
Timing Analysis for Resource Access Interference
on Adaptive Resource Arbiters

Andreas Schranzhofer], Rodolfo Pellizzoni?, Jian-Jia Chen‡, Lothar Thiele], Marco Caccamo†
] Swiss Federal Institute of Technology (ETH), Zurich, Switzerland {schranzhofer,thiele}@tik.ee.ethz.ch

? University of Waterloo, Waterloo, Ontario, Canada, rpellizz@uwaterloo.ca
‡ Department of Informatics, Karlsruhe Institute of Technology (KIT), Germany, jian-jia.chen@kit.edu

† University of Illinois at Urbana-Champaign, Urbana, IL, USA, mcaccamo@illinois.edu

Abstract—Modern multiprocessor and multicore architectures
adopt shared resources to meet increased performance require-
ments. Adaptive arbiters, such as FlexRay, have been adopted
to grant access to shared resources. While increasing the per-
formance, timing analysis is more challenging with this kind of
arbiter. This paper considers real-time tasks that are composed
of superblocks, while superblocks themselves are composed of
phases. Phases are characterized by their worst-case computation
time on their processing element and their worst-case number
of access requests to a shared resource. Resource accesses, such
as access to caches or scratchpad memory, are synchronous and
cause the processing element to stall until the access is served.
Based on dynamic programming, we develop an algorithm that
safely derives an upper-bound of the worst-case response time
of a phase. The worst-case response time of a task can then
be determined for both sequential or time-triggered execution of
superblocks. Experimental results are conducted for a real-world
application.

Keywords—Worst-case timing analysis, shared resource access,
real-time embedded systems, FlexRay protocol.

I. INTRODUCTION

In the multicore era, the performance improvement w.r.t.
computation depends on task parallelism, data parallelism,
etc. In order to reduce hardware costs, commercial multicore
platforms typically have shared resources, such as buses, main
memory, and DMA. These shared resources are the new
bottleneck for performance improvement.

Resource sharing in Commercial Off The Shelf (COTS)
multicore systems is typically designed to improve average
performance. However, when considering safety-critical em-
bedded systems, such as controllers in Automotive Open Sys-
tem Architecture (AutoSAR) [1], bursty and irregular resource
accesses to a shared resource might make the system miss its
deadlines. Hence, interference due to contention on the shared
resources has to be considered.

Multiprocessor scheduling has been studied in the litera-
ture for parallel systems without resource sharing, e.g., [5].
However, with shared resources, timing predictability becomes
complicated, and has recently become an important topic both
in the architectural design and the analytical tool design.
Edwards and Lee [3] propose PRET machines to modify
either memory arbitration or cache behavior for improving
the timing predictability. Closely related to timing analysis
for systems with shared resources, there are also works that
focus on spatial interference or data conflicts caused due
to cache accesses, e.g., Guan et al. [6] and Li et al. [8].

In [6], Guan et al. propose a scheduling algorithm and a
schedulability test based on linear programming for multicore
systems with shared L2 cache. Timing analysis, based on linear
programming, considering cache conflicts is provided in [8].

Resource accesses might be asynchronous, e.g., message
passing, or synchronous, e.g., memory accesses due to cache
misses. For asynchronous resource accesses, the interference
of the shared resource can be resolved by analyzing the
required buffer size and the events that are produced to
the resource. Approaches like Modular Performance Analysis
[17], or SymTA/S [16] can be applied to analyze the worst-
case response time. However, for synchronous accesses, an
access request blocks the processing element until the access is
served. As a result, the more the accesses to a shared resource
of a task are blocked, the larger the worst-case response time
(WCRT) will be.

To provide timing guarantees, several researchers, such as
Pellizzoni et al. [9], [10] and Schliecker et al. [13], [14],
have recently proposed methodologies to analyze the worst-
case delay a task suffers due to accesses to a shared bus
and shared memory, assuming synchronous resource accesses.
Specifically, in [9], [10], a framework is developed to analyze
the maximum delay that a task may suffer due to peripheral
interference. Furthermore, a coscheduling algorithm is pro-
posed to maximize the admitted peripheral traffic on the bus
while the timing constraints of real-time tasks are satisfied.
Schliecker et al. [13], [14] consider a system with a global
shared resource, in which the maximum and the minimum
numbers of accesses in particular time windows are assumed to
be given. By assuming fixed-priority scheduling on the shared
resource with statically assigned priorities to tasks, the worst-
case interference is derived based on the access patterns of
higher priority tasks.

The time division multiple access (TDMA) policy has been
adopted in many industrial applications to improve timing
predictability, to eliminate interference by task isolation, and
to simplify schedulability analysis. By applying static analysis
to compute the feasible traces, Rosen et al. [12] developed
approaches to derive efficient TDMA arbitration policies.
Schranzhofer et al. [15] developed a framework for analyzing
the worst-case response time of real-time tasks when TDMA
is applied to arbitrate access to a shared resource.

In order to be able to adapt to real-time tasks with early
completion or less resource accesses, adaptive resource ar-

biters, such as the FlexRay communication protocol [4], have
been proposed and adopted recently. An adaptive resource
arbiter combines dynamic and static arbitration, in which an
arbitration interval is divided into a static arbitration segment
with a static slot to processing element assignment and a
dynamic arbitration segment. As a result, it provides isolation
between processing elements in the static arbitration segment,
ensuring timing guarantees, and, in the dynamic segment, al-
lows dynamic arbitration to improve the response time. Timing
analysis of asynchronous resource accesses for the FlexRay
communication protocol has been recently developed by Pop
et al. [11] and by Chokshi et al. [2] whereas Lakshmanan et al.
[7] consider hierarchical bus structures composed of FlexRay,
CAN, etc. Nevertheless, synchronous resource access leads to
blocking, which is not considered by these approaches.

For synchronous resource accesses with a TDMA resource
arbiter, we can apply the results in [15], whereas the results
in [10] can be adopted for a dynamic arbiter, such as the
first-come-first-serve (FCFS) or the round-robin (RR) strategy.
The adaptive resource arbiter requires the joint considerations
of dynamic and static arbitration, and, hence, the analysis
frameworks in [10], [15] cannot be directly applied. To the
best of our knowledge, providing timing guarantees for syn-
chronous resource accesses with an adaptive resource arbiter
is an open problem. This paper considers systems with a
shared resource, that requires a bounded amount of time to
complete a request once access is granted. Access to the
resource is synchronous and granted by an adaptive arbiter
for at most one request at a time, resulting in blocking time
for any other request. An ongoing access to a shared resource
cannot be preempted. Moreover, we assume that the positions
of accesses to the shared resource are not known a priori and
neither is their order. We assume a hardware platform without
timing anomalies, such as the fully timing compositional
architecture proposed by Wilhelm et al. [18] and consider
a given task partitioning, in which a task is allocated on a
predefined processing element. Each task is divided into a set
of superblocks, which are executed in a fixed sequence, and
characterized by their worst-case number of accesses to the
shared resource and their worst-case computation time. The
contributions of this paper are as follows:

• Based on dynamic programming, we develop an algo-
rithm that derives an upper-bound of the worst-case
response time (WCRT) for superblocks and tasks, consid-
ering the delay caused by accesses to the shared resource.

