
Fast Private Set Operations with SEPIA

Dilip Many
dmany@tik.ee.ethz.ch

Martin Burkhart
burkhart@tik.ee.ethz.ch

Xenofontas
Dimitropoulos

fontas@tik.ee.ethz.ch
TIK-Report No. 345
Communication Sys-

tems Group
ETH Zurich, Switzerland

1 March 2012

ABSTRACT
Private set operations allow correlation of sensitive data
from multiple data owners. Although intensely researched,
current solutions still exhibit limited scalability in terms of
the supported maximum set size and number of sets. To
address these issues, we propose a new approach to pri-
vate set operations based on a combination of efficient se-
cure multiparty computation and bloom filters, a space-
efficient probabilistic data structure for set representation.
We design, implement and evaluate protocols for counting
and non-counting set intersection, set union, threshold set
union, weighted set intersection, and set cardinality estima-
tion. Evaluation in realistic settings shows that our proto-
cols are between twenty times and several orders of magni-
tudes faster than the state-of-the-art.

Keywords
secure multiparty computation, set operations, bloom filters,
privacy, collaboration

1. INTRODUCTION
Private set operations address the difficult problem of cor-
relating sensitive information from different data owners.
Possible application scenarios are very diverse, including,
for instance, airlines checking passengers against a private
no-fly list or credit card companies interested in finding a
common list of customers likely to default without reveal-
ing their entire customer base. Recently, privacy-preserving
data correlation has also been applied successfully to net-
work security [6, 30, 21, 34]. In fact, set operations support
many use cases in network security. For instance, distributed
blacklists can be built from set union operations; set inter-
section allows the identification of common attackers and
alerts; and sudden changes in the cardinality of active port
or IP address sets are indicative for network anomalies and
ongoing attacks [24]. While the underlying network data
are often sensitive and subject to data protection legisla-
tion, they are also voluminous and correlation results must
be available promptly in order to be useful. Internet-scale
aggregation, in particular, poses new challenges to private
set operations in terms of scalability. Potentially, millions
of elements must be correlated across hundreds of sites con-
tributing data within few minutes.

Up to today, the problem of building private set operations

has attracted a lot of attention in the literature (e.g., [13,
22, 11, 1, 14, 31, 9]). However, existing solutions have a
number of shortcomings. Many solutions are designed for
two parties only, e.g., a client matching its set against a
server’s set [11, 33, 17, 18]. Moreover, most approaches [13,
14, 10, 25, 19, 9, 27] focus on a few operations and do not
provide a complete suite of composable set operations. Most
importantly, available solutions do not scale to the set sizes
required in many practical scenarios. From the few protocols
that have been actually implemented, the fastest set union
takes 25 hours to aggregate 10 sets with 400 elements [28].
For set intersection, aggregation of only two sets with 65,000
elements still requires 20 minutes [20].

In this paper we design and implement a suite of private set
operations that have short running times even with large
sets and many parties. Our approach combines generic se-
cure multiparty computation (MPC) with bloom filters [3,
4]. A bloom filter is a space-efficient data structure for rep-
resenting sets that allows to perform set membership checks
and to estimate the size of a represented set [26]. The MPC
aggregation of bloom filters, either for set union or intersec-
tion, is computationally very efficient. Although the use of
bloom filters introduces false positives (but no false nega-
tives), the false-positive rate (FPR) decreases exponentially
with the bloom filter size. Given the substantial perfor-
mance improvements, we consider a small FPR acceptable
for many applications. Network monitoring, in particular,
naturally requires sampling or probabilistic methods to keep
up with large traffic volumes (e.g., [12]).

We implement our set operations using the SEPIA library [7].
We chose SEPIA because it is optimized for large numbers
of parallel operations and it has been recently shown to out-
perform similar frameworks. SEPIA is based on Shamir’s
secret sharing scheme [32] and supports private addition,
multiplication, and comparison operations on shared secrets.
Furthermore, it supports two roles: Input peers only provide
input data to the computation process while privacy peers
perform the computation. This allows supporting a large
number of data providers without enlarging the set of com-
putation nodes. SEPIA is secure in the honest-but-curious
adversary model, i.e., computation is safe as long as the ma-
jority of privacy peers is honest.

We implement and evaluate protocols for counting and non-

1

counting set intersection, set union, threshold set union,
weighted set intersection, and set cardinality estimation. As
an example, union and intersection of 25 sets with 100,000
elements each, 9 computation nodes, and an FPR of 0.65%,
requires only 75 seconds with our protocols. Remarkably,
for union and intersection of many sets, the communication
complexity is logarithmic in the number of input sets, while
in other works it is at least linear (e.g. [22, 14, 25, 19, 8,
27]). Hence, large numbers of sets are easily supported. This
greatly improves over current work and enables practical ap-
plications of private set operations in many domains.

The remainder of this paper is organized as follows. The
following section provides background on MPC and bloom
filters. Sections 3 and 4 introduce the set intersection and
union operations. These basic operations serve as build-
ing blocks for the set cardinality, threshold set union and
weighted set intersection operations presented in Sections 5
through 7. Section 8 improves the scalability of our proto-
cols with respect to the number of participants, before we
evaluate them in detail in Section 9. The paper discusses
related work in Section 10 and is concluded in Section 11.

2. PRELIMINARIES
In this section we first introduce the SEPIA library and then
provide a short overview of bloom filters. A summary of the
notation, terminology and variables used is given in Tables 1
and 2.

Secure Multiparty Computation: The SEPIA library
supports two basic roles: input peers (IN) and privacy peers
(PP). The IPs are parties that want to correlate their private
data. The PPs help the IPs by performing private computa-
tions on shared secrets. The level of privacy and the running
time of basic MPC operations scale with the number of PPs.
More PPs increase security but reduce performance and vice
versa. Hence, the separation into IPs and PPs allows to tune
the privacy-performance tradeoff independently of the num-
ber of participants with input data. In practice, a PP can
be hosted together with an IP in the same network.

