convex constraints1

(LP) to describe GM . For the sake of readability, we set xuv = ρ(u, v), and
let xuu = 0. Also note that m = |VM | ∈ O(n), where n = |V |.

(LP)

xuv ≤ 3 ∀{u, v} ∈ EM (5.3)

xuv ≤
√

n ∀u, v ∈ VM (5.4)

xuv ≥ 1 ∀u 6= v ∈ VM (5.5)

xuv + xuk ≥ xvk ∀u, v, k ∈ VM (5.6)
∑

v∈S

xuv ≥ κ|S|3/2 ∀S ⊂ VM , ∀u ∈ VM (5.7)

Constraint (5.3) is a consequence of the MIS graph construction out of G.
Constraint (5.4) stems from G being embeddable in a square of side length√

n. Constraints (5.5) and (5.6) ensure that we have a metric which we need
in order to embed the nodes into Euclidean space. Constraint (5.7) are the
spreading constraints from the discussion above, with κ a constant. From the
definition of unit disk graphs and the discussion of the spreading constraints
above, it immediately follows that if G is a UDG and GM its MIS graph,
then there exists a feasible solution to (LP). We show in Section 5.4.5 that
it can be found in polynomial time.

Observe that we are not actually computing any coordinates of the points
yet, only their pairwise distances. This is perhaps the key conceptual dif-
ference between our approach and that of previous virtual coordinates al-
gorithms, such as [42, 136, 122], where the point coordinates, which these
algorithms attempt to approximate, are included in the initial equations.
Unfortunately, we cannot specify linear conditions which force the metric ρ
to be a true Euclidean metric, which is why the spreading constraints serve
as a first approximation.

Now that we have computed a metric with the desired properties, we want
to embed it into a geometric space. Preferably, we would like to embed it in
the 2-dimensional plane, but in general this cannot be done directly without
large edge distortion. Instead, we embed the vertices in a high-dimensional

1basically, a linear program without an optimization function

5.2. ALGORITHM OVERVIEW 71

space where we can guarantee not only that the distortion is small but also
that the embedding is volume respecting.

5.2.2 Volume-Respecting Embedding

Feige [49] introduced a powerful strengthening of the notion of the edge
distortion of an embedding, concerning embeddings into Euclidean spaces.
Whereas the usual distortion of an embedding is determined by looking at
pairs of points, that is, distances, Feige’s volume-respecting embedding takes
into account all k-tuples for some k ≥ 2, i.e., volumes of sets of points.

A volume-respecting embedding has many useful properties when project-
ing the points from the high-dimensional space to a random lower-dimension-
al one. Intuitively, large volumes have large projections and hence the points
spread fairly well when projecting to a random lower-dimensional subspace.
This leads us to the third stage of our algorithm. Once a volume-respecting
embedding in R

L is computed, the points of the embedding are projected to
a randomly chosen 2-dimensional plane.

5.2.3 Random Projection

Random projection is the technique of projecting a set of points from a high-
dimensional space to a low-dimensional subspace. Lately, this technique has
enjoyed great popularity in various research areas. For our application, two
observations about random projections are crucial. Firstly, the length of a
vector when projected from R

L to a random line scales by roughly 1/
√

L and
is concentrated around this expectation. Secondly, the probability that a set
of k points is projected to a small interval is inversely proportional to the
volume of the points. Hence, together with the fact that our embedding was
volume respecting, we get that the projected points spread quite well in the
2-dimensional plane. In fact, we prove in Section 5.4.4 that if we partition
the plane into a grid with cell-width 1/

√
L then at most O

(
log5n log log n

)

points lie in a cell with high probability. This leaves us to show what is to
be done with the points in one cell in the final operation on GM .

5.2.4 Final Embedding

In order to guarantee that the smallest non-edge is not too short we need
the points within a cell to be evenly spread out and not to cluster at a
single point. A simple way to do this is to space the points in a cell onto yet
another, smaller grid. The width of a cell in the refined grid is 1/

√
LM along

each dimension, M being the maximum number of points in any cell. After
rescaling the grid to have cell-width 1, the above discussion shows that this
introduces at most a poly-logarithmic factor with high probability, which is
needed to bound the maximum edge length.

72 CHAPTER 5. UDG EMBEDDING

We now have to embed all the vertices in G which are not in the MIS
VM to bound the non-edge lengths. First, we can assign each node u not
in VM to exactly one vertex in VM . Such an assignment always exists since
each vertex not in VM has a neighbor in VM , otherwise it would contradict
the maximality of the independent set. Then we consider each v ∈ VM

along with its reduced neighborhood N ′(v) consisting of all of its assigned
vertices. The idea now is to compute a clique partition of N ′(v) so that all
nodes of a clique can be put on the same point. These clique points are put
onto a grid inscribed in a circle of diameter 2

3
centered at v. To show that

this results in a minimum distance of Θ
(
1/
√

log n
)

between grid points, we
observe that a crucial UDG property is that the neighborhood of a node can
be partitioned into at most a constant number of cliques. Using an algorithm
of [120], we can successively compute a maximum clique in N ′(v), resulting
in a Θ(log n) approximation to a minimum clique partition of N ′(v). Thus,
there are Θ(log n) points representing non-MIS nodes around each MIS node,
bounding the minimum non-edge length.

5.3 Algorithm Details

Algorithm 5.1 gives the pseudo-code of vice for computing the virtual co-
ordinates of a given unit disk graph. Algorithms 5.2-5.6 succinctly describe
each of the above stages. The output of each phase serves as the input to
the next one.

In the following, let us denote the position of vertex u in the volume-
respecting embedding by vL

u , the position after the random projection by ru

and the final position by pu. The dimension of the embedding in the second
step is given by Feige in [49] as L = Θ

(
k2 log2n log k

)
= Θ

(
log4n log log n

)

with k = log n. Recall that n denotes the original number of vertices and m
the number of vertices in the MIS graph GM .

Input: G = (V, E) a unit disk graph
Output: positions pu ∈ R

2 for all u ∈ V
VM ←MIS(G)
EM ← {{u, v} | dG(u, v) ≤ 3 for u, v ∈ VM}
GM ← (VM , EM)
{xuv} ← Solve (LP) on GM

{vL
u } ← Volume-Respecting Embedding({xuv})
{ru} ← Random Projection({vL

u })
{pu} ← Round to Grid({ru})
{pu} ← Place Non-MIS(G, VM , {pu})

Algorithm 5.1: vice

5.3. ALGORITHM DETAILS 73

Input: GM = (VM , EM)
Output: distance matrix X = (xuv)
1: solve (LP) and return set of distances xuv between each pair of vertices

u, v

Algorithm 5.2: Solve (LP)

Input: m×m distance matrix X = (xuv)
Output: positions vL

u ∈ R
L for all u ∈ VM

1: find a (log m,β log m
√

log log m)-volume respecting Euclidean embedding
in R

L using the “random subsets embedding” in [49]

Algorithm 5.3: Volume-Respecting Embedding

Input: positions vL
u ∈ R

L for all u ∈ VM

Output: positions ru ∈ R
2 for all u ∈ VM

1: independently choose two random vectors l1, l2 ∈ R
L of unit length (lines

passing through the origin)
2: for all u ∈ VM , project vL

u to each of the lines, that is, ru ← (vL
u ·l1, vL

u ·l2)
Algorithm 5.4: Random Projection

Input: positions ru ∈ R
2 for all u ∈ VM

Output: positions pu ∈ R
2 for all u ∈ VM

1: enclose the projected points in a grid C√
L of cell-width 1/

√
L

2: let C be a cell in C√
L, then M ← maxC{u | ru ∈ C}

3: refine C√
L by subdividing each cell into M subcells, denote the refined

grid by C√
LM

4: for each cell C in C√
L do

5: assign all points in C arbitrarily to grid-points in C√
LM which lie in

C
6: end for
7: scale C√

LM by
√

LM along each dimension, such that the distance be-
tween any two grid points is 1

Algorithm 5.5: Round to Grid

74 CHAPTER 5. UDG EMBEDDING

Input: G = (V, E), VM , positions pu ∈ R
2 for all u ∈ VM

Output: positions pu ∈ R
2 for all u ∈ V \ VM

1: V ′ ← V \ VM

2: for all v ∈ VM and while V ′ 6= ∅ do
3: N ′(v)← N(v) ∩ V ′

4: V ′ ← V ′ \N ′(v)
5: x ← number of cliques in N ′(v) by successively removing maximum

clique (using [120])
6: create grid of cell width 1/

√
x inside circle of diameter 2/3 centered at

pv

7: number grid points g1, g2, . . . , gx

8: i← 1
9: while N ′(v) 6= ∅ do

10: C ← maximum clique in N ′(v) using [120]
11: for all u ∈ C do
12: pu ← gi

13: end for
14: i← i + 1
15: N ′(v)← N ′(v) \ C
16: end while
17: end for

Algorithm 5.6: Place Non-MIS

5.4. ANALYSIS 75

5.4 Analysis

This entire section is devoted to proving the following main theorem.

Theorem 5.1. The quality of the embedding p computed by the vice algo-
rithm given in Alg. 5.1 is, with high probability,

Q(p(G)) = O
(

log3.5n
√

log log n
)

(5.8)

for input unit disk graph G = (V, E) with |V | = n.

5.4.1 Volume-Respecting Embeddings

Once we have a set of inter-point distances, we want to ensure that the high-
dimensional embedding does not distort the encoded UDG properties. The
volume-respecting property of Feige’s embedding ensures that independent
vertices remain spread out.

Theorem 5.2 ([49] Thm. 5). For any k and any connected graph G on n
vertices, an embedding which is (k, β

√
log n

√
k log k + log n)-volume respect-

ing with high probability can be found in polynomial time for some large
enough constant β.

Here we use k = log m giving a distortion of O
(
log m

√
log log m

)
on the

volumes of log n-sized sets.
Unfortunately, computing the volume V ol(S) of a set S exactly is far too

tedious in general. Yet, Feige showed that it can be approximated quite well
by making use of the notion of the tree volume Tvol(S) of S, which is the
product of the edge lengths in a minimum spanning tree of S.

Theorem 5.3 ([49] Thm. 3). For S ⊂ V , |S| = k,

V ol(S) ≤ Tvol(S)

(k − 1)!
≤ V ol(S)2(k−2)/2.

5.4.2 Tree Volume

Since we want to ensure that the independent sets are neatly spread out, we
need to derive bounds on the tree volume of those sets in order to use Feige’s
volume-respecting embedding. In particular, we want to show the following.

Lemma 5.4. Let GM = (VM , EM) be the MIS graph of G with m = |VM |,
then

∑

S⊂VM , |S|=k

1

Tvol(S)2
≤ 2k!

(2κ)2k−2
·m(log m)k−1.

with κ from Eq. (5.7) of (LP).

76 CHAPTER 5. UDG EMBEDDING

Proof. To obtain an enumeration of all subsets of size k, we can first choose
a u1 ∈ VM , then a u2 ∈ VM \ {u1}, then a u3 ∈ VM \ {u1, u2}, and so on
up to uk ∈ VM \ {u1, u2, . . . , uk−1}. Then each set is counted k! many times.
For readability, denote by Ij the set {u1, . . . , uj} for 1 ≤ j < k. From this
we get that

∑

S⊂VM , |S|=k

1

Tvol(S)2
=

1

k!

∑

u1∈VM

∑

u2∈VM\I1

· · ·
∑

uk∈V \Ik−1

1

Tvol({u1, u2, . . . , uk})2
. (5.9)

We will need to write 1/Tvol(S)2 in terms of the distances between the
ui. Feige has shown ([49] Lem. 17) that for any finite metric space S =
{u1, . . . , uk},

2k−1

Tvol(S)
≤
∑

π∈Sk

1

xuπ(1)uπ(2)
xuπ(2)uπ(3)

· · ·xuπ(k−1)uπ(k)

(5.10)

where the summation is taken over all permutations π ∈ Sk. Note that in our
case the set S, by virtue of being a solution to (LP), is also a (finite) metric
space. Here, we need the square of the volume since we are projecting to two
dimensions instead of just one. Thus, squaring Eq. (5.10), and writing x(π)
for xuπ(1)uπ(2)

· · ·xuπ(k−1)uπ(k)
, we get

22(k−1)

Tvol(S)2
≤
∑

ππ′

1

x(π) · x(π′)

=
∑

π

1

x(π)2
+
∑

π 6=π′

1

x(π) · x(π′)

≤ 2k!
∑

π

1

x(π)2
.

(5.11)

For the last inequality, consider
∑

j 6=i aiaj = 2
∑l

i=1

∑l
j=i+1 aiaj with posi-

tive ai’s in ascending order. With ai ≤ aj for j > i, then also aiaj ≤ a2
j and

thus

∑

j 6=i

aiaj ≤ 2
l∑

i=1

(i− 1)a2
i ≤ 2(l − 1)

l∑

i=1

a2
i

with l = k! in our case.

5.4. ANALYSIS 77

Plugging (5.11) back into (5.9), we get that

∑

S⊂VM , |S|=k

1

Tvol(S)2
≤ 1

22k−3

∑

u1

· · ·
∑

uk

∑

π

(1

xuπ(1)uπ(2)
· · ·xuπ(k−1)uπ(k)

)2

=
k!

22k−3

∑

u1

∑

u2

1

x2
u1u2

∑

u3

1

x2
u2u3

· · ·
∑

uk

1

x2
uk−1uk

(5.12)

after reordering the ui since a permutation on the indices is equivalent to a
different choice of ui. In other words, we now only need to look at sums of
the form given by the following lemma. It is a crucial property which stems
from the spreading constraints.

Lemma 5.5. Let (xuv) be a feasible solution vector of (LP) with κ from
Eq. (5.7). For any vertex u in VM and any S ⊆ VM \{u}, |VM | = m, it holds
that

∑

ui∈S

1

x2
uui

≤ log m

κ2
.

Proof. Fix u and consider any S = {u1, . . . , ul} where the ui are ordered
in increasing distance from u, that is, xuui

≤ xuui+1 for 1 ≤ i < l. Since

(xuv) is a solution to (LP),
∑

ui∈S xuui
≥ κl3/2 from Eq. (5.7). Therefore,

at least one of the ui has distance at least the average value of the spreading
constraint, thus xuul

≥ κl1/2 since we ordered S by distance from u. Now
remove ul from the set and take S = {u1, . . . , ul−1}, again ordered as above.
By the same argument, xuul−1 ≥ κ(l − 1)1/2, and in general, xuui

≥ κi1/2.
Then we get

l∑

i=1

1

x2
uui

≤ 1

κ2

l∑

i=1

1

i
=

H(l)

κ2
≤ log m

κ2

with l ≤ m− 1.

With this, the sums from u2 to uk in Eq. (5.12) can be bounded in total by
(log m/κ2)k−1, there are m choices for u1, and Lemma 5.4 now follows.

5.4.3 Random Projection

While the volume-respecting embedding helps in keeping non-edges far apart,
we also want the edges to be close together. In this section, we prove that
the edge length will be bounded after the random projection step.

For starters, we will need the well-known lemma given below [144].

78 CHAPTER 5. UDG EMBEDDING

Lemma 5.6. Let v ∈ R
L. For a random unit vector l,

P

(

|v · l| ≤ c√
L
|v|
)

≥ 1− e−c2/4.

P

(

|v · l| ≤ 1

c
√

L
|v|
)

= O

(
1

c

)

.

The next lemma gives a connection between random projection and the
volume of a set. It will become important when we count the number of
nodes that fall into any given cell of the final grid.

Lemma 5.7 ([143] Lem. 5). Let S be a set of vectors v1, . . . , vk ∈ R
L. For

c > 0, consider the event that the projection of S on a random unit vector l
is of length at most c. The probability of this event is bounded by

P

(

max
i

(vi · l)−min
j

(vj · l) ≤ c

)

= O

(
ck−1L(k−1)/2

(k − 1)!Evol(S)

)

.

Lemma 5.8. The length |ru − rv| of an edge after the projection step is at
most 2|vL

u − vL
v |
√

log n/
√

L, with high probability.

Proof. By Lemma 5.6 with probability at least 1 − e−c2/4 a vector v has
length at most c√

L
|v| after the projection. Choosing c = 2

√
log n, the length

of a projected vector is at most

2|vL
u − vL

v |
√

log n/
√

L

with probability at least 1− 1/n.

5.4.4 Putting Things Together

Lemma 5.9. The number of vertices that fall into any cell of the outer grid
C√

L is in O
(
log5n log log n

)
with high probability.

Proof. Let NC be the number of sets S of size k that fall into an arbitrary
grid cell C of width 1/

√
L. Let Xi

S be the indicator random variable which is
1 if all the vectors in S fall in C along the randomly chosen line li. Following
the reasoning in [143], we can express the expected value of NC in terms of

5.4. ANALYSIS 79

X1
S as follows:

E[NC] =
∑

|S|=k

E[X1
SX2

S] =
∑

|S|=k

E[X1
S]E[X2

S] =
∑

|S|=k

E[X1
S]2

=
∑

|S|=k

P(X1
S = 1)2

(Lem. 5.7) ≤
∑

|S|=k

(
α(c
√

L)k−1

(k − 1)!Evol(S)

)2

(c = 1/
√

L) =
∑

|S|=k

(
α

(k − 1)!Evol(S)

)2

(Thm. 5.2) ≤
∑

|S|=k

(

α
(
β
√

log m
√

k log k + log m
)k−1

(k − 1)!V ol(S)

)2

(Thm. 5.3) ≤
∑

|S|=k

(

α2(k−2)/2(k − 1)!
(
β
√

log m
√

k log k + log m
)k−1

(k − 1)!Tvol(S)

)2

= α22k−2
(
β2 log m(k log k + log m)

)k−1 ·
∑

|S|=k

1

Tvol(S)2

(Lem. 5.4) ≤ α2 2k−2

22k−3
· k! ·m ·

(
β2 1

κ2
log2m(k log k + log m)

)k−1

= α2k!m
(β2

2κ2
log2m(k log k + log m)

)k−1

(5.13)

where α is the constant hidden in the big-O notation of Lemma 5.7, and β
likewise from Theorem 5.2. To bound the number of cells of C√

L right after

the projection, note that the longest edge has length at most 6
√

log n/
√

L
by Lemma 5.8 and Constraint (5.3) from (LP) and the fact that the volume-
respecting embedding is non-expansive. Therefore, the longest path has
length 6m

√
log n/

√
L, which requires 6m

√
log n cells of side length c = 1/

√
L

to cover, with high probability.
Using Markov’s inequality, we have

P
(
NC ≥ 6mn

√

log n ·α′k!m(γ log2m(k log k+log m))k−1) ≤ 1/(6mn
√

log n)
(5.14)

readjusting the constants to α′ = α2 and γ = β2/(2κ2). Hence, with proba-
bility at least 1− 1/n, the number of subsets of size k that fall in any of the
6mn
√

log n cells is at most the value in (5.14). By this we can bound the
maximum number of points that fall in any of the cells of the outer grid in the
following way: If there are N subsets of size k, then the number of elements
X is at most kN1/k using N =

(
X
k

)
≥ (X

k
)k. In our case, we get that the

80 CHAPTER 5. UDG EMBEDDING

maximum number of points in an outer grid cell is with high probability at
most

k
(
6α′ ·m2n

√

log n · k!(γ log2m(k log k + log m))k−1
)1/k

= O
(
log5n log log n

)

by choosing k = log n and noting that n
1

log n = O(1), k! ≤ kk, and k log k +
log m is in O(log n log log n).

Proposition 5.10. The maximum edge length in G is in O
(
log3n

√
log log n

)
.

Proof. We have seen in Lemma 5.8 that an edge in the MIS graph can
have length at most 2|vL

u − vL
v |
√

log n/
√

L after projection. Hence, using
the fact that the embedding is non-expansive, an edge {u, v} spans at most
2xuv

√
log n cells along each dimension in C√

L. By Lemma 5.9, each cell of
the grid C√

L is divided into O
(
log5n log log n

)
cells, or O

(
log2.5n

√
log log n

)

cells along each dimension. Keeping in mind that, by Condition (5.3) in (LP),
xuv ≤ 3, the total number of cells in the final grid C√

LM that are spanned
by an edge of GM along each dimension is at most O

(
log3n

√
log log n

)
.

The edge lengths between nodes not both in VM are off only by a constant
factor. Suppose u ∈ VM and v /∈ VM , and v is assigned to v′ ∈ VM . Then
{u, v′} ∈ EM because uvv′ is a path of length 2 in G. If both u, v /∈ VM , then
their respective assigned vertices u′, v′ ∈ VM are an edge in EM since they
are connected in G by a path of length at most 3. Thus, the final embedding
has no impact on the big-O notation.

Proposition 5.11. The minimum distance between two non-neighbored ver-
tices in G is in Ω

(
1/
√

log n
)
.

Proof. For u, v ∈ VM , |pu − pv| ≥ 1 by the rescaling of the final grid. If
u ∈ VM and v /∈ VM , then v was assigned to another u′ ∈ VM and placed in
the circle of radius 1/3 there, thus |pu − pv| ≥ 1/3.

For the nodes not in VM , we need to examine the effect of the successive
maximum clique assignment. First, note that the neighborhood of a node
can be partitioned into a constant number of cliques. This is because a circle
of radius 1 can be covered with a constant number of circles of radius 1/2.
Raghavan and Spinrad [120] give an algorithm to compute the maximum
clique in a unit disk graph. Then with each successive maximum clique
computed, at least a constant fraction of the remaining nodes is taken out
because each graph is again a 1-hop neighborhood unit disk graph. Therefore,
we are done after O(log |N ′(v)|) steps, that is, the value of x in Algorithm 5.6
is bounded by O(log |N ′(v)|). Non-neighboring nodes are assigned to different
grid points, resulting in a minimum non-edge length of Θ

(
1/
√

log n
)
.

Proof of Theorem 5.1. The theorem follows immediately from Definition 2.3
and Propositions 5.10 and 5.11.

5.5. DISCUSSION 81

5.4.5 Polynomial Running Time

We now show that vice can be implemented in such a way that its running
time is polynomial in n. In particular, we show how the set of constraints
(LP) can be solved in polynomial time, even though there is an exponential
number of spreading constraints.

