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Abstract. We introduce a task model for embedded systems operating
on packet streams, such as network processors. This model along with a
calculus meant for reasoning about packet streams allows a unified treat-
ment of several problems arising in the network packet processing domain
such as packet scheduling, task scheduling and architecture/algorithm
explorations in the design of network processors. The model can take
into account quality of service constraints such as data throughput and
deadlines associated with packets. To illustrate its potential, we provide
two applications: (a) a new task scheduling algorithm for network proces-
sors to support a mix of real-time and non-real-time flows, (b) a scheme
for design space exploration of network processors.

1 Introduction

The need for intelligent and flexible network packet processing at high data
rates, required by many emerging applications, have led to the development of
a new class of devices called network processors (NPs). NPs are highly pro-
grammable dedicated processors optimized to perform packet processing func-
tions, and will become critical components of next-generation networking equip-
ments. Although there is a wide variety of application areas that are addressed
by NPs, their task can generally be viewed as manipulation of packets. These
include packet processing tasks (such as classification, forwarding, “deep” packet
analysis, data stream manipulation, security, TCP termination, etc.) and traffic
management tasks (such as bandwidth management, load balancing, admission
control, etc.).

The functionality of an NP and hence its architecture and implementation
depend to a very large extent on its placement in the Internet hierarchy. Those
deployed in the access network are usually required to support a wide and varied
range of packet processing functions, but at relatively low data rates (of around
100 Kbps per end-user for standard networks and 1-10 Mbps for networks based
on emerging technologies like DSLs), and hence are ideal for a largely software
based implementation. NPs placed in core or backbone networks have to handle



much higher data rates (in the range of several Gbps) which therefore restricts
their processing capabilities. In this case many core functionalities are imple-
mented in software on a general purpose processor and other operations are
delegated to dedicated coprocessors.

Irrespective of the type and functionality of an NP, because of flexibility
reasons, software forms an integral part of it. In this direction, very recently
several papers proposed different software architectures for flexible and config-
urable routers which can easily be programmed and extended to support new
functionality rather than only routing packets (see [14,16] and the references
therein). However, till date there has been no formal and unified study of this
subject. All the previous papers dealt with this topic mainly from a software
engineering perspective. There is a large body of literature on packet schedul-
ing, but network processing is much more than that. In this paper we attempt
to initiate a formal study of packet processing devices such as NPs. As a first
step in this direction, we outline a framework for embedded systems operating
on packet streams and based on it provide a unified treatment of some problems
arising in this area. Our framework is motivated to some extent by some recent
models used in packet scheduling (such as [7,8,12]) and primarily consists of

— a task and resource model for network processors and
— a calculus which allows to reason about packet streams and their processing.

As an application of the above, we consider two examples: the first is that of
task scheduling in an embedded packet processor, and the second is related to
hardware-software interactions where we illustrate the potential of our model
and calculus for estimating delays and memory requirements in the context of
a design space exploration of NPs. The next two sections introduce our model
and the calculus, following which we describe the two examples of scheduling
and design space exploration in Sections 4 and 5.

2 Model of Computation for Packet Processing

Our model for describing typical task structures and their mapping to hardware
and software resources is not very different from the specification of conventional
real-time systems, see e.g. [9]. Nevertheless, there are some notable differences,
for example the way in which the capabilities of processing devices and sequences
of events or packets are specified. These form the basis of the described unifica-
tion of models for, for example packet and task scheduling.

It may be noted that here we will define a basic model only. Depending on
the particular design task and the envisioned level of abstraction, additional
information can easily be added.

Definition 1 (Task Structure). The task structure of a network processor
consists of a set of flows f € F and a set of taskst € T. To each flow f there is
associated a connected, directed and acyclic task graph G(f). It consists of a set
of task nodes T'(f) C T and a set of directed edges E(f) CT(f) x T(f). Each
task graph has a unique source node s(f) € T(f) having no incoming edges.



Figure 1 shows a relatively simple task structure of a sample NP that will
be used throughout the paper. There are twenty five tasks (denoted by t) which
perform general packet processing functions and operations dedicated to encryp-
tion/decryption and voice processing. Depending on the flow to which a packet
belongs, different sequences of tasks are executed, see the dotted lines. In the
above terminology, we have five flows f € F' and the corresponding task graphs
G(f) are simply chains.
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Fig. 1. Example of a task graph corresponding to a simple network processor, see
Definition 1.