• Our analysis generalizes the analysis in [10] for dynamic
resource arbiters only and in [15] for static resource
arbiters (TDMA) only.

• We present experimental results for a real-world applica-
tion, and show that minor suboptimal decisions can result
in significantly increased WCRTs.

In Section II, we introduce the proposed task model and
model of the shared resource. We give an overview of our
proposed algorithm in Section III and detail our notation and
methodology in Section IV. Sections V and VI describe our
WCRT analysis and proof its correctness. Experimental results

superblock s1,1

t
A E R

1,1
max,am 1,1

max,rm1,1
maxexec

static dynamic

minislot

...
0

s
1

s
2

s 3
s

4M
Q

=

L
Q

0,1
1q = 1,2

1q =
2,3

1q =

Q
D

0,1
1q =

1,2
1q = 2,3

1q =

2
d

shared resource

t

A/E/R

superblock s1,2

1,2
maxexec

1,2
maxm

...A RA/E/R

1,3
max,am 1,3

max,rm

1,3
maxexec

1,3
max,em

superblock s1,3

3,1
1q =

4
s

frames of

1p 2p 3p

1p

1
2py =

Fig. 1. An example for the adaptive arbiter.

are shown in Section VII. Section VIII concludes the paper.

II. SYSTEM MODEL

This section presents the models of the tasks, the processing
elements, the schedulers, and the resource arbiter of the shared
resource.

A. Models of Tasks and Processing Elements

We consider the same models of tasks and processing
elements as in [15], in which there is a set P of process-
ing elements that execute independently. Processing elements
share a common resource, for example, an interconnection
fabric (bus) to access a shared memory. We assume tasks being
constituted by a sequence of superblocks and compute a static
schedule, such that a set of superblocks Sj , comprised by a
single or multiple tasks, executes periodically with period Wj

on processing element pj ∈ P .
Superblocks are structured as (1) an acquisition phase, (2)

an execution phase, and (3) a replication phase. The acquisi-
tion phase (the replication phase, respectively) of superblock
si,j is characterized by its maximum number of requests
to access the shared resource µmax,ai,j (µmax,ri,j , respectively);
during such a phase, the superblock does not perform any
relevant computation. The execution phase of superblock si,j
is characterized by its maximum number of requests to access
the shared resource µmax,ei,j and its maximum required com-
putation time execmaxi,j on processing element pj . Superblock
si,j has a deadline di,j . As shown in Fig. 1, depending on the
superblock code, it is possible for the acquisition/replication
phase to be omitted or for the execution phase to contain no
access requests.

We assume the parameters µmax,ai,j , µmax,ri,j , µmax,ei,j , and
execmaxi,j to be derived either by profiling and measurement
or by applying static analysis for scratchpad memory to fetch
new memory sections, etc. Note that execmaxi,j is derived by
assuming that the resource accesses are done immediately,
while µmax,ai,j , µmax,ri,j , and µmax,ei,j are derived by assuming
that computation does not consume any time. For a superblock
with logical branches, the above numbers might be over-
estimated, but the worst-case execution time is safely bounded.

2

P Set of processing elements si,j superblock i on processing element pj Θ the arbiter
pj processing element j, pj ∈ P ρi,j starting time of superblock si,j LΘ length of the static segment
Wj processing cycle on pj di,j rel. deadline of superblock si,j ∆Θ length of the dynamic segment
C completion time of an w.r.t. the beginning of the task σm start time of slot m

access request µ
max,[a|e|r]
i,j number of access requests in δm length of slot m

MΘ Number of static slots phases ”a”, ”e” and ”r” θ(m, pj) θ(m, pj) = 1 if slot m is assigned
ψ number of static slots assigned to the execmaxi,j computation time in si,j to pj and θ(m, pj) = 0 otherwise

processing element under analysis Sj sequence of superblocks executing on pj ` the length of a minislot

TABLE I
SYMBOLS FOR THE SYSTEM MODEL

For a detailed discussion about the above models, please refer
to [15]. Tab. I gives a summary of symbols used throughout
this paper.

B. Model of the Shared Resource

Following the model in [15], the shared resource is only able
to serve at most one access request at any time; a resource
arbiter decides which request is granted. In other words,
resource accesses are assumed non-buffered, for example,
shared memory access due to cache misses or scratchpad
memory misses, and results in the application to wait until an
issued access is served. In this paper, we consider an adaptive
arbiter, that follows the FlexRay protocol, where arbitration is
conducted based on a sequence of arbitration rounds. Each
round comprises a static segment followed by a dynamic
segment. Once access to the shared resource is granted, the
arbiter, denoted Θ, serves an access request within C units of
time. We assume that processing elements and the resource
arbiter initialize synchronously, such that the first arbitration
round of Θ and the first superblock on each processing element
start at time 0.

The static segment comprises a sequence of MΘ (time)
slots, indexed from 0 to MΘ − 1. Let LΘ be the length
of the static segment, while σm is the starting time of slot
m relative to the beginning of the round, with σ0 = 0.
For ease of notation, we define σMΘ = LΘ; the duration
of slot m is then δm = σm+1 − σm. Each slot serves
requests of a single processing element according to function
θ(m, pj), i.e., θ(m, pj) = 1 if slot m is assigned to pj and
θ(m, pj) = 0 otherwise. Multiple slots can be assigned to the
same processing element. A request of pj in its assigned slot
m is served only if it can be completed within the slot, i.e., it
must arrive at least C time units before the end of the slot.

The dynamic segment of arbiter Θ is defined by its length
∆Θ and the length ` of a mini slot. All processing ele-
ments contend for access to the shared resource during the
dynamic segment, and again a request is granted only if it can
be completed within the dynamic segment. Two arbitration
models are possible. Under constrained request arbitration,
resource accesses are granted in FCFS order at the beginning
of each minislot, while greedy arbitration grants resource
accesses in FCFS order, independent of their arrival time.
The FlexRay communication protocol is a special case of
the above definition when the dynamic arbitration segment
is constrained and static slots all have the same duration. An
example is shown in Fig. 1. Due to space limitation, we will
focus our presentation for constrained request arbitration, i.e.,
FlexRay communication protocol. The results can be easily

applied for greedy request arbitration and RR arbitration for
the dynamic arbitration segment with minor changes, which
are similar to the extension from FCFS to RR in [10]. We
assume ∆Θ + LΘ to be an integer multiple of the period Wj

of the set of superblocks Sj under analysis.