To that end, we will construct a separation oracle [60] which will guaran-
tee that we only need to solve polynomially many constraints polynomially
often. A separation oracle for (LP) takes as input a set of lengths {xuv}
and checks whether this set satisfies all constraints. If that is the case, a
feasible solution is found, otherwise, the oracle returns one constraint which
was violated by the input and a new solution satisfying all up to now re-
ported constraints is computed. Constraints (5.3), (5.4), (5.5), and (5.6) can
be checked explicitly in polynomial time. We cannot check the spreading
constraints (5.7) explicitly since there are exponentially many subsets, but
we can make use of the following observation.

The key to polynomial-time checking is that we can order the sets in such
a way that if a set violates the spreading constraints, then the set of smallest
edge weights also violates them. Hence, instead of checking the spreading
constraints on all sets, we merely check them on those of smallest weight.
For this reason, we compute the closest set of size k around vertex u for
all u ∈ VM and check whether this set satisfies the spreading constraints.
Specifically, for each vertex u, order the remaining vertices ui in ascending
order by distance from u, i.e., xuu1 ≤ xuu2 ≤ · · · ≤ xuum−1 . Then check for
each 1 ≤ k < m whether the set Ik = {u1, u2, . . . , uk} fulfills the spreading
constraint around u. If any of these O

(
m2
)

constraints are violated, then
the separation oracle reports the first one found, otherwise Constraint (5.7)
is fulfilled.

Theorem 5.12. The vice algorithm can be solved in polynomial time.

5.5 Discussion

One thing we can get out of the analysis of our virtual coordinates algorithm
is that instead of dealing with the entire graph, it suffices to operate on a
maximal independent set, giving only an extra factor of O

(√
log n

)
to the ap-

proximation ratio. Unfortunately, this bound is tight if one uses the greedy
maximum clique approach as we have done because it cannot approximate
clique partition better than the log n factor. To see that, consider the follow-
ing neighborhood of a node v, partially depicted in Figure 5.1. N(v) consists
of two rows of nodes ai above and bi below v, 1 ≤ i ≤ k, each row on a line
at distance exactly 1/2 from v. At each spot ai (or bi), there are actually
|ai| = 2i number of nodes. The neighbors of ai are bi and a total of ⌊k/

√
3⌋

other aj ’s. The same holds for the bi. An optimal clique partition would

82 CHAPTER 5. UDG EMBEDDING

group together the ai and the bi separately, resulting in four cliques. Now
let si = ai ∪ bi. A maximum clique in step j, on the other hand, is sk−j+1

because of the exponentially increasing sizes of the ai and bi. Therefore, the
greedy clique partition will contain k = O(log n) sets instead of 4. Therefore,
a constant approximation will need a completely different approach to locally
approximate clique partition on a unit disk graph. One such approach was
taken in [51], but the task was relaxed to finding a k-clustering: a partition
into clusters of diameter at most k. While it is not explicitly stated in the
paper, their solution only works for k > 1 and is thus not applicable in our
case. (N(v) is already a cluster of diameter at most 2.)

v 1

ai

bi

Figure 5.1: Instance where greedy maximum clique needs log n many cliques
in the neighborhood of node v.

As for embedding only the MIS, this might be as hard as embedding
trees. Ideally, a constant-approximation embedding of the MIS graph using
a combinatorial approach is desirable, yet it is unclear whether that goal is
even attainable.

Another dead-end for improvement is the use of volume-respecting embed-
dings for the metric. In [44], the authors show a lower bound of Ω

(√
log n

)

on the volume distortion even for a path. Thus, using this approach will
always give a poly-logarithmic instead of a constant approximation factor.

One issue overlooked so far is that of robustness. In [120], the authors ac-
tually provide a robust algorithm for the maximum clique problem in UDGs.
A robust algorithm in this case takes as input any graph and outputs either
a maximum clique or a certificate that the graph is not a UDG. We have two
steps where the unit disk property is essential. One is in the final embedding

5.5. DISCUSSION 83

of the non-MIS nodes where we make use of the robust algorithm [120]. The
other is the formulation of the linear program and in particular the spreading
constraints. Since we cannot guarantee that the MIS of any given graph will
fulfill the spreading constraints, we do not know whether a feasible solution
exists in that case. However, if the MIS does fulfill the spreading constraints,
a feasible solution will be found, otherwise we know that the input graph
was not a UDG. Therefore, our algorithm is essentially a composition of two
robust algorithms, resulting in a robust algorithm itself.

84 CHAPTER 5. UDG EMBEDDING

Chapter 6

Alternative Models

6.1 Network Models

It is clear that the unit disk graph is not the end of all wireless network mod-
els. As we have seen, despite its simplicity, it is NP-hard to even recognize a
graph as a UDG let alone embed it. So the question begs itself: What other
models are there? To what extent can we generalize and improve the unit
disk concept?

One could first ponder the possibility of embedding a general graph in
a UDG-like fashion. The following observations, due to [101], establishes
a connection between embedding and the chromatic number. It hinges on
the idea that finding a minimum clique partition is the same as coloring the
complement graph, that is, it formulates the general idea of the last step of
our algorithm involving clique partitions for general graphs. To define how
a general graph should be embedded, we want to keep the requirement that
non-edges should be farther than one unit apart. Then we ask how close can
the edges be embedded. Formally, we have the following.

Definition 6.1. For any graph G = (V, E), an embedding f : V → R
2 is

D-bounded if

{u, v} ∈ E ⇒ ‖f(u) − f(v)‖ ≤ D

{u, v} /∈ E ⇒ ‖f(u) − f(v)‖ > 1

for all u, v ∈ V . Define D(G) to be the minimum D such that there exists a
D-bounded embedding of G.

For unit disk graphs, D ≤ 1. For general graphs, we can establish upper
and lower bounds as follows.

86 CHAPTER 6. ALTERNATIVE MODELS

Lemma 6.1. Let D = D(G) for a graph G = (V, E). Then

√
λ√

2 · diam(G)
≤ D ≤

√
2λ (6.1)

where λ = χ(Ḡ), the chromatic number of the complement graph of G (i.e.,
Ḡ = (V,

(
V
2

)
\E).

Proof. The upper bound can be seen as follows. Consider a color in Ḡ. It
is an independent set in Ḡ and thus a clique in G. Then λ is equal to the
size of a minimum clique partition of G. Cliques can be placed on the same
point. A simple embedding places the λ cliques on a square grid of total side
length (1 + ǫ)(

√
λ− 1) and the longest distance is between opposite corners,

resulting in an extra factor of
√

2.
The idea for the lower bound is similar. Consider a D-bounded embed-

ding of G with smallest possible D. Then the smallest enclosing square S
which will contain all the embedded points of G will have side length at most
diam(G) · D. We can divide S into smaller squares with the property that
in each new cell, all nodes form a clique. Note that the non-edge require-
ment implies that if two nodes have distance less than 1 in an embedding,
then they are connected by an edge in G. The property then follows if the
cells have width 1/

√
2. Since each cell forms a clique in G, all nodes in it

are independent in Ḡ and can thus be colored with the same color in Ḡ.
Therefore, the number of colors of Ḡ is at most the number of cells, which is
≤ (
√

2 · diam(G) ·D)2.

Due to the link between D and the chromatic number, we can also show
inapproximability in general.

Theorem 6.2. For a general graph G, D = D(G) cannot be approximated
within n1/2−ǫ, unless ZPP = NP .

Proof. Given a graph G = (V, E), we can construct a graph G̃ = G ∪
K⌈n/2⌉,⌊n/2⌋ where we partition V , |V | = n, into two (almost) equal sets,
treat these as nodes of a complete bipartite graph, and add the additional
edges of E(G) to E(G̃). Then, by construction, diam(G̃) = 2. Consider
what happens to the chromatic number of G̃. Adding the edges of Kn/2,n/2

to any graph will increase the number of needed colors by a factor of at most
two (simply add one bit to the color of two conflicting nodes). Equivalently,
deleting those same edges will diminish the chromatic number by at most one
half. Hence, λ/2 ≤ λ̃ ≤ λ. Since the chromatic number is not approximable
within n1−ǫ, the theorem follows with Lemma 6.1.

Moving on to more specific graphs, it is conceivable that wireless net-
works, modelled on the graph level, contain particular properties which set
them apart from general graphs. The survey in [132] motivates and lists

6.1. NETWORK MODELS 87

several models which seem to lend themselves well to theoretical analysis.
Independently, we can distill those properties of unit disk graphs which were
necessary to ensure the approximation guarantees of the embedding algo-
rithm of the previous chapter. The analysis of Chapter 5.4 shows that there
are two main ingredients: that any MIS fulfills the spreading constraints
and that we can embed the one-hop neighborhood of any (MIS) node with-
out placing non-neighbors too close. The latter is straightforward in UDGs
because the number of cliques in the neighborhood of a node is at most a
constant and there is an algorithm which can compute a maximum clique in
UDGs without the use of a realization.

One network model, suggested in [82] and termed bounded independence
graph (BIG) in [132], generalizes the well-spread MIS idea. Let N(v, r) denote
the r-neighborhood of node v: the set of nodes at most r hops from v. Let M
be a maximum independent set in the subgraph induced by N(v, r). Then a
graph G is a (polynomially) bounded independence graph if, for all nodes v
and all 1 ≤ r ≤ diam(G), |M | = O

(
rd
)

for a constant d.1 From the discussion
of spreading constraints in Section 5.2.1, we immediately have that unit disk
graphs are polynomially bounded independence graphs for d = 2. The idea is
that the degree of the polynomial, d, represents the dimension of the graph.
In that sense, the BIG model extends one of the unit disk graph properties
to higher dimensions. Consequently, the spreading constraints (see Section
5.2.1) need to be reformulated to

∑

ui∈S

xuui
≥ κ|S|1+

1
d

since the average distance between two independent points in S around a
node is now in the order of |S|1/d. Notice that Lemma 5.5 becomes

∑

ui∈S

1

xd
uui

≤ log m

κd

so the target space for embedding is R
d. In contrast to the maximal indepen-

dent set, the remaining nodes cannot be placed such that the quality measure
is constant or even poly-logarithmic in general BIGs. This is a corollary to
the following lemma and Lemma 6.1.

Lemma 6.3 ([80]). There exists a graph on n nodes such that for a constant
d < 1, a maximum independent set M and a minimum clique partition P , it
holds that

|M | = 1 + 2/d + o(1) and |P | = Ω
(

n1−d/log n
)

.

1This definition can, of course, be generalized to arbitrary functions: G is an f-BIG
if |M| ≤ f(r) for each r and all nodes v.

88 CHAPTER 6. ALTERNATIVE MODELS

Proof. The existence of such a graph can be shown via an application of
the probabilistic method. Let Gn,p = (V, E) be the graph on n nodes
where each edge is included, independently, with probability p. Denote by
I(k1) the random variable counting the number of independent sets of size
k1. Then I(k1) =

∑

S∈(V
k1

) IS where IS is the indicator variable for set

S being independent with Prob[IS = 1] = (1 − p)(
|S|
2). Further denote by

C(k2) the random variable for the number of cliques of size k2. Analogously,

C(k2) =
∑

S∈(V
k2

) CS with the probability Prob[CS = 1] = p(|S|
2). Then, by

the linearity of expectation, we have

E[I(k1)] =

(

n

k1

)

(1− p)(
k1
2) < nk1 · (1− p)(

k1
2)

E[C(k2)] =

(

n

k2

)

p(k2
2) < nk2 · p(k2

2)

which we can combine with Markov’s Inequality

Prob[I(k1) ≥ 1] ≤ E[I(k1)]

Prob[C(k2) ≥ 1] ≤ E[C(k2)].

Now we can choose appropriate values for k1, k2, and p such that both

E[I(k1)] < 0.5 and E[C(k2)] < 0.5 (6.2)

hold. This implies that Prob[I(k1) ≥ 1 or C(k2) ≥ 1] < 1, or equivalently

Prob[I(k1) < 1 and C(k2) < 1] > 0 (6.3)

which states that there exists a graph where the maximum independent set
has size less than k1 and the maximum clique contains less than k2 nodes,
implying that a minimum clique partition needs at least n/k2 cliques.

It remains to examine the possible values for k1 and k2. The goal is to have
a constant-sized MIS and a large clique partition. Now choose p = 1− n−d

for a constant d < 1. Then the condition in (6.2) becomes

E[I(k1)] < nk1 ·
(

1

nd

)(k1
2)

< 0.5

which holds if we choose k1 such that

k1 ≥ 2

d
+ 1 +

ln 2

ln n

which can be fulfilled for a constant k1. For the cliques, we need

E[C(k2)] < nk2 ·
(

1− 1

nd

)(k2
2)

< 0.5,

6.1. NETWORK MODELS 89

taking the logarithm gives

k2 · lnn +

(

k2

2

)

ln

(

1− 1

nd

)

< − ln 2

where we can approximate ln (1 + x) ≤ x so that the above condition is
equivalent to

ln n +
ln 2

k2
< (k2 − 1)

1

2nd

which can be fulfilled for a k2 in O
(
nd log n

)
, proving the lemma.

Instead of increasing the dimension as we have done with the BIG, we can
change the underlying metric space. For instance, we keep Definition 2.2 but
generalize Definition 2.1 to require that the embedding f maps into R

2 but,
instead of the l2 norm, there can be a different metric ρ associated with it.
The target space does not even need to be R

2. If ρ is a doubling metric, then
the resulting graph has been coined a unit ball graph (UBG) in [85]. A metric
is a doubling metric if every ball of radius r can be covered by a constant
number of balls of radius r/2. The ball here refers to the points in the metric
space, not the graph metric. In general, we can associate to each metric a
doubling dimension which is the smallest d such that every ball can be covered
by at most 2d balls of half the radius. The above definition of UBG requires
a metric with a constant doubling dimension, which the l2 norm certainly is.
Since a UBG is a BIG [81], the spreading constraints for any MIS apply and
the first part of the algorithm remains the same. As for the placement of the
non-MIS nodes, the constant doubling dimension ensures that the minimum
clique partition is bounded by that constant. An approximation ratio of a to
clique partition will increase the overall approximation ratio of the embedding
by that factor a. In fact, the algorithm in [120] used for computing the
maximum independent set (of a neighborhood) also applies to UBGs in two
dimensions. Note that the above discussion implicitly assumes that the target
embedding space for an algorithm is Euclidean and not the original metric
space for which the UBG was defined (in particular, see Sections 5.4.1 and
5.4.3). So far, the focus of the literature has been on taking any (finite) metric
and embedding it into l2 for a particular dimension. One could contemplate
the worth of computing an embedding of the nodes of the unit ball graph into
the metric for which it was defined, along with what the application domain
in this case would be.

The quasi unit disk graph (qUDG) model has been proposed as a gen-
eralization of unit disk graphs [20, 89]. A graph G = (V, E) is a d-qUDG,
for d ∈ (0, 1], if there exists an embedding f such that ‖f(u) − f(v)‖ ≤ d⇒
{u, v} ∈ E and ‖f(u) − f(v)‖ > 1 ⇒ {u, v} /∈ E. The behavior between
d and 1 is not specified. Again, the term embedding can be considered in
the original sense or with the alterations discussed above. The range of the

90 CHAPTER 6. ALTERNATIVE MODELS

resulting combinatorial graphs is wide. If d = 1, then we have the standard
unit disk graph. If d → 0, then G tends towards a general graph. If we fix
d, then G is a UBG [132]. The lower bound for UDG embedding [84] can be
stated in terms of quasi unit disk graphs: It is NP-hard to embed a d-qUDG
as a d′-qUDG with d′ ≥ 1/

√
2 such that d′ > (

√

2/3)d. It is an open question
what kind of graphs result for other ranges of d.

Going in the other direction, instead of embedding more general graphs,
we could restrict the types of unit disk graphs under consideration in order
to potentially simplify the problem. We could imagine that certain network
characteristics (such as density or other degree bounds) can be defined such
that we can give a simple algorithm with strong guarantees. We already
saw from the simulation results and the discussion in Chapter 3 that when
densities are high, the network is “nice” so that a single heuristic works well.
Several other simulation results from prior work, as discussed in Chapter 2,
bear further witness to this fact. The goal is to give these results a theoretical
underpinning. A likely source for an explanation is illustrated in [90] where
simulations show that the ratio of the span of a shortest hop path approaches
1, in particular, starting at node densities of around 10 nodes per unit disk
on average. The span is defined as the ratio of the length of the (weighted)
shortest path in the graph to the actual distance. In other words, the true
Euclidean length becomes proportional to the graph distance between two
nodes. As this discrepancy was one of the fundamental difficulties in the
embedding of general unit disk graphs, we can ask, at least on average, how
much easier the problem becomes. Further support for this approach can be
found in [6] which, among other things, investigates the rigidity properties of
random geometric graphs. It is shown that, if n nodes are randomly deployed
in the [0, 1]2 square by a Poisson process and the radius r of connectivity is

chosen such that r ∈ O
(√

log n/n
)

, then the resulting (unit disk) graph is

globally rigid and thus uniquely realizable with high probability and such
a realization can be found efficiently. The expected time until all nodes
have computed a position depends on the density of the anchors nodes, with

the longest time in O
(√

n/ log n
)

for the case of three anchors within each

other’s transmission radius. It remains to be seen how to take this analysis
further to other degree and diameter combinations as well as how to extend
this to approximation algorithms instead of unique realizability.

In a completely different point of view, fundamental results in the theory
of wireless networking suggest to move away from the graph and on to a
physical model [61, 103]. The reason for this view is that a graph model is
inherently static and binary with respect to the existence of a link between
nodes. Since the network is assumed to have a purpose, the ongoing commu-
nication, stemming from the application, changes the physical characteristics
of the wireless “connection” between two nodes. A premium model that de-
scribes this effect is the signal-to-interference-plus-noise (SINR) model [123]

6.2. APPROXIMATION QUALITY 91

which describes the physical characteristics necessary for the reception of a
signal. It states under what conditions communication is possible. The main
motivation is that communication of other nodes causes interference which
should be modelled as a continues variable affecting all other nodes. The
key observation is that the “links” change even if all the nodes are static.
Since the problem of embedding a network is only concerned with the static
(or at least current) geometric layout of the nodes, this additional consider-
ation of communication effects is irrelevant. In fact, it is only the distance
between sender and receiver which is of main concern. The definition of the
task then depends on the input. If the distance between (all or some) nodes
are known then this is exactly in the domain of metric embeddings and is
trivial if all pairwise Euclidean distances are given. If the input comes in
any binary form describing the physical effects on the links, such as a graph
(for each time step, for example), then it is not clear whether any reason-
able embedding can be computed at all. Should a different embedding be
computed for every time step? Or one embedding after a certain amount of
time? What if different communication request patterns produce completely
different embeddings for the same static layout of the nodes? The conclusion
here is that physical models are suitable for studying the communication
characteristics of wireless networks, but not static properties such as their
geometry or layout.

6.2 Approximation Quality

One could imagine alternatives to our definition of the approximation qual-
ity of a virtual coordinates algorithm (cf. Definition 2.3). For instance, we
could consider the following simple measure. Suppose we have computed an
embedding f of G = (V, E), a unit disk graph. Then we count the number
of node pairs which are embedded incorrectly:

w = |{{u, v} /∈ E | ‖f(u) − f(v)‖ ≤ 1}|+ |{{u, v} ∈ E | ‖f(u) − f(v)‖ > 1}|

and define the quality of f as

Q̃(f(G)) :=
w
(

n
2

) (6.4)

because there are
(

n
2

)
node pairs with n = |V |. In other words, we do not

care by how much a distance is distorted, only how many of them. This
type of definition makes sense in other areas of computational complexity.
For instance, consider the NP-hardness proof [29] and its reduction to 3SAT.
The MAX3SAT problem variant, while also NP-hard, considers the task of
maximizing the number of true clauses. For the virtual coordinates problem,
we can give an embedding f such that Q̃(f(G)) = 2 for any UDG G. Let
m1 = |E| and m2 =

(|V |
2

)
− |E|. If m1 ≥ m2, then there are more edges than

92 CHAPTER 6. ALTERNATIVE MODELS

non-edges and we embed all nodes as a clique, that is, all nodes are placed
arbitrarily inside a circle of unit diameter. Then w = m2 ≤ (m1 + m2)/2.
Otherwise, m2 > m1, and we embed the nodes on a line at distance, say,
2, that is, f(vi) = (2i, 0). Then w = m1 < (m1 + m2)/2. In either case,
Q̃(f(G)) = 2.

The difference with the quality definitions is most apparent when we
consider what the above discussion implies for the complexity of the UDG
embedding problem. With the definition of Q̃, the virtual coordinates prob-
lem lies in APX. On the other hand, using our original definition, it is not
clear whether there is such a polynomial-time constant approximation algo-
rithm. We are tempted to conjecture that no such algorithm exists. Any
other alternative embedding quality definition must somehow have a “sense
of scale.” It must necessarily involve the actual distances in the embedding
since both the definition of UDG as well as the problem involve distances in
R

2.

An example of an approach which combines measuring distance distortion
with the number of distorted distances is given by Kleinberg et al in [35, 75].
They introduce the notion of slack which is the percentage of all distances
which are not embedded correctly. However, motivated by Internet latency
measurements, the input to their problem is not a unit disk graph, but rather
a subset of inter-node distances [75] or other general metrics [35], in particular
those of low doubling dimension. In the field of study of metric embeddings,
they are able to show that any finite metric can be embedded, with constant
slack and constant distortion, into constant-dimensional Euclidean space. It
might be worthwhile to consider a similar notion of approximation in the
unit disk graph case where we ask how much slack is necessary for a constant
quality embedding.

Given that geometric routing is a distinguished motivation for studying
virtual coordinates, we can define the quality of an embedding in terms of
its effect on routing. In fact, already [122] considered constructing coordi-
nates for the expressed purpose of georouting. Recently, evidence has been
mounting [133, 134] that already small errors in the location of nodes leads
to a significant degradation in the performance of geometric routing as far as
successfully reaching the destination is concerned. A good embedding algo-
rithm in light of georouting can be defined in several ways. One goal would
be to compute virtual coordinates such that optimal georouting is still possi-
ble. In the quasi unit disk graph model, it is known that optimal georouting
is possible for d ≥ 1/

√
2 if G is a d-qUDG [89]. On the other hand, the

lower bound [84] states that embedding G as a d-qUDG for d >
√

2/3 is
NP-hard. Thus we have a narrow gap of embedding G to ensure optimal
routing performance.