In addition to the above definition of the basic task structure, it is useful to
define a simple resource model consisting of a set of computing resources which
are able to execute the tasks defined in the task structure.

Definition 2 (Resource Structure). Given a set of resources s € S, the
function cost : S — RZC denotes the (relative) cost of the corresponding resource.
The mapping relation M C T x S defines possible mappings of tasks t € T to
resources, i.e. if (t,s) € M then t can be executed on s.

In order to enable a performance analysis of the above defined resource struc-
ture, we now introduce some additional functions.

Definition 3 (Timing Properties). To each flow f € F there is associated
an end-to-end deadline d : F — R=2C. If a task f can be executed on a resource s,
then it creates a “request”, i.e. for all (t,s) € M there exist a request w(t,s) €
R0,

The above definitions can be interpreted as follows: To each flow f there
is associated a set of tasks T'. If a packet belonging to this flow arrives at the
processing device, the tasks corresponding to the flow are executed respecting the



partial order defined by the edges. To each of these packets there is associated
a (possibly infinite) end-to-end deadline d(f). The execution of the complete
task graph corresponding to the packet must be finished within at most d(f)
time units after the packet arrival. The resource nodes s denote the available
computing resources. If a task is executed on a computing resource, it creates a
request w, for example measured in number of instructions.

As an example, Figure 2 shows a part of the resource structure of our simple
network processor. Only five of the eight resource nodes s € S and four of the
twenty five tasks ¢ € T are shown along with their associated costs cost, mapping
relations (¢,s) € M and requests w(t, s).
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Fig. 2. Example of a resource structure as defined in Definition 2.

Associated to each flow are also some arrival curves modelling the incoming
event/packet sequences, and to each resource some service curves modelling its
processing capabilities; details of these will be described in the next section.

The above model abstracts important properties of a task structure or re-
source structure such as communication nodes, interconnection structure, mem-
ory or data nodes, power consumption, cost functions and bandwidth require-
ments. It should be obvious that the model can easily be extended. Finally, it
may be noted that the above model closely resembles the one that was used for
a design space exploration of hardware/software architectures in [6].

3 Modeling Discrete Event Streams and Systems

3.1 Basic Models

Traditionally event streams are modeled statistically. Methods that have been
applied are well known in the area of queuing theory. However, If we are inter-
ested in hard bounds instead of failure probabilities, it is more suitable to use a
more appropriate characterization of discrete event models and systems.



In order to unify the methods commonly used in the domain of communi-
cation networks with those used in operating systems and real-time scheduling,
we adopt the concept of arrival curves and service curves, see [12]. Recently, this
approach has been formalized [7] and put into a network theory context based
on a linear algebra for discrete event systems, see e.g. [3]. This approach has also
been used to derive efficient packet scheduling algorithms, see e.g. [1].

Definition 4 (Arrival and Service Function). An event stream can be de-
scribed by an arrival function R where R(t) denotes the number of events that
have arrived in the interval [0,t). A computing resource can be described by a
service function C where C(t) denotes the number of events that could have been
served in the interval [0,1).

Depending on the context in which these functions are used, the number of
events may model the number of packets, the number of bytes or the number of
instructions to be performed. Obviously, the functions C(¢t) and R(t) are non-
decreasing and can be used to accurately describe the incoming events and the
processing capabilities. The abstraction used in this paper is based on determin-
istic bounds on the corresponding behavior.

Definition 5 (Arrival and Service Curves). The upper and lower arrival
curves a¥(A),al(A) € RZ° of an arrival function R(t) satisfy

o(t—s) <R(t)—R(s) <a“(t—s) Vs, t:0<s<t

The upper and lower service curves B%(A), B(A) € R2° of a service function

C(t) satisfy
Blt—s)<C{t)—C(s) <p(t—s) Vs, t:0<s<t

Similar functions have been used in network calculus [7] and its applications
in hard real-time systems, see [23,24] and [29]. Therefore, we will not repeat
those results here. However, it may be useful to note a simple interpretation of
the above definitions. The values a!(A) and a*(A) can be interpreted as the min-
imum and maximum number of events arriving within any time interval of length
A respectively. Therefore, given R, the corresponding curves can be computed
using o/ (A) = ming>o{R(A+u)—R(u)} and a*(A) = max,>o{ R(A+u)—R(u)}.
In a similar way, the service curves 8'(A) and B%(A) can be interpreted as
the minimum and maximum available computing service within any time inter-
val of length A, respectively. Therefore, given the service function C, we have
BY(A) = ming>o{C(A +u) — C(u)} and B*(A) = max,>o{C(A +u) — C(u)}.