SEPIA uses Shamir’s secret sharing scheme [32]. In order to
share a secret in Shamir’s scheme, a random polynomial over
a prime field is generated and the secret shares correspond
to different points on the polynomial. A secret is recon-
structed from shares by interpolating the polynomial, e.g.,
using Lagrange interpolation. Private addition of secrets is
done by simply adding the corresponding shares of a pri-
vacy peer. Private multiplication requires an intermediate
step of synchronization and information exchange between
the privacy peers [2, 16]. This also involves local computa-
tion that is more complex than for addition. Therefore to
design efficient protocols it is desirable to reduce the number
of multiplications. In Table 1 we introduce and describe the
notation and terminology of the basic MPC operations we
use. The equal and lessThan operations require much more
resources in terms of running time and network bandwidth
than the basic addition and multiplication operations. The
required number of multiplications is logarithmic in the field
size. To give an example, in a LAN setting with 5 PPs it
is possible to perform 80,000 multiplications, 2,000 equality
comparisons or 90 less-than comparisons per second. How-
ever, when the comparison operations are used wisely, they

can help reduce the running time of protocols as we show in
Section 8.

The protocols we introduce in this paper are compositions
of additions and multiplications (comparisons are also com-
positions of additions and multiplications). Therefore they
have the same security properties with the basic operations,
which have been shown to be correct and information-theo-
retically secure [2].

Bloom Filters: We use the bloom filter data structure [3]
to represent sets. A bloom filter for representing a set S =
{x1, x2, . . . , xr} of r elements is an array BF of s bits ini-
tially set to 0. We use the notation BF (u) to refer to the
position u in the bloom filter BF . The bloom filter uses
k independent hash functions h1, . . . , hk with range 1, . . . , s.
For each element x ∈ S, the bits at positions hi(x) are set to
1 for 1 ≤ i ≤ k. To check whether an element y is a member
of S, we simply test if BF (hi(y)) equals 1 for all 1 ≤ i ≤ k.
As long as the bloom filter is not saturated, i.e., s is chosen
sufficiently large to represent all elements, the total number
of non-zero positions allows to accurately estimate |S| [26].
Counting Bloom Filters (CBF) are a generalization of bloom
filters, which use integer arrays instead of bit arrays. Thus,
CBFs allow to represent multisets, in which each element can
be represented more than once. When inserting elements, if
a position hi(x) already has a count that is smaller than the
one of x it is replaced by x’s count. The count of an element
in a CBF is retrieved by taking the minimum count of all
positions an element hashes to.

Bloom filters introduce false positives, i.e., an element might
seem present although it was never inserted. By increasing
the size of the array this probability can be decreased for
the price of increased space (and communication as we shall
see later on) requirements. The FPR of a bloom filter is [4]:

FPR =

1−

„
1− 1

s

«kr
!k

(1)

where s is the size of the bloom filter, k the number of hash
functions and r the number of inserted elements. For CBFs,
the probability that an element appears more often than it
was inserted is also given by Equation 1.

The number of hash functions should be set according to the
formula k = ln(2) · r/s derived in [4] to minimize the FPR
for given s and r. A general rule of thumb is to set the size
to s = 5r · (− log10(FPR)). As an example, if we want to
store 105 elements with an FPR of 10−3, the size s should
be 1.5 · 106. For an FPR of 10−4, the number of required
positions is only increased by 33% to s = 2 · 106.

Note that while bloom filters allow to efficiently evaluat-
ing membership queries, they cannot be used to enumerate
the represented set elements. This is not a concern when a
bloom filter is used to check online, for example in a net-
work intrusion detection system, if the elements of a stream
belong to a set.

3. SET INTERSECTION
In order to intersect their sets, each input peer i first locally
computes a binary BFi or a counting CFi bloom filter, repre-

2

Syntax Output Description

share(s) [s] A secret value s held by an IP is split up in m
shares si. Each si is then distributed to PP i. The
ensemble of all distributed shares {s1, s2, · · · , sm}
is called a sharing of s and denoted by [s].

reconstruct([s]) s The individual shares of a sharing [s] are combined
to reconstruct the secret value s.

[a] + [b], [a] + b [a + b] Adds two sharings (or a sharing and a public
value) to get a sharing of the sum. This also in-
cludes subtraction (’-’).

[a] ∗ [b], [a] ∗ b [a ∗ b] Multiplies two sharings (or a sharing and a public
value) to get a sharing of the product.

equal([a], [b]),
equal([a], b)

if (a == b) then
[1] else [0]

Two sharings (or a sharing and a public value)
are compared for equality. The output remains
secret.

lessThan([a], [b]),
lessThan([a], b)

if (a < b) then [1]
else [0]

Two sharings (or a sharing and a public value) are
compared for size. The output remains secret.

Table 1: Notation and terminology for basic MPC operations.

n the number of input peers with a set each
m the number of privacy peers
s size of the bloom filter (i.e., number of positions)
k number of hash functions per element
r number of inserted distinct elements
p the field size used in secret sharing
l the required number dlog2(p)e of bits to represent p
BF a binary bloom filter
CF a counting bloom filter

Table 2: Summary of main variables.

senting its input set. Each array position of the bloom filter
is then shared among the privacy peers. The privacy peers
then compute the bloom filter representing the intersection
set position-wise. For binary bloom filters, they perform the
logical AND for all positions u with 1 ≤ u ≤ s:

[BF∧(u)] := [BF1(u)] ∧ [BF2(u)] ∧ . . . ∧ [BFn(u)]. (2)

We can implement a private logical AND simply with a pri-
vate multiplication: [Bit1 ∧ Bit2] = [Bit1] ∗ [Bit2]. All
positions of [BF∧] are then reconstructed and are sent back
to the input peers, unless they are used for further private
computations as part of the protocols in the following sec-
tions, in which case they remain secret.