C. Problem Definition

In this paper we study the problem of deriving the worst-
case response time (WCRT) of the tasks executing on a
processing element pj ∈ P . Accesses to the shared resource
are synchronous, i.e., once an access request is issued by
a task/superblock, it has to stall until this access request is
served by the shared resource. We assume an adaptive arbiter
Θ, following the constrained request arbitration, granting
access to the shared resource. The length of an arbitration
round ∆Θ + LΘ and the period Wj are integer multiples.
Previous work considered dynamic arbitration [10] or static
arbitration [15] only. Thus, these approaches are incapable
of considering the interdependency of the delays caused by
slotted arbitration in the static segment and the delay caused
by contention in the dynamic segment. This paper proposes a
generalization of these studies to allow the analysis of adaptive
resource arbiters. An adaptive schedule for the shared resource
is said to be schedulable if all the superblocks on all processing
elements can finish before their respective deadlines.

III. ANALYSIS OVERVIEW

In our analysis we propose an algorithm that derives the
worst-case execution trace for the sequence of superblocks Sj
that executes on element pj . In other words, we derive the trace
that results in the WCRT for the task. The degree of freedom
for constructing this worst-case trace is the sequence of access
requests and the computation that have to be performed in
the individual superblocks. Delays due to shared resource
contention come from two cases: (1) an access request happens
during the static segment, but the current slot is assigned
to another processing element or there is not enough time
to complete the request; or (2) an access request happens
during the dynamic segment of the arbiter, but other access
requests are already in the queue or there is not enough time
to complete the request. In both cases, the access request has
to wait either its turn in the dynamic segment or until the
beginning of its next assigned static slot, whichever comes
first. To simplify the discussion, we will refer to time slots
assigned to processing element pj as “frames of pj”. The
dynamic segment is a frame for every processing element pj
as well, since all elements contend for access to the shared

3

FE PE
u u

i i

frame f:

FE PE
u u

i i

frame f+1:

min
minmin

min

PE (f,1,1)

+ 2 i
+ 2 u

derive
 computation
 time required
 to reach f+1
 in pending
 state

Example:

FE (f,1,1)

valid subtable to compute
FE

PE
valid subtable to compute

infeasible

Fig. 2. Example how to construct the dynamic programming table.

resource during the dynamic segment. We propose a dynamic
programming algorithm to solve this problem iteratively.

The key idea is as follows. Let u be the number of access
requests performed by the sequence Sj , and i be the number
of requests performed by tasks running on other cores that
interfere (delay through contention) with Sj during dynamic
segments. Our algorithm derives the minimum amount of time
that the superblocks in Sj must compute to reach the beginning
of a particular frame f , for any feasible value of u and i; note
that increasing u and/or i can increase the resource access
delay suffered by the task, hence less computation time is
required to reach a given frame. Based on this information,
the algorithm then iteratively derives the minimum amount of
computation time required to reach the following frame f+1,
and so on and so forth until the required computation time
to reach frame f ′ + 1 becomes greater than the worst-case
computation time of the task for any value of u and i; this
implies that in the worst case the task can only reach up to
frame f ′.

Due to the blocking behavior of access requests, a frame
f can be reached in the ”free” state, i.e., the processing
element that executes Sj has no unserved access requests
upon activation of frame f , or in the ”pending” state, i.e., the
processing element stalls, because there is an unserved access
request that has to be served immediately upon activation of
frame f . The minimum amount of computation time is then
stored in two tables EF (f, u, i) and EP (f, u, i) for the free
and pending states, respectively.

Consider Fig. 2 as an example to compute the minimal
computation time. We want to determine the minimum amount
of computation time EF (f + 1, u, i) and EP (f + 1, u, i) that
is required to reach frame f + 1 in the free and pending
state, respectively, for a particular combination of u access
requests and i interferences. Then, this value depends on the
values computed for the previous frame, EF (f, u′, i′) and
EP (f, u′, i′), for all values of u′, i′ that are compatible with
u, i: note that u − u′ and i − i′ represent the amount of per-
formed access requests and suffered interferences, respectively,
between the beginning of frames f and f +1. Clearly, it must
hold i′ ≤ i. Furthermore, u′ must be strictly smaller than u
to be able to reach frame f + 1 in the pending state, since

at least one access request needs to be issued after frame f
is reached to enter the pending state. This condition is not
required if frame f + 1 is reached in the free state. In other
words, computing value EP (f+1, u, i) depends on the values
EF (f, u′, i′) and EP (f, u′, i′) for the previous frame, for all
combinations of u < 3 and i ≤ 3 (dark gray field in Fig.
2); while EF (f + 1, u, i) depends on the values EF (f, u′, i′)
and EP (f, u′, i′) for u ≤ 3 and i ≤ 3 (light gray field in
Fig. 2). In the remainder of this paper, we will detail how
to derive the amount of computation time that is required to
move from one configuration to the other, i.e., how to compute
the minimum amount of computation time that is required to
get from EF (f, u′, i′) or EP (f, u′, i′) to EF (f + 1, u, i) or
EP (f + 1, u, i). Furthermore, we will show how to initialize
the tables for the first slot and how to compute the final WCRT
when the iteration stops.

IV. ANALYSIS METHODOLOGY

To simplify the derivation of WCRT bounds, we split our
analysis in two parts. Algorithm 1, described in Section V,
computes the WCRT of a single phase, based on its maximum
amount of access requests µmax,[a|e|r]i,j to the shared resource
and its maximum amount of computation time execmaxi,j .
Algorithm 2, which will be detailed in Section VI, is then
used to compute the WCRT of a complete superblock and
task. The start time of a phase ts equals the completion time
of the preceding phase, in case of sequential execution, or a
specified starting time, in case of time-triggered execution. The
first phase of the first superblock starts at time 0. Depending on
the start time of a phase, the initialization stage of Algorithm 1
(lines 2-7) initializes the tables for the dynamic programming
approach. The second stage, or the analysis stage (lines 8-
21), performs the dynamic programming analysis described
in Section III. This stage iterates until the minimum amount
of computation required to reach frame f ′ + 1 exceeds the
maximum amount of computation execmaxi,j . The finalization
stage (lines 22-23) then derives the WCRT of the phase based
on f ′ and the dynamic programming tables EF and EP .

Notations used in the analysis for a phase: To simplify
notations, we drop the subscripts i, j from superblock si,j
and consider a phase under analysis defined by parameters
{ts, µmax, execmax}. For an acquisition or replication phase,
we simply set execmax = 0, and µmax = µmax,a

i,j , or
µmax = µmax,r

i,j , respectively; while for an execution phase,
we set execmax = execmax

i,j , µmax = µmax,e
i,j .