Instead of looking for an optimal geometric path, one could request that
the coordinates represent the network sufficiently such that a greedy forward-

6.2. APPROXIMATION QUALITY 93

ing strategy will always succeed if the graph is connected. In other words, the
virtual coordinates do not necessarily need to reflect the actual coordinates
(if the input graph was a UDG), but they should reflect the routing structure
of the graph. Two existing approaches go in that direction. In [145], the idea
is to determine a (small) set of anchors from which the other nodes compute
their “positions” as a vector of hop distances to all anchors. The goal is to be
able to use the greedy routing paradigm in order to route on these positions.
More generally, the aim of compact routing schemes (for instance, see [140])
is to encode the graph or specifically the routing structure as compactly as
possible at each node. This can be done either in form of a label chosen for
the node, or, in the so-called name-independent version, as local storage. All
of the above described mechanisms have nothing to do with the input graph
being a unit disk graph. The objective of these algorithms is geared specif-
ically towards optimizing the routing process instead of obtaining a general
“picture” of the graph where routing is only one of the applications. Since
routing on networks is in itself already a complex problem, in particular in
the face of mobility, we will now turn our attention to it in the second part
of the dissertation.

94 CHAPTER 6. ALTERNATIVE MODELS

Part II

Mobility

Chapter 7

Mobile Networks

Why are wireless ad hoc networks such a hot research topic? The two main
difficulties, decentralization and dynamics, are already present in the Inter-
net. Routers and cables are largely provided by autonomous systems with
their individual business goals; the hardware infrastructure, both on a global
scale as well as in local area networks, is subject to failure and user reconfig-
uration. The aspect which wireless ad hoc networking brings into the picture
is that it greatly magnifies these challenges. Every node can be seen as its
own, perhaps even selfish and malicious, autonomous agent. Initially, the
nodes might not even be aware of each other, with no bootstrapper to con-
tact. Nodes are allowed to move around in an unpredictable fashion. Wire-
less links are more unreliable than cables. All these issues promote network
dynamics in every sense from a side concern to a major research task.

If we consider networks to be mobile (or, more generally speaking: dy-
namic), then “mobility” is an integral part of all network tasks. It is not an
isolated issue which we can consider solely on its own. The point of view we
adopt in this dissertation is that mobility should be seen in terms of its effect
on network operations. After pessimistic results about the limited capacity
of wireless networks [61], follow-up work has shown that mobility can in fact
increase the capacity [58]. Another positive effect is the use of mobile robots
to enable computations which might otherwise prove intractable [119]. On
the other hand, if mobility is completely outside of our control, then its effect
is often negative. A node might have to perform an expensive recomputation
of its routes if some nodes move out of its communication range. In this
part of the dissertation, will focus on this adverse aspect of mobility: the
additional costs it places on the nodes.

The fact that mobility is a common ingredient of all wireless ad hoc
network problems makes it a key research issue but at the same time difficult
to capture. Thus, one strategy to overcome this difficulty is to narrow down
the scope. We will focus on one of the quintessential tasks in communication

98 CHAPTER 7. MOBILE NETWORKS

heuristic ad hoc
routing protocols

provable dynamic
graph algorithms

you are here

Figure 7.1: Orientation map for Part II.

networks: routing. The central theme of this part of the dissertation can now
be refined to the question of how mobility changes the way we need to look at
routing. We want to approach the topic from a theoretical angle because, up
to this point, there is no consensus on which practical application scenarios
will dominate the use of mobile ad hoc networks (MANET). Even the IETF
MANET working group currently specifies both a proactive and a reactive
routing protocol [34] in order to be prepared for any type of mobility. Our
mind set is best described by a picture as in Figure 7.1. On the left, we have a
virtual jungle of protocol suggestions for MANETs, all of which fail to make
any general performance and cost guarantees. On the right, we have the set
of proposed algorithms for various tasks in dynamic graphs along with their
complexity proofs. Unfortunately, the latter often impose unrealistic or too
harsh restrictions and provide impractical guarantees. Ultimately, what we
strive for are provable statements which are specific enough to sort out the
key routing concepts and general enough to learn the fundamentals of the
mobile routing process.

7.1 Definitions of Mobility

Perhaps the biggest challenge facing researchers studying wireless networks
today is the task of capturing their dynamics. Connections are unstable due
to the inherent properties of wireless links; users are mobile and can move in
and out of each other’s transmission ranges. So how exactly does one define
mobility?

On a first level, we must distinguish scenarios by how much mobility is
within the network administrator’s control. In some cases, we can introduce
a mobile entity, such as a roaming robot, into a static network to simplify or
even make possible certain tasks [119]. In other cases, all the nodes may be
mobile and they await instructions from the network in order to control their
paths, as in the task of motion coordination [98]. In contrast, we look at the
case where mobility is completely outside of our control. The mobility of the
wireless network is given in combination with the dynamic link properties.
Since agreement on real-world application scenarios and their implications
for network characteristics is still lacking, we must attribute a large degree
of unpredictability to the way that a dynamic ad hoc network changes over
time.

7.1. DEFINITIONS OF MOBILITY 99

7.1.1 Mobility Models

One option to define mobility is by specifying a typically randomized al-
gorithm which describes the path of nodes, usually moving about in the
Euclidean plane. These so-called mobility models are the literature standard
for evaluating ad hoc routing algorithms in simulation. We will briefly sur-
vey the most common ones and otherwise refer to overview articles such as
[33, 128] for more details. It is important to note that these models are
specific to wireless ad hoc networks. In the case of cellular networks which
involve mobile users and fixed base stations, there has been significantly more
progress [146], probably due to the availability of concrete use cases. In the
descriptions below, it is usually assumed that the simulation area is bounded
and nodes move with fixed velocities. Both cases can be extended. There has
been work on boundless simulation area models [62] as well as on including
an acceleration process [22].

One of the earliest models to describe chaotic motion is the random walk
(RW) model, also known as Brownian motion. Each node picks a velocity
(within given bounds) uniformly at random and follows that for some time
t. The choice is independent of the node’s history. There are numerous
refinements to the concept, such as the probabilistic version in [36]. The
random direction (RD) model [125] is basically the same as the random walk
model above, except that a node follows its path to the boundary of the
simulation area, pauses there for some time (chosen randomly within given
bounds), and then chooses its new velocity. In the Gauss-Markov (GM)
model [141], the focus is more on movement changes. At fixed time intervals,
for each node, a new velocity is chosen based on the current value and a
tuning parameter given by the input. This allows for a variety of movement
patterns which produce smoother node traces than the above two models.

The most common mobility model currently in use for simulation and
analysis is the random waypoint (RWP) model. Its description is simple:
Each node chooses a random location in the simulation area, goes to that
point in a straight line with random speed, and then pauses for some random
time. The speed and pause times are usually given in terms of an upper and
lower bound, and both are chosen uniformly at random within that interval.
A major drawback for using models such as RWP in simulation is that the
configuration of nodes evolves; after some time, the nodes cluster in the
center and are thus not spread out uniformly over the simulation area. This
so-called steady state is reached only after a significant number of simulation
steps. In [95], the authors give an analytical framework for deriving steady
state properties, shown in particular for the RWP model. They highlight the
main deficiencies in standard simulations, speed decay and a long time to
reach steady state. The steady or “stationary” state is also discussed in [94].
Further refinements to the above models and RWP in particular have been
proposed, most notably the introduction of obstacles [68].

100 CHAPTER 7. MOBILE NETWORKS

We can identify another set of models which contains what we term a
social component. The most prevalent concept is that of group mobility [2,
66, 92]. Instead of all nodes moving individually and independently, we can
think of clustering the nodes into groups. These can be fixed for the entire
time in question or nodes might be able to migrate from one to another under
certain conditions. All the nodes within the group may travel with the same
velocity, or they can randomly move around a group leader within certain
bounds. Another socially motivated concept is to restrict node movement to
certain lines representing city streets or highways [40, 99].

The above discussion shows that the mobility models widely used today
(in simulation and separate analysis) have one or more of three main ingre-
dients: randomness, geometry, and social components. The primary goal of
Part II of this thesis is to move away from all of those assumptions and to
look at mobile routing from as general a view as possible. We are interested
in the behavior of algorithms in a worst-case sense, since we do not believe
that real-world applications generally exhibit nice uniform randomness prop-
erties. We also do not believe that geometry alone captures the complexity
of the physics of wireless links, regardless of the interference which arises due
to communication.

“Worst case” mobility is considered in [131], but the nodes are allowed to
adapt their transmission ranges such that they are significantly greater than
the speed or acceleration in order to ensure stable links over time. Thus,
the effect of mobility on the actual communication graph is diminished. In
[43] and other follow-up work, the authors model a set of stationary nodes,
called virtual nodes, in terms of the actual moving nodes. Unfortunately, no
analytical bounds for non-average cases are given and the model needs to be
developed further to show its use for routing and other applications.

7.1.2 Mobility Metrics

The above mobility models give a description of how to produce a particular
set of traces or paths in time for the nodes. Different patterns can also be
produced with different input parameter values. What they lack is a com-
mon denominator to describe “how much” mobility a particular instance has.
It should also enable a standardized comparison between different models.
What we need is a mobility metric in order to describe the amount of dynam-
ics an application has to deal with. It should convey the relative difficulty of
a scenario.

Initial work in this direction [30] suggests to use pause time, the length of
time that nodes remain stationary between movements, as a characterization
of mobility. Later, [33] evaluates the DSR [70] routing protocol under differ-
ent mobility models where the measured quality values are a function of the
node speed. This suggests that node speed is the key parameter governing
the quality of the mobility models. Unfortunately, both approaches are too

7.1. DEFINITIONS OF MOBILITY 101

simplistic as shown in later work (see, for instance, [128]) and are by far not
general enough to cover all of the aforementioned models.

A first step towards a mobility metric is taken in [93]: They propose to
measure the change in average distance Av from one node v to all other nodes
between successive simulation time steps (∆t). This is then averaged over the
whole simulation time T and all nodes. In follow-up work [69], they suggest
to use relative node speed : Determine relative velocity between two nodes at
a given time, take the length of that vector (speed) and average this over the
whole simulation time and all nodes. A small experimental evaluation shows
a linear correlation between the mobility (in their measure) and the average
number of link changes. Later, Kwak et al [91] find that this does not hold
generally, and they take these ideas further to define an abstract mobility
measure which greatly correlates with the number of link changes. In other
words, it is ultimately the number of link changes which the mobility metric
describes.

The study in [142] shows that the expected route lifetime is the important
mobility metric. The obvious difficulty lies in calculating as well as measuring
it in large-scale simulation. They claim that it can be estimated with the
minimum hop lifetime of the network; this was shown not to be the case in
[128].

Finally, the focus has shifted on identifying the effect of mobility on rout-
ing protocols. [17] highlights different geometric characteristics of mobility
models and studies the effects of mobility on the connectivity graph and
thus on routing. For the connectivity graph metrics, the authors find the
following: 1) average link duration is higher for group mobility models; 2)
the same holds for the average shortest path duration; 3) average number
of link changes does not differentiate between the models; 4) average path
availability (i.e., whether nodes are connected) is high in most cases (oth-
erwise routing is not interesting anyway). In summary, (1) and (2) imply
that the metrics “average link duration” and “average shortest path dura-
tion” create different dynamic graphs and can thus be used to differentiate
between mobility models on the connectivity level. Interestingly enough, de-
spite identifying the above graph properties, the routing protocol evaluation
is still based on the maximum speed concept. The results are as expected:
No single protocol has highest throughput and lowest overhead, the proactive
(DSDV [115]) and reactive (AODV [116] or DSR [70]) intersect at different
speed values. In other words, again there is no global mobility measure,
absolute speed values specific to the scenarios are used instead.

In [18], a follow-up on [17], the authors give more detailed statistics of
link and path duration. Also, with simple analytical models, they show
that the overhead (and throughput) of DSR is inversely proportional to the
average path duration. This time, path duration is defined properly over all
paths and not just the shortest path. However, in their simulations, they

102 CHAPTER 7. MOBILE NETWORKS

take (equally-spaced) snapshots of the graph and consider the (currently)
shortest path instead of all paths.

The master’s thesis [128] also aims at studying the effects of mobility
on reactive routing. The main conclusion, as we also know from earlier
work, is that the path lifetime is a critical mobility parameter, yet hard to
measure and/or estimate. It proposes a heuristic method to estimate the
route life time (RLT) distribution of the shortest path between two random
nodes. This is done by estimating the link life time as well as the distance
distribution of the nodes. The median of the distribution is then used as a
measure of mobility hardness. From the simulation, the thesis concludes that
the RLT distribution (and in particular his measurement of it) alone is not
enough to measure the effects of mobility on routing, but that the concept
of route life time is nonetheless a key ingredient.

These last mentioned papers are the most recent and also most relevant
to our ideas, as we will deal with mobility in terms of its effect and not its
generation. However, all the above works tend to focus on a single mobility
parameter, instead of focusing on the coupling with routing, despite the
fact that [128] points at that the problems stem from unknown actual users
movements as well as communication patterns, i.e., route requests. That is
why we propose to study the mobility ratio in Chapter 9, putting the effects
of mobility in relation to route requests.

7.2 Ad hoc Routing Protocols

As our central topic is mobile routing, we move our discussion of related
work from mobility models to routing protocols. In the Internet, there is a
hierarchy which leads to highly organized routing. Ad hoc networks, by their
very nature, are flat, and we are free to impose whatever control structures
on the network we choose. We will survey some of the main routing proposals
for homogeneous dynamic networks in this section.

7.2.1 Mobile Routing Heuristics

We will first give a brief overview over the common concepts and some pro-
tocols found in the literature on mobile ad hoc routing protocols. We refer
to [64] for a comprehensive fairly recent survey, and, to a lesser extent, to
[30, 121] for older works. Note that the emphasis in this subsection is on
heuristics; the next subsection will briefly mention some results on rout-
ing algorithms for which performance guarantees have been given. We will
mention crossreferences between the heuristics and the algorithms where ap-
plicable.

The first proposals for mobile routing stem from adaptations of fixed
infrastructure routing algorithms to handle the increased dynamics of ad hoc
networks. Thus it is not surprising to find the concept of proactive protocols:

7.2. AD HOC ROUTING PROTOCOLS 103

Nodes respond to changes in the network as soon as they are detected in
order to keep their routing tables up-to-date. The most prominent protocol is
DSDV (Destination-Sequenced Distance Vector) [115], which we can describe
as “distance vector goes mobile.” It focuses on how to modify standard
Bellmann-Ford type routing mechanisms to avoid loops. Basically, this is
what early routing focused on: loop freedom in the face of high dynamics.
The link reversal algorithms, described in Section 7.2.2, technically also fall
into this category, since they are basically proactive and loop freedom was
the main property (until costs were investigated much later).

As the mobility under consideration increased, researchers turned more
towards reactive or on-demand protocols. Instead of keeping data structures
current, the nodes only deal with finding and updating their information as
route requests come in. Thus the focus shifted from responding to mobil-
ity to responding to route requests. One of earliest proposed reactive ad
hoc routing protocol is DSR (Dynamic Source Routing) [70, 71], where the
source keeps a list of cached paths to each destination and floods if old routes
do not work. See also [33] for more simulation results for various mobility
models. The link reversal concept (discussed below in Sec. 7.2.2) has been
put into practice by TORA (Temporally-Ordered Routing Algorithm) [114].
The main proclaimed advantage of link reversal is that it avoids flooding.
The heuristics in TORA are necessary for dealing with partitioning and link
joining problems. Perhaps the most popular protocol, right next to DSR, is
AODV (Ad hoc On-demand Distance Vector), first described in [116]. It is
the reactive counter-part to DSDV in that it adapts distance vector to deal
with mobility, but in a reactive instead of proactive fashion. Its main con-
ceptual difference to DSR is that the routing is done point-to-point, instead
of writing the entire route into the packet header as with DSR.

In between proactive and reactive routing there is also the notion of hybrid
protocols such as ZRP (Zone Routing Protocol) [63] and IZR (Independent
Zone Routing) [126]. The idea is to define clusters (zones) in which to route
proactively and outside of which to route reactively. There has also been
a discussion of hierarchical-type ad hoc routing, which we can essentially
describe by clustering approaches. For example, routing can be done via
a backbone that is formed by a dominating set [87]. The biggest problem
with this approach is how to maintain the clusters in the face of mobility.
Also, the compact routing paradigm can broadly be classified as hierarchical
routing. See for instance [1] as one of the recent papers on compact routing
for general graphs. Briefly, the basic idea is that we want information simi-
lar to that provided by distance vector, but with considerably less memory
overhead. Since routing tables are kept short by storing a only limited in-
formation about distant nodes, usually called landmarks, we can see this as
forming a suitable routing hierarchy. These landmarks are then responsible
for the local routing. In static graphs, a good selection of landmarks can be

104 CHAPTER 7. MOBILE NETWORKS

guaranteed. The problem is updating and maintaining these fairly complex
data structures. In dynamic graphs, it is not clear how much of this infor-
mation can be retained if mobility is more than a few local changes. So, in a
way, the hybrid protocols are the heuristic mobile counter-part to (dynamic)
compact routing efforts, discussed further in Section 7.2.2.

For the case of highly mobile networks, the recent work of [4] looks at
different routing strategies for what they term “extremely mobile networks”
where the network may never be one connected component, but there exists
a “communication path” in time. They propose to route via an information
aging strategy (FBG = Forward to Best Gateway), the effectiveness of which
in random instances is shown by simulation.

Another approach which falls somewhere between this and the next sec-
tion is what has been called dynamic addressing [47]. In the spirit of virtual
coordinates, nodes have a permanent ID as well as a transient routing ad-
dress, indicating its location in the network. The routing scheme proposed
in [47] is proactive. The idea is similar to the P2P approach [3] of a hi-
erarchical organization with binary addressing, as well as dynamic distance
labeling [77]. Virtual coordinates solely for the purpose of routing can also
be found in [145], but only for special network topologies. While the last two
mentioned papers are of theoretical nature, trying to tie down the model and
give analytical bounds, [47] describes a heuristical approach and evaluates it
for randomly and mostly uniform networks.

7.2.2 Dynamic Routing Algorithms

The protocols cited so far have been heuristic proposals, some dynamic rout-
ing algorithms with provable guarantees of one sort or another have also been
proposed. We will briefly take a look at some of the currently known results.

The above mentioned idea of compact routing, or its companion problem
of distance labeling, has seen its first adaptations to dynamic graphs. In
a first step, [78] looks at dynamic labeling in trees. The main drawback
is that dynamics are restricted so that the tree can only grow and shrink
at the leaves. Dynamic routing in general graphs has been looked at only
very recently [77]. Again, the price we pay for having provable guarantees
is a weak model: Edges are allowed to change their weight by one unit (but
not be deleted or added), and the graph has to remain stable for a while.
The second part is similar in spirit to distinguishing the routing and the
mobility phases as we do in Chapter 9. The first part goes in the opposite
direction of ours, since we are interested in deletions and additions but do
not yet consider weight changes. Interestingly enough, message complexity
for the update procedure is dominated by D, the local density, which also
plays a key role in our analysis of Chapter 9. The basic idea of [77] is to keep
information spread throughout the graph at exponentially growing distances,
and the goal is to have a routing scheme with low storage overhead as well

7.2. AD HOC ROUTING PROTOCOLS 105

as low stretch.
Also recently, [5] considers routing on specific topologies (hypercube,

mesh) when edge faults occur at random, that is, mobility is modelled as
an edge fault probability.

One direction to deal with dynamic routing is to assume that nodes will
want to send large streams of data and thus the goal is to optimize through-
put. It started as flow considerations [12, 9] where the source keeps sending
packets to the destination. The main idea is that of local balancing: If a
neighbor has a shorter queue than me, then send the packet to him. We
can also view this as a potential function. It can be shown that if a feasible
flow exists, then such an approach will find it, despite adversarially chang-
ing edge capacities (because a path with a potential drop exists given that
the destination is constantly absorbing packets). These ideas culminate in
[10], which is basically optimal with respect to worst-case throughput. Intu-
itively, competitiveness is achieved because if the adversary wishes to harm
the algorithm, it has to harm a lot of paths, in which case also the optimal
path is long. Note that the competitive ratio is with respect to one fixed
(best) path. It also builds upon [11] which looks at continuously finding the
shortest path by getting feedback from the network, also effective against an
adaptive adversary.

The heuristic idea of information aging discussed above ([4]) forms the
basis for Last Encounter Routing. It has been shown analytically to perform
well for the random walk [59] and random waypoint [127] mobility models.

The link reversal approach to dynamic routing dates back to 1981. In-
stead of maintaining complex routing tables, the edges are turned into di-
rected links which ultimately produce a directed acyclic graph where the
(single) destination is the unique sink in a steady state. The implementation
can be done via a height or potential function. (Thus, we can see this as the
single-packet counter-part to the local balancing approach above.) Initially,
this approach was shown to stabilize in a finite number of steps [54]. More
than twenty years later, [32] analyzes the time and message complexities of
the total and partial link reversal algorithms for the recomputation of heights
to produce another correctly oriented graph.

7.2.3 Dynamic Graph Algorithms

Networks are typically modelled as graphs, where links represent the abil-
ity to communicate between nodes. Dynamic graph algorithms have been
around long before the fairly recent trend of ad hoc networking research.
Consequently, a variety of standard graph problems have been studied in
which the graph may change over time (see, for instance, [27, 46, 50, 56]).
A related area to ours is that of peer-to-peer (P2P) networks. There, the
dynamics stem mainly from the frequent and abrupt leaving of old peers and
joining of new peers. Maintaining efficient data structures in the face of high

106 CHAPTER 7. MOBILE NETWORKS

churn has also been looked at, where [86] provides worst-case guarantees, but
only for a bounded number of nodes which can join or leave in each phase.