For the multiset case the privacy peers perform the following
computation:

[CF∧(u)] := min(min(min([CF1(u)], [CF2(u)]),

[CF3(u)]), . . . , [CFn(u)]) (3)

Again the minimum is computed position-wise over all bloom
filter positions. We compute the minimum of two secret
sharings [a] and [b] using SEPIA’s lessThan operation as
follows:

min([a], [b]) :=[a] ∗ lessThan([a], [b])+

[b] ∗ (1− lessThan([a], [b]))

Rather than computing the minimum operations sequen-
tially as shown in Equation 3, we compare the n input num-
bers in a tree-like fashion, which enables to parallelize min-
imum operations.

The aggregate binary bloom filter has a slightly higher FPR
than a bloom filter that would be constructed directly from
the final intersection set. Intuitively, bits in the input bloom
filters BFi set to 1 by elements that are not part of the final
intersection can survive in the aggregate bloom filter BF∧
due to collisions with bits from other elements.

In the case of counting bloom filters the count retrieved for
an element x is overestimated if all its positions hi(x) collide
with elements having a higher count. We provide a detailed
analysis of the FPR in bloom filters representing intersected
sets in Section 5.2. For both binary and counting bloom
filters, the FPR of BF∧ or CF∧ is lower than the FPR in
any input bloom filter (BFi and CFi). Therefore, if the
bloom filters are dimensioned so that the FPR is acceptable
for representing the input sets, then FPR is also acceptable
for the intersection.

4. SET UNION
The computation of set union is similar to the computation
of set intersection. First, the input peers compute the binary
bloom filters BFi representing their sets and share them
among the privacy peers. The privacy peers then compute
the bloom filter representing the unified set for all u with
1 ≤ u ≤ s as follows:

[BF∨(u)] := [BF1(u)] ∨ [BF2(u)] ∨ . . . ∨ [BFn(u)] (4)

We compute the logical OR (∨) using a private addition and
a private multiplication operation:

[Bit1 ∨Bit2] := [Bit1] + [Bit2]− [Bit1] ∗ [Bit2].

3

In the end, the items of [BF∨] are reconstructed and sent to
the input peers, unless they are used for further computa-
tions, in which case they remain secret.

For the multiset case, we use simply an addition instead of
the OR operation:

[CF∨(u)] := [CF1(u)] + [CF2(u)] + . . . + [CFn(u)] (5)

Unlike the set intersection operation, the set union does not
affect the FPR. That is, the FPR of BF∨ or of CF∨ is equal
to the FPR of a bloom filter that is constructed from the
final union directly:

FPR∨ =

1−

„
1− 1

s

«krn
!k

(6)

5. SET CARDINALITY
The number of true bits in a binary bloom filter is [26]:

sX
u=1

BF (u) = τ ≈ τ̂(r) = s

1−

„
1− 1

s

«kr
!

(7)

By denoting the estimate of the number of inserted elements
r as r̂ and solving the equation for it we get:

r ≈ r̂(τ) =
ln(1− τ

s
)

k ln(1− 1
s
)

(8)

For counting bloom filters we can compute the number of
elements inserted exactly, assuming that there was no over-
flow during the insertion phase, with the equation:

r =
τ

k
(9)

Observe that to estimate the set cardinality of a bloom filter
or of a counting bloom filter using the last two equations, it
is necessary to first sum the values (bits or integers) in the
array of a filter.

5.1 Cardinality of Union
Private set cardinality for union operations is straightfor-
ward. We first compute the union of input bloom filters as
discussed in Section 4, but instead of reconstructing the ag-
gregate bloom filter, we compute the sum of the values in
a filter array using SEPIA’s private addition protocol. We
then reconstruct the sum from which input peers compute
the cardinality of the union of their private input sets using
Equations 8 and 9 in the case of binary and counting bloom
filters, respectively. One could also compute Equations 8
and 9 in MPC and reconstruct the cardinality instead of the
sum. However, computing logarithms in MPC or dividing
in MPC using algebraic circuits is not trivial. In addition,
since the sum can be directly computed from the set cardi-
nality, disclosing the former does not reveal any additional
information.

5.2 Cardinality of Intersection
Private set cardinality for intersection operations is more
complex. For bloom filters resulting from intersection op-
erations we cannot directly use the equations above to es-
timate the cardinality of the intersection, because an ag-
gregate bloom filter after a position-wise AND may contain
additional falsely set bits that do not correspond to elements
of the intersection. We call these false bits due to aggrega-
tion. In the following we describe for the case of binary
bloom filters how to estimate the number of false bits and
the cardinality of the intersection.

The work by Papapetrou et al. [26] provides equations to
estimate the set cardinality of the intersection of two binary
bloom filters. We extend the calculation to an arbitrary
number n of intersected sets. Let BF∧ be the intersection
computed with the sets represented by bloom filters while
BF∩ denotes the intersection computed from the exact sets.
Furthermore, we define SETBF to be the set of array indices
of true bits in BF . The set SETBF∧ is a superset of the set
SETBF∩ . Then, e = |SETBF∧ | − |SETBF∩ | is the number
of false bits. The probability that a bit is set in all sets
SETBFi\SETBF∩ for 1 ≤ i ≤ n and therefore is a false bit
in SETBF∧ is:

P (BF∧(u) = ¬BF∩(u)) =

nY
i=1

|SETBFi | − |SETBF∩ |
s− |SETBF∩ |

=

nY
i=1

τi − τ∩
s− τ∩

(10)

Let τ∩ = |SETBF∩ |, τ∧ = |SETBF∧ |, and τ̂∧ = τ∩+ê. Then,
an estimate of e is ê = (s − τ∩) ∗ P (BF∧(u) = ¬BF∩(u)).
We replace all τi with a fixed τq (to be determined later on),
which leads to the equation:

The problem with this estimate is that each input peer only
knows the cardinality of his input set. Therefore

τ̂∧ = τ∩ +
(τq − τ∩)n

(s− τ∩)n−1
(11)

Inserting 7 we get:

τ̂∧(r∩, τq) = s− s

„
1− 1

s

«kr∩

+
s

„
1− 1

s

«kr∩
!1−n

τq − s

1−

„
1− 1

s

«kr∩
!!n

(12)

From the last equation we cannot derive a closed form for
r̂∩(τ∧, τq) . However, we can use numerical methods to find
a r̂∩ s.t. f(r∩; τ∧, τq) = τ̂∧(r∩, τq) − τ∧ = 0. As the above
function is monotone we use Newton’s Method to find r̂∩. In
our experiments, Newton’s Method had negligible overhead
compared to MPC.

We tested the above formula with different numbers of in-
put sets, distributions of elements and choices of τq. We
evaluated selecting τq as the lowest number of true bits in
any input set, as the average number of true bits, and as

4

the number of true bits in the intersection filter. In our
experiments we observed that the error of the estimate de-
creases quickly as the number of input sets increases, inde-
pendently of the distribution of elements and of the choice
of τq. In most cases, the average number of true bits of all
input sets performed well. Computing this value in MPC is
fast and does not disclose any additional information. The
interpolation can then be done by the input peers locally.
Alternatively the input peers could also use the number of
true bits of their own input sets without disclosing any addi-
tional information. We leave for future work the derivation
of a formal bound on the precision of τq.

6. THRESHOLD SET UNION
Let CF∨ be the union of the counting bloom filters CF1, ...,
CFn as described in Section 4. Given a threshold d we want
to compute the elements that occur at least d times in the
union. This threshold set union can be computed as:

[CFTU (u)] = ThresholdUnion([CF1(u)], . . . , [CFn(u)], d)

= 1− lessThan([CF∨(u)], d) (13)

where the private lessThan operation is computed position-
wise over 1 ≤ u ≤ s. Based on this, a threshold set union
with counts reconstructed can be computed using a private
multiplication operation as:

[CFTUC(u)] = [CFTU (u)] ∗ [CF∨(u)] (14)

This second threshold set union operation maintains the
counts of the elements that are in the threshold union. It
computes what was defined as Private Over-Threshold Set-
Union in [22]. Unless [CFTU] or [CFTUC] are used for fur-
ther computations and shall remain secret, the positions are
reconstructed and sent to the input peers.

Threshold set union operations may introduce falsely set bits
(in CFTU) or counters (in CFTUC) similarly to the set union
operation discussed in Section 4. But unlike in the multiset
union the bits or counts are only falsely set if the count is
above the threshold. Therefore the probability is lower than
the FPR of multiset union.

7. WEIGHTED SET INTERSECTION
The threshold set union allows filtering elements by a thresh-
old on their count. In certain scenarios, however, it is useful
to also have a threshold on the number of sets that contain
a certain element. For instance, when correlating security
alerts across different sites, the participants might not be
interested in events that are restricted to a single site. They
might agree on a disclosure policy that only reconstructs
elements, which have an aggregate count above a certain
threshold and are visible on a minimum number of sites.
That is, we are looking for a protocol that supports two
thresholds. The weighted set intersection protocol finds the
elements that are contained in at least tc sets and that have
an aggregate count of at least tw.

A deterministic weighted set intersection protocol was in-
troduced in [7], called event correlation protocol. However,
the event correlation protocol has limited scalability regard-
ing the number of elements (or equivalently events) per in-
put peer. In particular, correlating 25 sets with only 30
elements per set and 9 PPs takes already more than 200

seconds. Moreover, the computation time of the event cor-
relation protocol scales quadratically with the number of
elements.

Using the protocols we introduced in the previous sections,
we build a much more efficient protocol for weighted set
intersection. Each input peer has a set of tuples, where each
tuple has a key ki and an integer weight wi. The weighted
set intersection contains the keys that appear in at least tc

different sets and that have an aggregate weight of at least
tw:

WSI =

8>><>>:ki

˛̨̨̨
˛̨̨̨ X

j
kj=ki

1 ≥ tc

^ X
j

kj=ki

wj ≥ tw

9>>=>>; (15)

The input sets can be represented by two bloom filters. The
key filter is a counting bloom filter created by inserting each
key with count 1. The weight filter is a counting bloom filter
into which each key is inserted with its weight as count.
The weighted set intersection protocol proceeds with the
following steps:

1. Each IP i creates a bloom filter for keys CFKi and a
counting bloom filter for weights CFWi.

2. Each IP shares CFKi(u) and CFWi(u), where 1 ≤
u ≤ s, among the privacy peers.

3. The privacy peers compute the threshold set union of
the key filters:

CFKTU (u) = ThresholdUnion(CFK1(u), . . . ,

CFKn(u), tc)

and of the weight filters:

CFWTU (u) = ThresholdUnion(CFW1(u), . . . ,

CFWn(u), tw)

For the weight filters, instead of the standard Thresh-
oldUnion (Equation 13) we can also use Equation 14
to reconstruct the aggregate weights of the elements in
the weighted set intersection.

4. The privacy peers compute CBFWSI(u) = CFKTU (u)
∗CFWTU (u) and reconstruct the result.

This protocol nicely demonstrates a key benefit of our ap-
proach. Since all set operations are built with standard
MPC operations, it is possible to combine set operations
with generic MPC operations and build powerful composite
protocols.

8. SCALING TO LARGE NUMBERS
OF SETS

For the operations on binary bloom filters introduced in the
previous sections it is often necessary to compute the AND
(∧) and OR (∨) of many values. With n input sets, these op-
erations require n− 1 MPC multiplications per bloom filter

5

position. MPC multiplications require the PPs to synchro-
nize intermediate values and hence are much more costly
than MPC additions, which only require local computation
by the PPs.