Consider pj to be the processing element on which the phase
under analysis executes. Then we define ψ to be the total
number of static slots assigned to processing element pj , i.e.,
ψ =

∑
0≤m<MΘ

θ(m, pj). Since both assigned static slots and
the dynamic segment count as frames of pj , it follows that pj
has ψ + 1 frames in each arbitration round. To simplify the
algorithm description, we introduce some notations describing
important properties of each frame. We use I to represent the
ordered set of the indexes of frames assigned to pj . Static
slots have indexes from 0 to MΘ − 1 as detailed in Section
II-B, while we assign index MΘ to the dynamic segment, such
that I = {I0, . . . Ii, . . . Iψ}, where Iψ = MΘ represents the

4

0,1
1q = 1,2

1q =
0I 1I

A/E/R

0
s 1

s
2

s 3
s

maxexecmaxm

t

st

st
3H

0,1
1q = 1,2

1q =
2,3

1q =
0I 1I 2I

f

... 3,2
1q =

3I
4

s
5I

5
s

F
initE

...

1
s0

s

4I

t
totLpreL

ct

initialization analysis �nalization

*()uC

(, ,)FE 2,u i

5H*()uC

(, ,)FE 3,u i

1H

(, ,)FE 4,u i

*(min(,))totpC i p C+- L

WCRT

case a) case b) case c)

...

frames of 2p

2
2py =2p

Fig. 3. Analysis Overview

dynamic segment. As an example, consider Fig. 3, where static
slots 1 and 3 are assigned to processing element p2, and the
dynamic segment has index 5. Then the frame indexes of p2

are I = {I0 = 1, I1 = 3, I2 = 5}. Finally, let HIf (with
0 ≤ f ≤ ψ) be the time distance between the end of frame If
and the beginning of the following frame. Note that the end
of the dynamic segment (frame ψ) corresponds to the end of
the arbitration round. Then HIf can be written as:

HIf =

{
σIf+1 − (σIf + δIf) for 0 ≤ f < ψ,
σI1 otherwise.

(1)

Our proposed algorithm computes the WCRT of a phase,
by finding frame f ′ that can be reached by the worst-case
trace. Depending on the phase under analysis, many arbitration
rounds might be necessary until this frame can be found.
Therefore, the amount of arbitration rounds that have been
performed needs to be considered. Let r0 be the arbitration
round, during which the phase is activated, i.e., the w-th round
such that w · (LΘ + ∆Θ) ≤ ts < (w + 1) · (LΘ + ∆Θ), and
ri be the (w + i)-th round. Then frame 0 is the first frame
of pj in round r0 and frame f is frame (f mod (ψ + 1))
of pj in round rbf/(ψ+1)c. For notational simplicity, we set
HIf = HIf mod (ψ+1) ; analogously, we translate the starting
time ts of a phase to the starting time t̄s relative to the
beginning of the current round.

Interference during the dynamic segment of arbiter Θ de-
pends on the access pattern of the other processing elements
to the shared resource. We capture this pattern through a set of
arrival curves: arrival curve αk(∆) represents the maximum
amount of resource access requests that can be produced by
tasks running on processing element pk during a time window
of length ∆. Pellizzoni et al. [10] introduced a methodology
to derive arrival curves for the different superblock models
(sequential or time-triggered) that we consider in this work.
We translate the αk(∆) representation, such that αk(f) rep-
resents the maximum amount of resource accesses by pk in
a time window of length equal to the interval between the
start time of the phase under analysis and the beginning of
frame f . Consider multiple interfering processing element for
a phase executing on processing element pj , e.g., a set of
interferers IP , such that IP ⊆ P \ pj . Then we approximate
the overall interference of these interferers to the phase un-
der analysis as the sum of the individual interferences, i.e.,

Algorithm 1 Analyze a single phase
1: procedure ANALYZEPHASE(ts, execmax, µmax, Θ, IP)
2: ∀f, u, i : EP (f, u, i) := +∞, EF (f, u, i) := +∞
3: t̄s = ts − b ts

LΘ+∆Θ
c · (LΘ + ∆Θ)

4: f̄ = min
(

(ψ + 1), {f |0 ≤ f ≤ ψ ∧ t̄s ≤ σIf }
)

5: ∀u, i : compute EF (f̄ , u, i), EP (f̄ , u, i) by Eq. 2 and Eq. 3 resp.
6: reachable = true
7: f = f̄ − 1
8: while reachable do
9: reachable = false

10: f = f + 1
11: for ∀u ∈ {0 . . . µmax} and i ∈ {0 . . . α(f + 1)} do
12: if f mod ψ + 1 < ψ then
13: compute EP (f + 1, u, i), EF (f + 1, u, i) by Eq. (4), (6)

14: else
15: compute EP (f + 1, u, i), EF (f + 1, u, i) by Eq. (5), (7)

16: end if
17: if min(EP (f + 1, u, i), EF (f + 1, u, i)) ≤ execmax then
18: reachable = true
19: end if
20: end for
21: end while
22: compute tc by Eq. 8 or 9 for f as static or dynamic frame resp.
23: return WCRT =

⌊
f

ψ+1

⌋
· (LΘ + ∆Θ) + σIf + tc − ts

24: end procedure

α(f) =
∑
pk∈IP αk(f). This is a pessimistic assumption,

but to the best of our knowledge, deriving tight bounds on
the combined interference is still an open problem. In fact,
obtaining an exact interference pattern, for multiple competing
processing elements, onto the superblock/phase under analysis
is exponential in the number of interfering phases [10], which
makes it intractable in most practical settings. Finally, inter-
ference is affected by two more parameters: (1) the number
of processing elements Λtot that can interfere with the phase
under analysis and (2) the number of processing element Λpre,
that can have pending access requests that are serviced before
a pending request of pj at the beginning of the dynamic
segment, i.e., the number of interfering access requests once
the dynamic segment becomes active. As we show in Section
V, the worst-case pattern in this situation is produced when
the phase under analysis becomes pending in slot Iψ−1, its
last assigned slot in the static segment. Since arbitration in the
dynamic segment is performed in FCFS order, Λpre includes
all processing element that can interfere with the phase under
analysis and are assigned at least one static slot with index
smaller than Iψ−1. Given a tight interference representation,
our proposed algorithm performs a tight worst-case response
time (WCRT) analysis.

V. ANALYSIS FOR A SINGLE PHASE

In this section, we will introduce the three stages required to
derive the WCRT for a single phase. The two data structures
EF (f, u, i) and EP (f, u, i) represent the minimum amount
of time required to reach a particular frame f such that u
access requests have been served and i interferences have
been suffered, for u ∈ {0 . . . µmax} and i ∈ {0 . . . α(f)}.
Section V-A details on the initialization phase, which depends
on the starting time ts of the phase under analysis. Section V-B
introduces the analysis of a single phase, based on a dynamic

5

programming approach. The algorithm iterates until a frame
f ′ is reached, such that each entry in EF (f ′ + 1, u, i) and
EP (f ′ + 1, u, i), ∀u, i, exceeds execmax. Section V-C shows
how to derive the final WCRT for the phase under analysis,
based on the previously computed data structures EF and EP .