7.3 Roadmap

Before providing an outline for the remainder of this part, we should mention
a few words on the motivation for the abstractions we will use. First of
all, we must establish what the goal of a routing algorithm for a wireless
ad hoc network is. Should it be energy, delay, or even bandwidth? The
latter is unlikely, especially in comparison with the current standards which
customers of fixed networks are accustomed to. In order to achieve high
throughput, working on more stable wireless technology seems to be a key
first step. If speed, or message delay, is the main criteria, then a solution such
as flooding every time might be best. However, a large energy drain currently
seems to be one of the biggest concerns of wireless networks; and sending a
message over a wireless link is costly. Therefore, the message complexity of a
routing algorithm is a good candidate to give an indication of the protocol’s
performance. In order to isolate the issue, subsequently we look at routing
individual packets, not entire streams. The focus is on the overall energy
spent by the network in order to service the route requests.

Second, the above statement that flooding is the method of choice if we
want fastest delivery of messages from their source to their destination needs
to be put into proper context. The statement is only definitely true if we
isolate the routing layer. But what if we add collisions and interference to
our network model? In order to truly optimize and understand the rout-
ing process, we need to consider the entire picture of wireless networks, in
particular, we must include the link layer. The interaction between routing
and MAC protocols has been studied via simulation in [19], with the conclu-
sion that no single protocol from a layer was predominantly better; nor was
any combination best over all parameters governing the mobility models and
route requests. Again, as a first step, our focus in this dissertation rests on
the network layer, since the lower layers, most prominently the MAC layer,
are entire research areas in their own right. We fully realize that, ideally,
the two need to be looked at together. We leave this open as a challenge for
future research.

We tackle two questions in this part on mobility. The first asks what is
feasible in extremely mobile networks. In this sense, Chapter 8 asks when
and how flooding is possible under most severe conditions possibly caused by
mobility. The results are partially based on the preliminary work found in
[112] with major extensions and minor improvements. As a reaction to [112],
the authors in [138] further distill the properties necessary to successfully
flood the entire mobile network. The next question concerns the relative
advantages of proactive versus reactive routing and is answered, to an extent,

7.3. ROADMAP 107

in Chapter 9, the contents of which have not been published elsewhere. An
indispensable element in the analysis is a careful definition of how to measure
the amount of mobility and the efficiency of a routing algorithm. Only then
is it possible to compare these two at first glance disparate mobile routing
paradigms.

108 CHAPTER 7. MOBILE NETWORKS

Chapter 8

High Mobility

At the start of our journey into the domain of mobile ad hoc networks, we
ask what is possible at all if the network changes haphazardly and does so
at a high rate. We see mobility on the graph level, that is, in terms of its
effect on the links, and we initially abstract away any geometric (or social)
realization. Thus, the first crucial step is to define our model properly. If
mobility and communication links are completely arbitrary, then we cannot
guarantee anything. We need to keep the model as general as possible to
allow for maximum applicability and at the same time leave room for rigorous
analysis. We proceed by incrementally adding those assumptions which are
necessary in order for any algorithm to a priori have a chance to reliably
propagate information from one part of the network to another.

Initially, we will consider flooding (a.k.a. broadcast) as a basic application
involving the entire network. Flooding is a key back-up ingredient of virtually
all mobile routing algorithms; and if flooding does not do the job, then what
else would? We focus on a single message to be delivered instead of looking
at flow or throughput considerations. Our goal is to have provably correct
algorithms which at the same time require only finite amounts of energy. We
will give several algorithms which fulfill these criteria given that the nodes
have some minimal amount of knowledge about the network, such as its size.

8.1 Model

A static network is a graph G = (V, E). A mobile network or dynamic
graph is a sequence of static graphs: G = Gt0 , Gt1 , Gt2 , . . . , with ti+1 >
ti ≥ 0 and where Gt = (V, Et) is a graph. In particular, the set of nodes V
remains fixed while the set of undirected links Et can change arbitrarily. The
only requirement is that Gt be connected for all t. Unless explicitly noted
otherwise, we assume that the nodes have no knowledge of their current
neighborhood. In fact, nodes are allowed to store only a poly-logarithmic

110 CHAPTER 8. HIGH MOBILITY

number of bits (that is, a constant number of identifiers) in addition to the
actual message being flooded. Note that if we would allow nodes to learn
the IDs of their neighbors, then we would also need to allow Ω(|V | log |V |)
storage overhead per node.

A network algorithm should have two basic properties: correctness and
termination. A flooding algorithm is correct if the message from the start-
ing node s reaches all other nodes in V for all dynamic graph instances and
scheduling executions. Termination means that, for all dynamic graph in-
stances and scheduling executions, there is a time such that no more message
is sent. In accordance with this concept, we do not look at any kind of “peri-
odic beaconing” algorithms where idle nodes send request messages to their
neighbors. This would go against any idea of terminating since nodes would
constantly send messages with new neighborhoods. We will scrutinize the
definition of termination in Section 8.2.2.

We will consider both synchronous and asynchronous message passing
models. First of all, note that we live in the wireless local broadcast world,
that is, when a node sends a message, all of its (current) neighbors will hear
it. Extending the synchronous model to mobile networks is straightforward.
Communication proceeds in rounds. In one round, each node can send a
message, then receive and process any potential messages from its current
neighbors, and subsequently it may “move” to a new position. For ease of
discussion, we will consider the rounds equivalent with time slots, that is,
round i takes place at time t = i. In other words, the dynamic graph is the
sequence G = G0, G1, G2, . . . and if two nodes are neighbors in Gi, then they
are guaranteed to be able to send each other one message during round i.
The time complexity for a synchronous algorithm starting at time 0 is the
number of rounds until completion.

Defining the asynchronous model is more intricate. We want a model
with as few restrictions as necessary and as much freedom as possible. In
accordance with that thought, the dynamics of the network must be such
that they are still amenable to algorithmic analysis. Intuitively, we have to
capture the idea that the graph cannot change indefinitely faster than it takes
for messages to be delivered. A first restriction is that when a node moves
into a new neighborhood, the new neighbors have to be able to exchange
at least a single message. Otherwise, a node can continuously move from
one neighborhood to the next and will never receive a message. To see that
this needs to be strengthened further, consider the following execution in the
neighborhood around a node v. There is a message on its way from v to
a neighbor w which takes bounded but arbitrarily long time. Meanwhile,
other nodes move into v’s neighborhood, quickly exchange a message, and
move out again. So v will possibly send arbitrarily many messages until w
ever hears from v. Thus our asynchronous model should reflect the fact that
message delivery time and graph connectivity duration must be correlated.

8.1. MODEL 111

Formally, we specify our asynchronous message passing model the fol-
lowing way. Recall that in the standard distributed systems definition, the
nodes do not have a sense of global time nor of message delivery order or
speed. Local processing time is considered instantaneous. Algorithms are
event driven (such as message receipt). A maximum time T on the delay of
any message is assumed (though unbeknownst to the algorithm). The time
complexity is the worst-case execution time over all possible graphs and mes-
sage delivery schedules in units of T . For the dynamic case, motivated by
the above discussion, we need to tighten the bound on the message delivery
time, namely, by the frequency at which the graph changes. Let tuv be the
minimum time that nodes u and v are connected, and set tuv =∞ otherwise.
The maximum time T that a message can be delayed is bounded by

T ≤ min
u,v∈V

tuv (8.1)

which quantifies the concept of messages travelling at least as fast as the
graph changes. Time complexity is again measured in terms of units of T ,
over all possible dynamic graph instances and scheduling executions in the
worst case. Also, a node must be able to detect when a new node joins its
neighborhood. Specifically, node v receives a “∆N” event at time t if there
exists a node w such that w ∈ Nt(v) but w /∈ Nt′(v) for all t′ in t0 ≤ t′ < t
for some t0 < t.

Indeed, message delivery and the graph connectivity requirements are the
only constraints we put on the way that the network is allowed to evolve.
In some sense, we can interpret this as allowing seemingly arbitrary local
changes as long as the network retains some global structural properties.
Furthermore, these two conditions can be generalized. We can parameterize
Equation (8.1) to T ≤ δ ·minu,v∈V tuv in which case δ ≤ 1 must be known
to the nodes. Similarly, instead of requiring that Gt be connected for all t,
we can allow disconnection for a time period of at most ε ≥ 0, in which case
ε must also be known to the nodes. As this does not change the principal
concepts of this chapter and would only serve to clutter the presentation, we
will only present the case of ε = 0 and δ = 1. An appropriate inclusion of δ
and ε into the forthcoming algorithms will give the general case.

Notation and Terminology All of the algorithms are considered to be
initiated by a starting node s at time t = 0. For ease of presentation, we
will often refer to nodes as idle, denoted by It ⊂ V and depending on the
time t, if they have not yet received the message at time t. The rest of the
nodes Ft = V \ It are the flooding nodes. Note that s ∈ Ft for all t ≥ 0.
We will also need the concept of passive nodes which have already received
the message but consider themselves “done” with the protocol unless they
receive new information. The remaining flooding nodes are active.

112 CHAPTER 8. HIGH MOBILITY

8.2 Knowledge of |V |

In this section we assume that the nodes know a polynomial upper bound
n ≥ |V | on the size of the mobile network. This fairly powerful assumption
will provide an easy case to allow us to become acquainted with the model.
It will further open up the road to more complex algorithms when n is not
known.

It is straightforward to build a terminating and correct synchronous al-
gorithm in this case. Upon initial receipt of the message at a node v, it
broadcasts the message for n rounds. Correctness is guaranteed by the fact
that, due to graph connectivity, a new idle node is reached in each round.
Therefore, the last idle node receives the message after at most |V |−1 ≤ n−1
rounds. After another at most n rounds, all nodes stop sending messages. A
slight improvement in complexity can be achieved if the nodes send along a
counter h, initialized by s to h = n − 1 and decremented each round, and
only broadcast the message for h instead of n times.

8.2.1 Algorithm

In the asynchronous case, we need to do some more work. Pseudo-code
for nFlood is given in Algorithm 8.1. The basic idea is that a node v,
after receipt of the message to be flooded, re-broadcasts the message to at
most 2n2 “new neighbors.” This leaves the message enough time to travel
throughout the rest of the network.

1: receive msg
2: broadcast msg
3: k ← 0
4: afterwards, for each ∆N event:
5: if (k < 2n2) then
6: broadcast msg
7: k← k + 1
8: end if

Algorithm 8.1: nFlood

We now show the two essential properties of the asynchronous algorithm.

Lemma 8.1. Algorithm nFlood terminates.

Proof. The nodes in It do not send messages for all t ≥ 0. Let tf be the time
after which Ftf

does not change anymore. Then for all nodes in Ftf
, it holds

that either the dynamic graph keeps changing such that, eventually, k = 2n2

at all v ∈ Ftf
, or the neighborhood of a node does not change after some

time t > tf , in which case that node does not send any more messages.

8.2. KNOWLEDGE OF |V | 113

Lemma 8.2. Algorithm nFlood is correct.

Proof. Let T be the maximum message delivery time of Equation (8.1). In
a period of T time, any node v has less than |V | ∆N events, because every
node can (re-)enter the neighborhood of v at most once during time T . Thus
in a total time of 2T |V |, v has less than 2|V |2 ≤ 2n2 events. Now fix a
time t. We argue that at least one new idle node u ∈ It is reached by time
t + 2T . It is most instructive and intuitive to proceed by a straightforward
case analysis.

Consider all pairs of the form {ui, vi} ∈ Et with ui ∈ It and vi ∈ Ft. We
know that i ≥ 1 because Gt is connected; at least one idle node is bordering
a flooding node at all times while there remain idle nodes. If all vi have a
local broadcast message out on the way at time t, then either a ui receives it
at the latest by t + T , in which case ui ∈ Ft+T , or else all the ui move away
from their respective neighbors vi. Since this happens to all such pairs, there
will be a new pair {u′, v′} ∈ Et′ at time t′ < t + T such that a ∆N event is
triggered at v′ ∈ Ft, thus u′ ∈ Ft′′ for t′′ ≤ t′ + T < t + 2T .

On the other hand, say that there is at least one pair {u, v} ∈ Et, v ∈ Ft

and u ∈ It, which does not have a message traveling at time t because no
relevant event happened at v. Let t1 < t be the time that first v ∈ Ft1 and
let t2 be the time that u entered the neighborhood of v the last time before
t. Since there is no event at v, both t1 < t and t2 < t. If t1 ≤ t2, then
there was a ∆N event at node v at time t2 and u is guaranteed to receive the
message at time at most t2 + T < t + T . If t1 > t2, then there is a message
receipt event at node v at time t1 and u receives the message at time at most
t1 + T < t + T or else we are in the above case. Note that in both cases,
we actually have a contradiction to either the assumption that there is no
message on its way from v to u at time t or the assumption that u ∈ It.

Therefore, after 2 time units, a new idle node is reached and thus after
a total of less than 2|V | time units, all nodes are flooded and the counter at
each node is less than 2n2.

To be very precise, we could set the termination condition in Line 5 of
Algorithm 8.1 to k ≤ 2n(n − 1) after closer inspection of the proof. As this
would not significantly affect the performance and in order to not distract
from the main idea, we have left it as 2n2 in the algorithm description.

The importance of this type of counter flooding algorithm is that even in
asynchronous settings it guarantees the propagation of the message to at least
n nodes for input value n in time proportional to n. This is a key property
used to construct algorithms which do not have an accurate knowledge of
|V |. With that in mind, we restate this formally.

Corollary 8.3. For input values n ≥ |V |, Algorithm nFlood reaches all
nodes in V in time at most 2|V |, that is, Ft = V for t ≥ 2|V |.

114 CHAPTER 8. HIGH MOBILITY

8.2.2 Explicit Termination

Note that the above algorithm terminates in a very weak sense: There is a
point in time such that no more messages will be sent. What if we want to
know this point explicitly? If we consider synchronous settings, then explicit
termination is straightforward. The starting node, for example, could just
count the number of time steps; after n ≥ |V | rounds, all nodes have been
reached. In this section, we will consider how to achieve a stronger notion of
termination even in asynchronous models.

We propose three notions of a termination requirement, in the order of
increasing strength:

1. There is a time Tm such that no more messages are sent.

2. There is a time Tc such that all nodes know correctness is achieved and
there is a time Tm ≥ Tc such that no more messages are sent.

3. There is a time Tf such that all nodes know that they will never send
another message.

The nFlood algorithm above gives an example of an algorithm terminating
in the sense of Requirement 1. It is the standard definition we have adopted
throughout this chapter. The motivation behind Requirement 2 is that the
nodes can differentiate between a message propagation state and a state
where storage of the message is no longer necessary.

We will show below that termination in the sense of Termination Re-
quirement 3 is impossible. In other words, requiring that the nodes know
when they will never send a message again (i.e., that all the other nodes are
finished) can never be done, even in a stronger system model. Interestingly
enough, if we knew that G would continue to change, then nFlood of Section
8.2 would indeed terminate in this strong sense since, eventually, the counters
of all the nodes will reach 2n2. Likewise, if G would not change at all, then
we have the static case in which the standard flooding algorithm of send once
does the job. However, since the mobility we consider is unpredictable and
the mobility can be somewhere “in between” static and constant motion, this
problem becomes intractable.

Lemma 8.4. In a correct asynchronous flooding algorithm, the nodes can-
not reach a state in the sense of Termination Requirement 3 for all mobile
networks and all message schedules.

Proof. Assume that there exists an algorithm A which is correct and ter-
minates in the sense of Term. Req. 3. Then there is a time Tv ≤ Tf and
a node v such that v finishes its execution of A, that is, it determines that
it will never send a message again. Now a node’s decision cannot depend
solely on the number of neighborhood changes since an adversary can just

8.2. KNOWLEDGE OF |V | 115

present A with a static graph. Therefore, a node’s state must also depend
on messages it receives and sends. In an asynchronous algorithm, messages
can be delayed such that the nodes arranged in a line are all in different
states of their respective execution of the algorithm. Therefore, at time Tv

there exists another node w which has yet to receive several necessary mes-
sages or neighborhood changes causing it to terminate. Now set Gt such that
Nt(w) = {v} for all t ≥ Tv. In order to terminate, w will wait indefinitely
for another message which v never sends. This contradicts the assumption
that w terminates in the sense of Term. Req. 3 at time Tf .

Observe that the above reasoning holds even if we allow the nodes to know
their neighborhoods at all times and have unlimited storage capacity.

A consequence is that synchronous systems are indeed more powerful
than asynchronous ones in the message-passing model if the graph is allowed
arbitrary dynamics. This is different from the static case, where there is
a cost for synchronizers in time or message complexity [8], but it does not
influence feasibility. Indeed, the assumption of a synchronous model implies
that the nodes have some notion and measure of time. And timing is precisely
what is critical in dynamic systems, hence it makes perfect sense that we can
achieve more in a system model which has some timing capabilities, even if
they are implicit.

Now we describe how to obtain an asynchronous algorithm which termi-
nates in the slightly weaker sense of Termination Requirement 2. The idea is
to run both the dynamic and the static parts “in parallel.” Specifically, the
dynamic part refers to the idea of executing nFlood and counting neigh-
borhood changes; the static part refers to copying the simplest synchronizer
algorithm for static graphs: If all (current) neighbors of node v are in round
at least r, then v increments its round to r + 1. If either the counter of the
dynamic part reaches 2n2 or the counter of the static part reaches 2n3, then
the node has reached the passive state. Both static and dynamic parts are
necessary for unpredictable graph mobility. This also implies the necessity
of a stronger system model since only knowing neighborhood changes does
not tell a node enough about its neighborhood if it remains static. Thus we
assume that nodes know their neighborhood at all times.

The pseudo-code for such an explicitly terminating asynchronous algo-
rithm TermnFlood with knowledge of n ≥ |V | is given in Algorithm 8.2.
Each node starts its round counter r with the round counter in the first mes-
sage it receives, the starting node s with r ← 0, and the round information
r is appended to the message.

Lemma 8.5. Given a polynomial input n ≥ |V | and let Nt(v) be known for
all v ∈ V and all t ≥ 0, Algorithm TermnFlood is correct and terminates
in the sense of Termination Requirement 2 with Tc in O

(
n3
)
.

116 CHAPTER 8. HIGH MOBILITY

Thread main:

1: receive (msg,r′)
2: r ← r′ + 1
3: start nFlood (msg,r)
4: start synch thread
5: start check thread

Thread synch:

1: while r 6= end do
2: if received ri from all vi ∈ Nt(v) for some time t then
3: if r ≤ mini ri then
4: r ← mini ri + 1
5: end if
6: send (msg,r)
7: clear received from Nt(v) status
8: end if
9: end while

Thread check:

1: for each event (message or ∆N) check:
2: if k = 2n2 then r ← end end if
3: if r = 2n3 then r ← end end if
4: if receive (end) then r ← end end if
5: if r = end then
6: delete msg
7: stop threads
8: nFlood (end)
9: end if

Algorithm 8.2: TermnFlood

Proof. To prove termination, we need to show that at least one node v sets
rv = end by time Tv in O(Tc), since then the rest of the nodes will set
rw = end by time O(Tv + |V |). Note that if v ends because of Line 2 in
the check thread, then correctness and termination easily follow from the
previous discussion. If no node reaches k = 2n2, then the round counter
r will steadily be incremented until it reaches its stopping value 2n3. It
remains to show that r(t) < 2n3 at all nodes while It 6= ∅ in order to prove
correctness.

In the time it takes to inform a new node of the message, we will bound
the amount by which rmax, the maximum counter in Gt at time t, grows.
To that end, we make a few observations. First, border nodes (Bt = {v ∈
Ft |Nt(v) ∩ It 6= ∅}) cannot increase their round counter since they will not
receive information from all neighbors given that at least one is idle. Second,
in a static graph G′ (if we take a snapshot of Gt at time t) the discrepancy

8.3. THE POWER OF IDENTIFIERS 117

for the static synchronizer is at most |G′| for round decisions based on the
information of the neighbors. Third, in time at most T , each node has at
most |V | ∆N events, as before.

Putting these together, we note that the discrepancy rmax−rmin ≤ |Ft| at
time t since only nodes in Ft have a valid round counter. With each ∆N(v)
(at most 2|V | in time T), rmax can grow by at most 1 (at most with |Ft|
nodes). Therefore, at the time t′ ≤ t + 2T when a new idle node is reached,
we have

rmax(t
′) ≤ (rmax(t) + |Ft|) + 2 · |V | · |Ft| = rmax(t) + (1 + 2|V |)|Ft|.

Thus, when all nodes are reached after at most 2|V | time units, we have

rmax ≤ (1 + 2|V |)
|V |−1
∑

i=1

i ≤ (1 + 2|V |) |V |
2

2
< 2n3

proving the lemma.

Observe that the last part of TermnFlood can be done differently which
will not affect message or time complexity asymptotically but can save mes-
sages for the passive nodes in some cases. Such an approach would be to
have the nodes, once in the end state, only send end messages if requested
by a neighbor. In other words, upon node v newly entering the neighborhood
of node w, w (who notices the change) sends a “round request” packet if w
is still active. If v moves again before it replies to w, then w still has had a
∆N event, thus increasing k in nFlood. Therefore, w will also eventually
set r ← end. If w is already passive, then both v and w save a message since
they do not automatically send a message to the new neighbor.

For the remainder of this chapter, we will return to our original definition
of termination, since the subsequent algorithms do not have direct informa-
tion about |V |. They do not know whether their current estimate of |V | will
need to be updated in the future, so that they risk initiating the termination
phase too soon based on a too low value of n.

8.3 The Power of Identifiers

We have seen some of the possibilities of flooding algorithms in highly mo-
bile networks if the nodes have a good estimate of the size of the network.
Frequently, knowledge of the number of nodes might be an unrealistic as-
sumption, in particular, if the network grows beyond any bounds imagined
by the system engineer at the time of the original design. In this section,
we want to take a look at what remains possible in mobile networks if we
remove the n ≥ |V | assumption and replace it with other conditions.

118 CHAPTER 8. HIGH MOBILITY

8.3.1 IDs as a Substitute for |V |

A system requirement similar in power, but less global, is the assumption
that nodes have (unique) identifiers with a logarithmic number of bits (i.e.,
the IDs are polynomial in |V |).