Fortunately, the number of expensive multiplications can
be reduced for large n. The optimized operations use a
combination of additions and an equality operation. Let
l = dlog2(p)e be the number of bits required to represent
p and q ≤ l be the number of bits set to 1 in the binary
representation of the group order p. The equality operation
requires l + q − 2 multiplications [7]. Therefore if l + q −
2 < n− 1 we use the more efficient operations described by
Equations 16 and 17.

fastAND(x1, x2, . . . , xn) := Equal

nX

i=1

1− xi, 0

!
(16)

fastOR(x1, x2, . . . , xn) := 1− Equal

nX

i=1

xi, 0

!
(17)

These operations have the big advantage that their running
time mostly depends on the speed of the equal operation
which depends only on the choice of the group order p. The
group order p has to be chosen s.t. p > max(m + 1, n − 1).
When l + q − 2 < n − 1 the running time of the operations
only depends logarithmically on the number n of sets. The
additions and subtractions can be done locally and the time
required for that is negligible. In addition, given a fixed
group order p, which is the case in practice, the running time
of the operations is constant in the number of sets. Finally,
note that since l, q, and n are known in the beginning of a
computation, we can automatically select the faster protocol
for AND and OR operations.

With these optimizations the protocols’ multiplication re-
quirements are listed in Table 3.

9. PERFORMANCE EVALUATION
In this section we evaluate the performance of our set opera-
tions. We measure the average total protocol running time,
the volume of transmitted data, and the memory usage. The
CPU time is the total time it takes a privacy peer to process
the received data and prepare the data to be sent. Commu-
nication time is the total time it takes a privacy peer to send
and receive data. We do not evaluate the threshold set union
protocol separately as the weighted set intersection protocol
runs the former twice and therefore it reflects its perfor-
mance accurately. The set cardinality protocols were not
evaluated as the computation time is practically negligible.
Compared to set intersection and union, our set cardinality
protocols require only an addition and local computation,
which is practically negligible.

Parameters: We vary the number of input peers between
5 and 25 and the number of privacy peers between 3 and 9.
Recall that the number of input peers n is equal to the num-
ber of input sets. The computation complexity of our pro-
tocols is linear with the bloom filter size. Assuming that in

many practical scenarios the running time is upper-bounded
by a few minutes, we select s = 220 = 1, 048, 576 for the bi-
nary bloom filter of union and intersection operations. The
protocols for weighted set and multiset intersection require
lessThan comparisons, which are much more costly than
basic addition and multiplication operations [7]. We select
a size of s = 214 = 16, 384 for the counting bloom filters
of these protocols. We set the number of hash functions to
k = ln(2) · r/s as suggested in [4]. The bloom filter size s
determines the number of supported elements and the cor-
responding FPR (Equation (1)). As an example, we provide
the FPR with 100,000 and 1,500 inserted elements in Ta-
ble 4. For each configuration, the protocols were run 10
times. The error bars in the plots show the standard devia-
tion of the running time.

Setup: Our evaluation experiments were run on systems
with two AMD Opteron 2218 Dualcore 2.6GHz CPUs and
8 GB RAM that were running Debian and were intercon-
nected by a 1 Gb/s LAN. The Java version used was Open-
JDK Runtime Environment (IcedTea6 1.8.7) (6b18-1.8.7-2
squeeze1) and OpenJDK 64-Bit Server VM (build 14.0-b16,
mixed mode). Each input and privacy peer was run on a
separate system. In wide-area network (WAN) settings with
lower network bandwidth the protocols will, of course, run
slower. The influence of lower network speeds on the per-
formance of the basic operations of SEPIA was measured in
[5]. For the bottleneck multiplication operation, the share
of total running time used for communication is 21% with
1Gb/s connections. With 100Mb/s connections, the share
of communication time goes up to 32%. Thus, the major
part of running time is due to local computation and does
not significantly depend on link speeds.

9.1 Set Intersection
As shown in Fig. 1, the average running time of the binary
set intersection with 10 input peers is larger than with 5
input peers, while for n > 10 the running time is almost
constant. The reason for this change is that for n > 10,
the fastAND is automatically used. We do not observe a
logarithmic scaling behavior in the number of sets as we use
a fixed field size p for all configurations. Therefore as dis-
cussed in Section 8, the cost for intersecting additional sets
with the fastAND is negligible. For the multiset intersec-
tion, the average total running time and bandwidth usage
always depends linearly on the number of input peers. As
shown in Fig. 1 and Table 4 the binary set version is much
faster than the multiset version.

Comparing the performance of our protocols to related work
requires scaling down our parameters. For instance, if we
take our performance results for 5 sets with 100,000 elements
and 3 privacy peers and scale it down to two sets of 5000
elements, which corresponds to the currently fastest imple-
mentation [11], our implementation is about twenty times
faster.

9.2 Set Union
Fig. 2 shows how the CPU running time scales with n and m
for the binary (left) and the multiset (right) union. The scal-
ing behavior of the running time of the set union protocol
is similar to the set intersection protocol. For the multiset
union, there is no distinctive dependency on either the num-

6

Operation Sets Multisets

Intersection (n− 1) ∗ s if l + q − 2 ≥ n− 1 O((n− 1) ∗ l ∗ s)
O(log2(n) ∗ s) if l + q − 2 < n− 1

Union (n− 1) ∗ s if l + q − 2 ≥ n− 1 0
O(log2(n) ∗ s) if l + q − 2 < n− 1

Cardinality 1 1
Threshold Set
Union

- s ∗ l without counts
s ∗ (l + 1) reconstructing counts

Weighted Set
Intersection

- 2 ∗ s ∗ l + s without counts
2∗(s∗ l+s) reconstructing counts

Table 3: Required multiplications for our set operations.