Figure 3 shows examples of upper and lower arrival curves and service curves.
Referring to the task and resource structures defined in Section 2, we can now
extend the characterization of flows and resource nodes by the above defined
curves.

Definition 6 (Curves and Flows). To each flow f there are associated upper
and lower arrival curves a*(A) and o' (A), respectively. To each resource s there
are associated upper and lower service curves B*(A) and B'(A), respectively.
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Fig. 3. The left hand side shows an arrival function that has been generated from a
finite size exponentially distributed event sequence with mean 1. The right hand side
may model a service curve from a resource node that processes 1 event per time unit in
the interval [0, 2], only 1/2 a unit in [2, 4] (e.g. because of a processor share with another
task), has no computing capability in [4, 5] (e.g. because of an interrupt handler), and
can process 2 events per time unit starting from time 5.

In order to understand the processing of event streams using resource nodes,
we start with a simple unit receiving only one event stream, see also [23], [24] and
[29]. In this case, the number of events is supposed to denote the computation
request of the incoming stream.

Definition 7 (Function Processing). Given a resource node s with its cor-
responding service function C(t) and an event stream described by the arrival
function R(t) being processed by s, we then have

C'(t) = C(t) — R'(¢)

R'(t) = min {R ct)—-C

(t) = gmin {Rlu) + (1) - C(w)

where C'(t), R'(t) denote the remaining service function of the resource node and
the amount of computation delivered to the processed event stream, respectively.

The first equation just states, that the remaining amount of computation
C'(t) (for example in terms of the number of instructions) available until time
t is the initial amount reduced by the amount spent for the processed events.
In order to understand the meaning of the second equation, note that R'(t) is
the maximum value that satisfies R'(t) — R(u) < C(t) — C(u) for any u < t.
The left hand side denotes the number of events that arrived after time v and
are processed before time t. This is clearly smaller than the available computing
resource in the interval [u, t].

Figure 4 shows the processing network view of a simple resource node. As we
are interested in the processing of whole classes of input streams, we will now
describe the processing of event streams in terms of the upper and lower curves.
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Fig. 4. Diagrams which show the processing of event streams by resource nodes.
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These results substantially generalize and sharpen the bounds obtained in [29,
8], as both lower and upper bounds are involved.

Proposition 1 (Curve Processing). Given an event stream described by the
arrival curves o!(A) and a*(A) and a resource node described by the service
curves B(A) and BY(A4), then the following expressions bound the remaining
service function of the resource node and the arrival function of the processed
event stream:

o!'(4) = min {a!(u) +B'(A - u),B(A)}

0<u<A

a"'(A) = 02}& {11171;18( {a“(u +v) — ,Bl(v)} +64(A - u),B“(A)}

B"(A) = max {8'(u) —a"(u)}

0<u<A

u! _ u l
57(4) = max {8"(w) = o' ()}

Figure 5 shows the application of Proposition 1 to the lower and upper arrival
and service curves given in Figure 3.

Using well known results from the area of communication networks, see e.g.
[8], the bounds derived in Proposition 1 can be used to determine the maximal
delay of events and the necessary memory required to store waiting events. The
number of events still waiting to be processed at time ¢ is R(t) — R'(t). The
delay that an event entering the resource node at time ¢ will experience can be
given by d(t) = min{r > 0: R(t) < R'(t+7)}. The following two equations give
bounds on both quantities:

d(t) < max {min{r > 0:a"(u) < B'(u+7)}}

R(t) = B (8) < max{a*(w) - ' ()}

In other words, the delay can be bounded by the maximal horizontal distance
between curves a*(A) and 3'(A) whereas the backlog is bounded by the maximal
vertical distance between them.
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Fig. 5. Processing of the curves given in Figure 3 in accordance with Proposition 1.