A. Initialization Stage

The initialization stage computes the amount of computation
that is required to reach the first frame f̄ after the activation of
a phase at time ts. Depending on this starting time, the phase
is activated either (a) within the static segment of arbiter Θ but
the slot is not assigned to pj or (b) within the static segment
and within a frame (i.e., a slot assigned to pj) or (c) within the
dynamic segment - compare cases ”a)”, ”b)” and ”c)” in Fig. 3.
Note that time windows that depend on variable parameters in
Fig. 3 are marked with an asterisk (∗) as superscript - namely
time windows that depend on u, i and Λtot.

First, in ”case a)”, the amount of time required to reach
frame f̄ is only related to the amount of time between the
activation time ts and the start time of the next frame. Frame
f̄ can be reached in the pending state, if an access request can
be issued immediately upon the activation of the phase, i.e.,
no computation is performed and EP (f̄ , 1, i) = 0,∀i, see Eq.
(3), case 2.1 If no access request can be issued, frame f̄ cannot
be reached in the pending state, i.e., EP (f̄ , 1, i) =∞,∀i, see
Eq. (3), case 1. Frame f̄ can be reached in the free state by
performing computation from the activation of the phase until
the activation of frame f̄ , hence EF (f̄ , u, i) = σIf̄ − t̄

s,∀u, i,
see Eq. (2), case 1.

Second, ”case b)”, considers the case, that the current slot
is a frame of pj , i.e., the phase can immediately issue an
access request that will be granted by the arbiter. Therefore,
EF (f̄ , u, i) is a function of the current frames remaining
duration, the amount of issued access requests u and the time
between the current frame f̄−1 and the next frame f̄ , see Eq.
(2), second case. EP (f̄ , u, i) is computed analogously, except
that the last access request is issued C−ε time units before the
frame expires.2 As a result, this request is not served anymore,
the phase has to stall until the activation of frame f̄ and no
computation can be performed between the current and the
next slot, see Eq. (3) - third case.

Third, ”case c)”, considers the phase to start in the dynamic
slot. For both cases, reaching slot f̄ in the pending or in
the free state, the required amount of computation is related
to the distance of the dynamic frames activation time, the
amount of access requests and the amount of interference
(denoted as min(i, uΛtot)C - will be explained in more detail
in Section V-B). In order to reach frame f̄ in the pending
state, computation is performed, such that the last request is
issued C − ` time units before the expiration of the dynamic
segment. As a result, the request cannot be served in the
dynamic segment anymore and the processing element has to
stall until the activation of frame f̄ , i.e., the element is in
pending state upon activation of frame f̄ , see Eq. (3) - fourth

1If z > 0, function z+ is z; otherwise z+ is 0
2ε is an arbitrary small value, greater than 0

case. In contrast to that, frame f̄ is reached in the free state, if
computation is performed during the current frames expiration
and the next frames activation, denoted HIf̄−1

, see Eq. (2) -
third case.

Algorithm 1 shows the derivation of the WCRT of a single
phase. The input to the algorithm is the activation time ts,
the maximum amount of computation execmax, the maximum
amount of access requests µmax, the arbiter Θ and the set
of interferers IP for the phase under analysis. First the data
structures EP and EF are initialized to ∞. Then the starting
time relative to the current arbitration round t̄s and the next
frame f̄ for the phase under analysis are computed, see
Line (3) and (4). Data structures EP (f̄ , u, i), EF (f̄ , u, i) are
initialized for all u and i, as described in this section, see Line
(5) and the termination condition reachable is set to true.

B. Analysis Stage

After the initialization is done, the main loop of Algorithm 1
starts in Line (8). This loop computes the minimum amount
of computation time that is required to reach the next frame
for all combinations of u served access request, i suffered
interferences for states ”free” and ”pending”, see Line (13) in
case the frame f is a static slot and Line (15) in case frame
f is the dynamic segment.

The loop iterates until there is no entry in neither EP nor
EF , that exceeds the maximum amount of computation time
execmax for the phase under analysis. In other words, there
exists no trace such that frame f + 1 can be reached. Then
reachable is not set to true, and the loop terminates. As a
result, the last iteration of the algorithm computes values EP

and EF for the unreachable frame f + 1. See Fig. 1 for an
example to compute EF (4, u, i), assuming EF (5, u, i) cannot
be reached for any combination of u and i. Therefore, the
finalization phase computes the final WCRT based on the
previous frame, i.e., frame f , since the WCRT of the worst-
case trace must be between frames f and f + 1.

Lemma 1: Algorithm 1 terminates, for phases with finite
values for parameters execmax and µmax, and an arbiter with
frame sizes larger than or equal to C.

Proof: Every iteration of the Algorithm increments the
variable f , that denotes the next frame. For finite parameters
execmax and µmax, and an arbitration policy that guarantees
at least one access request to be served per cycle, the amount
of frames (and arbitration cycles) that is required to finish
this phase equals to at most the sum of the amount of access
requests µmax and the maximum amount of computation
execmax that have to be performed. In order to reach the
beginning of frame f + 1 from frame f , at least one access
request has to be issued C−ε time units before f expires, i.e.,
f + 1 is reached in the pending state. Otherwise, computation
amounting for HIf is performed between frame f and f + 1,
i.e., f + 1 is reached in the free state.

Therefore, there exists a f ≤ µmax +
⌊

execmax

min
∀f

δIf+HIf

⌋
, such

that reachable is not set to true and the Algorithm 1 terminates.

6

EFinit(f̄ , u, i) =

σIf̄ − t̄

s t̄s ≤ σI0 ∨ (f̄ > 0 ∧ t̄s ≥ σIf̄−1
+ δIf̄−1

)

(σIf̄−1
+ δIf̄−1

− t̄s − u · C)+ +HIf̄−1
f̄ < ψ + 1

(σIf̄−1
+ δIf̄−1

− t̄s − u · C −min(i, u · Λtot) · C)+ +HIf̄−1
otherwise

(2)

EPinit(f̄ , u, i) =

+∞ u = 0

0 t̄s ≤ σI0 ∨ (f̄ > 0 ∧ t̄s ≥ σIf̄−1
+ δIf̄−1

)

(σIf̄−1
+ δIf̄−1

− t̄s + ε− u · C)+ f̄ < ψ + 1

(σIf̄−1
+ δIf̄−1

− t̄s + `− u · C −min(i, u · Λtot) · C)+ otherwise

(3)

EF (f + 1, u, i) = min
0≤p≤u

{
EF (f, u− p, i) + (δIf − pC)+ +HIf
EP (f, u− p, i) + (δIf − (p+ 1)C)+ +HIf

(4)

EF (f + 1, u, i) = min
0 ≤ p ≤ u
0 ≤ l ≤ i

{
EF (f, u− p, i− l) + (∆Θ − pC −min(l, pΛtot)C)+ +HIf
EP (f, u− p, i− l) + (∆Θ − (p+ 1)C −min(l, pΛtot + Λpre)C)+ +HIf

(5)

EP (f + 1, u, i) = min
1≤p≤u

{
EF (f, u− p, i) + (δIf + ε− pC)+

EP (f, u− p, i) + (δIf + ε− (p+ 1)C)+ (6)

EP (f + 1, u, i) = min
1 ≤ p ≤ u
0 ≤ l ≤ i

{
EF (f, u− p, i− l) + (∆Θ + `− pC −min(l, pΛtot)C)+

EP (f, u− p, i− l) + (∆Θ + `− (p+ 1)C −min(l, pΛtot + Λpre)C)+ (7)

EP and EF are computed differently, depending on whether
the next frame f + 1 is a static slot of the dynamic segment.
The following two sections will detail on the differences.

