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Abstract

This paper addresses the problem of controlling mutation strength in multi-objective evolutionary algorithms
and itsimplications for the convergence to the Pareto set. Adaptive parameter control isone major issuein thefield
of evolutionary computation, and several methods have been proposed and applied successfully for single objective
optimization problems. In this study we examine whether these results carry over to the multi-objective case and
what modifications must be taken to meet the difficulties and pitfalls of conflicting objectives.

1 Introduction

The application of evolutionary algorithms to optimization problems with multiple objectives has become very
popular in recent years. In order to find or to approximate the set of efficient or Pareto-optimal solutions an algorithm
should ensure convergence to Pareto set and provide a *good’ distribution of solutions. This helps the decision maker
to get insight into the real trade-offs between conflicting objectives.

The conceptual approaches to these tasks are mainly concerned with the evaluation of solutions for the selection
operator. Fitness assignment methods based on the notion of dominance turned out to be superior to plain aggre-
gating methods as far as the distribution of solutions is concerned. Further improvements include density based
selection methods to maintain diversity and the use of elitism to speed up the search in the direction of the Pareto
set and to ensure convergence properties [LZT01, RAQQ].

However, research focusing on the role of the variation operators in evolutionary multi-objective optimization
remained rare. Virtually all implementations use standard non-adaptive operators from the single objective case.
Especially the mutation operator has received little attention so far, and it is common practice to apply fixed mutation
rates in binary coded representation or fixed mutation step sizes in Evolution Strategies. Theoretical considerations,
however, emphasize the importance of the mutation strength for the convergence of multi-objective evolutionary
algorithms (MOEAS) [Rud98, Han99]. When large search spaces are to be explored, adaptive variation operators
are mandatory to achieve both a satisfactory rate of progress towards the optimum and a high precision of solutions.
Thus, effective control mechanisms, which exist for the single objective case, need to be developed.

This study begins by recalling the concepts and different approaches of mutation strength control in the next
section. From this, we incorporate adaptive mutation control in two different classes of MOEA: In section 4 we first
use a simple Evolution Strategy with Pareto-based selection before turning to a Predator-Prey EA in section 5.

2 Conceptsand Methods of Mutation Control

Choosing optimal parameter settings is considered as an important - and mainly open - *meta-problem’ of EA re-
search. Practitioners often use rules of thumb, which are a combination of experience and extrapolation of theoretical
results. One of this parameterization problems concerns the mutation strength: With too strong variation the evolu-
tion becomes a pure random search, with too weak variation no real progress can be achieved. The small region of
appropriate mutation strength - sometimes referred to as the ’evolution window’ - depends on the topology of the



objective function which usually is unknown a priori. Thus, adaptation mechanisms for the mutation strength are a
necessity for many optimization problems.

This is equally important in the case of multiple objectives as can be drawn from theoretic results. Stochastic
convergence of a simple (1+1)-EA to the Pareto set of a two-objective problem has been shown in [Rud98]. However,
this could only be guaranteed if the mutation step size was chose proportionally to the distance to the Pareto set.
Existing approaches to mutation control can be categorized into three groups of increasing complexity:

e Predefined schedules without feedback,
o Feedback-based adaptation with (explicit) external control, and
o Self-adaptive (internal) mechanisms without external control.

Representatives of the first class are for instance time dependent schedules as applied in the Predator-Prey EA of
[LRS98] in a multi-objective environment. Here, the mutation step sizes are discounted by a constant factor each
time an offspring in produced. Convergence to the global Pareto set of some simple multi-objective problems can be
achieved, if the initial step sizes are big enough and a ’conservative’ discount factor is chosen. The disadvantages of
this approach is the lack of a possibility to increase step sizes that are too small and the need for new parameters to
be set.