In [23,24] it has been shown that the above event model generalizes some
recent attempts to describe bursty tasks in real-time systems, e.g. [21,4]. In
addition, the above bounds lead to schedulability tests which are equivalent to
those known in case of fixed priority and earliest deadline first scheduling, e.g.
[18,17,2].

Based on these results, we can now formulate different problems in the net-
work packet processing domain on a unified basis. As a simple illustration of the
above results we consider a fixed priority scheme in the next subsection.

3.2 Simple Processing Network

Following our main approach, to investigate the effect of a scheduling algorithm,
we represent the “scheduling block” in the form of a network consisting of nodes
which operate on event streams. In addition, there are (virtual) resource streams
which model the available resources, see Figure 4. This way, it is possible to
describe and analyze packet scheduling, task scheduling and hierarchical ap-
proaches. As a simple example, we consider a fixed priority scheme.

Let us start from the models defined in Definitions 1 to 5. In case of a
fixed priority scheme, let us suppose that there is a set of flows f, ..., fn with
associated event streams R (t),...R, (t) ordered according to decreasing priority,
i.e. Ry(t) has highest priority. In addition, for each event of flow f;, a task t;
must be executed on one resource s with associated request w(t;,s) or w; in
short. The event stream associated to a flow f; is described by arrival curves
a*(A) and @ (A). The resource node s is characterized by the service curves
Bu(A) and B(4).

Because of the fixed priority scheme, the resource stream serves the flows in
the order of decreasing priority by the use of Definition 7 and Proposition 1. In
order to have compatible units, we first have to multiply the arrival functions
and arrival curves with the request for each event, namely w;. Correspondingly,
the request stream leaving the resource must be divided by w;. If a unit using
these events or packets can start only when the whole task has finished on the



preceding unit, we need to apply the floor-function to the outgoing streams, i.e.
}_B;(t) = | R}(t)/w;]. In a similar way, the outgoing arrival curves are transformed
according to @'(4) = [a¥'(A)/w;] and aﬁ'(A) = Laé'(A)/wiJ. These curves
correctly bound R;(t) as one can show that |a| — |b] < [a —b] and [a] — [b] >
[a —b]. In addition to the relations shown in Proposition 1 (which hold for all
flows 1 <i < n), we have the following equations which describe the processing
of event streams using fixed priority scheduling with preemption:

a¥(A) =w;-ar(4d) , ai(A) =w; @A)

al'(A) = [ad(A)/wi] , al'(Q) = [ak(A)/w;]
Bi(A) = BY(4) , BHA) =B,'(4) Vi<i<n , BY(A)=p8Y(1)
BLA)=4'4) , Bl =814 Yi<i<n , (1) =pL(4)
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Fig. 6. Diagram showing a processing network for the processing of a set of event
streams by a resource node using fixed priority preemptive scheduling.

Finally note, that the remaining resource service 3’'(A) can be used to service
other flows with a different scheduling scheme in a hierarchical manner. The
event streams Ril(t) can enter further resource nodes which are responsible for
executing other tasks ¢ € T or for performing link scheduling.

In a similar way, one could also describe other scheduling schemes such
as Generalized Processor Sharing, Weighted Fair Queueing, First Come First
Served and Earliest Deadline First. As it has also been pointed out in the con-
text of communication networks [8], the determination of accurate bounds in
these cases is still an active area of research.

Using the results described in the previous section, we can also bound the
delay caused by the processing and the necessary memory in terms of the number
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packets waiting to be processed. These quantities can be used to determine the
necessary memory inside a network processor and the worst-case delay which
packets might experience. An application of this technique will be described in
Section 5.

4 Task Scheduling in Network Processors

As a first application of the models described in the last two sections, we con-
sider the problem of task scheduling in an NP where different packet processing
functions are implemented as programs running on a general-purpose processor.
A detailed formal description of the problem is given below; essentially the prob-
lem is to schedule the CPU cycles of the processor to process a mix of real-time
and non-real-time packets such that all real-time packets meet their deadlines
and the non-real-time packets experience the minimum processing delay. There
has not been much work on issues related to task scheduling in software-based
routers/NPs (see [27]), and most of the previous work on scheduling a mix of
real-time and non-real-time tasks is based on CPU reservations (see [5] and
the references therein). OQur algorithm in this section is on the contrary based
mainly on Earliest Deadline First scheduling, and is motivated by algorithms
for scheduling a mix of periodic and aperiodic tasks (see [10] and the references
therein) and approaches used for packet scheduling (such as [12]).