1) static slot: The minimum amount of computation that is
required to reach frame f + 1, if frame f is a static frame, is
computed in Eq. (4) and (6), for the free and the pending
state respectively. Eq. (4) computes the minimum amount
of computation that is required to reach frame f + 1, by
considering EF (f, u− p, i) and EP (f, u− p, i), the duration
δIf of frame f , the time spent serving p access requests,
∀0 ≤ p ≤ u, and the time between frames f and f + 1,
denoted HIf . As a result, EF (f + 1, u, i) computes as the
minimum amount of time that is required to reach frame f+1,
considering all combinations of u − p access requests served
previous to frame f and p access requests served in frame f ,
for the ”free” as well as for the ”pending” state. Frame f + 1
is reached in the free state, and therefore Eq. (4) considers
computation to be performed in between frame f and f + 1,
i.e., by the term HIf .

Analogously, Eq. (6) computes how to reach frame f +
1 in the pending state. An access request is issued C − ε
units of time before frame f expires, resulting in this request
not being served during frame f anymore. This way, the stall
time of the element is maximized, and thus the amount of
computation that is performed during frame f (at most δIf +
ε) and between frame f and f + 1 (equals 0 since HIf is
neglected) is minimized. Issuing the access request at any later
point results in an increased amount of computation that has
to be performed, and thus not in the worst-case trace.

Note that in Eq. (4) and (6), the amount of served access
requests during frame f is increased by 1 for the pending
states. This is due to the fact that upon the activation of frame
f , an access request will be issued immediately. Furthermore,
note that the variable p for Eq. (6) starts at 1, since at least a
single access request must remain unserved, otherwise frame
f + 1 cannot be reached in the pending state.

Lemma 2: If frame f is a static slot, Eq. (4) and Eq. (6)
compute the minimum amount of computation that have to be

performed, such that frame f + 1 can be reached in the free
and pending state, respectively, for u served access requests
and i interfering access requests by other phases.

Proof: For a particular frame f+1 and number of served
access requests u, Eq. (4) and Eq. (6) compute the required
amount of computation for all possible values of already
served access requests u − p (before frame f) and access
requests p served in frame f , based on the pending and the
free state. The minimum among these values, based on both
the pending and the free state, is returned, and therefore Eq.
(4) and (6) result in the minimum amount of computation
time that is required to reach frame f + 1 in the free state and
pending state respectively.

2) dynamic slot: In case frame f is a dynamic slot, inter-
fering access requests have to be considered. The minimum
amount of computation that is required to reach frame f+1, is
computed in Eq. (5) and (7), for the free and the pending state
respectively. The respective amount of computation is derived
for all possible remaining access requests p and remaining
interfering access requests l. The minimum of these values is
considered for further computation and stored in EP and EF ,
see Lemma 3.

Eq. (5) computes the amount of computation that is required
to reach frame f + 1 in the free state by considering the
amount of computation required to reach the current frame
f , the length of the dynamic segment ∆Θ, the amount of
served access requests p (or p + 1 for the pending case), the
amount of access requests that can be interfered with, and the
time between the expiration of the current and the activation
of the next frame HIf . The term min(l, pΛtot)C)+ in Eq.
(5), for the free state, constrains the maximum amount of
interference a phase can suffer during frame f . Intuitively,
pΛtot represents the property that each access request issued
in frame f can be interfered by every other processing element
once, i.e., each access request ends up in the last position of
the FIFO queue of the arbiter during the dynamic segment.
On the other hand, in case there is less interference, i.e., l,
then the access requests issued during frame f cannot suffer

7

more interference. For EF based on the pending state, this
term changes to min(l, pΛtot + Λpre)C)+. In other words,
upon activation of frame f there is a pending access request
that has to be served and it is interfered by up to Λpre access
requests.

Eq. (7) computes the amount of computation that is required
to reach frame f + 1 in the pending state, similarly to Eq. (5).
However, frame f+1 shall be reached in the pending state, and
therefore, the term HIf is not present in Eq. (7). Instead, the
amount of computation during the active frame is increased,
such that the last access request cannot be served anymore.
That is, in comparison to Eq. (5), the amount of computation
is increased by one minislot of size `. The last access request
cannot be served anymore and the phase stalls until frame
f + 1 is activated.

Lemma 3: If frame f is a dynamic slot, Eq. (5) and (7)
compute the minimum amount of computation that have to be
performed, such that frame f + 1 can be reached in the free
and pending state respectively, for u served access requests
and i interfering access requests by other phases.

Proof: Assume frame f + 1 should be reached, with u
access requests being served and i interfering access requests
being issued by other processing elements. Then Eq. (5) and
(7) compute the amount of computation that is required to
reach frame f + 1 for all possible combinations of access
request, that are already served at frame f , denoted u−p, and
access requests that have to be served during frame f , denoted
p. Similarly, the interferences that have already happened,
denoted i − l, and those that can happen during frame f ,
denoted l, are considered. The rest of the proof is similar to
the proof for Lemma 2.

C. Finalization

Algorithm 1 iterates until frame f + 1, that cannot be
reached anymore, is found, i.e., frame f+1 such that variable
reachable remains false for any u, i, see Line 17. Then the
worst-case completion of the phase under analysis is between
frame f and f +1. As a result, the data structures EF (f, u, i)
and EP (f, u, i), ∀u, i are considered to compute the final
WCRT.

Eq. (8) and Eq. (9) compute the WCRT of a phase, in case
frame f is a static or a dynamic frame, respectively.

tc = max
∀u,i

{
(execmax − EF (f, u, i) + (µmax − u)C)+

(execmax − EP (f, u, i) + (µmax − u+ 1)C)+ (8)

tc = max
∀u,i

(execmax − EF (f, u, i) + (µmax − u+

min(α(f + 1)− i, (µmax − u)Λtot))C)+

(execmax − EP (f, u, i) + (µmax − u+ 1+

min(α(f + 1)− i, (µmax − u)Λtot + Λpre))C)+

(9)
Consider frame f to be a static frame, then Eq. (8) computes

the response time tc of a phase by considering the remaining
access requests (µmax − u) and the phases computation time
(execmax). Their difference represents the remaining amount
of computation that has to be performed, but proved to be
insufficient to reach frame f + 1.