The key idea is to have the nodes learn and propagate an estimate of
|V |. Once they have a suitable upper bound, we know that we can correctly
reach all nodes. We will see below that it is sufficient to store the maximum
seen identifier as this estimate. Initially, n̂← v, that is, the estimate for the
number of nodes at node v is node v’s own ID. When it receives a message
with a higher estimate, it uses that new value. The details in pseudo-code for
such an asynchronous algorithm are given in Algorithm 8.3 where f(n) = cn
for some value c. The function f(n) influences how fast the flooding reaches
all nodes. Below we will show that for f(n) = 2n, this will be optimal in
time O(|V |).

1: init: n̂← v
2: receive (msg,w)
3: if w > n̂ then
4: n̂← w
5: (re-)start nFlood (msg,n̂) with n = f(n̂)
6: end if

Algorithm 8.3: Asynchronous algorithm maxFlood at node v as a re-
sponse to a message receipt event. The neighborhood change events are
handled in the subroutine of nFlood.

Lemma 8.6. Given that nodes have unique small identifiers, Algorithm
maxFlood terminates and reaches all nodes in time O(|V |) for f(n) ≥ 2n.

Proof. To see correctness, by the property of nFlood (Corollary 8.3), observe
that the current maximum value nmax will reach cnmax many nodes: because
lower-ID ones are reactivated if necessary, and higher-ID ones will be newly
awakened (otherwise we did not consider the maximum ID). Therefore, we are
guaranteed to reach a node with ID at least cnmax, if it exists. Otherwise we
have reached a node with ID at least the number of nodes and this will ensure
the flooding of the entire graph. In other words, for c ≥ 2, the maximum
currently active ID nmax doubles in time O(nmax). Thus we wait at most
∑k−1

i=1 O
(
2i
)

= O
(
2k
)

time until nmax ≥ |V | with k = log2 |V |. After that, it
takes another at most O(|V |) time units for nFlood to reach all nodes.

Algorithm maxFlood terminates because in time O(|V |) the node with
the overall maximum identifier Nmax is reached, this information is prop-
agated throughout the network by nFlood, and termination follows from
termination of nFlood with n = Nmax.

8.3. THE POWER OF IDENTIFIERS 119

Note that message complexity is in O
(
N2

max

)
per node, which can be

considerably greater than O
(
|V |2

)
messages for the entire network. Below we

will discuss a variant which has message complexity in O
(
|V |2

)
, but requires

greater message and storage size.

8.3.2 List Gathering

Apart from the nodes having unique identifiers, we can further relax the
constraint that nodes are only allowed a small storage overhead. This could
drastically decrease message complexity (if we disregard the size of a single
message) as well as provide the opportunity to exactly enumerate and count
the number of nodes in the network.

Another motivation for dropping the storage overhead is to consider an-
other primitive of ad hoc and in particular sensor networks, namely, infor-
mation gathering, the reverse of information dissemination, i.e., flooding. We
can imagine that a starting node s wants to obtain the current data stored
at all nodes. A naive approach is for s to flood a request message and each
node responds with a separate message flooding its data, which will ensure
that s will eventually (in time O(n), n = |V |) receive the data from all the
nodes. However, this uncoordinated second step can potentially burden the
network with as many as O

(
n · n̂2

)
messages where n̂ ≥ |V | is the estimate

the nodes have, such as the maximum identifier as in the previous section.
The aim of this subsection will be to formulate and analyze a more efficient
procedure to obtain the information stored at all nodes with only O

(
n2
)

messages. We further do not need the assumption that the nodes know the
number of nodes, n, a priori.

Seen from this angle, technically, we are not violating the storage overhead
constraint introduced in Section 8.1 if we consider the data list to be part of
the message.

Our algorithm listFlood for list gathering works as follows. A node v
needs to keep track of two lists, one for the data, d, and one for the IDs seen
so far, l. It initializes l ← {v} and sets n̂ ← 1. Upon receiving a message,
it checks whether it needs to update its estimate of n̂. A function of the
current estimate n̂ is used as the input to nFlood. Pseudo-code is given in
Algorithm 8.4. Again, f(n) = cn as in the previous subsection.

We restrict our reasoning to the development of l, the list of IDs, since
this implies that all data from the nodes in l has been gathered. Let lv denote
the list at v. Consider lmax = maxv∈V lv and the following claim.

Lemma 8.7. The currently largest list, lmax, doubles in size in time O(|lmax|)
for f(n) ≥ 4n.

Proof. Let T1 be the time that the maximum list grows to l := lmax and
let n := n̂max = |l|. Recall that by Corollary 8.3, the list l will be known
to f(n) nodes in time O(f(n)) by the property of nFlood with input f(n).

120 CHAPTER 8. HIGH MOBILITY

1: init: d← {v : data}, l ← {v}, n̂← 1
2: receive (d′,l′)
3: d← d′ ∪ d
4: l ← l′ ∪ l
5: if |l| > n̂ then
6: n̂← |l|
7: (re-)start nFlood (d,l) with n = f(n̂)
8: end if

Algorithm 8.4: Asynchronous algorithm listFlood at node v as a response
to a message receipt event. The neighborhood change events are handled in
the subroutine of nFlood.

At most 2(n − 1) time units are “wasted” on informing the other nodes
v ∈ l, such that the list does not grow. Assuming f(n) = cn, there remain
m ≥ f(n)−n+1 ≥ (c−1)n+1 other nodes u1, . . . , um (ui /∈ l for 1 ≤ i ≤ m)
which will receive a message containing l′ ⊇ l before any of the v ∈ l become
passive due to nFlood stopping. Because ui /∈ l, such a message will (re-
)activate ui so that each of the ui’s will itself spread the information to
at least f(n + 1) nodes. Let the ui be numbered in the order in which
they received the (first) message containing (a superset of) l. Then a list
containing at least l∪ {ui} will spread to at least xi ≥ m− i + 1 other nodes
(because ui is active for enough time to spread its information to at least
another m− i + 1 others before the first node in l becomes passive).

To summarize, after 2f(n) time units, when the first node in l might
potentially become passive, there is a set L of n + m nodes such that lv ⊇ l
for v ∈ L. Among those there are xi nodes w such that lw ⊇ l ∪ {ui}.

n + m

h

u1 u1 u1 u1

u2

u2 u2u3

u3u4

Figure 8.1: Arrangement of the information for the proof of Lemma 8.7.

In order to find the minimum growth of lmax, consider the arrangement of
the information (i.e., the list) of each of those n + m nodes. To that end, we
can consider a container of width n + m and height h, see Figure 8.1 for an
illustration. A unit of width represents a node in L and the height represents
the elements in the list at each node without those in l. Now we must fill
this container with all xi, 1 ≤ i ≤ m, unit elements which represent the

8.3. THE POWER OF IDENTIFIERS 121

new information of the ui’s. Note that because of mobility, these blocks do
not need to be contiguous, all we know is that there are xi non-overlapping
pieces of each ui. The maximum height will represent the growth of lmax

after 2f(n) time units. Now the minimal maximum height is given when the
container is filled evenly, so that

h ≥
∑m

i=1 xi

n + m
≥ m(m + 1)/2

n + m

≥ m(m + 1)/2

m · c/(c− 1)

=
1

2

c− 1

c
(m + 1)

(8.2)

where the first line follows from xi ≥ m − i + 1, and the second line from
m ≥ (c− 1)n + 1, that is,

n + m ≤ m− 1

c− 1
+ m = m

c

c− 1
− 1

c− 1
≤ mc

c− 1
.

Observe that for c ≥ 4 (or, more precisely, for c ≥ 2 +
√

3), Equation (8.2)
becomes h ≥ n again using that m ≥ (c− 1)n + 1. In other words, there is
a node in L which has h new elements in addition to lmax. Thus, at time
T2 ≤ T1 +2Tf(|lmax|), the maximum list has at least twice as many elements
as the maximum list at time T1.

The remainder of the correctness and termination proof is the same as
that for maxFlood in Lemma 8.6.

Corollary 8.8. Given that nodes have unique small identifiers and that
nodes are allowed storage overhead of Ω(|V | log |V |), Algorithm listFlood

terminates and reaches all nodes in time O(|V |) for f(n) ≥ 4n.

Proof. Each time the maximum list doubles from n to 2n, we pay at most
2Tcn time for f(n) = cn. Thus, we wait at most 2Tc

∑k−1
i=1 2i ≤ 2Tc · 2k

until lmax = |V |. Here, k = log2 n, thus lmax is V after 2Tc|V | time. Once
a single node has an estimate n̂ ≥ |V |, then it takes at most another 2T |V |
time for nFlood to reach all nodes.

As discussed above, this approach can also be utilized for fast flooding in-
stead of the maximum-ID-based scheme from Section 8.3.1, if enough storage
space is available. The advantage of this scheme is that, in the end, n̂ = |V |
instead of the possibly much higher maximum ID. This saves in messages
and also makes it possible to count the nodes.

122 CHAPTER 8. HIGH MOBILITY

8.4 Impossibility

It is time we turn our attention to the limitations which mobility imposes.
We have shown that flooding is possible with some assumptions, but what if
we drop those? How crucial are they? In this section, we will look at how
mobility can make it impossible to successfully flood a network in a scenario
where it is almost trivial to do so were the graph static. In fact, this holds
even when the network is seen as nodes in the plane, moving arbitrarily
with some maximum velocity. Specifically, we will provide evidence that,
without further knowledge, flooding a light-weight ad hoc mobile network
is impossible for node speeds greater than a quarter of the communication
radius per time step.

8.4.1 Model and Notation

While the forthcoming statements hold for arbitrary graphs, we will look at
unit disk graphs in particular, giving stronger lower bounds. As we have seen
in the first part, UDGs might not be the perfect model of reality, but they
can give us a more geometric picture when talking about mobile networks.
Specifically, we want to quantify the speeds with which nodes are allowed
to move, acting as a guide in choosing the appropriate parameters for any
kind of simulation or testing of routing or other algorithms. The rest of the
model is the same as before, described in Section 8.1: The dynamic graph
Gt = (V, Et) is connected and now Gt is unit disk graph for all times t ≥ 0.
Let r : V ×R

+ → R
2 be the realizations of G over time: r(v, t) is the position

of node v in the Euclidean plane at time t. For convenience of notation, we
write dt(u, v) = ‖r(u, t)− r(v, t)‖ for two nodes u, v ∈ V at time t. Further,
denote by ν the maximum speed with which nodes move such that

‖r(v, t)− r(v, t′)‖
|t − t′| ≤ ν

holds for all v ∈ V and all t 6= t′, t, t′ ≥ 0. The nodes are not aware of their
neighborhoods and are only allowed poly-logarithmic storage overhead. We
stress that |V | is not known to the nodes nor are they allowed the use of
node identifiers, since these cases were covered in the previous sections.

To keep things simple and in order to understand where the main prob-
lems arise, we will only consider a synchronous model in this section. As
before, this means that there are communication rounds, each of which con-
sists of the sending of one message, then the receipt and processing of any
potential messages from neighbors and subsequently the nodes may move
to a new position. Additionally, the starting time (that is, starting node s
“receives” the message at time 0 and starts sending at time t = 1) of the
algorithm is known to all nodes. This is merely a conceptual simplification

8.4. IMPOSSIBILITY 123

and can be implemented via a counter sent along with the message. This
counter would be incremented by each flooding node in each round.

8.4.2 A First Approach

In order to explore the limits of mobility, we want to know how fast nodes
may move in order for the flooding information to propagate faster than the
nodes. Recall that we seek an algorithm which is correct and terminates.
With that in mind, we will first consider a simple terminating algorithm
A1, with pseudo-code given in Algorithm 8.5 on page 123, and explore its
correctness properties. Later on, we will generalize it and argue why no
algorithm can both terminate and be correct above a certain node speed.

The idea of A1 is that if a node v first receives a message in round t,
then there are at least that many nodes plus v itself. Thus, time (or, in a
sense, the number of hops) gives the nodes an indication on the size of the
network. This estimate n̂ is now used similarly to the nFlood algorithm.
A node stops sending after f(n̂) rounds with its latest update on n̂. For
termination, it is crucial that n̂ is not incremented arbitrarily (seen over the
entire network), and for correctness we want f(n̂) to be large enough such
that the nodes are active until the remaining idle nodes are reached.

Thread main:

1: receive (msg,n′) at time t
2: n̂← t + 1
3: start update thread
4: for i = 1 to f(n̂) do
5: send (msg,n̂), once per round
6: end for

Thread update:

1: receive (msg,n′)
2: if n′ > n̂ then
3: n̂← n′

4: i← 1 in main
5: end if

Algorithm 8.5: A1

Lemma 8.9. Algorithm A1 will terminate.

Proof. Since Vt = V at all times t, there will be a node v ∈ V which is the
last to receive the message for the first time at some time t. In other words,
the set of flooding nodes is Ft′ = Ft for all times t′ ≥ t because either the
algorithm is correct and then Ft = V , or there will be some nodes which are
never reached by the algorithm. Then n̂v = t + 1 = maxv∈V n̂. Since n̂ is

124 CHAPTER 8. HIGH MOBILITY

never increased beyond an n′ which is received in the update thread and v
was the last to set its n̂v according to the time, n̂u ≤ t + 1 ∀u ∈ Ft and for
all times t′ ≥ t. After the information of n̂v = t+1 propagates to at most all
nodes in Ft in finite time, the update thread will become ineffective. Then
each of the nodes u ∈ Ft executes the for loop in the main thread for another
at most f(n̂u) rounds.

v w1 w2r1 r2

ν1,1 ν1ν2

d1 d2

Figure 8.2: Message progress after two rounds for one possible dynamic unit
disk graph instance.

We now turn our attention to correctness. To gain some intuition, con-
sider a quantity δ which is the average distance the message (or: information)
can move in the plane per step. To that end, consider the progress of a mes-
sage at a node v over a path p = vw1w2 of two hops, such as depicted
in Figure 8.2. Let r be the realization, set r1 = ‖r(v, t) − r(w1, t)‖ and
r2 = ‖r(w1, t) − r(w2, t)‖. Then r1 + r2 > 1, otherwise the message could
go from v to w2 directly. After one round at time t + 1, the information has
travelled at least d1 = r1 − ν1,1 distance along the path from v to w1. In
the next round, d2 = r2 + (ν1,1− ν1)− ν2. Thus the total minimum distance
2δ = d1 + d2 covered by the message away from v in two rounds is

2δ = r1 + r2 − (ν1 + ν2) > 1− 2ν, (8.3)

making the average progress per step δ > 1/2−ν. Note that if ν > 1/2, then
δ ≤ 0 is possible.

Lemma 8.10. If ν > 1/2 per time unit, then Algorithm A1 will not reach
all nodes for any choice of f .

Proof. We will construct a counter example such that, after some time, no
new information will reach the starting node s in which case it stops sending
messages. Intuitively, the setup is as follows. There are two phases. In the
first phase, any node updating the value of n̂ will immediately move away
from s, keeping the new information from reaching s. In the second phase,
there must be a large enough buffer between s and the nodes still currently
active, until the node with the highest information on n̂ becomes passive and
intercepts the information progress towards s.

Set x = min{1, ν} > 1/2. The nodes of the graph consist of s, nodes ui,
1 ≤ i ≤ m, and nodes vj , 1 ≤ j ≤ n −m − 1. We will determine the value
for m later.

8.4. IMPOSSIBILITY 125

s

u1 . . . um

v1

v2

v2

v2 s
vi

vi−1

vi+1

v1

um

um−1

u1

1
x

Figure 8.3: Snapshots of the embeddings of the unit disk graph in the counter
example in the proof of Lemma 8.10. On the left, at time t = 1, on the right,
at time t = i (both at the beginning of their respective rounds).

When s starts sending messages at time t = 1, let the embedding r be
given by

r(s, 1) = (0, 0)

r(ui, 1) = (ε, 1− ε) 1 ≤ i ≤ m

r(vj , 1) = (−1, (1− j) · x) 1 ≤ j ≤ n−m− 1

for some small ε > 0. The resulting graph is a clique of m points uj clustered
at one point, joined to a path sv1v2 . . . vn−m−1 at node s, so G0 is connected.
The realization r(·, 1) is shown in Figure 8.3 on the left. When s broadcasts
the first message, all the ui as well as v1 will receive it in round t = 1.

For the next rounds until t = t1 (we specify t1 below), all nodes vj move
upward by x and all nodes ui, i ≤ t1, move upward by a fraction of x:

r(ui, t + 1) = r(ui, t) + (0, t1−i
t1−1

x)

r(vj , t + 1) = r(vj , t) + (0, x) = (−1, (t− j)x).

The realization in the beginning of round i is depicted in Figure 8.3 on the
right. Since x > 1/2, vi+1 will not receive a message in round i, only vi hears
from s and vi−1. After t1 rounds, dt1(uj , uj+1) = x for 1 ≤ j ≤ t1. In other
words, we have a path of the ui on the right, and a path of the vj on the
left, in both of which the nodes are spread x apart. The horizontal distance
between the two paths is 1 + ε > 1. The setup is such that vi ∈ It for all
1 ≤ t < i, and vi ∈ Fi, thus vi sets n̂vi

= i + 1 initially.
The key to this first phase of the counter example is that s never receives

any information back from the vj because they always move just out of range.

126 CHAPTER 8. HIGH MOBILITY

s

vt1

vt1+1

um

um−1

x

v1

u1

u2

s

vt1

vt1+1

um

Figure 8.4: On the left, t = t1 (at the end of the round), and on the right,
t = t2 + 1 of the counter example.

Therefore, only the ui propagate their estimates to s, thus n̂s = 2 for times
t ≥ 2. In the above construction, we let t1 be the time such that s sends its
last message in round t1, specifically, t1 = f(2) + 2 (as s sends two messages
before it receives n̂s = 2). The left side of Figure 8.4 depicts the network at
the end of round t1 when the nodes have moved. At this point, vt1 severs its
connection with the remaining vj , j > t1, and a new connection between u1

and v1 is established at the top. Now s will not send any more messages to
vt1+1, and the closest message (in terms of hops) to s with n̂ > 2 is located
at the top with u1. Note that dt1+1(v1, u2) > 1.

Let the message get to u2 at time t1 + 2. From there on, the chain of the
ui’s keeps moving upward by x > 1/2:

r(ui, t + 1) = r(ui, t) + (0, x)

for t ≥ t1 + 2 and 2 ≤ i ≤ t − 4. Then the message progress on the path
from r(u2, t1) to r(s, t1) is δ ≤ 0. In other words, we can wait an arbitrary
amount of time and s will not receive the message with n̂ > 2 with enough
buffer nodes ui.

Since vt1 is the last node which has received the message up to this point,
no other node will have newer information about n̂ which would cause vt1 to
reset its loop counter to 1. Let t2 be the round after which node vt1 stops,
that is, t2 = t1 + f(t1 + 1). At the end of round t2, the remaining nodes
uj which were connected to s move slightly upwards while vt1 moves to the
right serving as the only link between s and the uj for times t > t2. Now
s will never receive a message with n̂ > 2 (since vt1 is the only non-idle
node connected to s and it has stopped sending and will not be woken up

8.4. IMPOSSIBILITY 127

again). Therefore, node vt1+1, being only connected to s, will never receive
the message if we set m ≥ t2.

Lemma 8.11. If ν > 1/4 per time unit, then Algorithm A1 will not reach
all nodes for any choice of f .

Proof. We will extend the above proof of Lemma 8.10 to include node speeds
between one half and one quarter. To that end, we must reconstruct the two
phases, first for 1 ≤ t ≤ t1 until s becomes passive and second for t1 < t ≤ t2
until vt1 becomes passive.

The idea for the first phase is that if both s and vj move in opposite
directions with speed ν > 1/4, then the chain of vj ’s such that dt(vj , vj+2) >
1 can be constructed as before. Node s and the lower half of the ui’s now
move downward (s by ν, the other by the appropriate fraction) and the upper
half of the ui’s move upward, resulting in dt1(ui, ui+1) = 1/2 + ε. This is
also the key for the second phase, since for ν > 1/4, δ < ν in the above chain
of ui’s when each ui moves opposite the message flow after receiving it. In
other words, the new information cannot catch s if it is also moving away
and we apply the same idea as before by letting vt1 intercept the message at
s at time t2 since t2 = f(t1 +1)+ t1 and we can let the message be forwarded
to an arbitrary number of ui nodes given that δ > ν.

Theorem 8.12. Algorithm A1 terminates but is not correct if ν > 1/4 for
any choice of f .

In fact, we can reconstruct phase two for any speed ε > 0 by having
multiple strands of the ui, where one replaces the other as the message moves
down. It might be necessary to extend the length of the initial chain of ui’s far
enough such that one node can cover the distance greater than 1 in order to
replace the layer. This comes at a cost of getting s to know more information
in order to increase t1, but is irrelevant since the layer replacement can be
done indefinitely for large enough m. It remains as an open problem to
determine the exact speed bound such that phase one can be reconstructed.

8.4.3 Generalizations

Algorithm A1 was a naive first approach to finding a correct and terminat-
ing flooding algorithm. We have seen that for node speeds above a certain
threshold, the algorithm will terminate but not be correct. As simple as this
algorithm is, we will now argue why it might be impossible to do any better.

First we discuss a generalization of A1. In the hopes of fixing the prob-
lem from the counter example in Lemma 8.10, instead of one estimate n̂
depending on time, we have k such cascading variables, giving Algorithm
Ak. Specifically, instead of n̂ now the variables t1, . . . , tk are appended to

128 CHAPTER 8. HIGH MOBILITY

the message. A node v sets t1 the first time it hears the message. If it re-
ceives a message with t′1 > t1, then it updates t1 and sets t2 to the time it
received this update. Otherwise, if t′2 > t2, it updates t2 and sets t3 and so
on. See Algorithm 8.6 for the detailed pseudo-code. However, by choosing
the number of “buffer nodes” from the proof above appropriately, this gen-
eralization of Algorithm A1 will not succeed either. We can simply repeat
the construction for the k nodes with the greatest ti. Above, at time t1 the
graph around vt1 is constructed analogously to s, and the pattern is repeated
for each vti

with respective stopping time ti, 1 ≤ i ≤ k. Since k has to be
determined a priori, it is independent of the number of nodes and for m large
enough, Ak will terminate but will not be correct.