4.1 Scheduling a Mix of Real-Time and Non-Real-Time Flows

Given a set of flows F', we consider it to be composed of two disjoint subsets
Frr and Fypgr. All flows f; € Frp are real-time flows having finite end-to-
end deadlines d(f;) (see Definition 3). For each packet of f; the execution of
the corresponding task graph G(f;) must complete within d(f;) time units after
the arrival of the packet. Real-time flows might represent traffic such as voice
or video streams. Flows belonging to Fiygr have no time constraints (i.e. they
have infinite deadlines) and are used to model packet streams corresponding
to bulk data transfers such as FTP; we refer to these flows as non-real-time
flows. We assume each real-time flow f; to be constrained by an upper arrival
curve . The processing cost of each packet of a flow fi, (both real-time and
non-real-time) on a single resource s (the CPU) is denoted by w(fx), where
w(fr) = Xier(s,) w(t, s) (see Definitions 1 and 3).

The objective of our scheduling algorithm is multi-fold: (i) to guarantee that
all real-time packets meet their associated deadlines, (ii) that the non-real-time
packets experience the minimal possible delay, and (iii) we associate with each
non-real-time flow f; a weight ¢; and require that the remaining CPU power,

given by the lower service curve Bl', after processing all real-time flows is divided
among the non-real-time flows in proportion to their corresponding weights i.e.

the number of CPU cycles on the average allocated to flow f; is #Bl'.
ka eFypr Ok

This offers the provision for allocating different non-real-time flows a relative
importance.



F1
IIII @ Real-time flows having

ko]

F, end-to-end deadlines S

% T %
=

5 IR 9

: : = Non-real-time flows Assign adeadline E

: : —= to the packet 8

D

F, (Use WFQ)
[P = Slected by WFQ

Fig. 7. A new task scheduler based on a hierarchy of WFQ and EDF.

An overview of our scheduling algorithm meeting the above mentioned goals
is given in Figure 7. It is composed of a Weighted Fair Queuing (WFQ) [25]
scheduling algorithm organized in a hierarchical fashion with an Earliest Dead-
line First (EDF) scheduler on the top. A WFQ scheduler is based on the Gen-
eralized Processor Sharing [15] scheduling algorithm and guarantees that the
relative share of the CPU bandwidth among the non-real-time flows follows the
proportions dictated by the respective weights associated with them. Fi,..., F,
indicate packet queues (which are filled by the packet classifier) corresponding to
the different flows, some of which are real-time and the rest being non-real-time.
PPF;,...,PPF, denote chains of packet processing functions corresponding to
the different flows (as shown in Figure 1).

Given the upper arrival curve a¥ of each real-time flow f;, we can compute
the processor demand resulting from the set of all real-time flows Frp. Towards
this, for each o} we compute a curve o given by

(2

[0 if A <d(f:)
@;(4) = {w(fi)a}‘(ﬂ —d(f;))  otherwise

The processor demand by the set of all real-time flows Fgp within any time
interval of length A if all packets have to meet their associated deadlines is then
given by a curve agr where apr(A) =3, p @/(A). It is possible to prove
(using arguments similar to those given in [11]) that the set of real-time flows
Fgy is preemptively schedulable on a single processor (such that all packets meet
their respective deadlines) if and only if 8'(A) > agrr(A) for all A > 0, where
the lower service curve /3’ is as described in Definition 5. This schedulability test
can form the basis for admission control for real-time flows. Now we are in a
position to state our algorithm.

Given the set of real-time flows and a lower service curve 3!, we first com-
pute the curve agr as described above and a curve aypgr which is defined
as anyrr(4) = ming>a{B'(t) — arr(t)}. The WFQ scheduler shown in Fig-
ure 7 computes an ordering of the non-real-time packets according to which
they should be processed to respect their relative CPU reservations.
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For each packet selected by the WFQ scheduler for processing, if the packet
belongs to flow f; and has a processing requirement of w(f;) then it is assigned
a deadline d(f;) = min{A : anyrr(4Q) > w(f;)}. Obviously, at any instant of
time there is exactly one non-real-time packet that is processed and is assigned
a deadline according to the scheme just described. The top level EDF scheduler
preemptively schedules this packet along with all the real-time packets (which
already have associated deadlines) according to the earliest deadline first schedul-
ing strategy.