A very sophisticated control mechanism is proposed by [Kah91]. In the adaptation rule the author distinguishes
nine different cases depending on the history of the evolution. In each case the step sizes are altered differently
according heuristics, some of which resemble the so-called 1/5-success rule. This rule, originally developed for a
(1+1)-EA, is based on the assumption that maximum progress can be achieved through step sizes leading to a success
probability of approximately 20 %. In the multi-objective case the measuring of success need to be revised, since the
probability of making cooperative steps decreases rapidly near the Pareto set, even for small step sizes [Han01]. A
possible remedy would be to exempt those mutations leading to incomparable solutions from the success measure,
which should keep the success probability constant. However, the adaptation frequency decreases as the probability
of creating incomparable solutions (no success nor failure) increases.

Finally, the self-adaptive mutative step size control of Evolution Strategies has been applied to multi-objective
optimization problems by [Kur91]. In his algorithm the selection criterion changes randomly over time. Individuals
are supplied with a set of step sizes for each objective function to cope with the changing environment. This
additional genetic material is organized through polyploidy.

3 Problem Description and Representation of Individuals

When evolutionary algorithms are used for approximating the Pareto set of a multi-objective optimization problem
(MOP), they typically face two major problems:

e convergence to the Pareto set and
o distribution of solutions.

The latter feature is created by the existence of multiple Pareto-optimal solutions in the multi-objective case, while
the first point is an as important matter in single objective optimization. The convergence property can further be
specified by convergence velocity and convergence reliability. For the multi-objective case this distinction should
be made as well. To some extend these ’meta-problems’ may also be conflicting - at least their dependencies are
far from being clear - which makes the design and improvement of algorithms a complicated task. Quantitative
comparisons are always based on a (performance) measure, which needs to be defined carefully. Furthermore,
performance measures related to the above objectives might be incommensurable as well.

This study focuses on the problem of convergence to the Pareto set. Here, the control of the mutations strength
might be very important. For a first assessment of different mutation control mechanisms two types of functions are
whose components are well studied in the context of mutation control in single objective optimization: the sphere
model and a multi-modal function.
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The sphere model is a unimodal function which has served as a reference in many theoretic studies of evolutionary
algorithms and especially in the context of self-adaptive Evolution Strategies. This function can systematically be
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Figure 1. Median of the individuals’ distances (left) and expected step length (right) over time (number of function
evaluations) on F', n = 100, p = 2.

extended to a 'multi-sphere model” by translating the optimum for each component so that the component optima
span an m-dimensional space. Here we restrict ourselves to m = 2 objectives with ¢; = (1,0,0,...,0) and
ce = (0,1,0,...,0). This function is perhaps the most simple multi-objective test function for infinite search
spaces, because it is continuous, non multi-frontal, and the Pareto set can be determined analytically: It is the
m-~dimensional polyeder of the component optima. However, since the search space in unbounded, convergence
depends crucially on the starting point and the mutation strength.

The second function under examination has been proposed by [Kur91] and used as a test function of an evolution
strategy for vector optimization. It is part of van Veldhuizen’s test function suite [Vel99] for MOEAs and features
a disconnected Pareto sets. Both functions are defined on IR ™ advocating the use a floating point representation for
the decision variables. The individual space is defined as

I=R"xRt"™

Thus, an individual consists of n decision variables and n, mutation step sizes (strategy variables). Since the
component functions are symmetric, we use a single mutation step size o only (n, = 1). Mutation is carried out by
first multiplying the step size with an instantiation of a log-normally distributed random variable:

1
(t+1) — 5(t) . N =
o =o' . expN(0,79), T0= Q)
Vn

Thereafter, a normal-distributed random vector with zero mean and variance ¢ 2 is added to the individual.