Thread main:

1: receive (msg, t′1, t
′
2, . . . , t

′
k) at time t

2: ti ← t + 1 for each i = 1 . . . k
3: start update thread
4: for i = 1 to f(tk) do
5: send (msg, t1, t2, . . . , tk), once per round
6: end for

Thread update:

1: receive (msg, t′1, t
′
2, . . . , t

′
k) at time t

2: if t′1 > t1 then
3: t1 ← t′1
4: ti ← t for each i = 2 . . . k
5: i← 1 in main
6: else if t′2 > t2 then
7: t2 ← t′2
8: ti ← t for each i = 3 . . . k
9: i← 1 in main

10: . . .
11: else if t′k > tk then
12: tk ← t′k
13: i← 1 in main
14: end if

Algorithm 8.6: Ak

To further enhance A1, consider the information at a node’s disposal.
The available information is (a) the (number of) messages received or not
received in a round and (b) the time (synchronous) or hops (asynchronous).
The problem with (a) is the termination requirement because a node cannot
differentiate between an idle neighbor and a neighbor which has become pas-
sive. Thus, if it assumes that a non-sending new neighbor has not heard the
message, then we can create a mobile instance such that the algorithm does

8.4. IMPOSSIBILITY 129

not terminate. We will discuss the counting of message below. Concerning
(b), this case is covered by A1 since we can choose the stopping function f
freely, yet it can only depend on t, the time the message has been active; so
the problem here is the correctness requirement as we saw above.

The remaining open question concerns the counting of messages. A node
cannot measure its current degree since it is not aware of its neighborhood,
but it can estimate the degree by counting the number of messages received
in one round. The degree can help establish a bound on the number of nodes
in the network. In the counter example of the proof of Lemma 8.10, node
um will hear a message from all m of its neighbors in round t = 2, so it
could set n̂ ≥ m + 1. This would invalidate the argument in the proof since
now s could remain awake sufficiently long until it knows that there are more
nodes in the network. To counter such an algorithm, we need to refine our
example. Instead of having all the ui clustered at a single point initially,
they can be spread out such that the subgraph of the ui has diameter D
and maximum degree ∆. Since we have a unit disk graph, this implies that
the graph is stretched out over an area at most D by D wide and, dividing
it into cells of width 1/

√
2, we immediately get that ∆ ≥ 2m/D2. Or, in

other words, if all nodes keep sending, then the highest degree measured (by
counting messages per round) along with the longest hop path give an upper
bound on the number of nodes m in the subgraph. It remains to be seen
whether an instance of a dynamic unit disk graph can be constructed such
that not all nodes are sending at all times and the longest diameter cannot
be approximated well either. Perhaps this will open another chasm between
synchronous and asynchronous mobile algorithms.

It is interesting to note that if we do not consider UDGs, then we can
find a graph such that ∆ = O(1) and D = Θ(log m), such as a complete
binary tree rooted at s. In this case, a correct estimate of the number of
nodes is exponential in D, which violates the storage requirement in other
graph instances where D = Θ(n). Unfortunately, in the general graph case,
the intuitive notion of node speed is inapplicable.

To summarize, we end up with the following picture. If we consider unit
disk graphs with allowed node speeds greater than one quarter unit per time
step, then it appears that a correct and terminating flooding algorithm is
hard to come by. An essential ingredient will be determining the maximum
degree by counting of messages received in one round, in combination with
estimating the diameter of the network via time (hops). While there is slight
hope that this might be possible in synchronous settings, we would wager
that this is not the case for the asynchronous model with nodes unaware of
identifiers and neighborhoods. Moving away from the geometric unit disk
model, the above arguments, albeit without rigorous proof, strongly suggest
that the nodes cannot collect enough information in order for any terminating
algorithm to also be correct.

130 CHAPTER 8. HIGH MOBILITY

If the above is true, an implication of the previous discussion is that
we can apply this in a broader sense: Mobile algorithms’ performance (and
feasibility) will depend on the speed of mobility. In other words, we should
look at mobile algorithms and tune their parameters as a function of the
maximum or at least average node speed.

8.5 Routing

Since flooding without identifiers appears difficult if not impossible, one can
imagine that a related problem, that of routing, is solvable within our con-
straints. That is, as long as one is sure that the destination exists and will
respond, otherwise the problem degenerates to flooding. We will use the des-
tination ID synonymously with a node being able to check locally whether it
is the destination or not.

In this section, we will take a closer look at the routing problem of de-
livering a message from a source node s to a designated destination t. Note
that correctness now means that we only need to reach t, not all nodes. As in
previous algorithms, the idea is to estimate some finite upper bound n̂ ≥ |V |
and then use the ideas from nFlood to guarantee correctness and termina-
tion. As we have seen, the difficulty lies in estimating the number of nodes
without the use of IDs. In the routing case, this hurdle is overcome by the
fact that the destination node t can acknowledge the receipt of the message
and initiate a termination phase which will make use of a message counter.

The algorithm works as follows. Every node v stores a counter n̂. Initially,
every node is in init mode, that is, idle. Once a node has seen the message,
it can be in one of two states: Either it assumes that the destination has not
been reached and the message needs to be propagated at every opportunity,
or else it knows that the destination has been reached and it needs to be
careful about letting the other nodes know that they can stop as well but so as
to not endanger the termination requirement. The counter n̂ is incremented
in the first state (flood mode) and then used as an upper bound on |V | in
the second state (term mode). Once n̂ ≥ |V |, the nFlood algorithm will
guarantee us termination and correctness.

The details are given in Algorithm 8.7. The source s starts the algorithm
by broadcasting flood (message, 1).

Lemma 8.13. Algorithm 8.7 is a correct routing algorithm.

Proof. Correctness is easily seen from the algorithm as nodes will continue
sending (Line 6 in init and Lines 1-3 in flood mode) until the destination
has received the message (Line 3 in init) and will announce this with the
acknowledgement term (Line 2 in term).

8.5. ROUTING 131

Input: none
Output: receipt of message, ∆N 6= ∅
mode = init

1: receive msg with n′

2: n̂← n′ + 1
3: if (msg = flood ∧ v = dest) ∨ (msg = term) then
4: mode ← term

5: else
6: broadcast flood (message, n̂)
7: mode ← flood

8: end if

mode = flood

1: for each ∆N event:
2: n̂ ← n̂ + 1
3: broadcast flood (message, n̂)
4: for each receive msg with n′ event:
5: if msg = flood ∧ n′ > n̂ then
6: n̂← n′

7: broadcast flood (message, n̂)
8: else if msg = term then
9: n̂← max (n̂, n′)

10: mode ← term

11: end if

mode = term

1: process/delete message locally
2: nFlood (n̂), msg = term (n̂)
3: receive msg with n′

4: if n′ > n̂ then
5: n̂← n′

6: nFlood (n̂), msg = term (n̂)
7: end if

Algorithm 8.7: Asynchronous Mobile Routing Algorithm at node v.

132 CHAPTER 8. HIGH MOBILITY

By inspection and the discussion of proof of Lemma 8.2, we also know
that the routing algorithm is efficient in terms of reaching the destination
quickly.

Corollary 8.14. Algorithm 8.7 achieves correctness after at most 2n time
units.

We now turn to termination.

Lemma 8.15. If G keeps changing such that ∆N(F) 6= ∅ for the set of nodes
F ⊂ V with mode(v) = flood ∀v ∈ F , then any x ∈ F will eventually enter
term mode.

Proof. Consider the terminated and flooding nodes Tt = {v ∈ V |modet(v) =
term} and Ft = {v ∈ V |modet(v) = flood}, respectively, depending on
the time t. Initially, T0 will contain the destination node (set t = 0 when the
message has reached its destination).

If ∆N(v) 6= ∅ for a node v ∈ Ft, this will increment n̂(v). If n̂(v) > n̂(w)
for w ∈ N(v), then n̂(w)← n̂(v) after at most 2 time units. Thus, the highest
estimate n̂ will propagate throughout a connected component of flooding
nodes.

Now assume there is a time t where all nodes x ∈ Tt have stopped sending
upon ∆N(x) 6= ∅ (i.e., the call to nFlood in Lines 2 or 6 of term mode
has finished) and Ft+2T 6= ∅. Then maxx∈Tt n̂(x) < |V |, otherwise the call
to nFlood with the term message would spread to all nodes in V . The
eventual graph changes will now continually cause an increase of n̂(v) at
some v ∈ Ft. Then at some time t̃ > t, there will be n′ := n̂t̃(v) ≥ |V | at
some v ∈ Ft̃. It will take at most |Ft̃| < |V | hops for the message containing
n′ to reach a node x ∈ Tt̃ at time less than t̃ + 2T |V |. Then n′ > n̂(x),
prompting a call to nFlood of message term (n′) at node x with parameter
at least |V |. Therefore, before time t̃ + 4T |V |, all nodes will have received a
term message.

Lemma 8.16. Algorithm 8.7 terminates.

Proof. We only have to prove that if the graph changes, the algorithm will
stop sending messages eventually. Otherwise, if there are no more ∆N events
after a certain time, termination of the routing algorithm follows from the ter-
mination of nFlood. Therefore, assume subsequently that G keeps changing.
If the edge changes only involve the neighborhoods of nodes which have al-
ready term-inated, then Algorithm 8.7 will eventually stop sending messages
because of a finite maximum n̂ among the terminated nodes. Otherwise, by
Lemma 8.15, we know that every node which has entered the flood mode
must eventually receive a term message. At that point, the highest estimate
N̂ is fixed since only flood-ing nodes cause an increment of the counter
(see Line 2 of flood mode). Then N̂ will be some finite value and all other

8.6. DISCUSSION 133

nodes will update their n̂ ← N̂ and the term messages will be propagated
at most that many times to already terminated nodes (if the graph continues
to be mobile). In other words, once all the nodes are term-inated, then they
execute the nFlood algorithm which we know will end for a finite N̂ .

The final item to be shown concerns the storage requirement of mobile
algorithms.

Lemma 8.17. Algorithm 8.7 needs only O(log |V |) bits of storage and header
size.

Proof. In order to ensure small local storage and header size, we need to
bound the largest estimate n̂ by a polynomial in |V |. To that end, we examine
the counter values of the above termination argument in more detail. We will
keep track of the largest counter n̂ in N . Set n := |V |.

Since the destination is reached after at most 2Tn time units, N ≤ 2n2

when the destination enters the term mode by the previously observed fact
that a node can receive at most n ∆N events in time T .

Thereafter, we have seen in Lemma 8.15 that once any node has an es-
timate n̂ = n due to continual increases in its neighborhood, the rest of the
algorithm will take its course to ensure that the nodes terminate. In the
worst case, this information needs to travel less than n hops to a term node,
so N < n + 2 · n · n in the meantime. In any case, once the call to nFlood

in Line 6 (term mode) is issued, it takes less than another 2n time units
for all nodes to term-inate, which implies less than 2n2 more neighborhood
changes at a node. In the end, N = O

(
n2
)

by the time that no more nodes
are in flood mode and n̂ will not be incremented anymore.

8.6 Discussion

This chapter served as a preliminary investigation into the feasibility of an
analytical treatment of routing in highly mobile networks. After presenting
a hodgepodge of algorithms, the most important result is that flooding is
indeed possible in a strong asynchronous model when the number of nodes
or unique identifiers are given. Routing to an existing destination is possible
even without this additional information. Conversely, finding a correct and
terminating flooding algorithm which does not rely on node IDs in any way
and which observes polynomial storage constraints seems to be an exercise
in futility. If, however, we restrict the nodes’ movement to the Euclidean
two-dimensional plane with specified maximum speed, then it remains to be
seen whether indeed even a synchronous flooding algorithm exists.

134 CHAPTER 8. HIGH MOBILITY

Chapter 9

Moderate Mobility

We pushed the amount of mobility to an extreme in the last chapter. If
instead the state of the network changes at moderate speeds, then the focus
of attention shifts from feasibility to efficiency. Common knowledge says
that reactive algorithms are better when mobility is “high” and proactive
ones when it is “low.” In this chapter, we want to quantify the efficiency of
different mobile routing paradigms and to state precisely, at least for some
scenarios, what exactly high and low mean. An important point to keep
in mind in this discussion is that considering merely a mobile network is
pointless without an application. It just means that the network is changing,
but what is of interest is the effect of those changes. We must consider
mobility and routing together to make any meaningful statements about
either. This is central when defining what an efficient algorithm is. It is also
what sets this chapter apart from previous works in the area of comparing
different routing algorithms under varying mobility conditions as outlined in
Section 7.1.2.

9.1 Model of Mobility

In the preceding chapter we looked at mobile events (link changes) as in-
terleaved with ongoing route or flooding requests. In this chapter, we want
to slow down the dynamics of the network in order to examine the aspect
of routing efficiency rather than feasibility. Therefore, to ease analysis, we
adopt a model where graph changes and route requests are separated in time.
We distinguish between two phases: either the occurrence of a mobile event
where the graph can change and the nodes may react to it, or the servicing of
a route request in its entirety. We will discuss the different types of possible
mobile events below; for now we can think of it as a single link changing its
state. One route request means that a single source initiates the routing of
a data packet to its destination; the route request is finished when no more

136 CHAPTER 9. MODERATE MOBILITY

packets pertaining to that route request are travelling in the network. Since
proactive routing algorithms respond to mobile events and the nodes a priori
do not know how many such graph changes will occur, we must also allow for
an algorithm to pass along messages after each mobile event; these messages
must be completed before the next mobile event occurs. In other words, a
mobile event is coupled with the response (or update) messages from a proac-
tive algorithm. Of course, the reality will look quite different, where network
change events are interleaved with update messages and route requests. For
the sake of analytical study, the above model introduces two sharp bound-
aries. One boundary separates mobile issues from route requests in order to
ensure that routing always succeeds. The next boundary separates routing
messages from update messages. The reason for letting the updates to com-
plete before the next network change instead of gathering all updates after
several mobile events is that we want to count the effect of each link change
since the nodes do not know how many there will be. Otherwise, if the nodes
know when the network has reached a quiescent state, then it could perform a
single network update flooding and all subsequent route requests are handled
efficiently. See also Figure 9.1.

We obtain the following picture: In one session, there are m mobile events,
after each of which the nodes are allowed to send messages to recompute their
routes, and subsequently r route requests are processed in their entirety. The
dynamics of the network is measured in terms of the mobility ratio m : r of
mobile events to route requests. Since we are interested in moderately mobile
networks, as opposed to highly mobile in the last chapter, we note that m is
in O(r). Also note that m ≥ 1.

The key idea to note is that the ratio of graph changes to route requests is
important, not their absolute values. Even if the graph changes in its entirety
such that there are O

(
|V |2

)
link changes, this can be mitigated by a large

number of subsequent route requests which, in a fully proactive algorithm,
would be serviced optimally.

Although we only considered link changes in the previous chapter, a mo-
bile event can be specified in any number of ways. We can consider exclusively
link changes or exclusively node additions and deletions, or, more naturally,
a combination of both. Furthermore, nodes can react to link (or node) joins
differently than to failures. One instance of such an approach can be found
in the family of link reversal algorithms [54]. Link failures are treated proac-
tively and new paths are computed, while not much effort is spent on a new
link coming up. In this case, we can imagine splitting up the mobile events
into the number of link joins versus the number of link leaves per routing
session. Initially, when talking about a mobile event, we only consider the
case of an edge joining or leaving, thus the number of nodes in the network,
n, again remains constant.

9.1. MODEL OF MOBILITY 137

ideally:

m1 m2 m3

r1 r2

1st separation:

m1 m2 m3

r1 r2

2nd separation:

m1 m2 m3

r1 r2

Figure 9.1: The three figures schematically show the timeline of mobility
and route request events and how long the corresponding update and routing
messages are in the network for three different levels of abstraction. Ideally,
we would like to look at route requests and mobility-caused update messages
completely interleaved as in the top drawing. Since we do not look at the
success rate of routing but rather at the efficiency, in a first step, we separate
the mobility events from the route events, as shown in the middle figure.
Lastly, we want to count, in the worst case, the effect of each single event
(thus ignoring any “cumulation bonus” from processing several mobile events
at once), so all the messages are completely separated in time, as indicated
by the schematics on the bottom. This lowest drawing is what we have in
mind when we refer to a session of m :r = 3:2.

138 CHAPTER 9. MODERATE MOBILITY

9.2 Measures of Efficiency

The focus of this chapter being routing efficiency, it is crucial to define what
costs are associated with a route request. In (mostly) static networks, a
primary aim of routing schemes is to minimize the stretch, the ratio of the
chosen route over the shortest path. In other words, it minimizes the time
of delivery. If we were to apply the same standard to mobile networks, then
using flooding1 to search for the destination every single time would find
the optimal path for each route request. However, few would agree that
this qualifies as “efficient” in the case of energy-constrained wireless ad hoc
networks which exhibit only moderate dynamics. This shows that we need to
include all the messages pertaining to a route request, not just the messages
on the path from the source to the destination. On the other extreme, a
protocol such as distance vector tries to use the shortest path, but it does so
at the cost of recomputing all paths after every relevant link change. So the
messages for updating and maintaining a route should also count towards
the cost of a route request. Equivalently, for mobile ad hoc networks, it is
the message complexity of a route request which matters, not so much the
time complexity.

Formally, we measure the efficiency of a routing algorithm in terms of its
amortized message complexity per route request. Consider two consecutive
route requests q1 and q2. The number of messages credited towards q2 is all
the messages after the completion of q1 until the completion of q2. If the
graph changes between q1 and q2, then any potential messages are counted
towards the cost of q2 since they occur after the completion of q1. In other
words, a proactive algorithm, responding to m link changes, will add these
costs to the next route request. As with the idea of the stretch, we need
to compare the cost of the algorithm to the optimal cost, which is the sum
of the shortest paths of the route requests. Here, instead of comparing the
routes individually, we amortize over an entire session of route requests. We
consider a wireless broadcast medium, that is, a node locally broadcasting a
message to all its neighbors is counted as one message.

Definition 9.1. Consider a session m : r of m mobility events and r route
requests. An algorithm sends cm messages in response to the m network
changes and needs cr(i) messages to service the ith route request. Then the
competitive ratio ρ per route request of the algorithm is

ρ :=
cm +

∑r
i=1 cr(i)

∑r
i=1 opt(i)

(9.1)

where opt(i) is the shortest path between the source and destination of the
ith route request.

1recall that we ignore any lower layer issues such as collisions

9.3. PROACTIVE VERSUS REACTIVE 139

Our primary aim in this chapter is to obtain a rough idea of how the
mobility ratio influences the choice of proactive versus reactive types of algo-
rithms. For ease of analysis, we need to make a few simplifying assumptions.
We will only consider the case where all nodes route to the same destination.
That is, while the source is not known before each route request, the destina-
tion always is. Likewise, the size of the messages as well as the storage space
at each node is unlimited, focusing only on short route constructions and
not on how and where they are stored. For instance, the difference between
AODV and DSR is that one is point-to-point, the other stores the entire
route in the packet; this is an implementation detail (albeit an important
one) which we wish to disregard in our analysis. We also exclude the entire
line of research on compact routing, as little has been done to understand
the costs of updating the relatively complex data structures in the face of
dynamic graphs. We only consider topology-based algorithms, that is, where
only the graph structure G = (V, E) is known, excluding all types of al-
gorithms knowing the positions of the nodes in (two or three-dimensional)
Euclidean space.

An alternative between completely flooding the network (either pro- or
reactively) and not sending any messages at all is a local flooding up to k
hops. Recall that N(v, k) denotes the neighborhood of up to k hops around
node v. Then we define the local density D of a graph G = (V, E) to be

D = max
v∈V,1≤k≤diam

|N(v, k)|
k

. (9.2)

The local density, albeit with a scaling factor of 2, has been widely used
in the context of the graph bandwidth problem (see for instance [49]). In
our case, it gives the worst-case perspective on the cost of flooding with a
limited time-to-live parameter: Starting at a node v, flooding up to distance
d reaches |N(v, d)| ≤ 2Dd nodes. Observe that 1 ≤ D ≤ n (considering only
connected graphs).

9.3 Proactive versus Reactive

The terms reactive and proactive describe when an algorithm becomes active.
A proactive algorithm responds to mobility events and computes new routes
at this point, usually computing an optimal route which it can subsequently
use for a route request. Since the nodes do not know the mobility ratio of
the dynamic network, a proactive algorithm will generally respond to every
mobility event since it might be the only one for a while. A reactive algorithm
ignores mobility and only responds to a route request, at which point it
can either use an old route or decide to search for a new one. Thus, in a
reactive algorithm, we necessarily have cm = 0. What has been studied in the
literature as hybrid protocols we will term partially proactive and examine
this case further in Section 9.3.2.

140 CHAPTER 9. MODERATE MOBILITY

9.3.1 Classic Approaches

Classic Reactive: Flooding A classic example of a reactive routing al-
gorithm is flooding. The idea is to search for a new route with each and
every route request. A simple protocol of adaptive flooding searches the area
around the source with exponentially increasing radius until it finds the des-
tination. The exponential growth ensures that the cost is dominated by the
distance to the source. Since the number of nodes also grows with distance,
we have the total cost for each such search i

cr(i) = Θ(D · opt(i))

giving ρ = Θ(D) per route request independent of the m : r session since
cm = 0. The issue of when ρ = Θ(D) or o(D) hinges on the answers to the
questions at the end of Section 9.4, where we will discuss the graph-theoretic
details. All further mention of the term “flooding” will refer to the above
described adaptive protocol.

Classic Proactive A classic proactive routing protocol would inform the
network about each change, essentially flooding the information “link e has
changed” to all nodes, incurring costs of cm ≤ m · n, n = |V |, for the m
mobility events. The details of cm = m ·Θ(n) is the subject of the discussion
in Section 9.4. Any subsequent route request can now be serviced optimally
with cost opt(i) per route request. Thus, in an m : r session, the total cost
for the r route requests in such a proactive protocol is c ≤ m ·n+

∑

i opt(i),
or

ρ ≤ m · n +
∑r

i=1 opt(i)
∑r

i=1 opt(i)
≤ m · n

r
+ 1

which gives ρ = O
(

m
r
· n
)

since opt(i) ≥ 1 and thus
∑r

i=1 opt(i) ≥ r.