5 10 15 20 25
0

20

40

60

80

100

Number of input peers

A
ve

ra
ge

 to
ta

l r
un

ni
ng

 ti
m

e
(s

)

3 PP
5 PP
7 PP
9 PP

5 10 15 20 25
0

50

100

150

200

250

300

350

Number of input peers

A
ve

ra
ge

 to
ta

l r
un

ni
ng

 ti
m

e
(s

)

3 PP
5 PP
7 PP
9 PP

Figure 1: Average total set intersection protocol running time for binary bloom filter with size of 1,048,576
(left) and for multisets (right) with a filter size of 16,384. (PP = Privacy Peer).

ber of input or privacy peers. This comes from the fact that
the multiset union only applies MPC addition, which is a
very cheap local operation and does not require communi-
cation (besides the initial sharing and the final reconstruc-
tion). The curve for the communication time (not shown)
for the binary union has the same shape with the curve for
the CPU time. The communication time for mutliset union
was always almost constant in our experiments close to two
seconds.

Table 5 compares performance parameters of the set union
protocol in the binary and in the multiset case. Compared to
the corresponding statistics for the set intersection protocol
shown in Table 4, in the union protocol the multiset version
is faster than the binary version. Besides, the average total
running time, the CPU time, the communication time and
the traffic volume for binary bloom filters are very similar
to the corresponding numbers for the intersection protocols.

The fastest set union implementation we are aware of takes
25 hours to compute the union of 10 sets of 400 elements [28].
However, this implementation cannot compute the union of
sets as large as ours as the running time of their protocols
is quadratic in the number of sets and the set size. As our
protocol can process far more data in a much shorter time,
our set union is several orders of magnitude faster.

9.3 Weighted Set Intersection
Fig. 3 shows the average total running time of the weighted
set intersection protocol (left) and the event correlation pro-
tocol (right) presented in [7]. The event correlation protocol
uses sets of size 30, while the weighted set intersection pro-
tocol uses bloom filters of size 16,384, which can represent
much larger sets, for example, of 1,500 elements with a 0.5%
FPR.

The total as well as the average CPU and communication
time of our protocol are all approximately constant for vary-
ing numbers of input peers because the operation is essen-
tially independent of the number of input peers. The number
of input peers only influences the traffic volume of input data
that has to be submitted to the privacy peers and the traffic
volume of results sent back. The event correlation protocol
in [7], which served as an inspiration for our weighted set
intersection protocol, scales quadratically both in the num-
ber of input peers and the set size. The running time of
our protocol is independent of the number of input peers n.
Furthermore, it only scales linearly with the set size.

Table 6 compares the performance of the weighted set inter-
section protocol with and without reconstructing the weights.
As it can be seen from the numbers the effect of the recon-
struction is almost negligible.

7

Parameter Set intersection Multiset intersection

Bloom filter size 1,048,576 16,384
Field size 101 101
Elements 100,000 1500
False positive rate 0.65% 0.5%
Avg. runtime, 3 PP, 5 IP (CPU/Com/Total) (4.4/4.5/19.0)s (11.2/9.1/30.7)s
Avg. runtime, 9 PP, 25 IP (CPU/Com/Total) (44.2/11.0/76.2)s (184.4/165.8/411.6)s
Per PP traffic at 9 PP, 25 IP 352.3 MB approx. 1 GB
Per IP traffic at 9 PP, 25 IP 26.9 MB approx. 1 MB

Table 4: Summary of main configuration and performance parameters for set and multiset intersection.

5 10 15 20 25
0

10

20

30

40

50

60

70

Number of input peers

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
)

3 PP
5 PP
7 PP
9 PP

5 10 15 20 25
0

1

2

3

4

5

6

7

Number of input peers

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
)

3 PP
5 PP
7 PP
9 PP

Figure 2: Average CPU time for the execution of the set union protocol with binary (left) and counting
(right) bloom filters of size 1,048,576.

10. RELATED WORK
Several works [22, 15, 19, 14, 18] describe set operations
based on encrypted polynomials. In this approach, set el-
ements are represented by the roots of a polynomial. The
coefficients of all the polynomials are encrypted using a ho-
momorphic encryption scheme. Due to the encryption these
operations guarantee only computational security. Certain
schemes allow for malicious players by incorporating zero-
knowledge proofs [22, 14, 19, 18]. The performance of [15]
is shown in Table 7, where we illustrate the performance
of related implemented set operations as evaluated by their
authors. Cheon et al. [8] also use encryption and polyno-
mials for set representation but with a twist. The authors
evaluate the polynomial at fixed points given by an index
set achieving a protocol that scales quasi-linearly in the set
size.

Furthermore, certain works [11, 9, 17] have developed inter-
esting custom cryptographic protocols for secure set oper-
ations. De Cristofaro et al. [11, 9] describe protocols with
linear complexity to compute the intersection and the car-
dinality of the intersection of two sets. The performance
of these two protocols is shown in Table 7. Ye et al. [33]
use polynomials for set representation and combine secret
sharing with encryption to compute the union of two sets.

Another set of works [25, 31, 27] combine the polynomial
representation of sets with Shamir’s Secret Sharing scheme [32],

which provides information-theoretic security, to compute
set intersection operations. However, the scaling behavior
of these schemes is moderate: The complexity is O(n3 ∗ r2)
for [25] (with passive adversaries) and O(n ∗ r2) for [31]. In
contrast, the scaling behavior of our protocols is summarized
in Table 3.

Besides, Lai et al. [23] propose to do set operations with sets
represented by bloom filters. But the privacy of the sets in
this work is only protected by the false positive rate of the
filter and by splitting up the filter into segments revealing
only one segment to each other player. This means that
privacy has to be bought with a reduction of precision and
t players will still learn t segments of each filter.