4 Standard EAswith Dominance-based Selection

The first algorithm under consideration is a standard (u, %, A, p) Evolution Strategy (ES) where n denotes the num-
ber of possible parents, A the number of offspring individuals, « the maximum lifespan of individuals (measured
in generations) and p the number of recombination partners. Fitness is assigned based on the dominance relation
concerning all objective function values. Specifically, we used the individuals’ dominance level within the corre-
sponding population.t

4.1 Behavior on the multi-sphere model (F)

It is known from the single-objective case that standard self-adaptive evolution strategies exhibit linear order con-
vergence on the sphere model (here: first component of F’). For the multi-sphere model, however, this property
seems to be valid only individuals which are ’sufficiently far away’ from the Pareto-optimal set. After a period
of exponentially decreasing population distance to the Pareto set, the solutions suddenly start to oscillate around a

LAlternatively, the dominance grade (or rank) or a combination of both could be used (to increase the discriminating power), but in our case
the results are not significantly different. Usually, some additional features are included that *punish’ individual which are close to each other
according to some metric to maintain diversity. In this study we concentrate on the convergence and try to avoid any side-effects caused by
sophisticated fitness assignment methods.
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Figure 2: Estimated success probabilities (left) and normalized progress (right) for mutations (step size o) of indi-
viduals with distance dist to the optimum on the SOP F'; (upper surfaces) and the MOP F' (lower surfaces), n=100.

small but fixed final distance (Fig. 1). An explanation can be deduced from Fig. 2, which gives a visual impression
of the “evolution window’: For & randomly initialized individuals z ; and their mutants mut(z;), the plots show the
success frequency

k
ws = % Z 1(mut(z;) < ;) 2
i=1

and the average (normalized) progress for successful mutations

k
d(z;, X*) — d(mut(z;), X*)
/ = . . ’ ’
¢ =w,-n Z; i X 3)
over the (normalized) step size
o =n-Z (4)
do

for mutations of randomly chosen individuals with a fixed expected distance d o to the Pareto set. d(z, X) denotes
the minimum Euclidean distance of vector x to all elements of set X and X * is the Pareto set of the given problem.
It is obvious that near the Pareto set not only the success rate decreases, but also the normalized average progress
for successful mutations. Thus, it is increasingly difficult to proceed closer to the Pareto set, if successes are judged
via the dominance relation.

As far as the commonly accepted conditions for this kind of mutative step-size control are concerned, we found
that in our case the algorithm is much less sensitive to the u-\ ratio than expected.

4.2 Multi-modal objectives ()

On the multi-modal function G it gets more difficult to increase the step sizes sufficiently with increasing n. At
least if initial step sizes are chosen that are larger than the distance of different local optimal sets, an increase can be
observed for large n, too. With too small step sizes, optimization is only performed locally, the whole search space
besides the basin of attraction of the next local optimal set will not be *visible’ for the algorithm. A more annoying
fact is that in spite of the raised step sizes no real progress can be observed. Instead, the step sizes start to decrease
again just when they seem to be near optimal. This is supported by experiments with initial step sizes greater than the
decision variables. Thus, starting with large step sizes does not help at all to overcome this algorithmic limitation.
Fig. 3 can help to explain this situation: For n = 2 the graphs for F' and G look quite similar, only the maximal
progress on F' is considerably greater than on G. For both functions the region of step sizes with positive progress,
lies around the order of magnitude of the distance to the Pareto set. This matches perfectly with previously derived
theoretical results [Rud98]. With increasing n this difference get more apparent. For n = 100 the maximum
progress for G is less than half of the corresponding value for £'. But even more striking is the region on negative(!)
average progress for successful mutations for step sizes slightly greater than the optimum. This imposes additional
pressure on the step sizes to decrease besides the success probability. All in all, the combination of greater success
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Figure 3: Success frequency (w,) and average normalized progress (¢') in case of success for mutations with differ-
ent o values (normalized), G, n = 100. Average distance to the Pareto set 10'° (left) and 10 (right).

probabilities for smaller step sizes, the small average progress in case of optimal step sizes and the negative progress
for larger step sizes seem to hinder an adequate preservation of step sizes around the optimal value. Of course, this
assumption in only based on numerical experiment and lacks a theoretical validation still.