Comparison The analysis of the above two classic routing paradigms puts
us in a position to compare them and determine how much mobility is allowed
in order for such a fully proactive algorithm to be better than a flooding
approach. In other words, roughly comparing the two competitive ratios
above, we want

D ≥ m · n
r

(9.3)

that is, the number of route requests should be at least r = Ω
(
m · n

D

)
, or,

alternatively, the mobile events should be at most m = O
(
r · D

n

)
. In other

words, for linearly growth-bounded graphs where D = O(1), the number
of route requests (on average) before the graph changes again should be in
the order of the number of nodes such that proactive measures are effective.
Only in very dense graphs with D = Θ(n) is the overhead of the proac-
tive and flooding algorithms comparable when the network changes about as
frequently as route requests are issued.

9.3. PROACTIVE VERSUS REACTIVE 141

What we learn from the above is that the question of when proactive
routing (such as done in the Internet, for instance) is better than adaptive
flooding depends mainly on the ratio m : r, but also on the local density of
the graph as compared to the number of nodes, that is, D/n.

9.3.2 Partially Proactive

A proactive algorithm might not necessarily want to inform all relevant nodes.
For instance, the hybrid Zone Routing Protocol (ZRP) [63] is proactive on a
small scale and reactive with respect to the rest of the network. Abstractly,
we define a k-proactive algorithm as follows: Whenever a link changes, inform
affected nodes up to (hop) distance k. When servicing a route request, a node
chooses a (potentially outdated) cached route of length dold. If the path fails,
the node can perform adaptive flooding to find a new path, subsequently
using this new path of optimal length. (A node might want to store several
old paths; if any of them eventually work, we are in the above case where
it uses an old route of length dold, plus the additional costs of searching the
failed paths. Thus, storing multiple paths does not help in the worst case.)

The proactive costs will be cm = m · O(Dk), or more specifically, cm =
m · O(min(Dk, n)). The routing cost for each request i is either optimal
(cr(i) = opt(i)) because the node learned of the change in the network from
the proactive case or the route was unaffected, or the optimal distance is
greater than k (opt(i) > k). Conversely, if opt(i) > k, then either the old
route still exists and csucc(i) = dold(i) = O(n); or the old route is broken,
then cfail(i) = dold(i) + O(D · opt(i)). Let us consider the favorable case
(for the algorithm) that all r route requests are issued by the same source
(though this is not known a priori). Then only cfail(1) = dold + O(D · opt)
and cfail(i) = opt for 1 < i ≤ r where opt is the shortest path length.

We obtain the following competitive ratios for the case that all routes
concern the same sender-destination pair in an m : r mobile network. For
opt ≤ k, the costs are dominated by cm since the routing costs are optimal,
so

ρopt =
m ·O(Dk)

r · opt
+ 1 = O

(m

r
Dk
)

.

For opt > k, cm/(r · opt) < cm/(rk), so

ρsucc = O
(cm

rk
+

rn

rk

)

= O
(m

r
D +

n

k

)

ρfail = O

(
cm

rk
+

n + D · opt + (r − 1)opt

ropt

)

= O

(
m + 1

r
D +

1

r

n

k

)

.

This gives a worst-case overall competitive ratio of

ρ = O(ρopt + ρsucc + ρfail) = O
(m

r
·Dk +

n

k

)

. (9.4)

142 CHAPTER 9. MODERATE MOBILITY

Now for a fixed ratio m :r we can solve for the optimum k, giving

k =

√
n

D
· r

m

which ensures Dk ≤ n if we consider mobility ratios m/r ≥ D/n. (Below
that we already know that fully proactive routing outperforms flooding.)
Plugging this value of k into Eq. (9.4), we get

ρ = O

(√
m

r
·Dn

)

.

To compare with reactive algorithms, we ask again, when is

D ≥
√

m

r
·Dn, (9.5)

or, for which mobility ratios does this become better than flooding with a
competitive ratio of roughly D. Notice that this is essentially Eq. (9.3). In
other words, a k-proactive algorithm does not outperform flooding unless the
mobility-to-routing ratio is as low as it is for a fully proactive algorithm, even
in the favorable case of the same source issuing subsequent route requests.

9.3.3 Other Reactive Approaches

Investment of Path Costs The definition of reactive also allows for a
little more room to play with. It is not necessary for a reactive algorithm
to always search for a new route. For instance, a reactive algorithm could
proceed as follows: If the sender node s has cached a route p to the destination
t, then it tries that route. Further it invests the cost of the used route to
find a new one; it does so for each route request since the algorithm does not
know the mobility ratio. If s fails to reach t, then it proceeds by incremental
flooding as above. As before, let us assume that, in a session of m :r mobile
events and subsequent route requests, the sender is always s. This way the
investment has a chance to pay off.

Let d = |p| be the length of the stored route and opt the optimum route
length. If p is broken, then s fails with costs less than d and the search for
the new route costs O(D · opt), giving a total of cfail(1) = O(d + D · opt).
If s reaches t via p, then the actual route costs d and the search for a new
route stops at distance either d (in which case d was optimal) or proportional
to opt (in which case p was outdated and too long). Thus, csucc(1) = d +
O(D · opt). All other requests are dominated by the search for a new path
up to radius opt, thus cr(i) = O(D · opt) for 1 < i ≤ r. Therefore, cr =
O(d + r ·D · opt), giving

ρ = O

(
d

r · opt
+ D

)

= O
(n

r
+ D

)

9.3. PROACTIVE VERSUS REACTIVE 143

using that opt ≥ 1 and d ≤ n (assuming it had a valid loop-free path).
Note that the above expression is at least D regardless of the mobility, which
means that it is not better than flooding which does not use any old routes,
even in the case of the same source sending to the same destination.

Reuse of Old Routes This leads us to question the efficiency of an al-
gorithm which uses an old path whenever possible, without the searching
above. First, note that since we have a reactive algorithm, it ignores all net-
work change events. This means that it cannot know when to search for a
new path and when not. This implies that a node’s decision to search given
that it has a valid old path is independent of the existence of a new path.
So a reactive algorithm which always uses an old path (assuming it exists)
will have the ratio of the old versus new path as its stretch, which can be as
bad as in the order of nodes (i.e., ρ = Θ(n)) which is worse than the classic
proactive algorithm for any m ≤ r.

Periodic Searching There can also be hybrid approaches where a node
searches every I steps for a new path, in the other cases assuming it had a
valid old path. In a best-possible scenario, consider again always the same
source (or: the same source after searching for a new path) and r > I ,
otherwise at least every other session of route requests has overhead of Θ(n)
in the worst case. The average number of route requests after a mobility
event and before the next search (counting I route requests, regardless of
mobility) is in the order of Θ(I). Then the costs for a routing session (i.e., r
consecutive route requests) is

cr(I) = Θ(I · d) + ⌈r/I⌉O(D · opt) + (r − I)opt

where the first term stems from using an old route of length d after some
mobility events, the second term are the search costs, and the remaining route
requests are serviced optimally with costs opt. This gives a competitive ratio
of

ρ(I) = O

(
I · n

r
+
⌈r/I⌉D

r

)

= O

(

n
I

r
+

D

I

)

again with d ≤ n being the old path and opt ≥ 1. Solving for the optimum
ρ(I) gives I∗ =

√

r ·D/n, thus

ρ(I∗) = Θ

(√

D · n
r

)

.

Note that the condition I < r is satisfied since D < n. In order for this to be
at least as good as classic adaptive flooding, we need r = Ω

(
n
D

)
(compare to

the extra m factor in the proactive case). For sparse graphs with low D, this
implies a large number of consecutive route requests for such an algorithm

144 CHAPTER 9. MODERATE MOBILITY

to be superior to flooding, even in the favorable case of the same source
issuing the route requests after a path discovery. Further observe that I∗

depends on r, which actually invalidates the above discussion. If the nodes
know the “period of stability” and the pattern of route requests and mobility
events occur regularly (as we have assumed in the above discussion), then
the nodes can determine the timing of the mobile events and in fact design
an optimal algorithm. Without knowledge of r, we can set I ′ =

√

n/D to

obtain ρI′ = O
(√

Dn(1 + 1/r)
)

= O
(√

Dn
)

, yielding no advantage over

flooding at all.

9.3.4 Perspective

A priori, we know that the more mobile a network, the more reactive a routing
algorithm should be since the costs of proactively responding to mobile events
will eventually outweigh the benefit of storing short routes. There is a natural
tradeoff between how much messages are invested to keep information up to
date and the quality of the used routes when they are needed. In Section 9.3.2
we have seen that, asymptotically and in the worst case, we have nothing to
gain from using a partially proactive algorithm over a fully, classical proactive
approach. The same holds for the other reactive approaches as discussed in
Section 9.3.3. Thus, a posteriori, it seems that we can abandon any hopes
of finding a family of algorithms which has a parameter to adjust smoothly
for the mobility of the network. Indeed, the picture looks binary, as shown
schematically in Figure 9.2: If the mobility ratio is greater than about D/n,
then only a fully reactive algorithm such as adaptive flooding makes sense
from the worst-case, asymptotic perspective. Otherwise, use a fully proactive
algorithm.

9.4 The Fine Print: Discussion and Future Work

Aside from shedding some light on the pro- versus reactive routing algorithms
debate, this chapter, more than anything, has uncovered numerous further
important questions. First of all, on the positive side, we have shown, as in
the case for highly mobile networks, also for moderately mobile networks an
analytic treatment of the costs of routing algorithms is possible. The first
step in this direction was to properly define the costs of a routing algorithm
in the face of mobility. After that, what we have given is a bird’s eye view
of the number of messages per route request for several routing paradigms.
This asymptotic and worst-case analysis has opened up the path for a more
detailed theory of routing algorithms. It is in the worst-case view that we
see the most room for future work.

The two major assumptions of the previous analysis requiring scrutiny
are the worst-case overheads in both the pro- and reactive case. We can

9.4. DISCUSSION AND FUTURE WORK 145

messages

m/r

Θ(D · diam)

Θ(diam)

O
(

D
n · diam

R

)
1

Figure 9.2: Comparison of the messages per route request for classic pro- and
reactive algorithms in terms of m/r, increasing to the right. We assume that
the average path length is in the order of the diameter diam of the network
and we run as many sessions (with the same m :r ratio) such that a total of R
route requests are serviced. The (red) horizontal line is the adaptive flooding
algorithm. The other (blue) is the classic proactive algorithm, (potentially)
informing all n nodes of a link change, thus the equation for the line is in the
order of Θ(n · (m/r) ·R + diam).

succinctly state the problem as one of determining how paths are affected
by mobility. It is clear that after a large number of link changes, almost all
paths in the graph can change. But if the mobility events in a session are
few, then a central combinatorial question in this case is to determine how
many nodes’ paths are significantly affected by only a certain number of link
changes in the graph.

The assumption affecting the cost of reactive algorithms is whether flood-
ing up to hop distance d can really always cost as much as Θ(D · d)? For
instance, a star topology has D = n, but the center node only needs to send
out one message to reach all nodes. If we extend the leaves of the star by
short paths, then indeed Θ(n) messages are necessary to flood. If we imagine
that the destination is connected by a single link to only one outermost star
node in each session of two mobile events, then a reactive algorithm must in-
deed go through half of all paths (on average) on the star to determine where
the new path is, see also Figure 9.3. On the contrary, a partially proactive
algorithm which sends a message from the new link to the center of the star
would eliminate this problem of a reactive algorithm. By the same token,
we can ask ourselves if it is really fair to consider graphs where only in a
few places the local density is as high as D while the rest of the nodes are

146 CHAPTER 9. MODERATE MOBILITY

connected sparsely. One option might be to look at uniform-density graphs.

s

t

ei

Figure 9.3: Topology for fully reactive routing algorithms such that each
route request costs Θ(n) messages. Edge ei changes its location with every
mobile event.

In the proactive case, we assumed that each single link change can affect
a large part of the network, that is, in the order of n nodes. In a simple
view, where nodes want to remain up-to-date with the exact distance to the
destination, this is the case as shown by the example of a ring network with a
different link missing each mobile event (strictly speaking, every other mobile
event). However, a node which previously had a short path to the destination
of length d1 < n/2 can still “try” the old route first, then use the new route
of length d2 ≥ n/2, incurring costs of less than 2d1 + d2 < 3d2, that is, the
stretch of the new route is at most 3 without sending any proactive messages.
We can extend this example by allowing a set of logarithmically many links
(with exponentially increasing many nodes in between) to create “shortcuts”
to the destination such that no constant stretch of the old over the new route
is possible without proactively informing many nodes. What this example
also shows is that we need to treat link deletions and additions separately.
If links only go away (in a session), then trying a previously shortest route
first will not hurt, since any new route will be longer. The stretch is affected
by new routes. This is where splitting up the mobile events into link joins
and leaves will prove helpful.

A further extension to the mobility model is to include weighted edge
lengths. The primary questions then is how do we define adaptive searches
instance? Further, we need to include a weight change as a mobile event.

The above discussion, in particular Section 9.3.3, shows that the quality
of being reactive does not alone determine how well an algorithm performs
with respect to mobility when compared to a proactive approach. This moti-
vates us to identify another algorithm parameter which we term investment.
The intent is to model how much effort an algorithm puts into searching for
new paths. In this sense, both of the classical protocols are the same because
flooding searches for a new path each route request and because the proactive

9.4. DISCUSSION AND FUTURE WORK 147

protocol, by reacting to each change in the network, already has every pos-
sible new path ready for any route request. Thus, they both invest the same
amount into finding short paths, the difference is only when: proactive upon
mobility, and reactive upon routing. The crucial question here is whether
this could lead to a qualitatively new way of classifying routing protocols.

148 CHAPTER 9. MODERATE MOBILITY

Chapter 10

Conclusion

Geometry and mobility, two seemingly disparate concepts which are united
by the important role they play in wireless ad hoc networks. In the first part
of this dissertation we have demonstrated that it is indeed possible to give
algorithms with provable guarantees for the intricate problem of unit disk
graph embedding. Together with other results in the area, this promotes
research on network localization from purely heuristic methods to theoret-
ical analysis. Two main further goals loom ahead: One ideal is to have a
simple, combinatorial, and most importantly local algorithm which still pro-
vides guarantees on the quality of the computed embedding. The other and
perhaps equally idealistic goal is to find a constant approximation algorithm.

As for mobility models, some prior work exists measuring and analyzing
the effects of a mobility model on the network graph. In particular, recent
emphasis has been on link and path lifetimes. We have complemented this
geometric and random point of view with a general, worst-case perspective.
This is only the beginning. What remains is to obtain more extensive sim-
ulation results as well as to continue the analytical study, in particular the
investigation of path stability. It seems to us that there is considerable po-
tential in studying the path lifetime and its associated change on the lengths
of shortest paths between nodes from a combinatorial point of view as well
as by means of more statistical analysis. The latter in particular implies that
more information about use cases of mobile ad hoc networks is vitally impor-
tant. Moreover, the focus should not rest on “measuring the mobility” alone
to describe and classify mobility models; we have shown the importance of
looking at network changes together with route requests as a meaningful way
to express the complexity and overhead of mobile ad hoc routing protocols.

We emphasize that the second part of the dissertation is by far more
preliminary than the preceding discussion of unit disk graph embeddings.
This is due largely to the great contrast in the objectives of the two parts.
For UDG embedding, the problem is clear cut, all that is left is to find a

150 CHAPTER 10. CONCLUSION

good algorithm. For mobile routing, theory is still in its infant stage, and we
need to explore the space spanned by the different options with which we can
model mobility. Despite these differences, or perhaps even because of them,
we hope to have shed at least a tiny sparkle of light into the vast darkness
which still clouds wireless ad hoc networking research.

Bibliography

[1] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Com-
pact name-independent routing with minimum stretch. In Proc. of the
16th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2004.

[2] S. Agarwal, S. Krishnamurthy, R. Katz, and S. Dao. Distributed power
control in ad-hoc wireless networks. In Proc. of the 12th IEEE Intl.
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), 2001.

[3] K. Albrecht, R. Arnold, M. Gähwiler, and R. Wattenhofer. Aggregating
information in peer-to-peer system for improved join and leave. In Proc.
of the 4th IEEE International Conference on Peer-to-Peer Computing
(P2P), 2004.

[4] G. Allard, P. Jacquet, and B. Mans. Routing in extremely mobile net-
works. In Proc. of the 4th Mediterranean Ad Hoc Networking Workshop
(MedHocNet), 2005.

[5] O. Angel, I. Benjamini, E. Ofek, and U. Wieder. Routing complexity of
faulty networks. In Proc. of the 24th ACM Symposium on the Principles
of Distributed Computing (PODC), 2005.

[6] J. Aspnes, T. Eren, D. Goldenberg, A. S. Morse, W. Whiteley, Y. R.
Yang, B. Anderson, and P. Belhumeur. A theory of network localiza-
tion. IEEE Transactions on Mobile Computing, to appear, 2006.

[7] J. Aspnes, D. Goldenberg, and Y. R. Yang. On the computational
complexity of sensor network localization. In Proc. of the 1st Intl.
Workshop on Algorithmic Aspects of Wireless Sensor Networks (AL-
GOSENSORS), 2004.

[8] B. Awerbuch. Complexity of network synchronization. Journal of the
ACM, 32(4), 1985.

151

152 BIBLIOGRAPHY

[9] B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler. Simple
routing strategies for adversarial systems. In Proc. of the 42nd IEEE
Symposium on Foundations of Computer Science (FOCS), 2001.

[10] B. Awerbuch, D. Holmer, R. Kleinberg, and H. Rubens. Provably
competitive adaptive routing. In Proc. of the 24th IEEE Conference on
Computer Communications (INFOCOM), 2005.

[11] B. Awerbuch and R. D. Kleinberg. Adaptive routing with end-to-end
feedback: Distributed learning and geometric approaches. In Proc. of
the 36th ACM Symposium on Theory of Computing (STOC), 2004.

[12] B. Awerbuch and T. Leighton. Improved approximation algorithms
for the multi-commodity flow problem and local competitive routing in
dynamic networks. In Proc. of the 26th ACM Symposium on Theory of
Computing (STOC), 1994.

[13] M. Bădoiu, J. Chuzhoy, P. Indyk, and A. Sidiropoulos. Low-distortion
embeddings of general metrics into the line. In Proc. of the 37th Sym-
posium on Theory of Computing (STOC), 2005.

[14] M. Bǎdoiu, E. Demaine, M. T. Hajiaghayi, and P. Indyk. Low-
dimensional embedding with extra information. In Proc. of the 20th

Symposium on Computational Geometry (SoCG), 2004.

[15] M. Bădoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Räcke,
R. Ravi, and A. Sidiropoulos. Approximation algorithms for low-
distortion embeddings into low-dimensional spaces. In Proc. of the
16th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

[16] P. Bahl and V. Padmanabhan. RADAR: An in-building RF-based user
location and tracking system. In Proc. of the 19th Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
2000.

[17] F. Bai, N. Sadagopan, and A. Helmy. The IMPORTANT framework for
analyzing the Impact of Mobility on Performance Of RouTing protocols
for Adhoc NeTworks. Ad Hoc Networks, 1(4):383–403, 2003.

[18] F. Bai, N. Sadagopan, B. Krishnamachari, and A. Helmy. Modeling
path duration distributions in MANETs and their impact on reactive
routing protocols. IEEE Journal on Selected Areas in Communications,
22(7):1357–1373, 2004.

[19] C. Barrett, M. Drozda, A. Marathe, and M. V. Marathe. Characterizing
the interaction between routing and mac protocols in ad-hoc networks.
In Proc. of the 3rd ACM Intl. Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), 2002.

BIBLIOGRAPHY 153

[20] L. Barriére, P. Fraigniaud, and L. Narayanan. Robust position-based
routing in wireless ad hoc networks with unstable transmission ranges.
In Proc. of the 5th Intl. Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications (DIAL-M), 2001.

[21] A. Basu, J. Gao, J. Mitchell, and G. Sabhnani. Distributed localization
by noisy distance and angle information. In Proc. of the 7th ACM In-
ternational Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2006.

[22] C. Bettstetter. Smooth is better than sharp: A random mobility model
for simulation of wireless networks. In Proc. of the 4th ACM Intl. Work-
shop on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM), 2001.

[23] J. Beutel. Handbook of Sensor Networks: Compact Wireless and Wired
Sensing Systems, chapter Location Management in Wireless Sensor
Networks. CRC Press, 2004.

[24] R. Bischoff and R. Wattenhofer. Analyzing connectivity-based, multi-
hop ad-hoc positioning. In Proc. of the 2nd IEEE Intl. Conference on
Pervasive Computing and Communications (PerCom), 2004.

[25] P. Biswas, T.-C. Liang, K.-C. Toh, and Y. Ye. An SDP based approach
for anchor-free 3d graph realization. Preprint, 2005.

[26] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless
sensor network localization. In Proc. of the 3rd Intl. Symposium on
Information Processing in Sensor Networks (IPSN), 2004.

[27] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P.
Williamson. Adversarial queuing theory. Journal of the ACM, 48(1):13–
38, 2001.

[28] J. Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert
space. Israel Journal of Mathematics, 52:46–52, 1985.

[29] H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-
hard. Computational Geometry: Theory and Applications, 9(1-2):3–24,
1998.

[30] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A
performance comparison of multi-hop wireless ad hoc network routing
protocols. In Proc. of the 4th ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), 1998.

154 BIBLIOGRAPHY

[31] J. Bruck, J. Gao, and A. Jiang. Localization and routing in sensor
networks by local angle information. In Proc. of the 6th ACM Intl.
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
2005.

[32] C. Busch, S. Surapaneni, and S. Tirthapura. Analysis of link reversal
routing algorithms for mobile ad hoc networks. In Proc. of the 15th

ACM Symposium on Parallel Algorithms and Architectures (SPAA),
2003.

[33] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for
ad hoc network research. Wireless Communication & Mobile Comput-
ing (WCMC): Special issue on Mobile Ad Hoc Networking: Research,
Trends and Applications, 2(5):483–502, 2002.

[34] I. D. Chakeres and J. P. Macker. Mobile ad hoc networking and the
IETF. ACM SIGMOBILE Mobile Computing and Communications
Review, 10(1):58–60, 2006.

[35] H. Chan, K. Dhamdhere, A. Gupta, J. Kleinberg, and A. Slivkins.
Metric embeddings with relaxed guarantees. In Proc. of the 46th IEEE
Symposium on Foundations of Computer Science (FOCS), 2005.