Proposition 2 (Schedulability). If the set of real-time flows is preemptively
schedulable (i.e. there exists some scheduling algorithm using which all real-time
packets can be processed within their respective deadlines) then our algorithm
also schedules the real-time flows such that all deadlines are met.

Proof. If d(f;) is the deadline associated with the non-real-time packet having a
processing requirement of w(f;), then for this packet along with all the real-time
flows to be schedulable, the following must hold:

BY(A) > arr(A) +w(fy), YA > d(f)
which is equivalent to requiring that

w(fi) < B'(A) —arr(4), VA > d(fi)
The above condition is obviously satisfied if

w(f) < jmin {8'(4) - arr(4))

Hence the proposition follows.

The above scheduling algorithm is preemptive, meaning that the processing
of each packet can be preempted at any stage of its task graph and then resumed
later. In general such arbitrary preemptions might be costly for any practical im-
plementation, and the only allowable preemption points might be at the end of
each node of the task graph (i.e. a packet processing can not be preempted in
the middle of executing any node of the corresponding task graph). However,
assuming that the execution time of each node is small compared to the total
execution time of the whole task graph, the above analysis gives a good approx-
imation of an algorithm where preemption is allowed only at the end of each
node.

4.2 Experimental Evaluation

We have implemented and evaluated our algorithm using the Moses tool-suite
[22] which is used for modelling and simulation of discrete event systems. Our
experimental setup consists of six flows, of which three are real-time and three
others are non-real-time flows. Each flow is specified by a TSpec [28] with all its
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parameters specified in terms of packets rather than bytes. A T'Spec is described
by a conjunction of two token buckets and an incoming packet complies with
the specified profile only if there are enough tokens in both the buckets (we refer
to them as the avg. bucket and the peak bucket in Table 1). The arrival curves
of the different flows were chosen to reflect a typical access network scenario.
In particular, the high-volume flows such as video and FTP are bounded by
an average rate of around 10 MBits/s. Table 1 gives the specifications of the
different, flows.

Table 1. Specifications of the real-time (1-3) and non-real-time flows (4-6).

deadline (Flows 1-3) avg. bucket peak bucket |CPU demand
WFQ weight (Flows 4-6)|(burstiness, rate)|(burstiness, rate)

[ms] for Flows 1-3 [pkts, pkts/s] [pkts, pkts/s] [cycles]
Flow 1 2 (150, 300) (1, 1000) 40000
Flow 2 10 (40, 840) (1,4200) 600
Flow 3 1 (3, 300) (1,1000) 20000
Flow 4 0.5 (400, 1000) (1,5000) 600
Flow 5 0.2 (50, 150) (1, 700) 4000
Flow 6 0.1 (8, 30) (1, 700) 40000

Flows 1-3 are real-time flows and Flows 4-6 are non-real-time flows. Flow 1
represents some transactions with encryption, Flow 2 represents a video traffic
and Flow 3 some voice encoding. Among the non-real-time flows, Flow 4 repre-
sents an FTP download, Flow 5 represents HT'TP page downloads, and Flow 6
represents email traffic with encryption.

For the above specified flows, we have compared our algorithm with a schedul-
ing algorithm consisting of a combination of plain EDF for real-time packets and
WFQ for non-real-time packets. The ordering of the non-real-time packets is
due to the WFQ scheduler and they are processed only when there are no back-
logged real-time packets. The real-time packets are scheduled according to EDF
scheduling. To avoid any possible confusion (because of the similar terminology
and setup), we remind the reader that here we are describing a task scheduling
and not a link scheduling algorithm, so the ordering of a packet stream is not
used for putting them on the output link, but to execute the packet processing
functions in that order.