5 An Evolutionary Predator-Prey M odel

The predator-prey model of [LRS98] consists of a spatially distributed population. Predator individuals move across
the spatial structure according to a random walk and perform selection: They delete the worst prey individual of their
neighborhood according to their associated objective function. This is a population-based single criterion selection
in contrast to the Pareto-based selection applied in the Pareto ES of the previous section. Empty spaces are refilled
by the best of A individuals created by recombination (in case of p > 2 or duplication (p = 1) of p randomly chosen
individuals of a given neighborhood.

In the original study two different step size rules were applied: fixed step sizes of different magnitude and
monotonously decreasing step sizes according to a given schedule (see section 2). Now, we extend the model by
presenting two additional adaptation rules that are capable of increasing the step sizes if necessary.

5.1 Standard mutative self-adaptation

Though the predator-prey model can be regarded as a special (u+1)-EA, we try the standard mutative self-adaptation
from the previous section first. Here, two necessary conditions for the applicability of this kind of step size control
are not fulfilled: the existence of a ’comma’ strategy (which ensures the deletion of bad adapted individuals) and the
production of an offspring surplus to cope with the optimal success probability of less than 1/2.

The results on the multi-sphere model are surprisingly good. Compared to a (100, oo, 100, 1)-ES progress
is even better in respect to the number of function evaluations. In addition, the mere stagnation of the Pareto ES
during the third phase of the run can be avoided, and convergence is still visible near the Pareto set. This may be
explained by the superior success probability of single criterion selection in the vicinity of the Pareto set, where
is gets increasingly difficult to make cooperative steps from one mutation alone. On G, however, the results are
as bad as before using the Pareto ES. We conclude that the same mechanisms come into play than cause both the
Pareto ES and the predator-prey model difficulty to keep the step sizes to a sufficiently high value. In this algorithm,
recombination can help as well, but an appropriate selective pressure on the step sizes must be guaranteed through
higher numbers of offspring.

5.2 Self-adaptation through recombination frequency

We now propose another method of self-adapting step sizes which combines the implicit evaluation of good "inner
models’ through fitness evaluation and selection with a fixed but flexible schedule depending on the recombination
frequency. With this schedule all individuals use bigger step sizes for the early offspring and smaller for later ones.
Thus there will hopefully be a pressure on the step sizes to increase in all stages of the evolution. The mutation of
the step sizes is done deterministically according to the rule

o) = yd=do . o)y e]0,1] (5)



where d denotes the number of descendants an individual has produced so far. The ’delay’ parameter d o determines
the number of descendants that must be created before smaller step sizes are passed on to the offspring. With d ¢
the intensity of testing bigger step sizes can be controlled, whereas v can be interpreted as an ’adaptation rate’.
This schedule is supposed to be very robust concerning high d o values: For step sizes just one order of magnitude
greater than the optimal ones the success rate rapidly goes to zero. Hence, it should only be a matter of time until
appropriate step sizes will be found.

6 Conclusions

In this study we examined the problem of controlling mutation strength in multi-objective evolutionary algorithms.
The results show that the standard self-adaptive evolution strategies have difficulties to converge to the Pareto set
due to the low success probability of Pareto based selection. Alternative selection methods like the predator-prey
approach discussed here are a possibility to overcome this limitation. A disadvantage of this method, however, is the
lower rate of convergence due to the less efficient single-criterion selection. It may be speculated whether a hybrid
method using Pareto-based selection for a fast but rough localization of the Pareto set and single-criterion selection
for an accurate approximation would be appropriate.

Another possible way to improve the convergence properties of self-adaptive MOEAs might be a combination
of low selection pressure (to diminish the danger of premature convergence) and elitism (to prevent possible di-
vergence caused by increasing mutation step sizes and low selection pressure). Also the topic of diversity needs a
thorough investigation in connection with convergence in self-adaptive MOEAs. Finally, it should be emphasized
that these results are entirely based on numerical experiments and empirical evaluation. Theoretical analysis could
fundamentally improve the understanding of the effects of these heuristic methods.
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