In [29] the authors describe GCR, an additive secret sharing
scheme and mention the potential use of bloom filters for
private set operations. However, the GCR scheme allows
only for the single case of union on counting bloom filters.

In the Table 7 we summarize key configuration parameters
and results as reported by their authors from the evaluation
of related implemented set operations. We did not attempt
to scale the configuration parameters to a consistent scenario
as they use different techniques which scale differently. Our
protocols are much faster in some cases by several orders of
magnitude than previous set operations.

8

Parameter Set Union Multiset Union

Bloom filter size 1,048,576 1,048,576
Field size 101 1,107,296,257
Elements 100,000 100,000
False positive rate 0.65% 0.65%
Avg. runtime at 3 PP, 5 IP (CPU/Com/Total) (4.5/4.3/19.1)s (0.8/1.4/12.9)s
Avg. runtime at 9 PP, 25 IP (CPU/Com/Total) (44.2/10.4/75.9)s (4.8/2.3/33.7)s
Per PP traffic at 9 PP, 25 IP 352.3 MB 239.2 MB
Per IP traffic at 9 PP, 25 IP 26.9 MB 56.2 MB

Table 5: Summary of main configuration and performance parameters for set and multiset union.

5 10 15 20 25
0

50

100

150

200

250

300

Number of input peers

A
ve

ra
ge

 to
ta

l r
un

ni
ng

 ti
m

e
(s

)

3 PP
5 PP
7 PP
9 PP

5 10 15 20 25
0

50

100

150

200

Number of input peers

A
ve

ra
ge

 to
ta

l r
un

ni
ng

 ti
m

e
(s

)

3 PP
5 PP
7 PP
9 PP

Figure 3: Total time of the weighted set intersection protocol with a bloom-filter size of 16,384 (left) and of
the event correlation protocol of the USENIX 2010 paper [7] with sets of size 30 (right).

11. CONCLUSIONS
In this work we designed, implemented and evaluated a
collection of fast and composable set operations providing
information-theoretic security based on Shamir’s Secret Shar-
ing scheme. The operations were optimized to work effi-
ciently for multiple parties and large sets. They can be
combined with generic MPC operations to build complex
composite protocols, as illustrated by our WSI protocol.
Remarkably, for union and intersection of many sets, the
communication complexity is logarithmic in the number of
input sets. Compared to prior works our set intersection im-
plementation is about twenty times faster than the current
state-of-the-art and our set union implementation several
orders of magnitude.

12. ACKNOWLEDGMENTS
We want to thank Manuel Widmer for his contributions to
this work. This work was supported by DEMONS, a re-
search project supported by the European Commission un-
der its 7th Framework Program (contract no. 257315).

13. REFERENCES
[1] G. Ateniese, E. De Cristofaro, and G. Tsudik. (if) size

matters: Size-hiding private set intersection. In
D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi,
editors, Public Key Cryptography Ű PKC 2011,
volume 6571 of Lecture Notes in Computer Science,
pages 156–173. Springer Berlin / Heidelberg, 2011.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In ACM
symposium on Theory of computing (STOC), 1988.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13:422–426,
July 1970.

[4] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2004.

[5] M. Burkhart. Enabling Collaborative Network Security
with Privacy-Preserving Data Aggregation. PhD thesis,
ETH Zurich, July 2011.

[6] M. Burkhart and X. Dimitropoulos.
Privacy-Preserving Distributed Network
Troubleshooting - Bridging the Gap between Theory
and Practice. ACM Transactions on Information and
System Security (TISSEC), 14(4), Dec. 2011.

[7] M. Burkhart, M. Strasser, D. Many, and
X. Dimitropoulos. SEPIA: Privacy-Preserving
Aggregation of Multi-Domain Network Events and
Statistics. In 19th USENIX Security Symposium,
Washington, DC, USA, Aug. 2010.

[8] J. H. Cheon, S. Jarecki, and J. H. Seo. Multi-party
privacy-preserving set intersection with quasi-linear
complexity. Cryptology ePrint Archive, Report
2010/512, 2010.

[9] E. D. Cristofaro, P. Gasti, and G. Tsudik. Fast and

9

Parameter W/o weights With weights

Bloom filter size 16,384 16,384
Field size 1,107,296,257 1,107,296,257
Elements 1500 1500
False positive rate 0.5% 0.5%
Avg. runtime, 3 PP, 5 IP (CPU/Com/Total) (91.4/30.4/133.7)s (89.7/32.1/133.5)s
Avg. runtime, 9 PP, 25 IP (CPU/Com/Total) (145.3/76.7/257.3)s (141.2/78.3/255.0)s
Per PP traffic at 9 PP, 25 IP 837.6 MB 798.0 MB
Per IP traffic at 9 PP, 25 IP 1.6 MB 1.6 MB

Table 6: Summary of main configuration and performance parameters for weighted set intersection with and
w/o weight reconstruction.

Reference Year Operation Number of Sets Set size Running time

[15] 2006 set intersection 2 160 40s
[11] 2010 set intersection 2 5,000 1.4s (client)

4.7s (server)
[20] 2011 set intersection 2 65,536 20m
[9] 2011 set intersection cardinality 2 1,000 3s
[28] 2010 set union 10 400 25h

Table 7: Comparison of the running time reported in the literature for different implemented set operations.

private computation of set intersection cardinality.
Cryptology ePrint Archive, Report 2011/141, 2011.
http://eprint.iacr.org/.

[10] E. De Cristofaro, J. Kim, and G. Tsudik.
Linear-complexity private set intersection protocols
secure in malicious model. In M. Abe, editor,
Advances in Cryptology - ASIACRYPT 2010, volume
6477 of Lecture Notes in Computer Science, pages
213–231. Springer Berlin / Heidelberg, 2010.