Figure 8 shows an excerpt of a simulation, comparing the above algorithm
with ours. The horizontal-axis shows the simulation time and the vertical-axis
represents the delay experienced by a packet in getting processed. Any point on
the horizontal-axis represents the completion time of a packet processing task
and the corresponding point on the vertical-axis plots the delay experienced
(completion time minus the arrival time) by this packet. Note that in the plain
EDF + WFQ scheduler, packets from the real-time Flow 2 are processed much
before their deadline. In our improved algorithm, the non-real-time Flows 4
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Plain EDF + WFQ scheduler

delay
[ms] 1 1 1 1 1 1 1 1 1 1
0.z 0.4 0.6 0.8 1.0 1.z 1.4 1.6 1.8 2.0 -
x 10
EDF scheduler with deadlines for non-real-time traffic
3.0 ) _
A Flow 2; real-time
| < Flow 4: non-real-time i
3 O Flow 5: non-real-time
delay
[ms]
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -
x 10

simulation time [s]

Fig. 8. Comparison of delays experienced by three selected flows.

and 5 experience shorter response times at the expense of slightly higher delays
for Flow 2 (which nevertheless meets its deadlines). On the average, the response
time of Flows 4 and 5 improve by around 20%, at the expense of the response
time of Flows 1, 2, and 3 increasing by around 2%, 32%, and 3% respectively.
Due to its high CPU demand, the response time of Flow 6 (not sketched in the
figure) does not improve much since the deadlines assigned by our algorithm to
packets of this flow fall behind those of the real-time packets, and therefore they
are executed after the real-time packets as in the case of the plain EDF + WFQ
scheduler.
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5 Design Space Exploration

The final section of this paper is devoted to the design space exploration of
network processors, where we show how the basic models and methods described
in the previous sections can be used to perform an exploration of hardware
and software architectures. It is expected that the next generation of network
processors will consist of general purpose processing units and dedicated modules
for executing run-time extensive functions. Therefore, the purpose of a high level
exploration is to select appropriate functional units such that the performance of
the processor is maximized under various constraints such as cost, packet delay
and power consumption. Here we will concentrate on the following questions:

— How can we estimate the performance of a network processor?
— How can we estimate delay and memory consumption of a hardware/software
architecture?

The approach taken here is influenced by our previous results in design space
exploration of hardware/software architectures [30]. In particular, we will adopt
the model based approach in combination with concepts of multi-objective op-
timization (see [19] and the references therein).

As described in the last section, we consider the set of flows F' to be composed
of two disjoint sets Fry and Fygr. The arrival and service curves associated to
these flows are interpreted differently. Whereas in case of Frp they describe the
rates of the incoming packet streams, they are interpreted as relative rates in
case of Fygr. In other words, the rates of the packet streams can be described
by the lower and upper arrival curves v - o/ (f) and ¢ - a*(f) for f € Fyrr
where ¢ is a positive scaling variable. The problem of design space exploration
can now be formulated as the following multi-objective optimization problem:

Allocate resource nodes s € S and bind the tasks ¢ € T of the flows
f € F to the allocated resource nodes such that v is maximized, other
criteria such as cost, memory and power consumption are minimized and
the deadlines d(f) associated to the flows are satisfied.

The rationale for this performance criterion is based on the fact, that real-time
flows such as video and voice streams often have a fixed rate which must be
handled by the network processor. On the other hand, the throughput of other
flows such as FTP, web traffic or email should be maximized. The relative arrival
curves determine the relative weights for these kinds of flows.

For the network processor architecture we assume a heterogeneous set of com-
ponents consisting of RISC processors, digital signal processors, micro-controllers
and dedicated units for compute intensive tasks such as header parsing, table
look-up and encryption/decryption. The purpose of the allocation is to select
the “right” subset of this modules. In Definition 2, a function cost was defined
which models the cost of allocating the corresponding unit. It may be noted, that
much more complex measures could be added to tasks and resource nodes such
as power consumption, and program and data memory. The following definition
extends Definition 2 by formally defining the terms allocation and binding.
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Definition 8 (Allocation and Binding). The set A C S denotes the set of
allocated resource nodes s € A. The binding of a taskt € T to a resource s € S
is a relation B C T x S where B C M (see Definition 2), i.e. (t,s) € B if task
t is executed on resource s.

Based on our simple model for design space exploration of network processors, we
can now determine the cost of an implementation as Cost = ) __ , cost(s). The
problem of minimizing C'ost might involve a trade-off between several conflicting
criteria such as memory and power requirements, and performance issues. Among
the possible candidates for solving such a multi-objective optimization problem,
where we are interested in obtaining all the trade-off or the so called Pareto
points, are branch-and-bound methods and evolutionary algorithms [13].