[36] C.-C. Chiang. Wireless Network Multicasting. PhD thesis, The Uni-
versity of California at Los Angeles (UCLA), 1998.

[37] J. D. Cohen. Drawing graphs to convey proximity: An incremental
arrangement method. ACM Transactions on Computer-Human Inter-
action (TOCHI), 4(3):197–229, 1997.

[38] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentral-
ized network coordinate system. In Proc. of the 10th Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), 2004.

[39] R. Davidson and D. Harel. Drawing graphs nicely using simulated an-
nealing. ACM Transactions on Graphics (TOG), 15(4):301–331, 1996.

[40] V. A. Davies. Evaluating mobility models within an ad hoc network.
Master’s thesis, Colorado School of Mines, 2000.

[41] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[42] L. Doherty, K. Pister, and L. E. Ghaoui. Convex position estimation in
wireless sensor networks. In Proc. of the 20th Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), 2001.

BIBLIOGRAPHY 155

[43] S. Dolev, L. Lahiani, S. Gilbert, N. Lynch, and T. Nolte. Brief an-
nouncement: Virtual stationary automata for mobile networks. In
Proc. of the 24th ACM Symposium on Principles of Distributed Com-
puting (PODC), 2005.

[44] J. Dunagan and S. Vempala. On euclidean embeddings and bandwidth
minimization. In Proc. of the 5th Workshop on Randomization and
Approximation (RANDOM-APPROX), 2001.

[45] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[46] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms.
In M. J. Atallah, editor, Algorithms and Theory of Computation Hand-
book, chapter 8. CRC Press, 1999.

[47] J. Eriksson, M. Faloutsos, and S. Krishnamurthy. Scalable ad hoc rout-
ing: The case for dynamic addressing. In Proc. of the 23rd Conference
of the IEEE Communicatons Society (INFOCOM), 2004.

[48] G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approx-
imation algorithms via spreading metrics. In Proc. of the 36th IEEE
Symposium on Foundations of Computer Science (FOCS), 1995.

[49] U. Feige. Approximating the bandwidth via volume respecting embed-
dings. J. of Computer and System Sciences, 60(3):510–539, 2000.

[50] J. Feigenbaum and S. Kannan. Dynamic graph algorithms. In K. H.
Rosen, editor, Handbook of Discrete and Combinatorial Mathematics,
chapter 17.1, pages 1142–1148. CRC Press, 2000.

[51] Y. Fernandess and D. Malkhi. K-clustering in wireless ad hoc networks.
In Proc. of the 2nd ACM Intl. Workshop on Principles of Mobile Com-
puting (POMC), 2002.

[52] K. Fischer, B. Gärtner, and M. Kutz. Fast smallest-enclosing-ball com-
putation in high dimensions. In Proc. of the 11th European Symposium
on Algorithms (ESA), 2003.

[53] T. Fruchterman and E. Reingold. Graph drawing by force-directed
placement. Software-Practice and Experience, 21(11):1129–1164, 1991.

[54] E. M. Gafni and D. P. Bertsekas. Distributed algorithms for generating
loop-free routes in networks with frequently changing topology. IEEE
Transactions on Communication, 2(1):11–18, 1981.

156 BIBLIOGRAPHY

[55] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker. Complex Behavior at Scale: An Experimental Study of
Low-Power Wireless Sensor Networks. Technical Report UCLA/CSD-
TR 02-0013, UCLA Computer Science, 2002.

[56] F. Gärtner. A survey of self-stabilizing spanning-tree construction al-
gorithms. Technical Report IC/2003/38, Swiss Federal Institute of
Technology (EPFL), 2003.

[57] C. Gotsman and Y. Koren. Distributed graph layout for sensor net-
works. Journal of Graph Algorithms and Applications, 9(3):327–349,
2005.

[58] M. Grossglauser and D. N. C. Tse. Mobility increases the capacity of
ad-hoc wireless networks. In Proc. of the 20th Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), 2001.

[59] M. Grossglauser and M. Vetterli. Locating nodes with EASE: Last
encounter routing in ad hoc networks through mobility diffusion. In
Proc. of the 22nd IEEE Conference on Computer Communications (IN-
FOCOM), 2003.

[60] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer, 1998.

[61] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, 46(2):388–404, 2000.

[62] Z. Haas. A new routing protocol for the reconfigurable wireless net-
works. In Proc. of the 6th IEEE Intl. Conference on Universal Personal
Communications (ICUPC), 1997.

[63] Z. J. Haas and M. R. Pearlman. ZRP: A hybrid framework for routing
in ad hoc networks. In Ad Hoc Networking, pages 221–253. Addison-
Wesley, 2001.

[64] M. Heissenbüttel. Routing and Broadcasting in Ad-Hoc Networks. PhD
thesis, Universität Bern, 2005.

[65] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Posi-
tioning Systems: Theory and Practice. Springer, 5th edition, 2001.

[66] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang. A group mobility model
for ad hoc wireless networks. In Proc. of the 2nd ACM Intl. Workshop
on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), 1999.

BIBLIOGRAPHY 157

[67] P. Indyk and J. Matoušek. Handbook of Discrete and Computational
Geometry, chapter Discrete metric spaces. CRC Press, second edition,
2004.

[68] A. Jardosh, E. Belding-Royer, K. Almeroth, and S. Suri. Towards
realistic mobility models for mobile ad hoc networks. In Proc. of the
9th Intl. Conference on Mobile Computing and Networking (MobiCom),
2003.

[69] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and
M. Degermark. Scenario-based performance analysis of routing pro-
tocols for mobile ad-hoc networks. In Proc. of the 5th ACM/IEEE
International Conference on Mobile Computing and Networking (Mo-
biCom), 1999.

[70] D. B. Johnson. Routing in ad hoc networks of mobile hosts. In Proc.
of the 1st IEEE Workshop on Mobile Computing Systems and Applica-
tions, 1994.

[71] D. B. Johnson and D. A. Maltz. Mobile Computing, chapter Dynamic
Source Routing in Ad Hoc Wireless Networks. Kluwer Academic Pub-
lishers, 1996.

[72] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

[73] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31(1):7–15, 1989.

[74] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and
Models. Lecture Notes in Computer Science Tutorial 2025, Springer,
2001.

[75] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and embedding
using small sets of beacons. In Proc. of the 45th IEEE Symposium on
Foundations of Computer Science (FOCS), 2004.

[76] L. Kleinrock and J. Silvester. Optimum transmission radii for packet
radio networks or why six is a magic number. In Proc. of the IEEE
National Telecommunications Conference, 1978.

[77] A. Korman and D. Peleg. Dynamic routing schemes for general graphs.
In Proc. of the 33rd Intl. Colloquium on Automata, Languages and Pro-
gramming (ICALP), 2006.

[78] A. Korman, D. Peleg, and Y. Rodeh. Labeling schemes for dynamic
tree networks. In Proc. of the 19th Symposium on Theoretical Aspects
of Computer Science (STACS), 2002.

158 BIBLIOGRAPHY

[79] J. Kruskal and J. Seery. Designing network diagrams. In Proc. of the
1st GeneralConference on Social Graphics, U. S. Department of the
Census, 1980.

[80] F. Kuhn. personal communication, May 2006.

[81] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Fast deter-
ministic distributed maximal independent set computation on growth-
bounded graphs. In Proc. of the 19th International Symposium on Dis-
tributed Computing (DISC), 2005.

[82] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Local ap-
proximation schemes for ad hoc and sensor networks. In Proc. of the 3rd

ACM Joint Workshop on Foundations of Mobile Computing (DIALM-
POMC), 2005.

[83] F. Kuhn, T. Moscibroda, R. O’Dell, M. Wattenhofer, and R. Watten-
hofer. Virtual coordinates for ad hoc and sensor networks. Algorith-
mica, 2006. to appear.

[84] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit disk graph approx-
imation. In Proc. of the 2nd ACM Joint Workshop on Foundations of
Mobile Computing (DIALM-POMC), 2004.

[85] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the locality of
bounded growth. In Proc. of the 24th ACM Symposium on the Princi-
ples of Distributed Computing (PODC), 2005.

[86] F. Kuhn, S. Schmid, and R. Wattenhofer. A self-repairing peer-to-peer
system resilient to dynamic adversarial churn. In Proc. of the Fourth
Int’l Workshop on Peer-To-Peer Systems (IPTPS), 2005.

[87] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating
set approximation. In Proc. of the 22nd ACM Symposium on the Prin-
ciples of Distributed Computing (PODC), 2003.

[88] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric
ad-hoc routing: Of theory and practice. In Proc. of the 22nd ACM
Symposium on Principles of Distributed Computing (PODC), 2003.

[89] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyond
unit disk graphs. In Proc. of the 1st ACM Joint Workshop on Founda-
tions of Mobile Computing (DIALM-POMC), 2003.

[90] F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case optimal and
average-case efficient geometric ad-hoc routing. In Proc. of the 4th

ACM Intl. Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2003.

BIBLIOGRAPHY 159

[91] B.-J. Kwak, N.-O. Song, and L. E. Miller. A mobility measure for
mobile ad hoc networks. IEEE Communication Letters, 7(8):379–381,
2003.

[92] T. J. Kwon and M. Gerla. Clustering with power control. In Proc. of
IEEE Military Communications Conference (MilCOM), 1999.

[93] T. Larsson and N. Hedman. Routing protocols in wireless ad-hoc net-
works. Master’s thesis, Lule̊a Tekniska Universitet, 1998.

[94] J.-Y. Le Boudec and M. Vojnovic̀. Perfect simulation and stationarity
of a class of mobility models. In Proc. of the 24th IEEE Conference on
Computer Communications (INFOCOM), 2005.

[95] G. Lin, G. Noubir, and R. Rajaraman. Mobility models for ad hoc
network simulation. In Proc. of the 23rd IEEE Conference on Computer
Communications (INFOCOM), 2004.

[96] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and
some of its algorithmic applications. Combinatorica, 15:215–245, 1995.

[97] Z. Lotker, M. M. de Albeniz, and S. Pérénnes. Range-free ranking in
sensors networks and its applications to localization. In Proc. of Ad-
Hoc, Mobile, and Wireless Networks: 3rd Intl. Conference (ADHOC-
NOW), 2004.

[98] N. Lynch, S. Mitra, and T. Nolte. Motion coordination using virtual
nodes. In Proc. of the 44th IEEE Conference on Decision and Control
and European Control Conference, 2005.

[99] J. G. Markoulidakis, G. L. Lyberopoulos, D. F. Tsirkas, and E. D.
Sykas. Mobility modeling in third generation mobile telecommunication
systems. IEEE Personal Communications, 4(4):41–56, 1997.

[100] J. Matoušek. Lectures on Discrete Geometry, Graduate Texts in Math-
ematics (GTM) 202, chapter Embedding Finite Metric Spaces into
Normed Spaces. Springer, 2002.

[101] J. Matoušek and U. Wagner. personal communication, July 2004.

[102] T. Moscibroda, R. O’Dell, M. Wattenhofer, and R. Wattenhofer. Vir-
tual coordinates for ad hoc and sensor networks. In Proc. of the 2nd

ACM Joint Workshop on Foundations of Mobile Computing (DIALM-
POMC), 2004.

[103] T. Moscibroda and R. Wattenhofer. The complexity of connectivity in
wireless networks. In Proc. of the 25th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), 2006.

160 BIBLIOGRAPHY

[104] T. Munzner and P. Burchard. Visualizing the structure of the world
wide web in 3d hyperbolic space. In Proc. of the 1st Symposium on
Virtual Reality Modeling Language (VRML), 1995.

[105] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate
system from local information on an ad hoc sensor network. In Proc. of
the 2nd International Workshop on Information Processing in Sensor
Networks (IPSN), 2003.

[106] E. Ng and H. Zhang. Predicting internet network distance with
coordinates-based approaches. In Proc. of the 21st Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
2002.

[107] D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proc.
of the 44th IEEE Global Communications Conference (GLOBECOM),
2001.

[108] D. Niculescu and B. Nath. Ad hoc positioning system (APS) using
A0A. In Proc. of the 22nd Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), 2003.

[109] D. Niculescu and B. Nath. DV based positioning in ad hoc networks.
Journal of Telecommunication Systems, 22(1-4):267–280, 2003.

[110] D. Niculescu and B. Nath. Error characteristics of ad hoc positioning
systems (APS). In Proc. of the 5th ACM Intl. Symposium on Mobile
Ad hoc Networking and Computing (MobiHoc), 2004.

[111] M. O’Dell, R. O’Dell, M. Wattenhofer, and R. Wattenhofer. Lost in
space or positioning in sensor networks. In Proc. of the 1st Workshop
on Real-World Wireless Sensor Networks (REALWSN), 2005.

[112] R. O’Dell and R. Wattenhofer. Information dissemination in highly dy-
namic graphs. In Proc. of the 3rd ACM Joint Workshop on Foundations
of Mobile Computing (DIALM-POMC), 2005.

[113] R. O’Dell and R. Wattenhofer. Theoretical aspects of connectivity-
based multi-hop positioning. Theoretical Computer Science, 344(1):47–
68, 2005.

[114] V. D. Park and M. S. Corson. A highly adaptive distributed routing
algorithm for mobile wireless networks. In Proc. of the 16th IEEE
Conference on Computer Communications (INFOCOM), 1997.

BIBLIOGRAPHY 161

[115] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In Proc. of the
Conference on Communications Architectures, Protocols and Applica-
tions (SIGCOMM), 1994.

[116] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector
routing. In Proc. of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA), 1999.

[117] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket
location-support system. In Proc. of the 6th ACM Intl. Conference
on Mobile Computing and Networking (MobiCom), 2000.

[118] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Poster
abstract: Anchor-free distributed localization in sensor networks. In
Proc. of the 1st Intl. Conference on Embedded Networked Sensor Sys-
tems (SenSys), 2003.

[119] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller.
Mobile-assisted localization in wireless sensor networks. In Proc. of
the 24th Conference of the IEEE Communicatons Society (INFOCOM),
2005.

[120] V. Raghavan and J. Spinrad. Robust algorithms for restricted domains.
Journal of Algorithms, 48(1):160–172, 2003.

[121] R. Rajaraman. Topology control and routing in ad hoc networks: A
survey. ACM SIGACT News, 33(2):60–73, 2002.

[122] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica.
Localization from mere connectivity. In Proc. of the 9th ACM Intl.
Conference on Mobile Computing and Networking (MobiCom), 2003.

[123] T. Rappaport. Wireless Communications: Principles & Practice. Pren-
tice Hall, 1996.

[124] K. Römer. The lighthouse location system for smart dust. In Proc.
of the 1st ACM/USENIX Intl. Conference on Mobile Systems, Appli-
cations, and Services (MobiSys), 2003.

[125] E. M. Royer, P. M. Melliar-Smith, and L. E. Moser. An analysis of the
optimum node density for ad hoc mobile networks. In Proc. of the 36th

IEEE Intl. Conference on Communications (ICC), 2001.

[126] P. Samar, M. R. Pearlman, and Z. J. Haas. Independent zone routing:
An adaptive hybrid routing framework for ad hoc wireless networks.
IEEE/ACM Transactions on Networking (TON), 12(4):595–608, 2004.

162 BIBLIOGRAPHY

[127] N. Sarafijanovic-Djukic and M. Grossglauser. Last encounter routing
under random waypoint mobility. In Proc. of the 3rd IFIP-TC6 Net-
working Conference, 2004.

[128] M. Särelä. Measuring the effects of mobility on reactive ad hoc rout-
ing protocols. Technical Report HUT-TCS-A91, Helsinki University of
Technology, 2004.

[129] C. Savarese, J. Rabaey, and K. Langendoen. Robust positioning algo-
rithms for distributed ad-hoc wireless sensor networks. In Proc. of the
USENIX Technical Conference, 2002.

[130] ScatterWeb GmbH. http://www.scatterweb.net, 2004.

[131] C. Schindelhauer, T. Lukovszki, S. Rührup, and K. Volbert. Worst case
mobility in ad hoc networks. In Proc. of the 15th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), 2003.

[132] S. Schmid and R. Wattenhofer. Algorithmic models for sensor networks.
In Proc. of the 14th Intl. Workshop on Parallel and Distributed Real-
Time Systems (WPDRTS), 2006.

[133] K. Seada, A. Helmy, and R. Govindan. On the effect of localiza-
tion errors on geographic face routing in sensor networkse. In Proc.
of 3rd Intl. Symposium on Information Processing in Sensor Networks
(IPSN), 2004.

[134] R. Shah, A. Wolisz, and J. Rabaey. On the performance of geographical
routing in the presence of localization errors. In Proc. of the 40th IEEE
Intl. Conference on Communications (ICC), 2005.

[135] Y. Shang and W. Ruml. Improved MDS-based localization. In Proc. of
the 23rd Conference of the IEEE Communicatons Society (INFOCOM),
2004.

[136] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from
mere connectivity. In Proc. of the 4th ACM Intl. Symposium on Mobile
Ad hoc Networking and Computing (MobiHoc), 2003.

[137] A. M.-C. So and Y. Ye. Theory of semidefinite programming for sensor
network localization. In Proc. of the 16th ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2005.

[138] E. Soedarmadji and R. McEliece. A dynamic graph algorithm for the
highly dynamic network problem. In Proc. of the 1st IEEE Intl. Work-
shop on Foundation and Algorithms for Wireless Networking (FAWN),
2006.

BIBLIOGRAPHY 163

[139] D. Son, B. Krishnamachari, and J. Heidemann. Experimental study
of the effects of transmission power control and blacklisting in wireless
sensor networks. In Proc. of the 1st IEEE Conference on Sensor and
Adhoc Communication and Networks, 2004.

[140] M. Thorup and U. Zwick. Compact routing schemes. In Proc. of
the 13th ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 2001.

[141] V. Tolety. Load reduction in ad hoc networks using mobile servers.
Master’s thesis, Colorado School of Mines, 1999.

[142] D. Turgut, S. K. Das, and M. Chatterjee. Longevity of routes in mobile
ad hoc networks. In Proc. of the IEEE Vehicular Technology Conference
(VTC 2001 Spring), 2001.

[143] S. Vempala. Random projection: A new approach to vlsi layout. In
Proc. of the 39th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 1998.

[144] S. Vempala. The Random Projection Method. DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, 2004.

[145] M. Wattenhofer, R. Wattenhofer, and P. Widmayer. Geometric rout-
ing without geometry. In Proc. of the 12th Colloquium on Structural
Information and Communication Complexity (SIROCCO), 2005.

[146] M. M. Zonoozi and P. Dassanayake. User mobility modeling and char-
acterization of mobility patterns. IEEE Journal of Selected Areas in
Communications, 15(7):1239–1252, 1997.

164 BIBLIOGRAPHY

Acknowledgements

I owe my greatest debt of gratitude to my family—my foundation in
life. Mamulya and Vati, none of this would have been possible without your
unwavering love and support throughout my life. I also feel very fortunate
to have parents-in-law who welcomed me from the very beginning and who
have been there for us with so much warmth ever since. I want to thank
Mike for the continued exceptional fulfillment of all his “husbandly duties”
of partner, father, and friend. And, of course, the brightest stars in the sky,
Damian, for being incontestable proof of how wonderful children can be, and
the little one, for behaving so well and staying inside until the completion of
this dissertation.

Any words must pale in comparison to how I feel about all of you.
No PhD is possible without the dedicated guidance and support for which

I would like to thank my advisor, Roger Wattenhofer. I very much enjoyed
the keen technical discussions we had, the variety of insights you gave into all
aspects of academia, and the challenging working environment you provided.

My thanks also extend towards my coexaminers, Rajmohan Rajaraman
and Dorothea Wagner, for investing their time into reading this dissertation
and providing valuable comments and questions.

I am particularly grateful to my coworkers at the Distributed Computing
Group for the great working environment they have created. In particular,
I want to thank Dr. Aaron Zollinger, fellow vegetarian, for patiently sharing
with me his thoughts on all matters and passion about languages, and for
showing us all the way of saintly reverence; Dr. Fabian Kuhn, fellow topol-
ogist, for effortlessly planting a sharp intellect on firm moral ground; Dr.
Keno Albrecht, fellow Siedler, for discussing the cooking of fine food, mon-
key business, and all things in between with me and generally offering his
unsolicited but delightful opinion on anything and everything; Dr. Thomas
Moscibroda, fellow fervent interlocutor, for his entertaining and cheerfully
heated daily debates; Pascal von Rickenbach, fellow temporarily incapaci-
tated sportsman, and his evil twin Patrick for providing the proper counter
weight to my alleged feminism; Nicolas Burri, fellow big-bellies-rule! advoca-
tor, for challenging every theory of mine with practical arguments; and Andi
Wetzel, fellow linuxer, for patiently tackling any of my obscure computer
questions and his amicable sense of humor.

I also thank the new generation of DCG, Stefan Schmid, Roland Flury,
Michael Kuhn, Olga Goussevskaia, Yves Weber, Thomas “Anglo-Saxon vir-
tuoso” Locher, and Yvonne Anne Oswald, for upholding the torch.

And last but certainly not least, due reverence goes to my office mate and
honorary DCG member, Mirjam Wattenhofer, fellow Fr. Dr. Mama, for the
invaluable discussions of greatly varying technical degree and listening to all
my strange theories about life as we know it. Our twin careers at the ETH
have come to an end, leaving me to wonder where next our paths will cross.

You’ve been a great bunch to work with! So long, and thanks for all the
cake . . .

Curriculum Vitae

Apr. 26, 1980 Born in Kazan, Russia

1986–1997 primary, secondary, and high schools in Germany,
Russia, and USA

1998–2003 Studies in computer science, ETH Zurich, Switzerland

Apr. 2003 Diploma in computer science, ETH Zurich, Switzerland

2003–2006 Ph.D. student, research and teaching assistant, Dis-
tributed Computing Group, Prof. Roger Wattenhofer,
ETH Zurich, Switzerland

Sept. 2006 Ph.D. degree, Distributed Computing Group, ETH
Zurich, Switzerland
Advisor: Prof. Roger Wattenhofer
Co-examiners: Prof. Rajmohan Rajaraman

Northeastern University, Boston, USA
Prof. Dorothea Wagner
Universität Karlsruhe, Germany