[11] E. De Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear complexity. In
R. Sion, editor, Financial Cryptography and Data
Security, volume 6052 of Lecture Notes in Computer
Science, pages 143–159. Springer Berlin / Heidelberg,
2010.

[12] X. Dimitropoulos, P. Hurley, and A. Kind.
Probabilistic lossy counting: an efficient algorithm for
finding heavy hitters. ACM SIGCOMM Computer
Communication Review, 38(1):5–5, 2008.

[13] M. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In C. Cachin
and J. Camenisch, editors, Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 1–19. Springer Berlin /
Heidelberg, 2004.

[14] K. Frikken. Privacy-preserving set union. In J. Katz
and M. Yung, editors, Applied Cryptography and
Network Security, volume 4521 of Lecture Notes in
Computer Science, pages 237–252. Springer Berlin /
Heidelberg, 2007.

[15] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp,
D. Mazières, and H. Yu. Re: Reliable email. In NSDI
Š06: 3rd Symposium on Networked Systems Design &
Implementation, page 297Ű310, 2006.

[16] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS
and fast-track multiparty computations with
applications to threshold cryptography. In 7th annual
ACM symposium on Principles of distributed

computing (PODC), 1998.

[17] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security
against malicious and covert adversaries. In
R. Canetti, editor, Theory of Cryptography, volume
4948 of Lecture Notes in Computer Science, pages
155–175. Springer Berlin / Heidelberg, 2008.

[18] C. Hazay and K. Nissim. Efficient set operations in
the presence of malicious adversaries. In P. Nguyen
and D. Pointcheval, editors, Public Key Cryptography
Ű PKC 2010, volume 6056 of Lecture Notes in
Computer Science, pages 312–331. Springer Berlin /
Heidelberg, 2010.

[19] J. Hong, J. W. Kim, J. Kim, K. Park, and J. H.
Cheon. Constant-round privacy preserving multiset
union. Cryptology ePrint Archive, Report 2011/138,
2011. http://eprint.iacr.org/.

[20] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In Proceedings of the 20th USENIX conference on
Security, SEC’11, pages 35–35, Berkeley, CA, USA,
2011. USENIX Association.

[21] S. Katti, B. Krishnamurthy, and D. Katabi.
Collaborating against common enemies. In Internet
Measurement Conference (IMC), 2005.

[22] L. Kissner and D. Song. Privacy-preserving set
operations. In V. Shoup, editor, Advances in
Cryptology Ű CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, pages 241–257. Springer
Berlin / Heidelberg, 2005.

[23] P. K. Y. Lai, S.-M. Yiu, K. P. Chow, C. F. Chong,
and L. C. K. Hui. An efficient bloom filter based
solution for multiparty private matching. In Security
and Management, pages 286–292, 2006.

[24] A. Lakhina, M. Crovella, and C. Diot. Mining
anomalies using traffic feature distributions. In ACM
SIGCOMM, 2005.

10

http://eprint.iacr.org/
http://eprint.iacr.org/

[25] R. Li and C. Wu. An unconditionally secure protocol
for multi-party set intersection. In J. Katz and
M. Yung, editors, Applied Cryptography and Network
Security, volume 4521 of Lecture Notes in Computer
Science, pages 226–236. Springer Berlin / Heidelberg,
2007.

[26] O. Papapetrou, W. Siberski, and W. Nejdl.
Cardinality estimation and dynamic length adaptation
for bloom filters. Distributed and Parallel Databases,
28:119–156, 2010. 10.1007/s10619-010-7067-2.

[27] A. Patra, A. Choudhary, and C. Rangan. Information
theoretically secure multi party set intersection
re-visited. In M. Jacobson, V. Rijmen, and
R. Safavi-Naini, editors, Selected Areas in
Cryptography, volume 5867 of Lecture Notes in
Computer Science, pages 71–91. Springer Berlin /
Heidelberg, 2009.

[28] T. Raeder, M. Blanton, N. Chawla, and K. Frikken.
Privacy-preserving network aggregation. In M. Zaki,
J. Yu, B. Ravindran, and V. Pudi, editors, Advances
in Knowledge Discovery and Data Mining, volume
6118 of Lecture Notes in Computer Science, pages
198–207. Springer Berlin / Heidelberg, 2010.

[29] F. Ricciato and M. Burkhart. Reduce to the max: A
simple approach for massive-scale privacy-preserving

collaborative network measurements. In 3rd
International Workshop on Traffic Monitoring and
Analysis (TMA), Vienna, Austria, Apr. 2011.

[30] H. Ringberg. Privacy-Preserving Collaborative
Anomaly Detection. PhD thesis, Princeton University,
2009.

[31] G. Sathya Narayanan, T. Aishwarya, A. Agrawal,
A. Patra, A. Choudhary, and C. Pandu Rangan. Multi
party distributed private matching, set disjointness
and cardinality of set intersection with information
theoretic security. In J. Garay, A. Miyaji, and
A. Otsuka, editors, Cryptology and Network Security,
volume 5888 of Lecture Notes in Computer Science,
pages 21–40. Springer Berlin / Heidelberg, 2009.

[32] A. Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[33] Q. Ye, H. Wang, and C. Tartary. Privacy-preserving
distributed set intersection. Availability, Reliability
and Security, International Conference on,
0:1332–1339, 2008.

[34] V. Yegneswaran, P. Barford, and S. Jha. Global
Intrusion Detection in the DOMINO Overlay System.
In Network and Distributed System Security
Symposium (NDSS), 2004.

11

	Introduction
	Preliminaries
	Set Intersection
	Set Union
	Set Cardinality
	Cardinality of Union
	Cardinality of Intersection

	Threshold Set Union
	Weighted Set Intersection
	Scaling to Large Numbers of Sets
	Performance Evaluation
	Set Intersection
	Set Union
	Weighted Set Intersection

	Related Work
	Conclusions
	Acknowledgments
	References