For the purpose of illustrating the potential of the formal model introduced in
this paper, we solved the design space exploration problem for the task structure
shown in Figure 1 using a branch-and-bound search algorithm. It is based on a
specification of the whole problem in the form of integer linear equations (see
[20]). Only a portion of the resource structure used is shown in Figure 2. There
are end-to-end deadlines d for the two real-time flows RT Send and RT Receive.
The network processor architecture was designed for a 10-times higher rate of
packets from the flow NRT-IP-Forward compared to each of the two other non-
real-time flows. We measured performance by the scaling variable ¢ which is
maximized in the integer linear program. The total cost is the sum of costs of
the allocated resource nodes and was introduced as a constraint into the ILP.
An overview of the optimization setup is shown in Figure 9.

architecture task binding
template graph restrictions
evaluation | nmmE)> SRR S50 25—
construct map estimate
architecture performance architecture flows performance
vector
multiobjective
optimization
architecture performance
vector 4

Fig. 9. Strategy of the design space exploration based on a multi-objective search
algorithm and an estimation phase.

All the equations were generated using well known techniques [20,26] and
the nonlinear function for taking task scheduling into account was modelled
using piecewise linear approximations. Figure 10 shows the result of the design
space exploration where the right hand side shows the different pareto points
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corresponding to the different architectures and the left hand side gives the
corresponding resource usages. Note that the hardware units are not loaded to
100% because of the end-to-end delay constraints.

architectures load (gray level)

4

0.04 Performance

0.02

0.01

t A \ 50 100
ARM9 / MEngine f f HW—LookU]:\ HW-Crypt Total G0 200
PowerPC  DSP  HW-CheckSum HW- Classifier

Fig. 10. Results from a design space exploration run. The left hand side shows in a
diagram the hardware resources allocated for the Pareto points that have been found.
The columns are related to the resource nodes and the rows correspond to the Pareto
points, ordered with respect to the performance . The gray level corresponds to the
load of the respective hardware unit. The right hand side diagram represents the Pareto
points in the performance-memory-cost coordinate system.

The above example took 521 variables, used 544 inequalities and required
about 4 seconds per Pareto point on a 500 M H z Pentium III. We used the com-
mercial branch and bound ILP solver CPLEX and Mathematica for generating
the input and processing the output.

Scheduling was done in the simplest possible way, in particular using FCFS
queuing for each resource, which obviously gives rough estimates only. Here
it is possible to use the results obtained in Section 3.2. Let us suppose that
the tasks ¢t € T'(f;) of some flow f; are assigned to allocated resource nodes
s € A, ie. (t,s) € B. In addition, let us suppose that the task graph G(f;) is a
simple chain. Then we can model the flow of events and resources in form of a
computation network (see Figure 11). In particular, we have two different kinds
of streams through the network, namely event streams caused by the packet
streams entering the system and resource streams determined by the service
curves of the resource nodes. Each distinct input flow is mapped onto a directed
path through the communication network. To each edge in the communication
network, either lower and upper arrival curves or lower and upper service curves
are assigned. Using the relations derived in Section 3.2, these quantities can be
determined, unless there are no directed cycles for any flow f; in the network.
Finally, interesting performance measures such as delay and memory can be
determined using the estimations on backlog and delay as given in Section 3.1.
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More work needs to be done in this direction to exploit the the full potential of

the approach described in Section 3.2.
DSP
% i

ARM9 HW-Crypt Link

Flow RT Reve il fixed feesssersesssssnnn s, | fixed fessssessesss % el
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Fig. 11. Example of a simple processing network that is used to operate on packet
streams such as those specified in the task graph in Figure 1. A final last resource node
may model the link scheduler for the outgoing packet streams.

6 Concluding Remarks

We have shown that the design of embedded packet processing devices such as
network processors pose interesting research issues related to models of com-
putation, processing and communication networks, task and packet scheduling
and design space exploration. Our approach was based on a unified modelling of
these aspects.

It must be noted however, that there are still many open research issues
related to the above approach. In particular, the full potential of the chosen
task, resource and stream processing specification must still be explored.
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