Similarly, Eq. (9) computes the response time tc of a
phase, if frame f is the dynamic segment. In this case, the

interference that might be suffered during that frame has to
be considered. As in Eq. (5) and (7), the additional delay
due to inference depends on the upper bound of interference
(α(f + 1) − i), and the number of issued access request that
can be interfered with: (µmax − u)Λtot in the free state, and
(µmax−u)Λtot + Λpre in the pending state. The WCRT tc is
the maximum resulting value for any u and i.

Lemma 4: Given a constrained adaptive arbiter Θ, Algo-
rithm 1 computes an upper bound of the worst-case response
time for a phase with a defined starting time ts, amount of
access requests µmax, computation time execmax, and the set
of interferers IP .

Proof: EF (f + 1, u, i) and EP (f + 1, u, i) are computed
as the minimum of EF (f, u−p, i− l) and EP (f, u−p, i− l),
for p and l as defined in Eq. (4) to (7). Instead of considering
the minimum value for EF (f + 1, u, i) and EP (f + 1, u, i),
consider all values that are computed in Eq. (4) to (7). In other
words, at each iteration, all possible distributions of (a) already
served access requests u−p and remaining access requests u,
and (b) suffered interferences i− l and interferences that can
be suffered in the current frame i, and their respective required
computation time are stored in a data structure, not only their
minimum. Consider EFn (f + 1, u, i) and EPn (f + 1, u, i) to
be the amount of computation that is required to reach frame
f + 1, for any distribution of u and i, but the one that results
as the minimum. In other words, ∀n : EFn (f + 1, u, i) >
EF (f + 1, u, i) and ∀n : EPn (f + 1, u, i) > EP (f + 1, u, i).
Then the amount of computation that remains after frame f +
1 is reduced, or execmax − EFn (f + 1, u, i) < execmax −
EF (f + 1, u, i) and execmax−EPn (f + 1, u, i) < execmax−
EP (f + 1, u, i). Since EFn (f + 1, u, i) computes as the sum
of EFn (f, u, i) and a term related to the arbitration in frame f ,
EFn (f+1, u, i) > EF (f+1, u, i). Similarly, EPn (f+1, u, i) >
EP (f + 1, u, i).

Eventually the remaining computation time is insufficient
to reach the next frame f + 1 and the final response time is
computed in Eq. (8) and (9). Since EFn (f, u, i) > EF (f, u, i)
and EPn (f, u, i) > EP (f, u, i), the resulting response time tc
is reduced and so is the WCRT.

Conclusively, considering any other amount of computation
to reach frame f + 1, than the minimum computed in Eq. (4)
to (7), leads to a decreased response time, which is upper-
bounded by the solution derived from Algorithm 1.

D. Complexity

The complexity of the proposed methodology depends on
the number of access requests and interference. Consider
Algorithm 1, Line 15, then it is clear, that Eq. (5) and (7)
are computed f times. The complexity of computing Eq. (5)
and Eq. (7) is O((µmax)2α(f)2), since for every combination
of u and i, the minimum amount of computation has to be
computed for all possible remaining access requests p and
interferences l.

Furthermore, f is limited by a bound in Lemma 1.
As a result, the complexity of the proposed approach

is O

(
(µmax)3α(f)2 +

⌊
execmax

min
∀k

(δIf+HIf)

⌋)
, i.e., pseudo-

8

polynomial.

VI. ANALYSIS FOR SUPERBLOCKS AND TASKS

In the previous section we showed how to derive the WCRT
of a phase. This section describes how to compute the WCRT
of a task, which is composed as a sequence of superblocks.
Superblocks are composed of sequences of phases, or are
represented by a single phase, depending on the resource
access model, see Fig. 1.

The analysis is performed for each phase, while the worst-
case starting time of a subsequent phase is the completion time
of its preceding phase (in the subsequent execution model),
or a dedicated starting time (in the time-triggered execution
model). The starting time of the first phase in superblock si,j
is the worst-case completion time of its preceding superblock
si−1,j , or a dedicated starting time in the subsequent and time-
triggered execution model, respectively. For the first phase of
the first superblock, the starting time is 0. If the deadline di,j
of a superblock si,j is violated, then the task in unschedulable
with this arbitration policy.

Consider ti,j to be the starting time of superblock si,j (e.g.,
in the time-triggered execution mode), then without the need to
consider any previous or subsequent superblock, the analysis
can be performed accordingly. In case the resulting completion
time exceeds deadline di,j , the task is unschedulable.

The pseudo-code for analyzing a task under the sequential
model is given in Algorithm 2. Extension to the time-triggered
model is omitted due to space constraints. Consider the set of
superblocks Sj statically scheduled on processing element pj
and the set of interfering elements to be in IP . Furthermore,
we assume that the length of an arbitration round ∆Θ + LΘ

and the period Wj of the set of superblocks Sj under analysis
to be integer multiples. Otherwise, Algorithm 2 would have
to iterate over all possible offsets, i.e., the lcm of ∆Θ + LΘ

and Wj .

Algorithm 2 Analyze Task
1: procedure ANALYZETASK(Sj , IP)
2: schedulable = true;
3: t = 0;
4: for each si,j ∈ Sj do
5: for each phase in si,j do
6: execmax max. amount of computation
7: µmax max. amount of resource accesses
8: t = t+AnalyzePhase(t, execmax, µmax, Θ, IP);
9: end for

10: if t > di,j then
11: schedulable = false;
12: end if
13: end for
14: return schedulable, t
15: end procedure

Theorem 1: Algorithm 2 computes the worst-case response
time (WCRT) for a set of superblocks Sj executing sequen-
tially on a processing element pj .

Proof: The proof is based on Lemma 4 and the assump-
tion of a fully timing compositional architecture, i.e., no timing
anomalies. Activating a phase at time t1 and t2 results in
WCRT1 ≤ WCRT2 for t1 ≤ t2. Therefore a sequence of

6.25
25

50
75

87.5

2
3

4
5

6
100

200

300

400

500

600

dynamic segment size [%]

120 sequential superblocks, varying Interference and Arbitration

Number of Interfering PUs

W
or

st
−C

as
e

R
es

po
ns

e
Ti

m
e

[m
s]

Fig. 4. Results for an automotive application.

6.25
25

50
75

87.5

2
4

6
8

10

200

400

600

800

1000

dynamic segment size [%]

209 sequential Superblocks, varying Interference and Arbitration

Number of Interfering PUs

W
or

st
−C

as
e

R
es

po
ns

e
Ti

m
e

[m
s]

Fig. 5. Results for a generated application.

phases can be analyzed by setting the start time of a phase as
its predecessors completion time, or 0 if it is the first phase.

VII. SIMULATIONS

We present experimental results based on a real-world ap-
plication and on a generated application. The applications are
composed of a set of subsequent superblocks, that are modeled
according to the general model. The industrial application,
from the automotive domain, is composed of 120 superblocks3.
The interference on the shared resources is modeled as an
arrival curve αj for each interfering element, and assumed
with a constant slope. The generated application is composed
of 209 superblocks, using parameters extracted from the in-
dustrial application. It issues 230 access requests and performs
computation amounting for about 9 ms. The time required to
serve an access request, once access to the resource is granted,
is 0.5ms, for both applications. The configuration of the arbiter
is varied, such that 6.25% to 87.5% of an arbitration cycle
belongs to the dynamic segment, and conclusively 93.75% to
12.5% belongs to the static segment, respectively. In the static
segment, one slot is assigned to the application under analysis,
while the remainder of the static segment is assigned to other
elements, and thus unavailable. This slot amounts for 62.5%
of the static segment length. Varying sizes of the dynamic

3Due to confidentiality agreements, data samples cannot be published

9

segment affect the size of the static segment, since a larger
dynamic segment implies a smaller static segment.

In Fig. 4, an automotive application is analyzed. For an
arbiter with only a small dynamic segment (6.25%), the WCRT
increases from 166ms, for 2 interfering processing elements,
to 260ms, for a system with 6 interfering elements (which
equals an increase of 260/166− 1 = 56.6%). With increasing
share of the dynamic segment in the arbiter, the WCRT rises
for systems with a high number of interfering elements. A
dynamic segment, amounting for 25% of the arbitration cycle
results in a WCRT of 161ms for two interfering elements, but
in a WCRT of 309ms for a system with 6 interfering elements.
This equals an increase of 309/161− 1 = 91.9%.

Further expansion of the dynamic segment, for a large
amount of interferers, at first results in a better performance,
i.e., the WCRT decreases again. At some point, this effect
reverses, and the performance suffers. For the application
under consideration, a dynamic segment amounting for 25%
to 50% of the arbitration cycle results in the lowest WRCT,
i.e., the best performance. For larger dynamic segments, the
performance suffers from the diminishing share of the static
slot. The smaller the static slot, i.e., the guaranteed service, the
larger the WCRT, even for systems with only few interfering
elements. In Fig. 4, the increase of the WCRT for dynamic
segments of 50% to 75% is apparent. For a system with only
two interfering elements the WCRT increases from 161ms to
514ms, respectively (equals an increase of 514/161 − 1 =
219%.)

Further expansion of the dynamic segment resulted in
another reduction of the WCRT. This is a result of (a) only
little interference on the shared resource due to the small
amount of interfering elements, and (b) the reduced influence
of the blocking time in the static segment, between the end of
the static slot (aka. frame) assigned to the application under
analysis and the activation of the dynamic segment. With the
static segment getting smaller and smaller, also this blocking
time gets less significant.

Similarly to the automotive application, the generated ap-
plication in Fig. 5 illustrates the same effects. An increasing
amount of interference also results in an increased WCRT, but
the effect is reduced compared to Fig. 4. The amount of inter-
ference that is suffered during the dynamic segment depends
on the number of interfering elements. In our experiments, we
assumed the overall amount of interference to be the same as
for the automotive application.

Experimental results show that the problem is non-convex
and an accurate WCRT is very hard to estimate. Many
parameters, such as the size of the respective segments of the
arbiter, the amount and pattern of interference and the number
of interfering elements have an impact on the WCRT of an
application. For that reason, an efficient and tight analysis is
even more essential, since small changes in the design might
lead to a significant increase of the WCRT.

VIII. CONCLUSION

In this paper, we propose an analysis approach to derive a
safe (upper) bound of the worst-case response time (WCRT)

for tasks in a resource sharing multiprocessor system. Tasks
are composed of superblocks and phases, and are statically
scheduled on the processing elements. Arbitration on the
shared resource is based on an adaptive protocol, e.g., FlexRay
protocol in automotive applications, where a static segment
with fixed assigned time slots (TDMA) is succeeded by a
dynamic segment with FCFS arbitration. Access to the shared
resource is non-preemptive and synchronous and results in
blocking of the task until access is granted by the arbiter.
We propose a computationally efficient analysis approach that
takes interference due to contention on the shared resource
into consideration. Using a dynamic programming approach,
we derive a tight WCRT, for a given tight interference repre-
sentation. Experimental results show that the problem cannot
be modeled as a convex optimization problem and that minor
deviations result in significantly increased WCRT. Extensions
to adaptive arbiters with greedy arbitration and Round Robin
arbitration in the dynamic segment are possible, but omitted
due to space constraints.

REFERENCES

[1] AutoSAR. Release 4.0, http://www.autosar.org.
[2] D. B. Chokshi and P. Bhaduri. Performance analysis of FlexRay-based

systems using real-time calculus, revisited. In SAC, pages 351–356,
2010.

[3] S. A. Edwards and E. A. Lee. The case for the precision timed (pret)
machine. In DAC, pages 264–265, 2007.

[4] FlexRay. http://www.flexray.com/.
[5] R. Graham. Bounds on the performance of scheduling algorithms. In

Computer and Job Scheduling Theory, pages 165–227. John Wiley and
Sons, 1976.

[6] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and
analysis for multi-cores. In EMSOFT, October 2009.

[7] K. Lakshmanan, G. Bhatia, and R. Rajkumar. Integrated end-to-end
timing analysis of networked autosar-compliant systems. In DATE, 2010.

[8] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing
analysis of concurrent programs running on shared cache multi-cores.
In RTSS, 2009.

[9] R. Pellizzoni and M. Caccamo. Impact of peripheral-processor inter-
ference on WCET analysis of real-time embedded systems. IEEE ToC,
59:400–415, 2010.

[10] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore systems.
In DATE, 2010.

[11] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the
FlexRay communication protocol. Real-Time Systems, 39(1-3):205–235,
2008.

[12] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip. In RTSS, pages 49–60, 2007.

[13] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared resource
load for the performance analysis of multiprocessor systems. In DATE,
Dresden, Germany, mar 2010.

[14] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst.
Reliable performance analysis of a multicore multithreaded system-on-
chip. In CODES/ISSS, pages 161–166, 2008.

[15] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing analysis for tdma
arbitration in resource sharing systems. In RTAS, 2010.

[16] Symtavision. SymTA/S Toolbox.
http://www.symtavision.com/symtas.html.

[17] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System architecture
evaluation using modular performance analysis: a case study. STTT,
9(6):649–667, Nov 2006.

[18] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand. Memory Hierarchies, Pipelines, and Buses for Fu-
ture Architectures in Time-critical Embedded Systems. IEEE TCAD,
28(7):966–978, July 2009.

10

